1 /* 2 * omap_vout_vrfb.c 3 * 4 * Copyright (C) 2010 Texas Instruments. 5 * 6 * This file is licensed under the terms of the GNU General Public License 7 * version 2. This program is licensed "as is" without any warranty of any 8 * kind, whether express or implied. 9 * 10 */ 11 12 #include <linux/sched.h> 13 #include <linux/platform_device.h> 14 #include <linux/videodev2.h> 15 #include <linux/slab.h> 16 17 #include <media/v4l2-device.h> 18 19 #include <video/omapvrfb.h> 20 21 #include "omap_voutdef.h" 22 #include "omap_voutlib.h" 23 #include "omap_vout_vrfb.h" 24 25 #define OMAP_DMA_NO_DEVICE 0 26 27 /* 28 * Function for allocating video buffers 29 */ 30 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout, 31 unsigned int *count, int startindex) 32 { 33 int i, j; 34 35 for (i = 0; i < *count; i++) { 36 if (!vout->smsshado_virt_addr[i]) { 37 vout->smsshado_virt_addr[i] = 38 omap_vout_alloc_buffer(vout->smsshado_size, 39 &vout->smsshado_phy_addr[i]); 40 } 41 if (!vout->smsshado_virt_addr[i] && startindex != -1) { 42 if (vout->vq.memory == V4L2_MEMORY_MMAP && i >= startindex) 43 break; 44 } 45 if (!vout->smsshado_virt_addr[i]) { 46 for (j = 0; j < i; j++) { 47 omap_vout_free_buffer( 48 vout->smsshado_virt_addr[j], 49 vout->smsshado_size); 50 vout->smsshado_virt_addr[j] = 0; 51 vout->smsshado_phy_addr[j] = 0; 52 } 53 *count = 0; 54 return -ENOMEM; 55 } 56 memset((void *)(long)vout->smsshado_virt_addr[i], 0, 57 vout->smsshado_size); 58 } 59 return 0; 60 } 61 62 /* 63 * Wakes up the application once the DMA transfer to VRFB space is completed. 64 */ 65 static void omap_vout_vrfb_dma_tx_callback(void *data) 66 { 67 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data; 68 69 t->tx_status = 1; 70 wake_up_interruptible(&t->wait); 71 } 72 73 /* 74 * Free VRFB buffers 75 */ 76 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout) 77 { 78 int j; 79 80 for (j = 0; j < VRFB_NUM_BUFS; j++) { 81 if (vout->smsshado_virt_addr[j]) { 82 omap_vout_free_buffer(vout->smsshado_virt_addr[j], 83 vout->smsshado_size); 84 vout->smsshado_virt_addr[j] = 0; 85 vout->smsshado_phy_addr[j] = 0; 86 } 87 } 88 } 89 90 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num, 91 bool static_vrfb_allocation) 92 { 93 int ret = 0, i, j; 94 struct omap_vout_device *vout; 95 struct video_device *vfd; 96 dma_cap_mask_t mask; 97 int image_width, image_height; 98 int vrfb_num_bufs = VRFB_NUM_BUFS; 99 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); 100 struct omap2video_device *vid_dev = 101 container_of(v4l2_dev, struct omap2video_device, v4l2_dev); 102 103 vout = vid_dev->vouts[vid_num]; 104 vfd = vout->vfd; 105 106 for (i = 0; i < VRFB_NUM_BUFS; i++) { 107 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) { 108 dev_info(&pdev->dev, ": VRFB allocation failed\n"); 109 for (j = 0; j < i; j++) 110 omap_vrfb_release_ctx(&vout->vrfb_context[j]); 111 return -ENOMEM; 112 } 113 } 114 115 /* Calculate VRFB memory size */ 116 /* allocate for worst case size */ 117 image_width = VID_MAX_WIDTH / TILE_SIZE; 118 if (VID_MAX_WIDTH % TILE_SIZE) 119 image_width++; 120 121 image_width = image_width * TILE_SIZE; 122 image_height = VID_MAX_HEIGHT / TILE_SIZE; 123 124 if (VID_MAX_HEIGHT % TILE_SIZE) 125 image_height++; 126 127 image_height = image_height * TILE_SIZE; 128 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2); 129 130 /* 131 * Request and Initialize DMA, for DMA based VRFB transfer 132 */ 133 dma_cap_zero(mask); 134 dma_cap_set(DMA_INTERLEAVE, mask); 135 vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask); 136 if (IS_ERR(vout->vrfb_dma_tx.chan)) { 137 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; 138 } else { 139 size_t xt_size = sizeof(struct dma_interleaved_template) + 140 sizeof(struct data_chunk); 141 142 vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL); 143 if (!vout->vrfb_dma_tx.xt) { 144 dma_release_channel(vout->vrfb_dma_tx.chan); 145 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; 146 } 147 } 148 149 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED) 150 