1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3  * Rockchip ISP1 Driver - V4l capture device
4  *
5  * Copyright (C) 2019 Collabora, Ltd.
6  *
7  * Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd.
8  * Copyright (C) 2017 Rockchip Electronics Co., Ltd.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <media/v4l2-common.h>
14 #include <media/v4l2-event.h>
15 #include <media/v4l2-fh.h>
16 #include <media/v4l2-ioctl.h>
17 #include <media/v4l2-mc.h>
18 #include <media/v4l2-subdev.h>
19 #include <media/videobuf2-dma-contig.h>
20 
21 #include "rkisp1-common.h"
22 
23 /*
24  * NOTE: There are two capture video devices in rkisp1, selfpath and mainpath.
25  *
26  * differences between selfpath and mainpath
27  * available mp sink input: isp
28  * available sp sink input : isp, dma(TODO)
29  * available mp sink pad fmts: yuv422, raw
30  * available sp sink pad fmts: yuv422, yuv420......
31  * available mp source fmts: yuv, raw, jpeg(TODO)
32  * available sp source fmts: yuv, rgb
33  */
34 
35 #define RKISP1_SP_DEV_NAME	RKISP1_DRIVER_NAME "_selfpath"
36 #define RKISP1_MP_DEV_NAME	RKISP1_DRIVER_NAME "_mainpath"
37 
38 #define RKISP1_MIN_BUFFERS_NEEDED 3
39 
40 enum rkisp1_plane {
41 	RKISP1_PLANE_Y	= 0,
42 	RKISP1_PLANE_CB	= 1,
43 	RKISP1_PLANE_CR	= 2
44 };
45 
46 /*
47  * @fourcc: pixel format
48  * @fmt_type: helper filed for pixel format
49  * @uv_swap: if cb cr swapped, for yuv
50  * @write_format: defines how YCbCr self picture data is written to memory
51  * @output_format: defines sp output format
52  * @mbus: the mbus code on the src resizer pad that matches the pixel format
53  */
54 struct rkisp1_capture_fmt_cfg {
55 	u32 fourcc;
56 	u8 uv_swap;
57 	u32 write_format;
58 	u32 output_format;
59 	u32 mbus;
60 };
61 
62 struct rkisp1_capture_ops {
63 	void (*config)(struct rkisp1_capture *cap);
64 	void (*stop)(struct rkisp1_capture *cap);
65 	void (*enable)(struct rkisp1_capture *cap);
66 	void (*disable)(struct rkisp1_capture *cap);
67 	void (*set_data_path)(struct rkisp1_capture *cap);
68 	bool (*is_stopped)(struct rkisp1_capture *cap);
69 };
70 
71 struct rkisp1_capture_config {
72 	const struct rkisp1_capture_fmt_cfg *fmts;
73 	int fmt_size;
74 	struct {
75 		u32 y_size_init;
76 		u32 cb_size_init;
77 		u32 cr_size_init;
78 		u32 y_base_ad_init;
79 		u32 cb_base_ad_init;
80 		u32 cr_base_ad_init;
81 		u32 y_offs_cnt_init;
82 		u32 cb_offs_cnt_init;
83 		u32 cr_offs_cnt_init;
84 	} mi;
85 };
86 
87 /*
88  * The supported pixel formats for mainpath. NOTE, pixel formats with identical 'mbus'
89  * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
90  */
91 static const struct rkisp1_capture_fmt_cfg rkisp1_mp_fmts[] = {
92 	/* yuv422 */
93 	{
94 		.fourcc = V4L2_PIX_FMT_YUYV,
95 		.uv_swap = 0,
96 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUVINT,
97 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
98 	}, {
99 		.fourcc = V4L2_PIX_FMT_YUV422P,
100 		.uv_swap = 0,
101 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
102 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
103 	}, {
104 		.fourcc = V4L2_PIX_FMT_NV16,
105 		.uv_swap = 0,
106 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
107 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
108 	}, {
109 		.fourcc = V4L2_PIX_FMT_NV61,
110 		.uv_swap = 1,
111 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
112 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
113 	}, {
114 		.fourcc = V4L2_PIX_FMT_YVU422M,
115 		.uv_swap = 1,
116 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
117 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
118 	},
119 	/* yuv400 */
120 	{
121 		.fourcc = V4L2_PIX_FMT_GREY,
122 		.uv_swap = 0,
123 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
124 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
125 	},
126 	/* yuv420 */
127 	{
128 		.fourcc = V4L2_PIX_FMT_NV21,
129 		.uv_swap = 1,
130 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
131 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
132 	}, {
133 		.fourcc = V4L2_PIX_FMT_NV12,
134 		.uv_swap = 0,
135 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
136 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
137 	}, {
138 		.fourcc = V4L2_PIX_FMT_NV21M,
139 		.uv_swap = 1,
140 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
141 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
142 	}, {
143 		.fourcc = V4L2_PIX_FMT_NV12M,
144 		.uv_swap = 0,
145 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
146 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
