1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics SA 2014 4 * Authors: Fabien Dessenne <fabien.dessenne@st.com> for STMicroelectronics. 5 */ 6 7 #include <linux/delay.h> 8 9 #include "bdisp.h" 10 #include "bdisp-filter.h" 11 #include "bdisp-reg.h" 12 13 /* Max width of the source frame in a single node */ 14 #define MAX_SRC_WIDTH 2048 15 16 /* Reset & boot poll config */ 17 #define POLL_RST_MAX 500 18 #define POLL_RST_DELAY_MS 2 19 20 enum bdisp_target_plan { 21 BDISP_RGB, 22 BDISP_Y, 23 BDISP_CBCR 24 }; 25 26 struct bdisp_op_cfg { 27 bool cconv; /* RGB - YUV conversion */ 28 bool hflip; /* Horizontal flip */ 29 bool vflip; /* Vertical flip */ 30 bool wide; /* Wide (>MAX_SRC_WIDTH) */ 31 bool scale; /* Scale */ 32 u16 h_inc; /* Horizontal increment in 6.10 format */ 33 u16 v_inc; /* Vertical increment in 6.10 format */ 34 bool src_interlaced; /* is the src an interlaced buffer */ 35 u8 src_nbp; /* nb of planes of the src */ 36 bool src_yuv; /* is the src a YUV color format */ 37 bool src_420; /* is the src 4:2:0 chroma subsampled */ 38 u8 dst_nbp; /* nb of planes of the dst */ 39 bool dst_yuv; /* is the dst a YUV color format */ 40 bool dst_420; /* is the dst 4:2:0 chroma subsampled */ 41 }; 42 43 struct bdisp_filter_addr { 44 u16 min; /* Filter min scale factor (6.10 fixed point) */ 45 u16 max; /* Filter max scale factor (6.10 fixed point) */ 46 void *virt; /* Virtual address for filter table */ 47 dma_addr_t paddr; /* Physical address for filter table */ 48 }; 49 50 static const struct bdisp_filter_h_spec bdisp_h_spec[] = { 51 { 52 .min = 0, 53 .max = 921, 54 .coef = { 55 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 56 0x00, 0x00, 0xff, 0x07, 0x3d, 0xfc, 0x01, 0x00, 57 0x00, 0x01, 0xfd, 0x11, 0x36, 0xf9, 0x02, 0x00, 58 0x00, 0x01, 0xfb, 0x1b, 0x2e, 0xf9, 0x02, 0x00, 59 0x00, 0x01, 0xf9, 0x26, 0x26, 0xf9, 0x01, 0x00, 60 0x00, 0x02, 0xf9, 0x30, 0x19, 0xfb, 0x01, 0x00, 61 0x00, 0x02, 0xf9, 0x39, 0x0e, 0xfd, 0x01, 0x00, 62 0x00, 0x01, 0xfc, 0x3e, 0x06, 0xff, 0x00, 0x00 63 } 64 }, 65 { 66 .min = 921, 67 .max = 1024, 68 .coef = { 69 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 70 0xff, 0x03, 0xfd, 0x08, 0x3e, 0xf9, 0x04, 0xfe, 71 0xfd, 0x06, 0xf8, 0x13, 0x3b, 0xf4, 0x07, 0xfc, 72 0xfb, 0x08, 0xf5, 0x1f, 0x34, 0xf1, 0x09, 0xfb, 73 0xfb, 0x09, 0xf2, 0x2b, 0x2a, 0xf1, 0x09, 0xfb, 74 0xfb, 0x09, 0xf2, 0x35, 0x1e, 0xf4, 0x08, 0xfb, 75 0xfc, 0x07, 0xf5, 0x3c, 0x12, 0xf7, 0x06, 0xfd, 76 0xfe, 0x04, 0xfa, 0x3f, 0x07, 0xfc, 0x03, 0xff 77 } 78 }, 79 { 80 .min = 1024, 81 .max = 1126, 82 .coef = { 83 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 84 0xff, 0x03, 0xfd, 0x08, 0x3e, 0xf9, 0x04, 0xfe, 85 0xfd, 0x06, 0xf8, 0x13, 0x3b, 0xf4, 0x07, 0xfc, 86 0xfb, 0x08, 0xf5, 0x1f, 0x34, 0xf1, 0x09, 0xfb, 87 0xfb, 0x09, 0xf2, 0x2b, 0x2a, 0xf1, 0x09, 0xfb, 88 0xfb, 0x09, 0xf2, 0x35, 0x1e, 0xf4, 0x08, 0xfb, 89 0xfc, 0x07, 0xf5, 0x3c, 0x12, 0xf7, 0x06, 0xfd, 90 0xfe, 0x04, 0xfa, 0x3f, 0x07, 0xfc, 0x03, 0xff 91 } 92 }, 93 { 94 .min = 1126, 95 .max = 1228, 96 .coef = { 97 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 98 0xff, 0x03, 0xfd, 0x08, 0x3e, 0xf9, 0x04, 0xfe, 99 0xfd, 0x06, 0xf8, 0x13, 0x3b, 0xf4, 0x07, 0xfc, 100 0xfb, 0x08, 0xf5, 0x1f, 0x34, 0xf1, 0x09, 0xfb, 101 0xfb, 0x09, 0xf2, 0x2b, 0x2a, 0xf1, 0x09, 0xfb, 102 0xfb, 0x09, 0xf2, 0x35, 0x1e, 0xf4, 0x08, 0xfb, 103 0xfc, 0x07, 0xf5, 0x3c, 0x12, 0xf7, 0x06, 0xfd, 104 0xfe, 0x04, 0xfa, 0x3f, 0x07, 0xfc, 0x03, 0xff 105 } 106 }, 107 { 108 .min = 1228, 109 .max = 1331, 110 .coef = { 111 0xfd, 0x04, 0xfc, 0x05, 0x39, 0x05, 0xfc, 0x04, 112 0xfc, 0x06, 0xf9, 0x0c, 0x39, 0xfe, 0x00, 0x02, 113 0xfb, 0x08, 0xf6, 0x17, 0x35, 0xf9, 0x02, 0x00, 114 0xfc, 0x08, 0xf4, 0x20, 0x30, 0xf4, 0x05, 0xff, 115 0xfd, 0x07, 0xf4, 0x29, 0x28, 0xf3, 0x07, 0xfd, 116 