1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3  * Rockchip ISP1 Driver - V4l capture device
4  *
5  * Copyright (C) 2019 Collabora, Ltd.
6  *
7  * Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd.
8  * Copyright (C) 2017 Rockchip Electronics Co., Ltd.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <media/v4l2-common.h>
14 #include <media/v4l2-event.h>
15 #include <media/v4l2-fh.h>
16 #include <media/v4l2-ioctl.h>
17 #include <media/v4l2-mc.h>
18 #include <media/v4l2-subdev.h>
19 #include <media/videobuf2-dma-contig.h>
20 
21 #include "rkisp1-common.h"
22 
23 /*
24  * NOTE: There are two capture video devices in rkisp1, selfpath and mainpath.
25  *
26  * differences between selfpath and mainpath
27  * available mp sink input: isp
28  * available sp sink input : isp, dma(TODO)
29  * available mp sink pad fmts: yuv422, raw
30  * available sp sink pad fmts: yuv422, yuv420......
31  * available mp source fmts: yuv, raw, jpeg(TODO)
32  * available sp source fmts: yuv, rgb
33  */
34 
35 #define RKISP1_SP_DEV_NAME	RKISP1_DRIVER_NAME "_selfpath"
36 #define RKISP1_MP_DEV_NAME	RKISP1_DRIVER_NAME "_mainpath"
37 
38 #define RKISP1_MIN_BUFFERS_NEEDED 3
39 
40 enum rkisp1_plane {
41 	RKISP1_PLANE_Y	= 0,
42 	RKISP1_PLANE_CB	= 1,
43 	RKISP1_PLANE_CR	= 2
44 };
45 
46 /*
47  * @fourcc: pixel format
48  * @fmt_type: helper filed for pixel format
49  * @uv_swap: if cb cr swapped, for yuv
50  * @write_format: defines how YCbCr self picture data is written to memory
51  * @output_format: defines sp output format
52  * @mbus: the mbus code on the src resizer pad that matches the pixel format
53  */
54 struct rkisp1_capture_fmt_cfg {
55 	u32 fourcc;
56 	u8 uv_swap;
57 	u32 write_format;
58 	u32 output_format;
59 	u32 mbus;
60 };
61 
62 struct rkisp1_capture_ops {
63 	void (*config)(struct rkisp1_capture *cap);
64 	void (*stop)(struct rkisp1_capture *cap);
65 	void (*enable)(struct rkisp1_capture *cap);
66 	void (*disable)(struct rkisp1_capture *cap);
67 	void (*set_data_path)(struct rkisp1_capture *cap);
68 	bool (*is_stopped)(struct rkisp1_capture *cap);
69 };
70 
71 struct rkisp1_capture_config {
72 	const struct rkisp1_capture_fmt_cfg *fmts;
73 	int fmt_size;
74 	struct {
75 		u32 y_size_init;
76 		u32 cb_size_init;
77 		u32 cr_size_init;
78 		u32 y_base_ad_init;
79 		u32 cb_base_ad_init;
80 		u32 cr_base_ad_init;
81 		u32 y_offs_cnt_init;
82 		u32 cb_offs_cnt_init;
83 		u32 cr_offs_cnt_init;
84 	} mi;
85 };
86 
87 /*
88  * The supported pixel formats for mainpath. NOTE, pixel formats with identical 'mbus'
89  * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
90  */
91 static const struct rkisp1_capture_fmt_cfg rkisp1_mp_fmts[] = {
92 	/* yuv422 */
93 	{
94 		.fourcc = V4L2_PIX_FMT_YUYV,
95 		.uv_swap = 0,
96 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUVINT,
97 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
98 	}, {
99 		.fourcc = V4L2_PIX_FMT_YUV422P,
100 		.uv_swap = 0,
101 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
102 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
103 	}, {
104 		.fourcc = V4L2_PIX_FMT_NV16,
105 		.uv_swap = 0,
106 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
107 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
108 	}, {
109 		.fourcc = V4L2_PIX_FMT_NV61,
110 		.uv_swap = 1,
111 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
112 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
113 	}, {
114 		.fourcc = V4L2_PIX_FMT_NV16M,
115 		.uv_swap = 0,
116 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
117 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
118 	}, {
119 		.fourcc = V4L2_PIX_FMT_NV61M,
120 		.uv_swap = 1,
121 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
122 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
123 	}, {
124 		.fourcc = V4L2_PIX_FMT_YVU422M,
125 		.uv_swap = 1,
126 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
127 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
128 	},
129 	/* yuv400 */
130 	{
131 		.fourcc = V4L2_PIX_FMT_GREY,
132 		.uv_swap = 0,
133 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
134 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
135 	},
136 	/* yuv420 */
137 	{
138 		.fourcc = V4L2_PIX_FMT_NV21,
139 		.uv_swap = 1,
140 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
141 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
142 	}, {
143 		.fourcc = V4L2_PIX_FMT_NV12,
144 		.uv_swap = 0,
145 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
146 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
147 	}, {
148 		.fourcc = V4L2_PIX_FMT_NV21M,
149 		.uv_swap = 1,
150 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
151 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
152 	}, {
153 		.fourcc = V4L2_PIX_FMT_NV12M,
154 		.uv_swap = 0,
155 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
156 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
157 	}, {
158 		.fourcc = V4L2_PIX_FMT_YUV420,
159 		.uv_swap = 0,
160 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
161 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
162 	}, {
163 		.fourcc = V4L2_PIX_FMT_YVU420,
164 		.uv_swap = 1,
165 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
166 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
167 	},
168 	/* raw */
169 	{
170 		.fourcc = V4L2_PIX_FMT_SRGGB8,
171 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
172 		.mbus = MEDIA_BUS_FMT_SRGGB8_1X8,
173 	}, {
174 		.fourcc = V4L2_PIX_FMT_SGRBG8,
175 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
176 		.mbus = MEDIA_BUS_FMT_SGRBG8_1X8,
177 	}, {
178 		.fourcc = V4L2_PIX_FMT_SGBRG8,
179 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
180 		.mbus = MEDIA_BUS_FMT_SGBRG8_1X8,
181 	}, {
182 		.fourcc = V4L2_PIX_FMT_SBGGR8,
183 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
184 		.mbus = MEDIA_BUS_FMT_SBGGR8_1X8,
185 	}, {
186 		.fourcc = V4L2_PIX_FMT_SRGGB10,
187 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
188 		.mbus = MEDIA_BUS_FMT_SRGGB10_1X10,
189 	}, {
190 		.fourcc = V4L2_PIX_FMT_SGRBG10,
191 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
192 		.mbus = MEDIA_BUS_FMT_SGRBG10_1X10,
193 	}, {
194 		.fourcc = V4L2_PIX_FMT_SGBRG10,
195 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
196 		.mbus = MEDIA_BUS_FMT_SGBRG10_1X10,
197 	}, {
198 		.fourcc = V4L2_PIX_FMT_SBGGR10,
199 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
200 		.mbus = MEDIA_BUS_FMT_SBGGR10_1X10,
201 	}, {
202 		.fourcc = V4L2_PIX_FMT_SRGGB12,
203 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
204 		.mbus = MEDIA_BUS_FMT_SRGGB12_1X12,
205 	}, {
206 		.fourcc = V4L2_PIX_FMT_SGRBG12,
207 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
208 		.mbus = MEDIA_BUS_FMT_SGRBG12_1X12,
209 	}, {
210 		.fourcc = V4L2_PIX_FMT_SGBRG12,
211 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
212 		.mbus = MEDIA_BUS_FMT_SGBRG12_1X12,
213 	}, {
214 		.fourcc = V4L2_PIX_FMT_SBGGR12,
215 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
216 		.mbus = MEDIA_BUS_FMT_SBGGR12_1X12,
217 	},
218 };
219 
220 /*
221  * The supported pixel formats for selfpath. NOTE, pixel formats with identical 'mbus'