147 	}, {
148 		.fourcc = V4L2_PIX_FMT_YUV420,
149 		.uv_swap = 0,
150 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
151 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
152 	}, {
153 		.fourcc = V4L2_PIX_FMT_YVU420,
154 		.uv_swap = 1,
155 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
156 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
157 	},
158 	/* raw */
159 	{
160 		.fourcc = V4L2_PIX_FMT_SRGGB8,
161 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
162 		.mbus = MEDIA_BUS_FMT_SRGGB8_1X8,
163 	}, {
164 		.fourcc = V4L2_PIX_FMT_SGRBG8,
165 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
166 		.mbus = MEDIA_BUS_FMT_SGRBG8_1X8,
167 	}, {
168 		.fourcc = V4L2_PIX_FMT_SGBRG8,
169 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
170 		.mbus = MEDIA_BUS_FMT_SGBRG8_1X8,
171 	}, {
172 		.fourcc = V4L2_PIX_FMT_SBGGR8,
173 		.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
174 		.mbus = MEDIA_BUS_FMT_SBGGR8_1X8,
175 	}, {
176 		.fourcc = V4L2_PIX_FMT_SRGGB10,
177 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
178 		.mbus = MEDIA_BUS_FMT_SRGGB10_1X10,
179 	}, {
180 		.fourcc = V4L2_PIX_FMT_SGRBG10,
181 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
182 		.mbus = MEDIA_BUS_FMT_SGRBG10_1X10,
183 	}, {
184 		.fourcc = V4L2_PIX_FMT_SGBRG10,
185 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
186 		.mbus = MEDIA_BUS_FMT_SGBRG10_1X10,
187 	}, {
188 		.fourcc = V4L2_PIX_FMT_SBGGR10,
189 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
190 		.mbus = MEDIA_BUS_FMT_SBGGR10_1X10,
191 	}, {
192 		.fourcc = V4L2_PIX_FMT_SRGGB12,
193 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
194 		.mbus = MEDIA_BUS_FMT_SRGGB12_1X12,
195 	}, {
196 		.fourcc = V4L2_PIX_FMT_SGRBG12,
197 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
198 		.mbus = MEDIA_BUS_FMT_SGRBG12_1X12,
199 	}, {
200 		.fourcc = V4L2_PIX_FMT_SGBRG12,
201 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
202 		.mbus = MEDIA_BUS_FMT_SGBRG12_1X12,
203 	}, {
204 		.fourcc = V4L2_PIX_FMT_SBGGR12,
205 		.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
206 		.mbus = MEDIA_BUS_FMT_SBGGR12_1X12,
207 	},
208 };
209 
210 /*
211  * The supported pixel formats for selfpath. NOTE, pixel formats with identical 'mbus'
212  * are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
213  */
214 static const struct rkisp1_capture_fmt_cfg rkisp1_sp_fmts[] = {
215 	/* yuv422 */
216 	{
217 		.fourcc = V4L2_PIX_FMT_YUYV,
218 		.uv_swap = 0,
219 		.write_format = RKISP1_MI_CTRL_SP_WRITE_INT,
220 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
221 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
222 	}, {
223 		.fourcc = V4L2_PIX_FMT_YUV422P,
224 		.uv_swap = 0,
225 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
226 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
227 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
228 	}, {
229 		.fourcc = V4L2_PIX_FMT_NV16,
230 		.uv_swap = 0,
231 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
232 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
233 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
234 	}, {
235 		.fourcc = V4L2_PIX_FMT_NV61,
236 		.uv_swap = 1,
237 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
238 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
239 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
240 	}, {
241 		.fourcc = V4L2_PIX_FMT_YVU422M,
242 		.uv_swap = 1,
243 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
244 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
245 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
246 	},
247 	/* yuv400 */
248 	{
249 		.fourcc = V4L2_PIX_FMT_GREY,
250 		.uv_swap = 0,
251 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
252 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV400,
253 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
254 	},
255 	/* rgb */
256 	{
257 		.fourcc = V4L2_PIX_FMT_XBGR32,
258 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
259 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB888,
260 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
261 	}, {
262 		.fourcc = V4L2_PIX_FMT_RGB565,
263 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
264 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB565,
265 		.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
266 	},
267 	/* yuv420 */
268 	{
269 		.fourcc = V4L2_PIX_FMT_NV21,
270 		.uv_swap = 1,
271 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