0xff, 0x05, 0xf5, 0x31, 0x1f, 0xf3, 0x08, 0xfc, 117 0x00, 0x02, 0xf9, 0x38, 0x14, 0xf6, 0x08, 0xfb, 118 0x02, 0x00, 0xff, 0x3a, 0x0b, 0xf8, 0x06, 0xfc 119 } 120 }, 121 { 122 .min = 1331, 123 .max = 1433, 124 .coef = { 125 0xfc, 0x06, 0xf9, 0x09, 0x34, 0x09, 0xf9, 0x06, 126 0xfd, 0x07, 0xf7, 0x10, 0x32, 0x02, 0xfc, 0x05, 127 0xfe, 0x07, 0xf6, 0x17, 0x2f, 0xfc, 0xff, 0x04, 128 0xff, 0x06, 0xf5, 0x20, 0x2a, 0xf9, 0x01, 0x02, 129 0x00, 0x04, 0xf6, 0x27, 0x25, 0xf6, 0x04, 0x00, 130 0x02, 0x01, 0xf9, 0x2d, 0x1d, 0xf5, 0x06, 0xff, 131 0x04, 0xff, 0xfd, 0x31, 0x15, 0xf5, 0x07, 0xfe, 132 0x05, 0xfc, 0x02, 0x35, 0x0d, 0xf7, 0x07, 0xfd 133 } 134 }, 135 { 136 .min = 1433, 137 .max = 1536, 138 .coef = { 139 0xfe, 0x06, 0xf8, 0x0b, 0x30, 0x0b, 0xf8, 0x06, 140 0xff, 0x06, 0xf7, 0x12, 0x2d, 0x05, 0xfa, 0x06, 141 0x00, 0x04, 0xf6, 0x18, 0x2c, 0x00, 0xfc, 0x06, 142 0x01, 0x02, 0xf7, 0x1f, 0x27, 0xfd, 0xff, 0x04, 143 0x03, 0x00, 0xf9, 0x24, 0x24, 0xf9, 0x00, 0x03, 144 0x04, 0xff, 0xfd, 0x29, 0x1d, 0xf7, 0x02, 0x01, 145 0x06, 0xfc, 0x00, 0x2d, 0x17, 0xf6, 0x04, 0x00, 146 0x06, 0xfa, 0x05, 0x30, 0x0f, 0xf7, 0x06, 0xff 147 } 148 }, 149 { 150 .min = 1536, 151 .max = 2048, 152 .coef = { 153 0x05, 0xfd, 0xfb, 0x13, 0x25, 0x13, 0xfb, 0xfd, 154 0x05, 0xfc, 0xfd, 0x17, 0x24, 0x0f, 0xf9, 0xff, 155 0x04, 0xfa, 0xff, 0x1b, 0x24, 0x0b, 0xf9, 0x00, 156 0x03, 0xf9, 0x01, 0x1f, 0x23, 0x08, 0xf8, 0x01, 157 0x02, 0xf9, 0x04, 0x22, 0x20, 0x04, 0xf9, 0x02, 158 0x01, 0xf8, 0x08, 0x25, 0x1d, 0x01, 0xf9, 0x03, 159 0x00, 0xf9, 0x0c, 0x25, 0x1a, 0xfe, 0xfa, 0x04, 160 0xff, 0xf9, 0x10, 0x26, 0x15, 0xfc, 0xfc, 0x05 161 } 162 }, 163 { 164 .min = 2048, 165 .max = 3072, 166 .coef = { 167 0xfc, 0xfd, 0x06, 0x13, 0x18, 0x13, 0x06, 0xfd, 168 0xfc, 0xfe, 0x08, 0x15, 0x17, 0x12, 0x04, 0xfc, 169 0xfb, 0xfe, 0x0a, 0x16, 0x18, 0x10, 0x03, 0xfc, 170 0xfb, 0x00, 0x0b, 0x18, 0x17, 0x0f, 0x01, 0xfb, 171 0xfb, 0x00, 0x0d, 0x19, 0x17, 0x0d, 0x00, 0xfb, 172 0xfb, 0x01, 0x0f, 0x19, 0x16, 0x0b, 0x00, 0xfb, 173 0xfc, 0x03, 0x11, 0x19, 0x15, 0x09, 0xfe, 0xfb, 174 0xfc, 0x04, 0x12, 0x1a, 0x12, 0x08, 0xfe, 0xfc 175 } 176 }, 177 { 178 .min = 3072, 179 .max = 4096, 180 .coef = { 181 0xfe, 0x02, 0x09, 0x0f, 0x0e, 0x0f, 0x09, 0x02, 182 0xff, 0x02, 0x09, 0x0f, 0x10, 0x0e, 0x08, 0x01, 183 0xff, 0x03, 0x0a, 0x10, 0x10, 0x0d, 0x07, 0x00, 184 0x00, 0x04, 0x0b, 0x10, 0x0f, 0x0c, 0x06, 0x00, 185 0x00, 0x05, 0x0c, 0x10, 0x0e, 0x0c, 0x05, 0x00, 186 0x00, 0x06, 0x0c, 0x11, 0x0e, 0x0b, 0x04, 0x00, 187 0x00, 0x07, 0x0d, 0x11, 0x0f, 0x0a, 0x03, 0xff, 188 0x01, 0x08, 0x0e, 0x11, 0x0e, 0x09, 0x02, 0xff 189 } 190 }, 191 { 192 .min = 4096, 193 .max = 5120, 194 .coef = { 195 0x00, 0x04, 0x09, 0x0c, 0x0e, 0x0c, 0x09, 0x04, 196 0x01, 0x05, 0x09, 0x0c, 0x0d, 0x0c, 0x08, 0x04, 197 0x01, 0x05, 0x0a, 0x0c, 0x0e, 0x0b, 0x08, 0x03, 198 0x02, 0x06, 0x0a, 0x0d, 0x0c, 0x0b, 0x07, 0x03, 199 0x02, 0x07, 0x0a, 0x0d, 0x0d, 0x0a, 0x07, 0x02, 200 0x03, 0x07, 0x0b, 0x0d, 0x0c, 0x0a, 0x06, 0x02, 201 0x03, 0x08, 0x0b, 0x0d, 0x0d, 0x0a, 0x05, 0x01, 202 0x04, 0x08, 0x0c, 0x0d, 0x0c, 0x09, 0x05, 0x01 203 } 204 }, 205 { 206 .min = 5120, 207 .max = 65535, 208 .coef = { 209 0x03, 0x06, 0x09, 0x0b, 0x09, 0x0b, 0x09, 0x06, 210 0x03, 0x06, 0x09, 0x0b, 0x0c, 0x0a, 0x08, 0x05, 211 0x03, 0x06, 0x09, 0x0b, 0x0c, 0x0a, 0x08, 0x05, 212 0x04, 0x07, 0x09, 0x0b, 0x0b, 0x0a, 0x08, 0x04, 213 0x04, 0x07, 0x0a, 0x0b, 0x0b, 0x0a, 0x07, 0x04, 214 0x04, 0x08, 0x0a, 0x0b, 0x0b, 0x09, 0x07, 0x04, 215 0x05, 0x08, 0x0a, 0x0b, 0x0c, 0x09, 0x06, 0x03, 216 0x05, 0x08, 0x0a, 0x0b, 0x0c, 0x09, 0x06, 0x03 217 } 218 } 219 }; 220 221 #define NB_H_FILTER ARRAY_SIZE(bdisp_h_spec) 222 223 224 static const struct bdisp_filter_v_spec bdisp_v_spec[] = { 225 { 226 .min = 0, 227 .max = 1024, 228 .coef = { 229 0x00, 0x00, 0x40, 0x00, 0x00, 230 0x00, 0x06, 0x3d, 0xfd, 