dev_info(&pdev->dev, 151 ": failed to allocate DMA Channel for video%d\n", 152 vfd->minor); 153 154 init_waitqueue_head(&vout->vrfb_dma_tx.wait); 155 156 /* 157 * statically allocated the VRFB buffer is done through 158 * command line arguments 159 */ 160 if (static_vrfb_allocation) { 161 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) { 162 ret = -ENOMEM; 163 goto release_vrfb_ctx; 164 } 165 vout->vrfb_static_allocation = true; 166 } 167 return 0; 168 169 release_vrfb_ctx: 170 for (j = 0; j < VRFB_NUM_BUFS; j++) 171 omap_vrfb_release_ctx(&vout->vrfb_context[j]); 172 return ret; 173 } 174 175 /* 176 * Release the VRFB context once the module exits 177 */ 178 void omap_vout_release_vrfb(struct omap_vout_device *vout) 179 { 180 int i; 181 182 for (i = 0; i < VRFB_NUM_BUFS; i++) 183 omap_vrfb_release_ctx(&vout->vrfb_context[i]); 184 185 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) { 186 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; 187 kfree(vout->vrfb_dma_tx.xt); 188 dmaengine_terminate_sync(vout->vrfb_dma_tx.chan); 189 dma_release_channel(vout->vrfb_dma_tx.chan); 190 } 191 } 192 193 /* 194 * Allocate the buffers for the VRFB space. Data is copied from V4L2 195 * buffers to the VRFB buffers using the DMA engine. 196 */ 197 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout, 198 unsigned int *count, unsigned int startindex) 199 { 200 int i; 201 bool yuv_mode; 202 203 if (!is_rotation_enabled(vout)) 204 return 0; 205 206 /* If rotation is enabled, allocate memory for VRFB space also */ 207 *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count; 208 209 /* Allocate the VRFB buffers only if the buffers are not 210 * allocated during init time. 211 */ 212 if (!vout->vrfb_static_allocation) 213 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex)) 214 return -ENOMEM; 215 216 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 || 217 vout->dss_mode == OMAP_DSS_COLOR_UYVY) 218 yuv_mode = true; 219 else 220 yuv_mode = false; 221 222 for (i = 0; i < *count; i++) 223 omap_vrfb_setup(&vout->vrfb_context[i], 224 vout->smsshado_phy_addr[i], vout->pix.width, 225 vout->pix.height, vout->bpp, yuv_mode); 226 227 return 0; 228 } 229 230 int omap_vout_prepare_vrfb(struct omap_vout_device *vout, 231 struct vb2_buffer *vb) 232 { 233 struct dma_async_tx_descriptor *tx; 234 enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; 235 struct dma_chan *chan = vout->vrfb_dma_tx.chan; 236 struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt; 237 dma_cookie_t cookie; 238 dma_addr_t buf_phy_addr = vb2_dma_contig_plane_dma_addr(vb, 0); 239 enum dma_status status; 240 enum dss_rotation rotation; 241 size_t dst_icg; 242 u32 pixsize; 243 244 if (!is_rotation_enabled(vout)) 245 return 0; 246 247 /* If rotation is enabled, copy input buffer into VRFB 248 * memory space using DMA. We are copying input buffer 249 * into VRFB memory space of desired angle and DSS will 250 * read image VRFB memory for 0 degree angle 251 */ 252 253 pixsize = vout->bpp * vout->vrfb_bpp; 254 dst_icg = MAX_PIXELS_PER_LINE * pixsize - vout->pix.width * vout->bpp; 255 256 xt->src_start = buf_phy_addr; 257 xt->dst_start = vout->vrfb_context[vb->index].paddr[0]; 258 259 xt->numf = vout->pix.height; 260 xt->frame_size = 1; 261 xt->sgl[0].size = vout->pix.width * vout->bpp; 262 xt->sgl[0].icg = dst_icg; 263 264 xt->dir = DMA_MEM_TO_MEM; 265 xt->src_sgl = false; 266 xt->src_inc = true; 267 xt->dst_sgl = true; 268 xt->dst_inc = true; 269 270 tx = dmaengine_prep_interleaved_dma(chan, xt, flags); 271 if (tx == NULL) { 272 pr_err("%s: DMA interleaved prep error\n", __func__); 273 return -EINVAL; 274 } 275 276 tx->callback = omap_vout_vrfb_dma_tx_callback; 277 tx->callback_param = &vout->vrfb_dma_tx; 278 279 cookie = dmaengine_submit(tx); 280 if (dma_submit_error(cookie)) { 281 pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie); 282 return -EINVAL; 283 } 284 285 vout->vrfb_dma_tx.tx_status = 0; 286 dma_async_issue_pending(chan); 287 288 wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait, 289 