272 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
273 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
274 	}, {
275 		.fourcc = V4L2_PIX_FMT_NV12,
276 		.uv_swap = 0,
277 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
278 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
279 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
280 	}, {
281 		.fourcc = V4L2_PIX_FMT_NV21M,
282 		.uv_swap = 1,
283 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
284 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
285 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
286 	}, {
287 		.fourcc = V4L2_PIX_FMT_NV12M,
288 		.uv_swap = 0,
289 		.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
290 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
291 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
292 	}, {
293 		.fourcc = V4L2_PIX_FMT_YUV420,
294 		.uv_swap = 0,
295 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
296 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
297 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
298 	}, {
299 		.fourcc = V4L2_PIX_FMT_YVU420,
300 		.uv_swap = 1,
301 		.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
302 		.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
303 		.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
304 	},
305 };
306 
307 static const struct rkisp1_capture_config rkisp1_capture_config_mp = {
308 	.fmts = rkisp1_mp_fmts,
309 	.fmt_size = ARRAY_SIZE(rkisp1_mp_fmts),
310 	.mi = {
311 		.y_size_init =		RKISP1_CIF_MI_MP_Y_SIZE_INIT,
312 		.cb_size_init =		RKISP1_CIF_MI_MP_CB_SIZE_INIT,
313 		.cr_size_init =		RKISP1_CIF_MI_MP_CR_SIZE_INIT,
314 		.y_base_ad_init =	RKISP1_CIF_MI_MP_Y_BASE_AD_INIT,
315 		.cb_base_ad_init =	RKISP1_CIF_MI_MP_CB_BASE_AD_INIT,
316 		.cr_base_ad_init =	RKISP1_CIF_MI_MP_CR_BASE_AD_INIT,
317 		.y_offs_cnt_init =	RKISP1_CIF_MI_MP_Y_OFFS_CNT_INIT,
318 		.cb_offs_cnt_init =	RKISP1_CIF_MI_MP_CB_OFFS_CNT_INIT,
319 		.cr_offs_cnt_init =	RKISP1_CIF_MI_MP_CR_OFFS_CNT_INIT,
320 	},
321 };
322 
323 static const struct rkisp1_capture_config rkisp1_capture_config_sp = {
324 	.fmts = rkisp1_sp_fmts,
325 	.fmt_size = ARRAY_SIZE(rkisp1_sp_fmts),
326 	.mi = {
327 		.y_size_init =		RKISP1_CIF_MI_SP_Y_SIZE_INIT,
328 		.cb_size_init =		RKISP1_CIF_MI_SP_CB_SIZE_INIT,
329 		.cr_size_init =		RKISP1_CIF_MI_SP_CR_SIZE_INIT,
330 		.y_base_ad_init =	RKISP1_CIF_MI_SP_Y_BASE_AD_INIT,
331 		.cb_base_ad_init =	RKISP1_CIF_MI_SP_CB_BASE_AD_INIT,
332 		.cr_base_ad_init =	RKISP1_CIF_MI_SP_CR_BASE_AD_INIT,
333 		.y_offs_cnt_init =	RKISP1_CIF_MI_SP_Y_OFFS_CNT_INIT,
334 		.cb_offs_cnt_init =	RKISP1_CIF_MI_SP_CB_OFFS_CNT_INIT,
335 		.cr_offs_cnt_init =	RKISP1_CIF_MI_SP_CR_OFFS_CNT_INIT,
336 	},
337 };
338 
339 static inline struct rkisp1_vdev_node *
340 rkisp1_vdev_to_node(struct video_device *vdev)
341 {
342 	return container_of(vdev, struct rkisp1_vdev_node, vdev);
343 }
344 
345 int rkisp1_cap_enum_mbus_codes(struct rkisp1_capture *cap,
346 			       struct v4l2_subdev_mbus_code_enum *code)
347 {
348 	const struct rkisp1_capture_fmt_cfg *fmts = cap->config->fmts;
349 	/*
350 	 * initialize curr_mbus to non existing mbus code 0 to ensure it is
351 	 * different from fmts[0].mbus
352 	 */
353 	u32 curr_mbus = 0;
354 	int i, n = 0;
355 
356 	for (i = 0; i < cap->config->fmt_size; i++) {
357 		if (fmts[i].mbus == curr_mbus)
358 			continue;
359 
360 		curr_mbus = fmts[i].mbus;
361 		if (n++ == code->index) {
362 			code->code = curr_mbus;
363 			return 0;
364 		}
365 	}
366 	return -EINVAL;
367 }
368 
369 /* ----------------------------------------------------------------------------
370  * Stream operations for self-picture path (sp) and main-picture path (mp)
371  */
372 
373 static void rkisp1_mi_config_ctrl(struct rkisp1_capture *cap)
374 {
375 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
376 
377 	mi_ctrl &= ~GENMASK(17, 16);
378 	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_LUM_64;
379 
380 	mi_ctrl &= ~GENMASK(19, 18);
381 	mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_CHROM_64;
382 
383 	mi_ctrl |= RKISP1_CIF_MI_CTRL_INIT_BASE_EN |
384 		   RKISP1_CIF_MI_CTRL_INIT_OFFSET_EN;
385 
386 	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
387 }
388 
389 static u32 rkisp1_pixfmt_comp_size(const struct v4l2_pix_format_mplane *pixm,
390 				   unsigned int component)
391 {
392 	/*
393 	 * If packed format, then plane_fmt[0].sizeimage is the sum of all
394 	 * components, so we need to calculate just the size of Y component.
395 	 * See rkisp1_fill_pixfmt().