0x00, 231 0xfe, 0x0f, 0x38, 0xfb, 0x00, 232 0xfd, 0x19, 0x2f, 0xfb, 0x00, 233 0xfc, 0x24, 0x24, 0xfc, 0x00, 234 0xfb, 0x2f, 0x19, 0xfd, 0x00, 235 0xfb, 0x38, 0x0f, 0xfe, 0x00, 236 0xfd, 0x3d, 0x06, 0x00, 0x00 237 } 238 }, 239 { 240 .min = 1024, 241 .max = 1331, 242 .coef = { 243 0xfc, 0x05, 0x3e, 0x05, 0xfc, 244 0xf8, 0x0e, 0x3b, 0xff, 0x00, 245 0xf5, 0x18, 0x38, 0xf9, 0x02, 246 0xf4, 0x21, 0x31, 0xf5, 0x05, 247 0xf4, 0x2a, 0x27, 0xf4, 0x07, 248 0xf6, 0x30, 0x1e, 0xf4, 0x08, 249 0xf9, 0x35, 0x15, 0xf6, 0x07, 250 0xff, 0x37, 0x0b, 0xf9, 0x06 251 } 252 }, 253 { 254 .min = 1331, 255 .max = 1433, 256 .coef = { 257 0xf8, 0x0a, 0x3c, 0x0a, 0xf8, 258 0xf6, 0x12, 0x3b, 0x02, 0xfb, 259 0xf4, 0x1b, 0x35, 0xfd, 0xff, 260 0xf4, 0x23, 0x30, 0xf8, 0x01, 261 0xf6, 0x29, 0x27, 0xf6, 0x04, 262 0xf9, 0x2e, 0x1e, 0xf5, 0x06, 263 0xfd, 0x31, 0x16, 0xf6, 0x06, 264 0x02, 0x32, 0x0d, 0xf8, 0x07 265 } 266 }, 267 { 268 .min = 1433, 269 .max = 1536, 270 .coef = { 271 0xf6, 0x0e, 0x38, 0x0e, 0xf6, 272 0xf5, 0x15, 0x38, 0x06, 0xf8, 273 0xf5, 0x1d, 0x33, 0x00, 0xfb, 274 0xf6, 0x23, 0x2d, 0xfc, 0xfe, 275 0xf9, 0x28, 0x26, 0xf9, 0x00, 276 0xfc, 0x2c, 0x1e, 0xf7, 0x03, 277 0x00, 0x2e, 0x18, 0xf6, 0x04, 278 0x05, 0x2e, 0x11, 0xf7, 0x05 279 } 280 }, 281 { 282 .min = 1536, 283 .max = 2048, 284 .coef = { 285 0xfb, 0x13, 0x24, 0x13, 0xfb, 286 0xfd, 0x17, 0x23, 0x0f, 0xfa, 287 0xff, 0x1a, 0x23, 0x0b, 0xf9, 288 0x01, 0x1d, 0x22, 0x07, 0xf9, 289 0x04, 0x20, 0x1f, 0x04, 0xf9, 290 0x07, 0x22, 0x1c, 0x01, 0xfa, 291 0x0b, 0x24, 0x17, 0xff, 0xfb, 292 0x0f, 0x24, 0x14, 0xfd, 0xfc 293 } 294 }, 295 { 296 .min = 2048, 297 .max = 3072, 298 .coef = { 299 0x05, 0x10, 0x16, 0x10, 0x05, 300 0x06, 0x11, 0x16, 0x0f, 0x04, 301 0x08, 0x13, 0x15, 0x0e, 0x02, 302 0x09, 0x14, 0x16, 0x0c, 0x01, 303 0x0b, 0x15, 0x15, 0x0b, 0x00, 304 0x0d, 0x16, 0x13, 0x0a, 0x00, 305 0x0f, 0x17, 0x13, 0x08, 0xff, 306 0x11, 0x18, 0x12, 0x07, 0xfe 307 } 308 }, 309 { 310 .min = 3072, 311 .max = 4096, 312 .coef = { 313 0x09, 0x0f, 0x10, 0x0f, 0x09, 314 0x09, 0x0f, 0x12, 0x0e, 0x08, 315 0x0a, 0x10, 0x11, 0x0e, 0x07, 316 0x0b, 0x11, 0x11, 0x0d, 0x06, 317 0x0c, 0x11, 0x12, 0x0c, 0x05, 318 0x0d, 0x12, 0x11, 0x0c, 0x04, 319 0x0e, 0x12, 0x11, 0x0b, 0x04, 320 0x0f, 0x13, 0x11, 0x0a, 0x03 321 } 322 }, 323 { 324 .min = 4096, 325 .max = 5120, 326 .coef = { 327 0x0a, 0x0e, 0x10, 0x0e, 0x0a, 328 0x0b, 0x0e, 0x0f, 0x0e, 0x0a, 329 0x0b, 0x0f, 0x10, 0x0d, 0x09, 330 0x0c, 0x0f, 0x10, 0x0d, 0x08, 331 0x0d, 0x0f, 0x0f, 0x0d, 0x08, 332 0x0d, 0x10, 0x10, 0x0c, 0x07, 333 0x0e, 0x10, 0x0f, 0x0c, 0x07, 334 0x0f, 0x10, 0x10, 0x0b, 0x06 335 } 336 }, 337 { 338 .min = 5120, 339 .max = 65535, 340 .coef = { 341 0x0b, 0x0e, 0x0e, 0x0e, 0x0b, 342 0x0b, 0x0e, 0x0f, 0x0d, 0x0b, 343 0x0c, 0x0e, 0x0f, 0x0d, 0x0a, 344 0x0c, 0x0e, 0x0f, 0x0d, 0x0a, 345 0x0d, 0x0f, 0x0e, 0x0d, 0x09, 346 0x0d, 0x0f, 0x0f, 0x0c, 0x09, 347 0x0e, 0x0f, 0x0e, 0x0c, 0x09, 348 0x0e, 0x0f, 0x0f, 0x0c, 0x08 349 } 350 } 351 }; 352 353 #define NB_V_FILTER ARRAY_SIZE(bdisp_v_spec) 354 355 static struct bdisp_filter_addr bdisp_h_filter[NB_H_FILTER]; 356 static struct bdisp_filter_addr bdisp_v_filter[NB_V_FILTER]; 357 358 /** 359 * bdisp_hw_reset 360 * @bdisp: bdisp entity 361 * 362 * Resets HW 363 * 364 * RETURNS: 365 * 0 on success. 366 */ 367 int bdisp_hw_reset(struct bdisp_dev *bdisp) 368 { 369 unsigned int i; 370 371 dev_dbg(bdisp->dev, "%s\n", __func__); 372 373 /* Mask Interrupt */ 374 writel(0, bdisp->regs + BLT_ITM0); 375 376 /* Reset */ 377 writel(readl(bdisp->regs + BLT_CTL) | BLT_CTL_RESET, 378 bdisp->regs + BLT_CTL); 379 writel(0, bdisp->regs + BLT_CTL); 380 381 /* Wait for reset done */ 382 for (i = 0; i < POLL_RST_MAX; i++) { 383 if (readl(bdisp->regs + BLT_STA1) & BLT_STA1_IDLE) 384 break; 385 udelay(POLL_RST_DELAY_MS * 1000); 386 } 387 if (i == POLL_RST_MAX) 388 dev_err(bdisp->dev, "Reset timeout\n"); 389 390 return (i == POLL_RST_MAX) ? -EAGAIN : 0; 391 } 392 393 /** 394 * bdisp_hw_get_and_clear_irq 395 * @bdisp: bdisp entity 396 * 397 * Read then reset interrupt status 398 * 399 * RETURNS: 400 * 0 if expected interrupt was raised. 