222  * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
223  */
224 static const struct rkisp1_capture_fmt_cfg rkisp1_sp_fmts[] = {
225 	/* yuv422 */
226 	{
227 		.fourcc = V4L2_PIX_FMT_YUYV,
228 		.uv_swap = 0,
229 		.write_format = RKISP1_MI_CTRL_SP_WRITE_INT,
230 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
231 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
232 	}, {
233 		.fourcc = V4L2_PIX_FMT_YUV422P,
234 		.uv_swap = 0,
235 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
236 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
237 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
238 	}, {
239 		.fourcc = V4L2_PIX_FMT_NV16,
240 		.uv_swap = 0,
241 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
242 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
243 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
244 	}, {
245 		.fourcc = V4L2_PIX_FMT_NV61,
246 		.uv_swap = 1,
247 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
248 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
249 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
250 	}, {
251 		.fourcc = V4L2_PIX_FMT_NV16M,
252 		.uv_swap = 0,
253 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
254 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
255 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
256 	}, {
257 		.fourcc = V4L2_PIX_FMT_NV61M,
258 		.uv_swap = 1,
259 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
260 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
261 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
262 	}, {
263 		.fourcc = V4L2_PIX_FMT_YVU422M,
264 		.uv_swap = 1,
265 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
266 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
267 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
268 	},
269 	/* yuv400 */
270 	{
271 		.fourcc = V4L2_PIX_FMT_GREY,
272 		.uv_swap = 0,
273 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
274 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
275 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
276 	},
277 	/* rgb */
278 	{
279 		.fourcc = V4L2_PIX_FMT_XBGR32,
280 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
281 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB888,
282 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
283 	}, {
284 		.fourcc = V4L2_PIX_FMT_RGB565,
285 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
286 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB565,
287 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
288 	},
289 	/* yuv420 */
290 	{
291 		.fourcc = V4L2_PIX_FMT_NV21,
292 		.uv_swap = 1,
293 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
294 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
295 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
296 	}, {
297 		.fourcc = V4L2_PIX_FMT_NV12,
298 		.uv_swap = 0,
299 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
300 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
301 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
302 	}, {
303 		.fourcc = V4L2_PIX_FMT_NV21M,
304 		.uv_swap = 1,
305 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
306 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
307 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
308 	}, {
309 		.fourcc = V4L2_PIX_FMT_NV12M,
310 		.uv_swap = 0,
311 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
312 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
313 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
314 	}, {
315 		.fourcc = V4L2_PIX_FMT_YUV420,
316 		.uv_swap = 0,
317 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
318 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
319 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
320 	}, {
321 		.fourcc = V4L2_PIX_FMT_YVU420,
322 		.uv_swap = 1,
323 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
324 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
325 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
326 	},
327 };
328 
329 static const struct rkisp1_capture_config rkisp1_capture_config_mp = {
330 	.fmts = rkisp1_mp_fmts,
331 	.fmt_size = ARRAY_SIZE(rkisp1_mp_fmts),
332 	.mi = {
333 		.y_size_init =		RKISP1_CIF_MI_MP_Y_SIZE_INIT,
334 		.cb_size_init =		RKISP1_CIF_MI_MP_CB_SIZE_INIT,
335 		.cr_size_init =		RKISP1_CIF_MI_MP_CR_SIZE_INIT,
336 		.y_base_ad_init =	RKISP1_CIF_MI_MP_Y_BASE_AD_INIT,
337 		.cb_base_ad_init =	RKISP1_CIF_MI_MP_CB_BASE_AD_INIT,
338 		.cr_base_ad_init =	RKISP1_CIF_MI_MP_CR_BASE_AD_INIT,
339 		.y_offs_cnt_init =	RKISP1_CIF_MI_MP_Y_OFFS_CNT_INIT,
340 		.cb_offs_cnt_init =	RKISP1_CIF_MI_MP_CB_OFFS_CNT_INIT,
341 		.cr_offs_cnt_init =	RKISP1_CIF_MI_MP_CR_OFFS_CNT_INIT,
342 	},
343 };
344 
345 static const struct rkisp1_capture_config rkisp1_capture_config_sp = {
346 	.fmts = rkisp1_sp_fmts,
347 	.fmt_size = ARRAY_SIZE(rkisp1_sp_fmts),
348 	.mi = {
349 		.y_size_init =		RKISP1_CIF_MI_SP_Y_SIZE_INIT,
350 		.cb_size_init =		RKISP1_CIF_MI_SP_CB_SIZE_INIT,
351 		.cr_size_init =		RKISP1_CIF_MI_SP_CR_SIZE_INIT,
352 		.y_base_ad_init =	RKISP1_CIF_MI_SP_Y_BASE_AD_INIT,
353 		.cb_base_ad_init =	RKISP1_CIF_MI_SP_CB_BASE_AD_INIT,
354 		.cr_base_ad_init =	RKISP1_CIF_MI_SP_CR_BASE_AD_INIT,
355 		.y_offs_cnt_init =	RKISP1_CIF_MI_SP_Y_OFFS_CNT_INIT,
356 		.cb_offs_cnt_init =	RKISP1_CIF_MI_SP_CB_OFFS_CNT_INIT,
357 		.cr_offs_cnt_init =	RKISP1_CIF_MI_SP_CR_OFFS_CNT_INIT,
358 	},
359 };
360 
361 static inline struct rkisp1_vdev_node *
362 rkisp1_vdev_to_node(struct video_device *vdev)
363 {
364 	return container_of(vdev, struct rkisp1_vdev_node, vdev);
365 }
366 
367 int rkisp1_cap_enum_mbus_codes(struct rkisp1_capture *cap,
368 			       struct v4l2_subdev_mbus_code_enum *code)
369 {
370 	const struct rkisp1_capture_fmt_cfg *fmts = cap->config->fmts;
371 	/*
372 	 * initialize curr_mbus to non existing mbus code 0 to ensure it is
373 	 * different from fmts[0].mbus
374 	 */
375 	u32 curr_mbus = 0;
376 	int i, n = 0;
377 
378 	for (i = 0; i < cap->config->fmt_size; i++) {
379 		if (fmts[i].mbus == curr_mbus)
380 			continue;
381 
382 		curr_mbus = fmts[i].mbus;
383 		if (n++ == code->index) {
384 			code->code = curr_mbus;
385 			return 0;
386 		}
387 	}
388 	return -EINVAL;
389 }
390 
391 /* ----------------------------------------------------------------------------
392  * Stream operations for self-picture path (sp) and main-picture path (mp)
393  */
394 
395 static void rkisp1_mi_config_ctrl(struct rkisp1_capture *cap)
396 {
397 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
398 
399 	mi_ctrl &= ~GENMASK(17, 16);
400 	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_LUM_64;
401 
402 	mi_ctrl &= ~GENMASK(19, 18);
403 	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_CHROM_64;
404 
405 	mi_ctrl |= RKISP1_CIF_MI_CTRL_INIT_BASE_EN |
406 		   RKISP1_CIF_MI_CTRL_INIT_OFFSET_EN;
407 
408 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
409 }
410 
411 static u32 rkisp1_pixfmt_comp_size(const struct v4l2_pix_format_mplane *pixm,
412 				   unsigned int component)
413 {
414 	/*
415 	 * If packed format, then plane_fmt[0].sizeimage is the sum of all
416 	 * components, so we need to calculate just the size of Y component.