396 	 */
397 	if (!component && pixm->num_planes == 1)
398 		return pixm->plane_fmt[0].bytesperline * pixm->height;
399 	return pixm->plane_fmt[component].sizeimage;
400 }
401 
402 static void rkisp1_irq_frame_end_enable(struct rkisp1_capture *cap)
403 {
404 	u32 mi_imsc = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_IMSC);
405 
406 	mi_imsc |= RKISP1_CIF_MI_FRAME(cap);
407 	rkisp1_write(cap->rkisp1, mi_imsc, RKISP1_CIF_MI_IMSC);
408 }
409 
410 static void rkisp1_mp_config(struct rkisp1_capture *cap)
411 {
412 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
413 	struct rkisp1_device *rkisp1 = cap->rkisp1;
414 	u32 reg;
415 
416 	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
417 		     cap->config->mi.y_size_init);
418 	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
419 		     cap->config->mi.cb_size_init);
420 	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR),
421 		     cap->config->mi.cr_size_init);
422 
423 	rkisp1_irq_frame_end_enable(cap);
424 
425 	/* set uv swapping for semiplanar formats */
426 	if (cap->pix.info->comp_planes == 2) {
427 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
428 		if (cap->pix.cfg->uv_swap)
429 			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
430 		else
431 			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
432 		rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
433 	}
434 
435 	rkisp1_mi_config_ctrl(cap);
436 
437 	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
438 	reg &= ~RKISP1_MI_CTRL_MP_FMT_MASK;
439 	reg |= cap->pix.cfg->write_format;
440 	rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_CTRL);
441 
442 	reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
443 	reg |= RKISP1_CIF_MI_MP_AUTOUPDATE_ENABLE;
444 	rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_CTRL);
445 }
446 
447 static void rkisp1_sp_config(struct rkisp1_capture *cap)
448 {
449 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
450 	struct rkisp1_device *rkisp1 = cap->rkisp1;
451 	u32 mi_ctrl, reg;
452 
453 	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
454 		     cap->config->mi.y_size_init);
455 	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
456 		     cap->config->mi.cb_size_init);
457 	rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR),
458 		     cap->config->mi.cr_size_init);
459 
460 	rkisp1_write(rkisp1, pixm->width, RKISP1_CIF_MI_SP_Y_PIC_WIDTH);
461 	rkisp1_write(rkisp1, pixm->height, RKISP1_CIF_MI_SP_Y_PIC_HEIGHT);
462 	rkisp1_write(rkisp1, cap->sp_y_stride, RKISP1_CIF_MI_SP_Y_LLENGTH);
463 
464 	rkisp1_irq_frame_end_enable(cap);
465 
466 	/* set uv swapping for semiplanar formats */
467 	if (cap->pix.info->comp_planes == 2) {
468 		reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
469 		if (cap->pix.cfg->uv_swap)
470 			reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
471 		else
472 			reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
473 		rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
474 	}
475 
476 	rkisp1_mi_config_ctrl(cap);
477 
478 	mi_ctrl = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
479 	mi_ctrl &= ~RKISP1_MI_CTRL_SP_FMT_MASK;
480 	mi_ctrl |= cap->pix.cfg->write_format |
481 		   RKISP1_MI_CTRL_SP_INPUT_YUV422 |
482 		   cap->pix.cfg->output_format |
483 		   RKISP1_CIF_MI_SP_AUTOUPDATE_ENABLE;
484 	rkisp1_write(rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
485 }
486 
487 static void rkisp1_mp_disable(struct rkisp1_capture *cap)
488 {
489 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
490 
491 	mi_ctrl &= ~(RKISP1_CIF_MI_CTRL_MP_ENABLE |
492 		     RKISP1_CIF_MI_CTRL_RAW_ENABLE);
493 	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
494 }
495 
496 static void rkisp1_sp_disable(struct rkisp1_capture *cap)
497 {
498 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
499 
500 	mi_ctrl &= ~RKISP1_CIF_MI_CTRL_SP_ENABLE;
501 	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
502 }
503 
504 static void rkisp1_mp_enable(struct rkisp1_capture *cap)
505 {
506 	u32 mi_ctrl;
507 
508 	rkisp1_mp_disable(cap);
509 
510 	mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
511 	if (v4l2_is_format_bayer(cap->pix.info))
512 		mi_ctrl |= RKISP1_CIF_MI_CTRL_RAW_ENABLE;
513 	/* YUV */