401 */ 402 int bdisp_hw_get_and_clear_irq(struct bdisp_dev *bdisp) 403 { 404 u32 its; 405 406 its = readl(bdisp->regs + BLT_ITS); 407 408 /* Check for the only expected IT: LastNode of AQ1 */ 409 if (!(its & BLT_ITS_AQ1_LNA)) { 410 dev_dbg(bdisp->dev, "Unexpected IT status: 0x%08X\n", its); 411 writel(its, bdisp->regs + BLT_ITS); 412 return -1; 413 } 414 415 /* Clear and mask */ 416 writel(its, bdisp->regs + BLT_ITS); 417 writel(0, bdisp->regs + BLT_ITM0); 418 419 return 0; 420 } 421 422 /** 423 * bdisp_hw_free_nodes 424 * @ctx: bdisp context 425 * 426 * Free node memory 427 * 428 * RETURNS: 429 * None 430 */ 431 void bdisp_hw_free_nodes(struct bdisp_ctx *ctx) 432 { 433 if (ctx && ctx->node[0]) 434 dma_free_attrs(ctx->bdisp_dev->dev, 435 sizeof(struct bdisp_node) * MAX_NB_NODE, 436 ctx->node[0], ctx->node_paddr[0], 437 DMA_ATTR_WRITE_COMBINE); 438 } 439 440 /** 441 * bdisp_hw_alloc_nodes 442 * @ctx: bdisp context 443 * 444 * Allocate dma memory for nodes 445 * 446 * RETURNS: 447 * 0 on success 448 */ 449 int bdisp_hw_alloc_nodes(struct bdisp_ctx *ctx) 450 { 451 struct device *dev = ctx->bdisp_dev->dev; 452 unsigned int i, node_size = sizeof(struct bdisp_node); 453 void *base; 454 dma_addr_t paddr; 455 456 /* Allocate all the nodes within a single memory page */ 457 base = dma_alloc_attrs(dev, node_size * MAX_NB_NODE, &paddr, 458 GFP_KERNEL, DMA_ATTR_WRITE_COMBINE); 459 if (!base) { 460 dev_err(dev, "%s no mem\n", __func__); 461 return -ENOMEM; 462 } 463 464 memset(base, 0, node_size * MAX_NB_NODE); 465 466 for (i = 0; i < MAX_NB_NODE; i++) { 467 ctx->node[i] = base; 468 ctx->node_paddr[i] = paddr; 469 dev_dbg(dev, "node[%d]=0x%p (paddr=%pad)\n", i, ctx->node[i], 470 &paddr); 471 base += node_size; 472 paddr += node_size; 473 } 474 475 return 0; 476 } 477 478 /** 479 * bdisp_hw_free_filters 480 * @dev: device 481 * 482 * Free filters memory 483 * 484 * RETURNS: 485 * None 486 */ 487 void bdisp_hw_free_filters(struct device *dev) 488 { 489 int size = (BDISP_HF_NB * NB_H_FILTER) + (BDISP_VF_NB * NB_V_FILTER); 490 491 if (bdisp_h_filter[0].virt) 492 dma_free_attrs(dev, size, bdisp_h_filter[0].virt, 493 bdisp_h_filter[0].paddr, DMA_ATTR_WRITE_COMBINE); 494 } 495 496 /** 497 * bdisp_hw_alloc_filters 498 * @dev: device 499 * 500 * Allocate dma memory for filters 501 * 502 * RETURNS: 503 * 0 on success 504 */ 505 int bdisp_hw_alloc_filters(struct device *dev) 506 { 507 unsigned int i, size; 508 void *base; 509 dma_addr_t paddr; 510 511 /* Allocate all the filters within a single memory page */ 512 size = (BDISP_HF_NB * NB_H_FILTER) + (BDISP_VF_NB * NB_V_FILTER); 513 base = dma_alloc_attrs(dev, size, &paddr, GFP_KERNEL, 514 DMA_ATTR_WRITE_COMBINE); 515 if (!base) 516 return -ENOMEM; 517 518 /* Setup filter addresses */ 519 for (i = 0; i < NB_H_FILTER; i++) { 520 bdisp_h_filter[i].min = bdisp_h_spec[i].min; 521 bdisp_h_filter[i].max = bdisp_h_spec[i].max; 522 memcpy(base, bdisp_h_spec[i].coef, BDISP_HF_NB); 523 bdisp_h_filter[i].virt = base; 524 bdisp_h_filter[i].paddr = paddr; 525 base += BDISP_HF_NB; 526 paddr += BDISP_HF_NB; 527 } 528 529 for (i = 0; i < NB_V_FILTER; i++) { 530 bdisp_v_filter[i].min = bdisp_v_spec[i].min; 531 bdisp_v_filter[i].max = bdisp_v_spec[i].max; 532 memcpy(base, bdisp_v_spec[i].coef, BDISP_VF_NB); 533 bdisp_v_filter[i].virt = base; 534 bdisp_v_filter[i].paddr = paddr; 535 base += BDISP_VF_NB; 536 paddr += BDISP_VF_NB; 537 } 538 539 return 0; 540 } 541 542 /** 543 * bdisp_hw_get_hf_addr 544 * @inc: resize