417 	 * See rkisp1_fill_pixfmt().
418 	 */
419 	if (!component && pixm->num_planes == 1)
420 		return pixm->plane_fmt[0].bytesperline * pixm->height;
421 	return pixm->plane_fmt[component].sizeimage;
422 }
423 
424 static void rkisp1_irq_frame_end_enable(struct rkisp1_capture *cap)
425 {
426 	u32 mi_imsc = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_IMSC);
427 
428 	mi_imsc |= RKISP1_CIF_MI_FRAME(cap);
429 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_IMSC, mi_imsc);
430 }
431 
432 static void rkisp1_mp_config(struct rkisp1_capture *cap)
433 {
434 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
435 	struct rkisp1_device *rkisp1 = cap->rkisp1;
436 	u32 reg;
437 
438 	rkisp1_write(rkisp1, cap->config->mi.y_size_init,
439 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y));
440 	rkisp1_write(rkisp1, cap->config->mi.cb_size_init,
441 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB));
442 	rkisp1_write(rkisp1, cap->config->mi.cr_size_init,
443 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
444 
445 	rkisp1_irq_frame_end_enable(cap);
446 
447 	/* set uv swapping for semiplanar formats */
448 	if (cap->pix.info->comp_planes == 2) {
449 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
450 		if (cap->pix.cfg->uv_swap)
451 			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
452 		else
453 			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
454 		rkisp1_write(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL, reg);
455 	}
456 
457 	rkisp1_mi_config_ctrl(cap);
458 
459 	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
460 	reg &= ~RKISP1_MI_CTRL_MP_FMT_MASK;
461 	reg |= cap->pix.cfg->write_format;
462 	rkisp1_write(rkisp1, RKISP1_CIF_MI_CTRL, reg);
463 
464 	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
465 	reg |= RKISP1_CIF_MI_MP_AUTOUPDATE_ENABLE;
466 	rkisp1_write(rkisp1, RKISP1_CIF_MI_CTRL, reg);
467 }
468 
469 static void rkisp1_sp_config(struct rkisp1_capture *cap)
470 {
471 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
472 	struct rkisp1_device *rkisp1 = cap->rkisp1;
473 	u32 mi_ctrl, reg;
474 
475 	rkisp1_write(rkisp1, cap->config->mi.y_size_init,
476 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y));
477 	rkisp1_write(rkisp1, cap->config->mi.cb_size_init,
478 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB));
479 	rkisp1_write(rkisp1, cap->config->mi.cr_size_init,
480 		     rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
481 
482 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_PIC_WIDTH, pixm->width);
483 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_PIC_HEIGHT, pixm->height);
484 	rkisp1_write(rkisp1, RKISP1_CIF_MI_SP_Y_LLENGTH, cap->sp_y_stride);
485 
486 	rkisp1_irq_frame_end_enable(cap);
487 
488 	/* set uv swapping for semiplanar formats */
489 	if (cap->pix.info->comp_planes == 2) {
490 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
491 		if (cap->pix.cfg->uv_swap)
492 			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
493 		else
494 			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
495 		rkisp1_write(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL, reg);
496 	}
497 
498 	rkisp1_mi_config_ctrl(cap);
499 
500 	mi_ctrl = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
501 	mi_ctrl &= ~RKISP1_MI_CTRL_SP_FMT_MASK;
502 	mi_ctrl |= cap->pix.cfg->write_format |
503 		   RKISP1_MI_CTRL_SP_INPUT_YUV422 |
504 		   cap->pix.cfg->output_format |
505 		   RKISP1_CIF_MI_SP_AUTOUPDATE_ENABLE;
506 	rkisp1_write(rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
507 }
508 
509 static void rkisp1_mp_disable(struct rkisp1_capture *cap)
510 {
511 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
512 
513 	mi_ctrl &= ~(RKISP1_CIF_MI_CTRL_MP_ENABLE |
514 		     RKISP1_CIF_MI_CTRL_RAW_ENABLE);
515 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
516 }
517 
518 static void rkisp1_sp_disable(struct rkisp1_capture *cap)
519 {
520 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
521 
522 	mi_ctrl &= ~RKISP1_CIF_MI_CTRL_SP_ENABLE;
523 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
524 }
525 
526 static void rkisp1_mp_enable(struct rkisp1_capture *cap)
527 {
528 	u32 mi_ctrl;
529 
530 	rkisp1_mp_disable(cap);
531 
532 	mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
533 	if (v4l2_is_format_bayer(cap->pix.info))
534 		mi_ctrl |= RKISP1_CIF_MI_CTRL_RAW_ENABLE;
535 	/* YUV */
536 	else
537 		mi_ctrl |= RKISP1_CIF_MI_CTRL_MP_ENABLE;
538 
539 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
540 }
541 
542 static void rkisp1_sp_enable(struct rkisp1_capture *cap)
543 {
544 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
545 
546 	mi_ctrl |= RKISP1_CIF_MI_CTRL_SP_ENABLE;
547 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_CTRL, mi_ctrl);
548 }
549 
550 static void rkisp1_mp_sp_stop(struct rkisp1_capture *cap)
551 {
552 	if (!cap->is_streaming)
553 		return;
554 	rkisp1_write(cap->rkisp1, RKISP1_CIF_MI_ICR, RKISP1_CIF_MI_FRAME(cap));
555 	cap->ops->disable(cap);
556 }
557 
558 static bool rkisp1_mp_is_stopped(struct rkisp1_capture *cap)
559 {
560 	u32 en = RKISP1_CIF_MI_CTRL_SHD_MP_IN_ENABLED |
561 		 RKISP1_CIF_MI_CTRL_SHD_RAW_OUT_ENABLED;
562 
563 	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) & en);
564 }
565 
566 static bool rkisp1_sp_is_stopped(struct rkisp1_capture *cap)
567 {
568 	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) &
569 		 RKISP1_CIF_MI_CTRL_SHD_SP_IN_ENABLED);
570 }
571 
572 static void rkisp1_mp_set_data_path(struct rkisp1_capture *cap)
573 {
574 	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
575 
576 	dpcl = dpcl | RKISP1_CIF_VI_DPCL_CHAN_MODE_MP |
577 	       RKISP1_CIF_VI_DPCL_MP_MUX_MRSZ_MI;
578 	rkisp1_write(cap->rkisp1, RKISP1_CIF_VI_DPCL, dpcl);