514 	else
515 		mi_ctrl |= RKISP1_CIF_MI_CTRL_MP_ENABLE;
516 
517 	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
518 }
519 
520 static void rkisp1_sp_enable(struct rkisp1_capture *cap)
521 {
522 	u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
523 
524 	mi_ctrl |= RKISP1_CIF_MI_CTRL_SP_ENABLE;
525 	rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
526 }
527 
528 static void rkisp1_mp_sp_stop(struct rkisp1_capture *cap)
529 {
530 	if (!cap->is_streaming)
531 		return;
532 	rkisp1_write(cap->rkisp1,
533 		     RKISP1_CIF_MI_FRAME(cap), RKISP1_CIF_MI_ICR);
534 	cap->ops->disable(cap);
535 }
536 
537 static bool rkisp1_mp_is_stopped(struct rkisp1_capture *cap)
538 {
539 	u32 en = RKISP1_CIF_MI_CTRL_SHD_MP_IN_ENABLED |
540 		 RKISP1_CIF_MI_CTRL_SHD_RAW_OUT_ENABLED;
541 
542 	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) & en);
543 }
544 
545 static bool rkisp1_sp_is_stopped(struct rkisp1_capture *cap)
546 {
547 	return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) &
548 		 RKISP1_CIF_MI_CTRL_SHD_SP_IN_ENABLED);
549 }
550 
551 static void rkisp1_mp_set_data_path(struct rkisp1_capture *cap)
552 {
553 	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
554 
555 	dpcl = dpcl | RKISP1_CIF_VI_DPCL_CHAN_MODE_MP |
556 	       RKISP1_CIF_VI_DPCL_MP_MUX_MRSZ_MI;
557 	rkisp1_write(cap->rkisp1, dpcl, RKISP1_CIF_VI_DPCL);
558 }
559 
560 static void rkisp1_sp_set_data_path(struct rkisp1_capture *cap)
561 {
562 	u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
563 
564 	dpcl |= RKISP1_CIF_VI_DPCL_CHAN_MODE_SP;
565 	rkisp1_write(cap->rkisp1, dpcl, RKISP1_CIF_VI_DPCL);
566 }
567 
568 static const struct rkisp1_capture_ops rkisp1_capture_ops_mp = {
569 	.config = rkisp1_mp_config,
570 	.enable = rkisp1_mp_enable,
571 	.disable = rkisp1_mp_disable,
572 	.stop = rkisp1_mp_sp_stop,
573 	.set_data_path = rkisp1_mp_set_data_path,
574 	.is_stopped = rkisp1_mp_is_stopped,
575 };
576 
577 static const struct rkisp1_capture_ops rkisp1_capture_ops_sp = {
578 	.config = rkisp1_sp_config,
579 	.enable = rkisp1_sp_enable,
580 	.disable = rkisp1_sp_disable,
581 	.stop = rkisp1_mp_sp_stop,
582 	.set_data_path = rkisp1_sp_set_data_path,
583 	.is_stopped = rkisp1_sp_is_stopped,
584 };
585 
586 /* ----------------------------------------------------------------------------
587  * Frame buffer operations
588  */
589 
590 static int rkisp1_dummy_buf_create(struct rkisp1_capture *cap)
591 {
592 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
593 	struct rkisp1_dummy_buffer *dummy_buf = &cap->buf.dummy;
594 
595 	dummy_buf->size = max3(rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
596 			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
597 			       rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
598 
599 	/* The driver never access vaddr, no mapping is required */
600 	dummy_buf->vaddr = dma_alloc_attrs(cap->rkisp1->dev,
601 					   dummy_buf->size,
602 					   &dummy_buf->dma_addr,
603 					   GFP_KERNEL,
604 					   DMA_ATTR_NO_KERNEL_MAPPING);
605 	if (!dummy_buf->vaddr)
606 		return -ENOMEM;
607 
608 	return 0;
609 }
610 
611 static void rkisp1_dummy_buf_destroy(struct rkisp1_capture *cap)
612 {
613 	dma_free_attrs(cap->rkisp1->dev,
614 		       cap->buf.dummy.size, cap->buf.dummy.vaddr,
615 		       cap->buf.dummy.dma_addr, DMA_ATTR_NO_KERNEL_MAPPING);
616 }
617 
618 static void rkisp1_set_next_buf(struct rkisp1_capture *cap)
619 {
620 	cap->buf.curr = cap->buf.next;
621 	cap->buf.next = NULL;
622 
623 	if (!list_empty(&cap->buf.queue)) {
624 		u32 *buff_addr;
625 
626 		cap->buf.next = list_first_entry(&cap->buf.queue, struct rkisp1_buffer, queue);
627 		list_del(&cap->buf.next->queue);
628 
629 		buff_addr = cap->buf.next->buff_addr;
630 
631 		rkisp1_write(cap->rkisp1,
632 			     buff_addr[RKISP1_PLANE_Y],
633 			     cap->config->mi.y_base_ad_init);
634 		rkisp1_write(cap->rkisp1,
635 			     buff_addr[RKISP1_PLANE_CB],
636 			     cap->config->mi.cb_base_ad_init);
637 		rkisp1_write(cap->rkisp1,
638 			     buff_addr[RKISP1_PLANE_CR],
639 			     cap->config->mi.cr_base_ad_init);
640 	} else {
641 		/*
642 		 * Use the dummy space allocated by dma_alloc_coherent to
643 		 * throw data if there is no available buffer.