increment 545 * 546 * Find the horizontal filter table that fits the resize increment 547 * 548 * RETURNS: 549 * table physical address 550 */ 551 static dma_addr_t bdisp_hw_get_hf_addr(u16 inc) 552 { 553 unsigned int i; 554 555 for (i = NB_H_FILTER - 1; i > 0; i--) 556 if ((bdisp_h_filter[i].min < inc) && 557 (inc <= bdisp_h_filter[i].max)) 558 break; 559 560 return bdisp_h_filter[i].paddr; 561 } 562 563 /** 564 * bdisp_hw_get_vf_addr 565 * @inc: resize increment 566 * 567 * Find the vertical filter table that fits the resize increment 568 * 569 * RETURNS: 570 * table physical address 571 */ 572 static dma_addr_t bdisp_hw_get_vf_addr(u16 inc) 573 { 574 unsigned int i; 575 576 for (i = NB_V_FILTER - 1; i > 0; i--) 577 if ((bdisp_v_filter[i].min < inc) && 578 (inc <= bdisp_v_filter[i].max)) 579 break; 580 581 return bdisp_v_filter[i].paddr; 582 } 583 584 /** 585 * bdisp_hw_get_inc 586 * @from: input size 587 * @to: output size 588 * @inc: resize increment in 6.10 format 589 * 590 * Computes the increment (inverse of scale) in 6.10 format 591 * 592 * RETURNS: 593 * 0 on success 594 */ 595 static int bdisp_hw_get_inc(u32 from, u32 to, u16 *inc) 596 { 597 u32 tmp; 598 599 if (!to) 600 return -EINVAL; 601 602 if (to == from) { 603 *inc = 1 << 10; 604 return 0; 605 } 606 607 tmp = (from << 10) / to; 608 if ((tmp > 0xFFFF) || (!tmp)) 609 /* overflow (downscale x 63) or too small (upscale x 1024) */ 610 return -EINVAL; 611 612 *inc = (u16)tmp; 613 614 return 0; 615 } 616 617 /** 618 * bdisp_hw_get_hv_inc 619 * @ctx: device context 620 * @h_inc: horizontal increment 621 * @v_inc: vertical increment 622 * 623 * Computes the horizontal & vertical increments (inverse of scale) 624 * 625 * RETURNS: 626 * 0 on success 627 */ 628 static int bdisp_hw_get_hv_inc(struct bdisp_ctx *ctx, u16 *h_inc, u16 *v_inc) 629 { 630 u32 src_w, src_h, dst_w, dst_h; 631 632 src_w = ctx->src.crop.width; 633 src_h = ctx->src.crop.height; 634 dst_w = ctx->dst.crop.width; 635 dst_h = ctx->dst.crop.height; 636 637 if (bdisp_hw_get_inc(src_w, dst_w, h_inc) || 638 bdisp_hw_get_inc(src_h, dst_h, v_inc)) { 639 dev_err(ctx->bdisp_dev->dev, 640 "scale factors failed (%dx%d)->(%dx%d)\n", 641 src_w, src_h, dst_w, dst_h); 642 return -EINVAL; 643 } 644 645 return 0; 646 } 647 648 /** 649 * bdisp_hw_get_op_cfg 650 * @ctx: device context 651 * @c: operation configuration 652 * 653 * Check which blitter operations are expected and sets the scaling increments 654 * 655 * RETURNS: 656 * 0 on success 657 */ 658 static int bdisp_hw_get_op_cfg(struct bdisp_ctx *ctx, struct bdisp_op_cfg *c) 659 { 660 struct device *dev = ctx->bdisp_dev->dev; 661 struct bdisp_frame *src = &ctx->src; 662 struct bdisp_frame *dst = &ctx->dst; 663 664 if (src->width > MAX_SRC_WIDTH * MAX_VERTICAL_STRIDES) { 665 dev_err(dev, "Image width out of HW caps\n"); 666 return -EINVAL; 667 } 668 669 c->wide = src->width > MAX_SRC_WIDTH; 670 671 c->hflip = ctx->hflip; 672 c->vflip = ctx->vflip; 673 674 c->src_interlaced = (src->field == V4L2_FIELD_INTERLACED); 675 676 c->src_nbp = src->fmt->nb_planes; 677 c->src_yuv = (src->fmt->pixelformat == V4L2_PIX_FMT_NV12) || 678 (src->fmt->pixelformat == V4L2_PIX_FMT_YUV420); 679 c->src_420 = c->src_yuv; 680 681 c->dst_nbp = dst->fmt->nb_planes; 682 c->dst_yuv = (dst->fmt->pixelformat == V4L2_PIX_FMT_NV12) || 683 (dst->fmt->pixelformat == V4L2_PIX_FMT_YUV420); 684 c->dst_420 = c->dst_yuv; 685 686 c->cconv = (c->src_yuv != c->dst_yuv); 687 688 if (bdisp_hw_get_hv_inc(ctx, &c->h_inc, &c->v_inc)) { 689 dev_err(dev, "Scale factor out of HW caps\n"); 690 return -EINVAL; 691 } 692 693 /* Deinterlacing adjustment : stretch a field to a frame */ 694 if (c->src_interlaced) 695 c->v_inc /= 2; 696 697 if ((c->h_inc != (1 << 10)) || (c->v_inc != (1 << 10))) 698 c->scale = true; 699 else 700 c->scale = false; 701 702 return 0; 703 } 704 705 /** 706 * bdisp_hw_color_format 707 * @pixelformat: v4l2 pixel format 708 * 709 * v4l2 to bdisp pixel format convert 710 * 711 * RETURNS: 712 * bdisp pixel format 713 */ 714 static u32 bdisp_hw_color_format(u32 pixelformat) 715 { 716 u32 ret; 717 718 switch (pixelformat) { 719 case V4L2_PIX_FMT_YUV420: 720 ret = (BDISP_YUV_3B << BLT_TTY_COL_SHIFT); 721 break; 722 case V4L2_PIX_FMT_NV12: 723 ret = (BDISP_NV12 << BLT_TTY_COL_SHIFT) | BLT_TTY_BIG_END; 724 break; 725 case V4L2_PIX_FMT_RGB565: 726 ret = (BDISP_RGB565 << BLT_TTY_COL_SHIFT); 727 break; 728 case V4L2_PIX_FMT_XBGR32: /* This V4L format actually refers to xRGB */ 729 ret = (BDISP_XRGB8888 << BLT_TTY_COL_SHIFT); 730 break; 731 case V4L2_PIX_FMT_RGB24: /* RGB888 format */ 732 ret = (BDISP_RGB888 << BLT_TTY_COL_SHIFT) | BLT_TTY_BIG_END; 733 break; 734 case V4L2_PIX_FMT_ABGR32: /* This V4L format actually refers to ARGB */ 735 736 default: 737 ret = (BDISP_ARGB8888 << BLT_TTY_COL_SHIFT) | BLT_TTY_ALPHA_R; 738 break; 739 } 740 741 return ret; 742 } 743 744 /** 745 * bdisp_hw_build_node 746 * @ctx: device context 747 * @cfg: operation configuration 748 * @node: node to be set 749 * @t_plan: whether the node refers to a RGB/Y or a CbCr plane 750 * @src_x_offset: x offset in the source image 751 * 752 * Build a node 753 * 754 * RETURNS: 755 * None 756 */ 757 static void bdisp_hw_build_node(struct bdisp_ctx *ctx, 758 struct bdisp_op_cfg *cfg, 759 struct bdisp_node *node, 760 enum bdisp_target_plan t_plan, int src_x_offset) 761 { 762 struct bdisp_frame *src = &ctx->src; 763 struct bdisp_frame *dst = &ctx->dst; 764 u16 h_inc, v_inc, yh_inc, yv_inc; 765 struct v4l2_rect src_rect = src->crop; 766 struct v4l2_rect dst_rect = dst->crop; 767 int dst_x_offset; 768 s32 dst_width = dst->crop.width; 769 u32 src_fmt, dst_fmt; 770 const u32 *ivmx; 771 772 dev_dbg(ctx->bdisp_dev->dev, "%s\n", __func__); 773 774 memset(node, 0, sizeof(*node)); 775 776 /* Adjust src and dst areas wrt src_x_offset */ 777 src_rect.left += src_x_offset; 778 src_rect.width -= src_x_offset; 779 src_rect.width = min_t(__s32, MAX_SRC_WIDTH, src_rect.width); 780 781 dst_x_offset = (src_x_offset * dst_width) / ctx->src.crop.width; 782 dst_rect.left += dst_x_offset; 783 dst_rect.width = (src_rect.width * dst_width) / ctx->src.crop.width; 784 785 /* General */ 786 src_fmt = src->fmt->pixelformat; 787 dst_fmt = dst->fmt->pixelformat; 788 789 node->nip = 0; 790 node->cic = BLT_CIC_ALL_GRP; 791 node->ack = BLT_ACK_BYPASS_S2S3; 792 793 switch (cfg->src_nbp) { 794 case 1: 795 /* Src2 = RGB / Src1 = Src3 = off */ 796 node->ins = BLT_INS_S1_OFF | BLT_INS_S2_MEM | BLT_INS_S3_OFF; 797 break; 798 case 2: 799 /* Src3 = Y 800 * Src2 = CbCr or ColorFill if writing the Y plane 801 * Src1 = off */ 802 node->ins = BLT_INS_S1_OFF | BLT_INS_S3_MEM; 803 if (t_plan == BDISP_Y) 804 node->ins |= BLT_INS_S2_CF; 805 else 806 node->ins |= BLT_INS_S2_MEM; 807 break; 808 case 3: 809 default: 810 /* Src3 = Y 811 * Src2 = Cb or ColorFill if writing the Y plane 812 * Src1 = Cr or ColorFill if writing the Y plane */ 813 node->ins = BLT_INS_S3_MEM; 814 if (t_plan == BDISP_Y) 815 node->ins |= BLT_INS_S2_CF | BLT_INS_S1_CF; 816 else 817 node->ins |= BLT_INS_S2_MEM | BLT_INS_S1_MEM; 818 break; 819 } 820 821 /* Color convert */ 822 node->ins |= cfg->cconv ? BLT_INS_IVMX : 0; 823 /* Scale needed if scaling OR 4:2:0 up/downsampling */ 824 node->ins |= (cfg->scale || cfg->src_420 || cfg->dst_420) ? 