vout->vrfb_dma_tx.tx_status == 1, 290 VRFB_TX_TIMEOUT); 291 292 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 293 294 if (vout->vrfb_dma_tx.tx_status == 0) { 295 pr_err("%s: Timeout while waiting for DMA\n", __func__); 296 dmaengine_terminate_sync(chan); 297 return -EINVAL; 298 } else if (status != DMA_COMPLETE) { 299 pr_err("%s: DMA completion %s status\n", __func__, 300 status == DMA_ERROR ? "error" : "busy"); 301 dmaengine_terminate_sync(chan); 302 return -EINVAL; 303 } 304 305 /* Store buffers physical address into an array. Addresses 306 * from this array will be used to configure DSS */ 307 rotation = calc_rotation(vout); 308 vout->queued_buf_addr[vb->index] = 309 vout->vrfb_context[vb->index].paddr[rotation]; 310 return 0; 311 } 312 313 /* 314 * Calculate the buffer offsets from which the streaming should 315 * start. This offset calculation is mainly required because of 316 * the VRFB 32 pixels alignment with rotation. 317 */ 318 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout) 319 { 320 enum dss_rotation rotation; 321 bool mirroring = vout->mirror; 322 struct v4l2_rect *crop = &vout->crop; 323 struct v4l2_pix_format *pix = &vout->pix; 324 int *cropped_offset = &vout->cropped_offset; 325 int vr_ps = 1, ps = 2, temp_ps = 2; 326 int offset = 0, ctop = 0, cleft = 0, line_length = 0; 327 328 rotation = calc_rotation(vout); 329 330 if (V4L2_PIX_FMT_YUYV == pix->pixelformat || 331 V4L2_PIX_FMT_UYVY == pix->pixelformat) { 332 if (is_rotation_enabled(vout)) { 333 /* 334 * ps - Actual pixel size for YUYV/UYVY for 335 * VRFB/Mirroring is 4 bytes 336 * vr_ps - Virtually pixel size for YUYV/UYVY is 337 * 2 bytes 338 */ 339 ps = 4; 340 vr_ps = 2; 341 } else { 342 ps = 2; /* otherwise the pixel size is 2 byte */ 343 } 344 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) { 345 ps = 4; 346 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) { 347 ps = 3; 348 } 349 vout->ps = ps; 350 vout->vr_ps = vr_ps; 351 352 if (is_rotation_enabled(vout)) { 353 line_length = MAX_PIXELS_PER_LINE; 354 ctop = (pix->height - crop->height) - crop->top; 355 cleft = (pix->width - crop->width) - crop->left; 356 } else { 357 line_length = pix->width; 358 } 359 vout->line_length = line_length; 360 switch (rotation) { 361 case dss_rotation_90_degree: 362 offset = vout->vrfb_context[0].yoffset * 363 vout->vrfb_context[0].bytespp; 364 temp_ps = ps / vr_ps; 365 if (!mirroring) { 366 *cropped_offset = offset + line_length * 367 temp_ps * cleft + crop->top * temp_ps; 368 } else { 369 *cropped_offset = offset + line_length * temp_ps * 370 cleft + crop->top * temp_ps + (line_length * 371 ((crop->width / (vr_ps)) - 1) * ps); 372 } 373 break; 374 case dss_rotation_180_degree: 375 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset * 376 vout->vrfb_context[0].bytespp) + 377 (vout->vrfb_context[0].xoffset * 378 vout->vrfb_context[0].bytespp)); 379 if (!mirroring) { 380 *cropped_offset = offset + (line_length * ps * ctop) + 381 (cleft / vr_ps) * ps; 382 383 } else { 384 *cropped_offset = offset + (line_length * ps * ctop) + 385 (cleft / vr_ps) * ps + (line_length * 386 (crop->height - 1) * ps); 387 } 388 break; 389 case dss_rotation_270_degree: 390 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset * 391 vout->vrfb_context[0].bytespp; 392 temp_ps = ps / vr_ps; 393 if (!mirroring) { 394 *cropped_offset = offset + line_length * 395 temp_ps * crop->left + ctop * ps; 396 } else { 397 *cropped_offset = offset + line_length * 398 temp_ps * crop->left + ctop * ps + 399 (line_length * ((crop->width / vr_ps) - 1) * 400 ps); 401 } 402 break; 403 case dss_rotation_0_degree: 404 if (!mirroring) { 405 *cropped_offset = (line_length * ps) * 406 crop->top + (crop->left / vr_ps) * ps; 407 } else { 408 *cropped_offset = (line_length * ps) * 409 crop->top + (crop->left / vr_ps) * ps + 410 (line_length * (crop->height - 1) * ps); 411 } 412 break; 413 default: 414 *cropped_offset = (line_length * ps * crop->top) / 415 vr_ps + (crop->left * ps) / vr_ps + 416 ((crop->width / vr_ps) - 1) * ps; 417 break; 418 } 419 } 420