644 		 */
645 		rkisp1_write(cap->rkisp1,
646 			     cap->buf.dummy.dma_addr,
647 			     cap->config->mi.y_base_ad_init);
648 		rkisp1_write(cap->rkisp1,
649 			     cap->buf.dummy.dma_addr,
650 			     cap->config->mi.cb_base_ad_init);
651 		rkisp1_write(cap->rkisp1,
652 			     cap->buf.dummy.dma_addr,
653 			     cap->config->mi.cr_base_ad_init);
654 	}
655 
656 	/* Set plane offsets */
657 	rkisp1_write(cap->rkisp1, 0, cap->config->mi.y_offs_cnt_init);
658 	rkisp1_write(cap->rkisp1, 0, cap->config->mi.cb_offs_cnt_init);
659 	rkisp1_write(cap->rkisp1, 0, cap->config->mi.cr_offs_cnt_init);
660 }
661 
662 /*
663  * This function is called when a frame end comes. The next frame
664  * is processing and we should set up buffer for next-next frame,
665  * otherwise it will overflow.
666  */
667 static void rkisp1_handle_buffer(struct rkisp1_capture *cap)
668 {
669 	struct rkisp1_isp *isp = &cap->rkisp1->isp;
670 	struct rkisp1_buffer *curr_buf;
671 
672 	spin_lock(&cap->buf.lock);
673 	curr_buf = cap->buf.curr;
674 
675 	if (curr_buf) {
676 		curr_buf->vb.sequence = isp->frame_sequence;
677 		curr_buf->vb.vb2_buf.timestamp = ktime_get_boottime_ns();
678 		curr_buf->vb.field = V4L2_FIELD_NONE;
679 		vb2_buffer_done(&curr_buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
680 	} else {
681 		cap->rkisp1->debug.frame_drop[cap->id]++;
682 	}
683 
684 	rkisp1_set_next_buf(cap);
685 	spin_unlock(&cap->buf.lock);
686 }
687 
688 void rkisp1_capture_isr(struct rkisp1_device *rkisp1)
689 {
690 	unsigned int i;
691 	u32 status;
692 
693 	status = rkisp1_read(rkisp1, RKISP1_CIF_MI_MIS);
694 	rkisp1_write(rkisp1, status, RKISP1_CIF_MI_ICR);
695 
696 	for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); ++i) {
697 		struct rkisp1_capture *cap = &rkisp1->capture_devs[i];
698 
699 		if (!(status & RKISP1_CIF_MI_FRAME(cap)))
700 			continue;
701 		if (!cap->is_stopping) {
702 			rkisp1_handle_buffer(cap);
703 			continue;
704 		}
705 		/*
706 		 * Make sure stream is actually stopped, whose state
707 		 * can be read from the shadow register, before
708 		 * wake_up() thread which would immediately free all
709 		 * frame buffers. stop() takes effect at the next
710 		 * frame end that sync the configurations to shadow
711 		 * regs.
712 		 */
713 		if (!cap->ops->is_stopped(cap)) {
714 			cap->ops->stop(cap);
715 			continue;
716 		}
717 		cap->is_stopping = false;
718 		cap->is_streaming = false;
719 		wake_up(&cap->done);
720 	}
721 }
722 
723 /* ----------------------------------------------------------------------------
724  * Vb2 operations
725  */
726 
727 static int rkisp1_vb2_queue_setup(struct vb2_queue *queue,
728 				  unsigned int *num_buffers,
729 				  unsigned int *num_planes,
730 				  unsigned int sizes[],
731 				  struct device *alloc_devs[])
732 {
733 	struct rkisp1_capture *cap = queue->drv_priv;
734 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
735 	unsigned int i;
736 
737 	if (*num_planes) {
738 		if (*num_planes != pixm->num_planes)
739 			return -EINVAL;
740 
741 		for (i = 0; i < pixm->num_planes; i++)
742 			if (sizes[i] < pixm->plane_fmt[i].sizeimage)
743 				return -EINVAL;
744 	} else {
745 		*num_planes = pixm->num_planes;
746 		for (i = 0; i < pixm->num_planes; i++)
747 			sizes[i] = pixm->plane_fmt[i].sizeimage;
748 	}
749 
750 	return 0;
751 }
752 
753 static void rkisp1_vb2_buf_queue(struct vb2_buffer *vb)
754 {
755 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
756 	struct rkisp1_buffer *ispbuf =
757 		container_of(vbuf, struct rkisp1_buffer, vb);
758 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
759 	const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
760 	unsigned int i;
761 
762 	memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
763 	for (i = 0; i < pixm->num_planes; i++)
764 		ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
765 
766 	/* Convert to non-MPLANE */
767 	if (pixm->num_planes == 1) {
768 		ispbuf->buff_addr[RKISP1_PLANE_CB] =
769 			ispbuf->buff_addr[RKISP1_PLANE_Y] +
770 			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y);
771 		ispbuf->buff_addr[RKISP1_PLANE_CR] =
772 			ispbuf->buff_addr[RKISP1_PLANE_CB] +