825 BLT_INS_SCALE : 0; 826 827 /* Target */ 828 node->tba = (t_plan == BDISP_CBCR) ? dst->paddr[1] : dst->paddr[0]; 829 830 node->tty = dst->bytesperline; 831 node->tty |= bdisp_hw_color_format(dst_fmt); 832 node->tty |= BLT_TTY_DITHER; 833 node->tty |= (t_plan == BDISP_CBCR) ? BLT_TTY_CHROMA : 0; 834 node->tty |= cfg->hflip ? BLT_TTY_HSO : 0; 835 node->tty |= cfg->vflip ? BLT_TTY_VSO : 0; 836 837 if (cfg->dst_420 && (t_plan == BDISP_CBCR)) { 838 /* 420 chroma downsampling */ 839 dst_rect.height /= 2; 840 dst_rect.width /= 2; 841 dst_rect.left /= 2; 842 dst_rect.top /= 2; 843 dst_x_offset /= 2; 844 dst_width /= 2; 845 } 846 847 node->txy = cfg->vflip ? (dst_rect.height - 1) : dst_rect.top; 848 node->txy <<= 16; 849 node->txy |= cfg->hflip ? (dst_width - dst_x_offset - 1) : 850 dst_rect.left; 851 852 node->tsz = dst_rect.height << 16 | dst_rect.width; 853 854 if (cfg->src_interlaced) { 855 /* handle only the top field which is half height of a frame */ 856 src_rect.top /= 2; 857 src_rect.height /= 2; 858 } 859 860 if (cfg->src_nbp == 1) { 861 /* Src 2 : RGB */ 862 node->s2ba = src->paddr[0]; 863 864 node->s2ty = src->bytesperline; 865 if (cfg->src_interlaced) 866 node->s2ty *= 2; 867 868 node->s2ty |= bdisp_hw_color_format(src_fmt); 869 870 node->s2xy = src_rect.top << 16 | src_rect.left; 871 node->s2sz = src_rect.height << 16 | src_rect.width; 872 } else { 873 /* Src 2 : Cb or CbCr */ 874 if (cfg->src_420) { 875 /* 420 chroma upsampling */ 876 src_rect.top /= 2; 877 src_rect.left /= 2; 878 src_rect.width /= 2; 879 src_rect.height /= 2; 880 } 881 882 node->s2ba = src->paddr[1]; 883 884 node->s2ty = src->bytesperline; 885 if (cfg->src_nbp == 3) 886 node->s2ty /= 2; 887 if (cfg->src_interlaced) 888 node->s2ty *= 2; 889 890 node->s2ty |= bdisp_hw_color_format(src_fmt); 891 892 node->s2xy = src_rect.top << 16 | src_rect.left; 893 node->s2sz = src_rect.height << 16 | src_rect.width; 894 895 if (cfg->src_nbp == 3) { 896 /* Src 1 : Cr */ 897 node->s1ba = src->paddr[2]; 898 899 node->s1ty = node->s2ty; 900 node->s1xy = node->s2xy; 901 } 902 903 /* Src 3 : Y */ 904 node->s3ba = src->paddr[0]; 905 906 node->s3ty = src->bytesperline; 907 if (cfg->src_interlaced) 908 node->s3ty *= 2; 909 node->s3ty |= bdisp_hw_color_format(src_fmt); 910 911 if ((t_plan != BDISP_CBCR) && cfg->src_420) { 912 /* No chroma upsampling for output RGB / Y plane */ 913 node->s3xy = node->s2xy * 2; 914 node->s3sz = node->s2sz * 2; 915 } else { 916 /* No need to read Y (Src3) when writing Chroma */ 917 node->s3ty |= BLT_S3TY_BLANK_ACC; 918 node->s3xy = node->s2xy; 919 node->s3sz = node->s2sz; 920 } 921 } 922 923 /* Resize (scale OR 4:2:0: chroma up/downsampling) */ 924 if (node->ins & BLT_INS_SCALE) { 925 /* no need to compute Y when writing CbCr from RGB input */ 926 bool skip_y = (t_plan == BDISP_CBCR) && !cfg->src_yuv; 927 928 /* FCTL */ 929 if (cfg->scale) { 930 node->fctl = BLT_FCTL_HV_SCALE; 931 if (!skip_y) 932 node->fctl |= BLT_FCTL_Y_HV_SCALE; 933 } else { 934 node->fctl = BLT_FCTL_HV_SAMPLE; 935 if (!skip_y) 936 node->fctl |= BLT_FCTL_Y_HV_SAMPLE; 937 } 938 939 /* RSF - Chroma may need to be up/downsampled */ 940 h_inc = cfg->h_inc; 941 v_inc = cfg->v_inc; 942 if (!cfg->src_420 && cfg->dst_420 && (t_plan == BDISP_CBCR)) { 943 /* RGB to 4:2:0 for Chroma: downsample */ 944 h_inc *= 2; 945 v_inc *= 2; 946 } else if (cfg->src_420 && !cfg->dst_420) { 947 /* 4:2:0: to RGB: upsample*/ 948 h_inc /= 2; 949 v_inc /= 2; 950 } 951 node->rsf = v_inc << 16 | h_inc; 952 953 /* RZI */ 954 node->rzi = BLT_RZI_DEFAULT; 955 956 /* Filter table physical addr */ 957 node->hfp = bdisp_hw_get_hf_addr(h_inc); 958 node->vfp = bdisp_hw_get_vf_addr(v_inc); 959 960 /* Y version */ 961 if (!skip_y) { 962 yh_inc = cfg->h_inc; 963 yv_inc = cfg->v_inc; 964 965 node->y_rsf = yv_inc << 16 | yh_inc; 966 node->y_rzi = BLT_RZI_DEFAULT; 967 node->y_hfp = bdisp_hw_get_hf_addr(yh_inc); 968 node->y_vfp = bdisp_hw_get_vf_addr(yv_inc); 969 } 970 } 971 972 /* Versatile matrix for RGB / YUV conversion */ 973 if (cfg->cconv) { 974 ivmx = cfg->src_yuv ? bdisp_yuv_to_rgb : bdisp_rgb_to_yuv; 975 976 node->ivmx0 = ivmx[0]; 977 node->ivmx1 = ivmx[1]; 978 node->ivmx2 = ivmx[2]; 979 node->ivmx3 = ivmx[3]; 980 } 981 } 982 983 /** 984 * bdisp_hw_build_all_nodes 985 * @ctx: device context 986 * 987 * Build all the nodes for the blitter operation 988 * 989 * RETURNS: 990 * 0 on success 991 */ 992 static int bdisp_hw_build_all_nodes(struct bdisp_ctx *ctx) 993 { 994 struct bdisp_op_cfg cfg; 995 unsigned int i, nid = 0; 996 int src_x_offset = 0; 997 998 for (i = 0; i < MAX_NB_NODE; i++) 999 if (!ctx->node[i]) { 1000 dev_err(ctx->bdisp_dev->dev, "node %d is null\n", i); 1001 return -EINVAL; 1002 } 1003 1004 /* Get configuration (scale, flip, ...) */ 1005 if (bdisp_hw_get_op_cfg(ctx, &cfg)) 1006 return -EINVAL; 1007 1008 /* Split source in vertical strides (HW constraint) */ 1009 for (i = 0; i < MAX_VERTICAL_STRIDES; i++) { 1010 /* Build RGB/Y node and link it to the previous node */ 1011 bdisp_hw_build_node(ctx, &cfg, ctx->node[nid], 1012 cfg.dst_nbp == 1 ? BDISP_RGB : BDISP_Y, 1013 src_x_offset); 1014 if (nid) 1015 ctx->node[nid - 1]->nip = ctx->node_paddr[nid]; 1016 nid++; 1017 1018 /* Build additional Cb(Cr) node, link it to the previous one */ 1019 if (cfg.dst_nbp > 1) { 1020 bdisp_hw_build_node(ctx, &cfg, ctx->node[nid], 1021 BDISP_CBCR, src_x_offset); 1022 ctx->node[nid - 1]->nip = ctx->node_paddr[nid]; 1023 nid++; 1024 } 1025 1026 /* Next stride until full width covered */ 1027 src_x_offset += MAX_SRC_WIDTH; 1028 if (src_x_offset >= ctx->src.crop.width) 1029 break; 1030 } 1031 1032 /* Mark last node as the last */ 1033 ctx->node[nid - 1]->nip = 0; 1034 1035 return 0; 1036 } 1037 1038 /** 1039 * bdisp_hw_save_request 1040 * @ctx: device context 1041 * 1042 * Save a copy of the request and of the built nodes 1043 * 1044 * RETURNS: 1045 * None 1046 */ 1047 static void bdisp_hw_save_request(struct bdisp_ctx *ctx) 1048 { 1049 struct bdisp_node **copy_node = ctx->bdisp_dev->dbg.copy_node; 1050 struct bdisp_request *request = &ctx->bdisp_dev->dbg.copy_request; 1051 struct bdisp_node **node = ctx->node; 1052 int i; 1053 1054 /* Request copy */ 1055 request->src = ctx->src; 1056 request->dst = ctx->dst; 1057 request->hflip = ctx->hflip; 1058 request->vflip = ctx->vflip; 1059 request->nb_req++; 1060 1061 /* Nodes copy */ 1062 for (i = 0; i < MAX_NB_NODE; i++) { 1063 /* Allocate memory if not done yet */ 1064 if (!copy_node[i]) { 1065 copy_node[i] = devm_kzalloc(ctx->bdisp_dev->dev, 1066 sizeof(*copy_node[i]), 1067 GFP_ATOMIC); 1068 if (!copy_node[i]) 1069 return; 1070 } 1071 *copy_node[i] = *node[i]; 1072 } 1073 } 1074 1075 /** 1076 * bdisp_hw_update 1077 * @ctx: device context 1078 * 1079 * Send the request to the HW 1080 * 1081 * RETURNS: 1082 * 0 on success 1083 */ 1084 int bdisp_hw_update(struct bdisp_ctx *ctx) 1085 { 1086 int ret; 1087 struct bdisp_dev *bdisp = ctx->bdisp_dev; 1088 struct device *dev = bdisp->dev; 1089 unsigned int node_id; 1090 1091 dev_dbg(dev, "%s\n", __func__); 1092 1093 /* build nodes */ 1094 ret = bdisp_hw_build_all_nodes(ctx); 1095 if (ret) { 1096 dev_err(dev, "cannot build nodes (%d)\n", ret); 1097 return ret; 1098 } 1099 1100 /* Save a copy of the request */ 1101 bdisp_hw_save_request(ctx); 1102 1103 /* Configure interrupt to 'Last Node Reached for AQ1' */ 1104 writel(BLT_AQ1_CTL_CFG, bdisp->regs + BLT_AQ1_CTL); 1105 writel(BLT_ITS_AQ1_LNA, bdisp->regs + BLT_ITM0); 1106 1107 /* Write first node addr */ 1108 writel(ctx->node_paddr[0], bdisp->regs + BLT_AQ1_IP); 1109 1110 /* Find and write last node addr : this starts the HW processing */ 1111 for (node_id = 0; node_id < MAX_NB_NODE - 1; node_id++) { 1112 if (!ctx->node[node_id]->nip) 1113 break; 1114 } 1115 writel(ctx->node_paddr[node_id], bdisp->regs + BLT_AQ1_LNA); 1116 1117 return 0; 1118 } 1119