579 }
580 
581 static void rkisp1_sp_set_data_path(struct rkisp1_capture *cap)
582 {
583 	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
584 
585 	dpcl |= RKISP1_CIF_VI_DPCL_CHAN_MODE_SP;
586 	rkisp1_write(cap->rkisp1, RKISP1_CIF_VI_DPCL, dpcl);
587 }
588 
589 static const struct rkisp1_capture_ops rkisp1_capture_ops_mp = {
590 	.config = rkisp1_mp_config,
591 	.enable = rkisp1_mp_enable,
592 	.disable = rkisp1_mp_disable,
593 	.stop = rkisp1_mp_sp_stop,
594 	.set_data_path = rkisp1_mp_set_data_path,
595 	.is_stopped = rkisp1_mp_is_stopped,
596 };
597 
598 static const struct rkisp1_capture_ops rkisp1_capture_ops_sp = {
599 	.config = rkisp1_sp_config,
600 	.enable = rkisp1_sp_enable,
601 	.disable = rkisp1_sp_disable,
602 	.stop = rkisp1_mp_sp_stop,
603 	.set_data_path = rkisp1_sp_set_data_path,
604 	.is_stopped = rkisp1_sp_is_stopped,
605 };
606 
607 /* ----------------------------------------------------------------------------
608  * Frame buffer operations
609  */
610 
611 static int rkisp1_dummy_buf_create(struct rkisp1_capture *cap)
612 {
613 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
614 	struct rkisp1_dummy_buffer *dummy_buf = &cap->buf.dummy;
615 
616 	dummy_buf->size = max3(rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
617 			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
618 			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
619 
620 	/* The driver never access vaddr, no mapping is required */
621 	dummy_buf->vaddr = dma_alloc_attrs(cap->rkisp1->dev,
622 					   dummy_buf->size,
623 					   &dummy_buf->dma_addr,
624 					   GFP_KERNEL,
625 					   DMA_ATTR_NO_KERNEL_MAPPING);
626 	if (!dummy_buf->vaddr)
627 		return -ENOMEM;
628 
629 	return 0;
630 }
631 
632 static void rkisp1_dummy_buf_destroy(struct rkisp1_capture *cap)
633 {
634 	dma_free_attrs(cap->rkisp1->dev,
635 		       cap->buf.dummy.size, cap->buf.dummy.vaddr,
636 		       cap->buf.dummy.dma_addr, DMA_ATTR_NO_KERNEL_MAPPING);
637 }
638 
639 static void rkisp1_set_next_buf(struct rkisp1_capture *cap)
640 {
641 	cap->buf.curr = cap->buf.next;
642 	cap->buf.next = NULL;
643 
644 	if (!list_empty(&cap->buf.queue)) {
645 		u32 *buff_addr;
646 
647 		cap->buf.next = list_first_entry(&cap->buf.queue, struct rkisp1_buffer, queue);
648 		list_del(&cap->buf.next->queue);
649 
650 		buff_addr = cap->buf.next->buff_addr;
651 
652 		rkisp1_write(cap->rkisp1, cap->config->mi.y_base_ad_init,
653 			     buff_addr[RKISP1_PLANE_Y]);
654 		/*
655 		 * In order to support grey format we capture
656 		 * YUV422 planar format from the camera and
657 		 * set the U and V planes to the dummy buffer
658 		 */
659 		if (cap->pix.cfg->fourcc == V4L2_PIX_FMT_GREY) {
660 			rkisp1_write(cap->rkisp1,
661 				     cap->config->mi.cb_base_ad_init,
662 				     cap->buf.dummy.dma_addr);
663 			rkisp1_write(cap->rkisp1,
664 				     cap->config->mi.cr_base_ad_init,
665 				     cap->buf.dummy.dma_addr);
666 		} else {
667 			rkisp1_write(cap->rkisp1,
668 				     cap->config->mi.cb_base_ad_init,
669 				     buff_addr[RKISP1_PLANE_CB]);
670 			rkisp1_write(cap->rkisp1,
671 				     cap->config->mi.cr_base_ad_init,
672 				     buff_addr[RKISP1_PLANE_CR]);
673 		}
674 	} else {
675 		/*
676 		 * Use the dummy space allocated by dma_alloc_coherent to
677 		 * throw data if there is no available buffer.
678 		 */
679 		rkisp1_write(cap->rkisp1, cap->config->mi.y_base_ad_init,
680 			     cap->buf.dummy.dma_addr);
681 		rkisp1_write(cap->rkisp1, cap->config->mi.cb_base_ad_init,
682 			     cap->buf.dummy.dma_addr);
683 		rkisp1_write(cap->rkisp1, cap->config->mi.cr_base_ad_init,
684 			     cap->buf.dummy.dma_addr);
685 	}
686 
687 	/* Set plane offsets */
688 	rkisp1_write(cap->rkisp1, cap->config->mi.y_offs_cnt_init, 0);
689 	rkisp1_write(cap->rkisp1, cap->config->mi.cb_offs_cnt_init, 0);
690 	rkisp1_write(cap->rkisp1, cap->config->mi.cr_offs_cnt_init, 0);
691 }
692 
693 /*
694  * This function is called when a frame end comes. The next frame
695  * is processing and we should set up buffer for next-next frame,
696  * otherwise it will overflow.
697  */
698 static void rkisp1_handle_buffer(struct rkisp1_capture *cap)
699 {
700 	struct rkisp1_isp *isp = &cap->rkisp1->isp;
701 	struct rkisp1_buffer *curr_buf;
702 
703 	spin_lock(&cap->buf.lock);
704 	curr_buf = cap->buf.curr;
705 
706 	if (curr_buf) {
707 		curr_buf->vb.sequence = isp->frame_sequence;
708 		curr_buf->vb.vb2_buf.timestamp = ktime_get_boottime_ns();
709 		curr_buf->vb.field = V4L2_FIELD_NONE;
710 		vb2_buffer_done(&curr_buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
711 	} else {
712 		cap->rkisp1->debug.frame_drop[cap->id]++;
713 	}
714 
715 	rkisp1_set_next_buf(cap);
716 	spin_unlock(&cap->buf.lock);
717 }
718 
719 irqreturn_t rkisp1_capture_isr(int irq, void *ctx)
720 {
721 	struct device *dev = ctx;
722 	struct rkisp1_device *rkisp1 = dev_get_drvdata(dev);
723 	unsigned int i;
724 	u32 status;
725 
726 	if (!rkisp1->irqs_enabled)
727 		return IRQ_NONE;
728 
729 	status = rkisp1_read(rkisp1, RKISP1_CIF_MI_MIS);
730 	if (!status)
731 		return IRQ_NONE;
732 
733 	rkisp1_write(rkisp1, RKISP1_CIF_MI_ICR, status);
734 
735 	for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); ++i) {
736 		struct rkisp1_capture *cap = &rkisp1->capture_devs[i];
737 
738 		if (!(status & RKISP1_CIF_MI_FRAME(cap)))
739 			continue;
740 		if (!cap->is_stopping) {
741 			rkisp1_handle_buffer(cap);
742 			continue;
743 		}
744 		/*
745 		 * Make sure stream is actually stopped, whose state
746 		 * can be read from the shadow register, before
747 		 * wake_up() thread which would immediately free all
748 		 * frame buffers. stop() takes effect at the next
749 		 * frame end that sync the configurations to shadow
750 		 * regs.