773 			rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB);
774 	}
775 
776 	/*
777 	 * uv swap can be supported for planar formats by switching
778 	 * the address of cb and cr
779 	 */
780 	if (cap->pix.info->comp_planes == 3 && cap->pix.cfg->uv_swap)
781 		swap(ispbuf->buff_addr[RKISP1_PLANE_CR],
782 		     ispbuf->buff_addr[RKISP1_PLANE_CB]);
783 
784 	spin_lock_irq(&cap->buf.lock);
785 	list_add_tail(&ispbuf->queue, &cap->buf.queue);
786 	spin_unlock_irq(&cap->buf.lock);
787 }
788 
789 static int rkisp1_vb2_buf_prepare(struct vb2_buffer *vb)
790 {
791 	struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
792 	unsigned int i;
793 
794 	for (i = 0; i < cap->pix.fmt.num_planes; i++) {
795 		unsigned long size = cap->pix.fmt.plane_fmt[i].sizeimage;
796 
797 		if (vb2_plane_size(vb, i) < size) {
798 			dev_err(cap->rkisp1->dev,
799 				"User buffer too small (%ld < %ld)\n",
800 				vb2_plane_size(vb, i), size);
801 			return -EINVAL;
802 		}
803 		vb2_set_plane_payload(vb, i, size);
804 	}
805 
806 	return 0;
807 }
808 
809 static void rkisp1_return_all_buffers(struct rkisp1_capture *cap,
810 				      enum vb2_buffer_state state)
811 {
812 	struct rkisp1_buffer *buf;
813 
814 	spin_lock_irq(&cap->buf.lock);
815 	if (cap->buf.curr) {
816 		vb2_buffer_done(&cap->buf.curr->vb.vb2_buf, state);
817 		cap->buf.curr = NULL;
818 	}
819 	if (cap->buf.next) {
820 		vb2_buffer_done(&cap->buf.next->vb.vb2_buf, state);
821 		cap->buf.next = NULL;
822 	}
823 	while (!list_empty(&cap->buf.queue)) {
824 		buf = list_first_entry(&cap->buf.queue,
825 				       struct rkisp1_buffer, queue);
826 		list_del(&buf->queue);
827 		vb2_buffer_done(&buf->vb.vb2_buf, state);
828 	}
829 	spin_unlock_irq(&cap->buf.lock);
830 }
831 
832 /*
833  * Most of registers inside rockchip ISP1 have shadow register since
834  * they must be not be changed during processing a frame.
835  * Usually, each sub-module updates its shadow register after
836  * processing the last pixel of a frame.
837  */
838 static void rkisp1_cap_stream_enable(struct rkisp1_capture *cap)
839 {
840 	struct rkisp1_device *rkisp1 = cap->rkisp1;
841 	struct rkisp1_capture *other = &rkisp1->capture_devs[cap->id ^ 1];
842 
843 	cap->ops->set_data_path(cap);
844 	cap->ops->config(cap);
845 
846 	/* Setup a buffer for the next frame */
847 	spin_lock_irq(&cap->buf.lock);
848 	rkisp1_set_next_buf(cap);
849 	cap->ops->enable(cap);
850 	/* It's safe to config ACTIVE and SHADOW regs for the
851 	 * first stream. While when the second is starting, do NOT
852 	 * force update because it also update the first one.
853 	 *
854 	 * The latter case would drop one more buf(that is 2) since
855 	 * there's not buf in shadow when the second FE received. This's
856 	 * also required because the second FE maybe corrupt especially
857 	 * when run at 120fps.
858 	 */
859 	if (!other->is_streaming) {
860 		/* force cfg update */
861 		rkisp1_write(rkisp1,
862 			     RKISP1_CIF_MI_INIT_SOFT_UPD, RKISP1_CIF_MI_INIT);
863 		rkisp1_set_next_buf(cap);
864 	}
865 	spin_unlock_irq(&cap->buf.lock);
866 	cap->is_streaming = true;
867 }
868 
869 static void rkisp1_cap_stream_disable(struct rkisp1_capture *cap)
870 {
871 	int ret;
872 
873 	/* Stream should stop in interrupt. If it doesn't, stop it by force. */
874 	cap->is_stopping = true;
875 	ret = wait_event_timeout(cap->done,
876 				 !cap->is_streaming,
877 				 msecs_to_jiffies(1000));
878 	if (!ret) {
879 		cap->rkisp1->debug.stop_timeout[cap->id]++;
880 		cap->ops->stop(cap);
881 		cap->is_stopping = false;
882 		cap->is_streaming = false;
883 	}
884 }
885 
886 /*
887  * rkisp1_pipeline_stream_disable - disable nodes in the pipeline
888  *
889  * Call s_stream(false) in the reverse order from
890  * rkisp1_pipeline_stream_enable() and disable the DMA engine.
891  * Should be called before media_pipeline_stop()
892  */
893 static void rkisp1_pipeline_stream_disable(struct rkisp1_capture *cap)
894 	__must_hold(&cap->rkisp1->stream_lock)
895 {
896 	struct rkisp1_device *rkisp1 = cap->rkisp1;
897 
898 	rkisp1_cap_stream_disable(cap);
899 
900 	/*
901 	 * If the other capture is streaming, isp and sensor nodes shouldn't
902 	 * be disabled, skip them.