751 		 */
752 		if (!cap->ops->is_stopped(cap)) {
753 			cap->ops->stop(cap);
754 			continue;
755 		}
756 		cap->is_stopping = false;
757 		cap->is_streaming = false;
758 		wake_up(&cap->done);
759 	}
760 
761 	return IRQ_HANDLED;
762 }
763 
764 /* ----------------------------------------------------------------------------
765  * Vb2 operations
766  */
767 
768 static int rkisp1_vb2_queue_setup(struct vb2_queue *queue,
769 				  unsigned int *num_buffers,
770 				  unsigned int *num_planes,
771 				  unsigned int sizes[],
772 				  struct device *alloc_devs[])
773 {
774 	struct rkisp1_capture *cap = queue->drv_priv;
775 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
776 	unsigned int i;
777 
778 	if (*num_planes) {
779 		if (*num_planes != pixm->num_planes)
780 			return -EINVAL;
781 
782 		for (i = 0; i < pixm->num_planes; i++)
783 			if (sizes[i] < pixm->plane_fmt[i].sizeimage)
784 				return -EINVAL;
785 	} else {
786 		*num_planes = pixm->num_planes;
787 		for (i = 0; i < pixm->num_planes; i++)
788 			sizes[i] = pixm->plane_fmt[i].sizeimage;
789 	}
790 
791 	return 0;
792 }
793 
794 static int rkisp1_vb2_buf_init(struct vb2_buffer *vb)
795 {
796 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
797 	struct rkisp1_buffer *ispbuf =
798 		container_of(vbuf, struct rkisp1_buffer, vb);
799 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
800 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
801 	unsigned int i;
802 
803 	memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
804 	for (i = 0; i < pixm->num_planes; i++)
805 		ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
806 
807 	/* Convert to non-MPLANE */
808 	if (pixm->num_planes == 1) {
809 		ispbuf->buff_addr[RKISP1_PLANE_CB] =
810 			ispbuf->buff_addr[RKISP1_PLANE_Y] +
811 			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y);
812 		ispbuf->buff_addr[RKISP1_PLANE_CR] =
813 			ispbuf->buff_addr[RKISP1_PLANE_CB] +
814 			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB);
815 	}
816 
817 	/*
818 	 * uv swap can be supported for planar formats by switching
819 	 * the address of cb and cr
820 	 */
821 	if (cap->pix.info->comp_planes == 3 && cap->pix.cfg->uv_swap)
822 		swap(ispbuf->buff_addr[RKISP1_PLANE_CR],
823 		     ispbuf->buff_addr[RKISP1_PLANE_CB]);
824 	return 0;
825 }
826 
827 static void rkisp1_vb2_buf_queue(struct vb2_buffer *vb)
828 {
829 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
830 	struct rkisp1_buffer *ispbuf =
831 		container_of(vbuf, struct rkisp1_buffer, vb);
832 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
833 
834 	spin_lock_irq(&cap->buf.lock);
835 	list_add_tail(&ispbuf->queue, &cap->buf.queue);
836 	spin_unlock_irq(&cap->buf.lock);
837 }
838 
839 static int rkisp1_vb2_buf_prepare(struct vb2_buffer *vb)
840 {
841 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
842 	unsigned int i;
843 
844 	for (i = 0; i < cap->pix.fmt.num_planes; i++) {
845 		unsigned long size = cap->pix.fmt.plane_fmt[i].sizeimage;
846 
847 		if (vb2_plane_size(vb, i) < size) {
848 			dev_err(cap->rkisp1->dev,
849 				"User buffer too small (%ld < %ld)\n",
850 				vb2_plane_size(vb, i), size);
851 			return -EINVAL;
852 		}
853 		vb2_set_plane_payload(vb, i, size);
854 	}
855 
856 	return 0;
857 }
858 
859 static void rkisp1_return_all_buffers(struct rkisp1_capture *cap,
860 				      enum vb2_buffer_state state)
861 {
862 	struct rkisp1_buffer *buf;
863 
864 	spin_lock_irq(&cap->buf.lock);
865 	if (cap->buf.curr) {
866 		vb2_buffer_done(&cap->buf.curr->vb.vb2_buf, state);
867 		cap->buf.curr = NULL;
868 	}
869 	if (cap->buf.next) {
870 		vb2_buffer_done(&cap->buf.next->vb.vb2_buf, state);
871 		cap->buf.next = NULL;
872 	}
873 	while (!list_empty(&cap->buf.queue)) {
874 		buf = list_first_entry(&cap->buf.queue,
875 				       struct rkisp1_buffer, queue);
876 		list_del(&buf->queue);
877 		vb2_buffer_done(&buf->vb.vb2_buf, state);
878 	}
879 	spin_unlock_irq(&cap->buf.lock);
880 }
881 
882 /*
883  * Most registers inside the rockchip ISP1 have shadow register since
884  * they must not be changed while processing a frame.
885  * Usually, each sub-module updates its shadow register after
886  * processing the last pixel of a frame.
887  */
888 static void rkisp1_cap_stream_enable(struct rkisp1_capture *cap)
889 {
890 	struct rkisp1_device *rkisp1 = cap->rkisp1;
891 	struct rkisp1_capture *other = &rkisp1->capture_devs[cap->id ^ 1];
892 
893 	cap->ops->set_data_path(cap);
894 	cap->ops->config(cap);
895 
896 	/* Setup a buffer for the next frame */
897 	spin_lock_irq(&cap->buf.lock);
898 	rkisp1_set_next_buf(cap);
899 	cap->ops->enable(cap);
900 	/* It's safe to configure ACTIVE and SHADOW registers for the
901 	 * first stream. While when the second is starting, do NOT
902 	 * force update because it also updates the first one.
903 	 *
904 	 * The latter case would drop one more buffer(that is 2) since
905 	 * there's no buffer in a shadow register when the second FE received.
906 	 * This's also required because the second FE maybe corrupt
907 	 * especially when run at 120fps.
908 	 */
909 	if (!other->is_streaming) {
910 		/* force cfg update */
911 		rkisp1_write(rkisp1, RKISP1_CIF_MI_INIT,
912 			     RKISP1_CIF_MI_INIT_SOFT_UPD);
913 		rkisp1_set_next_buf(cap);
914 	}
915 	spin_unlock_irq(&cap->buf.lock);
916 	cap->is_streaming = true;
917 }
918 
919 static void rkisp1_cap_stream_disable(struct rkisp1_capture *cap)
920 {
921 	int ret;
922 
923 	/* Stream should stop in interrupt. If it doesn't, stop it by force. */
924 	cap->is_stopping = true;
925 	ret = wait_event_timeout(cap->done,
926 				 !cap->is_streaming,
927 				 msecs_to_jiffies(1000));
928 	if (!ret) {
929 		cap->rkisp1->debug.stop_timeout[cap->id]++;
930 		cap->ops->stop(cap);
931 		cap->is_stopping = false;
932 		cap->is_streaming = false;
933 	}
934 }
935 
936 /*
937  * rkisp1_pipeline_stream_disable - disable nodes in the pipeline
938  *
939  * Call s_stream(false) in the reverse order from
940  * rkisp1_pipeline_stream_enable() and disable the DMA engine.
941  * Should be called before video_device_pipeline_stop()
942  */
943 static void rkisp1_pipeline_stream_disable(struct rkisp1_capture *cap)
944 	__must_hold(&cap->rkisp1->stream_lock)
945 {
946 	struct rkisp1_device *rkisp1 = cap->rkisp1;
947 
948 	rkisp1_cap_stream_disable(cap);
949 
950 	/*
951 	 * If the other capture is streaming, isp and sensor nodes shouldn't
952 	 * be disabled, skip them.
953 	 */
954 	if (rkisp1->pipe.start_count < 2)
955 		v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
956 
957 	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
958 			 false);
959 }
960 
961 /*
962  * rkisp1_pipeline_stream_enable - enable nodes in the pipeline
963  *
964  * Enable the DMA Engine and call s_stream(true) through the pipeline.
965  * Should be called after video_device_pipeline_start()
966  */
967 static int rkisp1_pipeline_stream_enable(struct rkisp1_capture *cap)
968 	__must_hold(&cap->rkisp1->stream_lock)
969 {
970 	struct rkisp1_device *rkisp1 = cap->rkisp1;
971 	int ret;
972 
973 	rkisp1_cap_stream_enable(cap);
974 
975 	ret = v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video,
976 			       s_stream, true);
977 	if (ret)
978 		goto err_disable_cap;
979 
980 	/*
981 	 * If the other capture is streaming, isp and sensor nodes are already
982 	 * enabled, skip them.
983 	 */
984 	if (rkisp1->pipe.start_count > 1)
985 		return 0;
986 
987 	ret = v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, true);
988 	if (ret)
989 		goto err_disable_rsz;
990 
991 	return 0;
992 
993 err_disable_rsz:
994 	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
995 			 false);
996 err_disable_cap:
997 	rkisp1_cap_stream_disable(cap);
998 
999 	return ret;
1000 }
1001 
1002 static void rkisp1_vb2_stop_streaming(struct vb2_queue *queue)
1003 {
1004 	struct rkisp1_capture *cap = queue->drv_priv;
1005 	struct rkisp1_vdev_node *node = &cap->vnode;
1006 	struct rkisp1_device *rkisp1 = cap->rkisp1;
1007 	int ret;
1008 
1009 	mutex_lock(&cap->rkisp1->stream_lock);
1010 
1011 	rkisp1_pipeline_stream_disable(cap);
1012 
1013 	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_ERROR);
1014 
1015 	v4l2_pipeline_pm_put(&node->vdev.entity);
1016 	ret = pm_runtime_put(rkisp1->dev);
1017 	if (ret < 0)
1018 		dev_err(rkisp1->dev, "power down failed error:%d\n", ret);
1019 
1020 	rkisp1_dummy_buf_destroy(cap);
1021 
1022 	video_device_pipeline_stop(&node->vdev);
1023 
1024 	mutex_unlock(&cap->rkisp1->stream_lock);
1025 }
1026 
1027 static int
1028 rkisp1_vb2_start_streaming(struct vb2_queue *queue, unsigned int count)
1029 {
1030 	struct rkisp1_capture *cap = queue->drv_priv;
1031 	struct media_entity *entity = &cap->vnode.vdev.entity;
1032 	int ret;
1033 
1034 	mutex_lock(&cap->rkisp1->stream_lock);
1035 
1036 	ret = video_device_pipeline_start(&cap->vnode.vdev, &cap->rkisp1->pipe);
1037 	if (ret) {
1038 		dev_err(cap->rkisp1->dev, "start pipeline failed %d\n", ret);
1039 		goto err_ret_buffers;
1040 	}
1041 
1042 	ret = rkisp1_dummy_buf_create(cap);
1043 	if (ret)
1044 		goto err_pipeline_stop;
1045 
1046 	ret = pm_runtime_resume_and_get(cap->rkisp1->dev);
1047 	if (ret < 0) {
1048 		dev_err(cap->rkisp1->dev, "power up failed %d\n", ret);
1049 		goto err_destroy_dummy;
1050 	}
1051 	ret = v4l2_pipeline_pm_get(entity);
1052 	if (ret) {
1053 		dev_err(cap->rkisp1->dev, "open cif pipeline failed %d\n", ret);
1054 		goto err_pipe_pm_put;
1055 	}
1056 
1057 	ret = rkisp1_pipeline_stream_enable(cap);
1058 	if (ret)
1059 		goto err_v4l2_pm_put;
1060 
1061 	mutex_unlock(&cap->rkisp1->stream_lock);
1062 
1063 	return 0;
1064 
1065 err_v4l2_pm_put:
1066 	v4l2_pipeline_pm_put(entity);
1067 err_pipe_pm_put:
1068 	pm_runtime_put(cap->rkisp1->dev);
1069 err_destroy_dummy:
1070 	rkisp1_dummy_buf_destroy(cap);
1071 err_pipeline_stop:
1072 	video_device_pipeline_stop(&cap->vnode.vdev);
1073 err_ret_buffers:
1074 	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_QUEUED);
1075 	mutex_unlock(&cap->rkisp1->stream_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 static const struct vb2_ops rkisp1_vb2_ops = {
1081 	.queue_setup = rkisp1_vb2_queue_setup,
1082 	.buf_init = rkisp1_vb2_buf_init,
1083 	.buf_queue = rkisp1_vb2_buf_queue,
1084 	.buf_prepare = rkisp1_vb2_buf_prepare,
1085 	.wait_prepare = vb2_ops_wait_prepare,
1086 	.wait_finish = vb2_ops_wait_finish,
1087 	.stop_streaming = rkisp1_vb2_stop_streaming,
1088 	.start_streaming = rkisp1_vb2_start_streaming,
1089 };
1090 
1091 /* ----------------------------------------------------------------------------
1092  * IOCTLs operations
1093  */
1094 
1095 static const struct v4l2_format_info *
1096 rkisp1_fill_pixfmt(struct v4l2_pix_format_mplane *pixm,
1097 		   enum rkisp1_stream_id id)
1098 {
1099 	struct v4l2_plane_pix_format *plane_y = &pixm->plane_fmt[0];
1100 	const struct v4l2_format_info *info;
1101 	unsigned int i;
1102 	u32 stride;
1103 
1104 	memset(pixm->plane_fmt, 0, sizeof(pixm->plane_fmt));
1105 	info = v4l2_format_info(pixm->pixelformat);
1106 	pixm->num_planes = info->mem_planes;
1107 	stride = info->bpp[0] * pixm->width;
1108 	/* Self path supports custom stride but Main path doesn't */
1109 	if (id == RKISP1_MAINPATH || plane_y->bytesperline < stride)
1110 		plane_y->bytesperline = stride;
1111 	plane_y->sizeimage = plane_y->bytesperline * pixm->height;
1112 
1113 	/* normalize stride to pixels per line */
1114 	stride = DIV_ROUND_UP(plane_y->bytesperline, info->bpp[0]);
1115 
1116 	for (i = 1; i < info->comp_planes; i++) {
1117 		struct v4l2_plane_pix_format *plane = &pixm->plane_fmt[i];
1118 
1119 		/* bytesperline for other components derive from Y component */
1120 		plane->bytesperline = DIV_ROUND_UP(stride, info->hdiv) *
1121 				      info->bpp[i];
1122 		plane->sizeimage = plane->bytesperline *
1123 				   DIV_ROUND_UP(pixm->height, info->vdiv);
1124 	}
1125 
1126 	/*
1127 	 * If pixfmt is packed, then plane_fmt[0] should contain the total size
1128 	 * considering all components. plane_fmt[i] for i > 0 should be ignored
1129 	 * by userspace as mem_planes == 1, but we are keeping information there
1130 	 * for convenience.
1131 	 */
1132 	if (info->mem_planes == 1)
1133 		for (i = 1; i < info->comp_planes; i++)
1134 			plane_y->sizeimage += pixm->plane_fmt[i].sizeimage;
1135 
1136 	return info;
1137 }
1138 
1139 static const struct rkisp1_capture_fmt_cfg *
1140 rkisp1_find_fmt_cfg(const struct rkisp1_capture *cap, const u32 pixelfmt)
1141 {
1142 	unsigned int i;
1143 
1144 	for (i = 0; i < cap->config->fmt_size; i++) {
1145 		if (cap->config->fmts[i].fourcc == pixelfmt)
1146 			return &cap->config->fmts[i];
1147 	}
1148 	return NULL;
1149 }
1150 
1151 static void rkisp1_try_fmt(const struct rkisp1_capture *cap,
1152 			   struct v4l2_pix_format_mplane *pixm,
1153 			   const struct rkisp1_capture_fmt_cfg **fmt_cfg,
1154 			   const struct v4l2_format_info **fmt_info)
1155 {
1156 	const struct rkisp1_capture_config *config = cap->config;
1157 	const struct rkisp1_capture_fmt_cfg *fmt;
1158 	const struct v4l2_format_info *info;
1159 	static const unsigned int max_widths[] = {
1160 		RKISP1_RSZ_MP_SRC_MAX_WIDTH, RKISP1_RSZ_SP_SRC_MAX_WIDTH
1161 	};
1162 	static const unsigned int max_heights[] = {
1163 		RKISP1_RSZ_MP_SRC_MAX_HEIGHT, RKISP1_RSZ_SP_SRC_MAX_HEIGHT
1164 	};
1165 
1166 	fmt = rkisp1_find_fmt_cfg(cap, pixm->pixelformat);
1167 	if (!fmt) {
1168 		fmt = config->fmts;
1169 		pixm->pixelformat = fmt->fourcc;
1170 	}
1171 
1172 	pixm->width = clamp_t(u32, pixm->width,
1173 			      RKISP1_RSZ_SRC_MIN_WIDTH, max_widths[cap->id]);
1174 	pixm->height = clamp_t(u32, pixm->height,
1175 			       RKISP1_RSZ_SRC_MIN_HEIGHT, max_heights[cap->id]);
1176 
1177 	pixm->field = V4L2_FIELD_NONE;
1178 	pixm->colorspace = V4L2_COLORSPACE_DEFAULT;
1179 	pixm->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1180 	pixm->quantization = V4L2_QUANTIZATION_DEFAULT;
1181 
1182 	info = rkisp1_fill_pixfmt(pixm, cap->id);
1183 
1184 	if (fmt_cfg)
1185 		*fmt_cfg = fmt;
1186 	if (fmt_info)
1187 		*fmt_info = info;
1188 }
1189 
1190 static void rkisp1_set_fmt(struct rkisp1_capture *cap,
1191 			   struct v4l2_pix_format_mplane *pixm)
1192 {
1193 	rkisp1_try_fmt(cap, pixm, &cap->pix.cfg, &cap->pix.info);
1194 	cap->pix.fmt = *pixm;
1195 
1196 	/* SP supports custom stride in number of pixels of the Y plane */
1197 	if (cap->id == RKISP1_SELFPATH)
1198 		cap->sp_y_stride = pixm->plane_fmt[0].bytesperline /
1199 				   cap->pix.info->bpp[0];
1200 }
1201 
1202 static int rkisp1_try_fmt_vid_cap_mplane(struct file *file, void *fh,
1203 					 struct v4l2_format *f)
1204 {
1205 	struct rkisp1_capture *cap = video_drvdata(file);
1206 
1207 	rkisp1_try_fmt(cap, &f->fmt.pix_mp, NULL, NULL);
1208 
1209 	return 0;
1210 }
1211 
1212 static int rkisp1_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
1213 					  struct v4l2_fmtdesc *f)
1214 {
1215 	struct rkisp1_capture *cap = video_drvdata(file);
1216 	const struct rkisp1_capture_fmt_cfg *fmt = NULL;
1217 	unsigned int i, n = 0;
1218 
1219 	if (!f->mbus_code) {
1220 		if (f->index >= cap->config->fmt_size)
1221 			return -EINVAL;
1222 
1223 		fmt = &cap->config->fmts[f->index];
1224 		f->pixelformat = fmt->fourcc;
1225 		return 0;
1226 	}
1227 
1228 	for (i = 0; i < cap->config->fmt_size; i++) {
1229 		if (cap->config->fmts[i].mbus != f->mbus_code)
1230 			continue;
1231 
1232 		if (n++ == f->index) {
1233 			f->pixelformat = cap->config->fmts[i].fourcc;
1234 			return 0;
1235 		}
1236 	}
1237 	return -EINVAL;
1238 }
1239 
1240 static int rkisp1_enum_framesizes(struct file *file, void *fh,
1241 				  struct v4l2_frmsizeenum *fsize)
1242 {
1243 	static const unsigned int max_widths[] = {
1244 		RKISP1_RSZ_MP_SRC_MAX_WIDTH,
1245 		RKISP1_RSZ_SP_SRC_MAX_WIDTH,
1246 	};
1247 	static const unsigned int max_heights[] = {
1248 		RKISP1_RSZ_MP_SRC_MAX_HEIGHT,
1249 		RKISP1_RSZ_SP_SRC_MAX_HEIGHT,
1250 	};
1251 	struct rkisp1_capture *cap = video_drvdata(file);
1252 
1253 	if (fsize->index != 0)
1254 		return -EINVAL;
1255 
1256 	fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
1257 
1258 	fsize->stepwise.min_width = RKISP1_RSZ_SRC_MIN_WIDTH;
1259 	fsize->stepwise.max_width = max_widths[cap->id];
1260 	fsize->stepwise.step_width = 2;
1261 
1262 	fsize->stepwise.min_height = RKISP1_RSZ_SRC_MIN_HEIGHT;
1263 	fsize->stepwise.max_height = max_heights[cap->id];
1264 	fsize->stepwise.step_height = 2;
1265 
1266 	return 0;
1267 }
1268 
1269 static int rkisp1_s_fmt_vid_cap_mplane(struct file *file,
1270 				       void *priv, struct v4l2_format *f)
1271 {
1272 	struct rkisp1_capture *cap = video_drvdata(file);
1273 	struct rkisp1_vdev_node *node =
1274 				rkisp1_vdev_to_node(&cap->vnode.vdev);
1275 
1276 	if (vb2_is_busy(&node->buf_queue))
1277 		return -EBUSY;
1278 
1279 	rkisp1_set_fmt(cap, &f->fmt.pix_mp);
1280 
1281 	return 0;
1282 }
1283 
1284 static int rkisp1_g_fmt_vid_cap_mplane(struct file *file, void *fh,
1285 				       struct v4l2_format *f)
1286 {
1287 	struct rkisp1_capture *cap = video_drvdata(file);
1288 
1289 	f->fmt.pix_mp = cap->pix.fmt;
1290 
1291 	return 0;
1292 }
1293 
1294 static int
1295 rkisp1_querycap(struct file *file, void *priv, struct v4l2_capability *cap)
1296 {
1297 	strscpy(cap->driver, RKISP1_DRIVER_NAME, sizeof(cap->driver));
1298 	strscpy(cap->card, RKISP1_DRIVER_NAME, sizeof(cap->card));
1299 	strscpy(cap->bus_info, RKISP1_BUS_INFO, sizeof(cap->bus_info));
1300 
1301 	return 0;
1302 }
1303 
1304 static const struct v4l2_ioctl_ops rkisp1_v4l2_ioctl_ops = {
1305 	.vidioc_reqbufs = vb2_ioctl_reqbufs,
1306 	.vidioc_querybuf = vb2_ioctl_querybuf,
1307 	.vidioc_create_bufs = vb2_ioctl_create_bufs,
1308 	.vidioc_qbuf = vb2_ioctl_qbuf,
1309 	.vidioc_expbuf = vb2_ioctl_expbuf,
1310 	.vidioc_dqbuf = vb2_ioctl_dqbuf,
1311 	.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1312 	.vidioc_streamon = vb2_ioctl_streamon,
1313 	.vidioc_streamoff = vb2_ioctl_streamoff,
1314 	.vidioc_try_fmt_vid_cap_mplane = rkisp1_try_fmt_vid_cap_mplane,
1315 	.vidioc_s_fmt_vid_cap_mplane = rkisp1_s_fmt_vid_cap_mplane,
1316 	.vidioc_g_fmt_vid_cap_mplane = rkisp1_g_fmt_vid_cap_mplane,
1317 	.vidioc_enum_fmt_vid_cap = rkisp1_enum_fmt_vid_cap_mplane,
1318 	.vidioc_enum_framesizes = rkisp1_enum_framesizes,
1319 	.vidioc_querycap = rkisp1_querycap,
1320 	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1321 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1322 };
1323 
1324 static int rkisp1_capture_link_validate(struct media_link *link)
1325 {
1326 	struct video_device *vdev =
1327 		media_entity_to_video_device(link->sink->entity);
1328 	struct v4l2_subdev *sd =
1329 		media_entity_to_v4l2_subdev(link->source->entity);
1330 	struct rkisp1_capture *cap = video_get_drvdata(vdev);
1331 	const struct rkisp1_capture_fmt_cfg *fmt =
1332 		rkisp1_find_fmt_cfg(cap, cap->pix.fmt.pixelformat);
1333 	struct v4l2_subdev_format sd_fmt = {
1334 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1335 		.pad = link->source->index,
1336 	};
1337 	int ret;
1338 
1339 	ret = v4l2_subdev_call(sd, pad, get_fmt, NULL, &sd_fmt);
1340 	if (ret)
1341 		return ret;
1342 
1343 	if (sd_fmt.format.height != cap->pix.fmt.height ||
1344 	    sd_fmt.format.width != cap->pix.fmt.width ||
1345 	    sd_fmt.format.code != fmt->mbus) {
1346 		dev_dbg(cap->rkisp1->dev,
1347 			"link '%s':%u -> '%s':%u not valid: 0x%04x/%ux%u != 0x%04x/%ux%u\n",
1348 			link->source->entity->name, link->source->index,
1349 			link->sink->entity->name, link->sink->index,
1350 			sd_fmt.format.code, sd_fmt.format.width,
1351 			sd_fmt.format.height, fmt->mbus, cap->pix.fmt.width,
1352 			cap->pix.fmt.height);
1353 		return -EPIPE;
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 /* ----------------------------------------------------------------------------
1360  * core functions
1361  */
1362 
1363 static const struct media_entity_operations rkisp1_media_ops = {
1364 	.link_validate = rkisp1_capture_link_validate,
1365 };
1366 
1367 static const struct v4l2_file_operations rkisp1_fops = {
1368 	.open = v4l2_fh_open,
1369 	.release = vb2_fop_release,
1370 	.unlocked_ioctl = video_ioctl2,
1371 	.poll = vb2_fop_poll,
1372 	.mmap = vb2_fop_mmap,
1373 };
1374 
1375 static void rkisp1_unregister_capture(struct rkisp1_capture *cap)
1376 {
1377 	if (!video_is_registered(&cap->vnode.vdev))
1378 		return;
1379 
1380 	media_entity_cleanup(&cap->vnode.vdev.entity);
1381 	vb2_video_unregister_device(&cap->vnode.vdev);
1382 	mutex_destroy(&cap->vnode.vlock);
1383 }
1384 
1385 void rkisp1_capture_devs_unregister(struct rkisp1_device *rkisp1)
1386 {
1387 	struct rkisp1_capture *mp = &rkisp1->capture_devs[RKISP1_MAINPATH];
1388 	struct rkisp1_capture *sp = &rkisp1->capture_devs[RKISP1_SELFPATH];
1389 
1390 	rkisp1_unregister_capture(mp);
1391 	rkisp1_unregister_capture(sp);
1392 }
1393 
1394 static int rkisp1_register_capture(struct rkisp1_capture *cap)
1395 {
1396 	static const char * const dev_names[] = {
1397 		RKISP1_MP_DEV_NAME, RKISP1_SP_DEV_NAME
1398 	};
1399 	struct v4l2_device *v4l2_dev = &cap->rkisp1->v4l2_dev;
1400 	struct video_device *vdev = &cap->vnode.vdev;
1401 	struct rkisp1_vdev_node *node;
1402 	struct vb2_queue *q;
1403 	int ret;
1404 
1405 	strscpy(vdev->name, dev_names[cap->id], sizeof(vdev->name));
1406 	node = rkisp1_vdev_to_node(vdev);
1407 	mutex_init(&node->vlock);
1408 
1409 	vdev->ioctl_ops = &rkisp1_v4l2_ioctl_ops;
1410 	vdev->release = video_device_release_empty;
1411 	vdev->fops = &rkisp1_fops;
1412 	vdev->minor = -1;
1413 	vdev->v4l2_dev = v4l2_dev;
1414 	vdev->lock = &node->vlock;
1415 	vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1416 			    V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
1417 	vdev->entity.ops = &rkisp1_media_ops;
1418 	video_set_drvdata(vdev, cap);
1419 	vdev->vfl_dir = VFL_DIR_RX;
1420 	node->pad.flags = MEDIA_PAD_FL_SINK;
1421 
1422 	q = &node->buf_queue;
1423 	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1424 	q->io_modes = VB2_MMAP | VB2_DMABUF;
1425 	q->drv_priv = cap;
1426 	q->ops = &rkisp1_vb2_ops;
1427 	q->mem_ops = &vb2_dma_contig_memops;
1428 	q->buf_struct_size = sizeof(struct rkisp1_buffer);
1429 	q->min_buffers_needed = RKISP1_MIN_BUFFERS_NEEDED;
1430 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1431 	q->lock = &node->vlock;
1432 	q->dev = cap->rkisp1->dev;
1433 	ret = vb2_queue_init(q);
1434 	if (ret) {
1435 		dev_err(cap->rkisp1->dev,
1436 			"vb2 queue init failed (err=%d)\n", ret);
1437 		goto error;
1438 	}
1439 
1440 	vdev->queue = q;
1441 
1442 	ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
1443 	if (ret)
1444 		goto error;
1445 
1446 	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
1447 	if (ret) {
1448 		dev_err(cap->rkisp1->dev,
1449 			"failed to register %s, ret=%d\n", vdev->name, ret);
1450 		goto error;
1451 	}
1452 
1453 	v4l2_info(v4l2_dev, "registered %s as /dev/video%d\n", vdev->name,
1454 		  vdev->num);
1455 
1456 	return 0;
1457 
1458 error:
1459 	media_entity_cleanup(&vdev->entity);
1460 	mutex_destroy(&node->vlock);
1461 	return ret;
1462 }
1463 
1464 static void
1465 rkisp1_capture_init(struct rkisp1_device *rkisp1, enum rkisp1_stream_id id)
1466 {
1467 	struct rkisp1_capture *cap = &rkisp1->capture_devs[id];
1468 	struct v4l2_pix_format_mplane pixm;
1469 
1470 	memset(cap, 0, sizeof(*cap));
1471 	cap->id = id;
1472 	cap->rkisp1 = rkisp1;
1473 
1474 	INIT_LIST_HEAD(&cap->buf.queue);
1475 	init_waitqueue_head(&cap->done);
1476 	spin_lock_init(&cap->buf.lock);
1477 	if (cap->id == RKISP1_SELFPATH) {
1478 		cap->ops = &rkisp1_capture_ops_sp;
1479 		cap->config = &rkisp1_capture_config_sp;
1480 	} else {
1481 		cap->ops = &rkisp1_capture_ops_mp;
1482 		cap->config = &rkisp1_capture_config_mp;
1483 	}
1484 
1485 	cap->is_streaming = false;
1486 
1487 	memset(&pixm, 0, sizeof(pixm));
1488 	pixm.pixelformat = V4L2_PIX_FMT_YUYV;
1489 	pixm.width = RKISP1_DEFAULT_WIDTH;
1490 	pixm.height = RKISP1_DEFAULT_HEIGHT;
1491 	rkisp1_set_fmt(cap, &pixm);
1492 }
1493 
1494 int rkisp1_capture_devs_register(struct rkisp1_device *rkisp1)
1495 {
1496 	unsigned int i;
1497 	int ret;
1498 
1499 	for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); i++) {
1500 		struct rkisp1_capture *cap = &rkisp1->capture_devs[i];
1501 
1502 		rkisp1_capture_init(rkisp1, i);
1503 
1504 		ret = rkisp1_register_capture(cap);
1505 		if (ret) {
1506 			rkisp1_capture_devs_unregister(rkisp1);
1507 			return ret;
1508 		}
1509 	}
1510 
1511 	return 0;
1512 
1513 }
1514