903 	 */
904 	if (rkisp1->pipe.streaming_count < 2) {
905 		v4l2_subdev_call(rkisp1->active_sensor->sd, video, s_stream,
906 				 false);
907 		v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
908 	}
909 
910 	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
911 			 false);
912 }
913 
914 /*
915  * rkisp1_pipeline_stream_enable - enable nodes in the pipeline
916  *
917  * Enable the DMA Engine and call s_stream(true) through the pipeline.
918  * Should be called after media_pipeline_start()
919  */
920 static int rkisp1_pipeline_stream_enable(struct rkisp1_capture *cap)
921 	__must_hold(&cap->rkisp1->stream_lock)
922 {
923 	struct rkisp1_device *rkisp1 = cap->rkisp1;
924 	int ret;
925 
926 	rkisp1_cap_stream_enable(cap);
927 
928 	ret = v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video,
929 			       s_stream, true);
930 	if (ret)
931 		goto err_disable_cap;
932 
933 	/*
934 	 * If the other capture is streaming, isp and sensor nodes are already
935 	 * enabled, skip them.
936 	 */
937 	if (rkisp1->pipe.streaming_count > 1)
938 		return 0;
939 
940 	ret = v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, true);
941 	if (ret)
942 		goto err_disable_rsz;
943 
944 	ret = v4l2_subdev_call(rkisp1->active_sensor->sd, video, s_stream,
945 			       true);
946 	if (ret)
947 		goto err_disable_isp;
948 
949 	return 0;
950 
951 err_disable_isp:
952 	v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
953 err_disable_rsz:
954 	v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
955 			 false);
956 err_disable_cap:
957 	rkisp1_cap_stream_disable(cap);
958 
959 	return ret;
960 }
961 
962 static void rkisp1_vb2_stop_streaming(struct vb2_queue *queue)
963 {
964 	struct rkisp1_capture *cap = queue->drv_priv;
965 	struct rkisp1_vdev_node *node = &cap->vnode;
966 	struct rkisp1_device *rkisp1 = cap->rkisp1;
967 	int ret;
968 
969 	mutex_lock(&cap->rkisp1->stream_lock);
970 
971 	rkisp1_pipeline_stream_disable(cap);
972 
973 	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_ERROR);
974 
975 	v4l2_pipeline_pm_put(&node->vdev.entity);
976 	ret = pm_runtime_put(rkisp1->dev);
977 	if (ret < 0)
978 		dev_err(rkisp1->dev, "power down failed error:%d\n", ret);
979 
980 	rkisp1_dummy_buf_destroy(cap);
981 
982 	media_pipeline_stop(&node->vdev.entity);
983 
984 	mutex_unlock(&cap->rkisp1->stream_lock);
985 }
986 
987 static int
988 rkisp1_vb2_start_streaming(struct vb2_queue *queue, unsigned int count)
989 {
990 	struct rkisp1_capture *cap = queue->drv_priv;
991 	struct media_entity *entity = &cap->vnode.vdev.entity;
992 	int ret;
993 
994 	mutex_lock(&cap->rkisp1->stream_lock);
995 
996 	ret = media_pipeline_start(entity, &cap->rkisp1->pipe);
997 	if (ret) {
998 		dev_err(cap->rkisp1->dev, "start pipeline failed %d\n", ret);
999 		goto err_ret_buffers;
1000 	}
1001 
1002 	ret = rkisp1_dummy_buf_create(cap);
1003 	if (ret)
1004 		goto err_pipeline_stop;
1005 
1006 	ret = pm_runtime_get_sync(cap->rkisp1->dev);
1007 	if (ret < 0) {
1008 		pm_runtime_put_noidle(cap->rkisp1->dev);
1009 		dev_err(cap->rkisp1->dev, "power up failed %d\n", ret);
1010 		goto err_destroy_dummy;
1011 	}
1012 	ret = v4l2_pipeline_pm_get(entity);
1013 	if (ret) {
1014 		dev_err(cap->rkisp1->dev, "open cif pipeline failed %d\n", ret);
1015 		goto err_pipe_pm_put;
1016 	}
1017 
1018 	ret = rkisp1_pipeline_stream_enable(cap);
1019 	if (ret)
1020 		goto err_v4l2_pm_put;
1021 
1022 	mutex_unlock(&cap->rkisp1->stream_lock);
1023 
1024 	return 0;
1025 
1026 err_v4l2_pm_put:
1027 	v4l2_pipeline_pm_put(entity);
1028 err_pipe_pm_put:
1029 	pm_runtime_put(cap->rkisp1->dev);
1030 err_destroy_dummy:
1031 	rkisp1_dummy_buf_destroy(cap);
1032 err_pipeline_stop:
1033 	media_pipeline_stop(entity);
1034 err_ret_buffers:
1035 	rkisp1_return_all_buffers(cap, VB2_BUF_STATE_QUEUED);
1036 	mutex_unlock(&cap->rkisp1->stream_lock);
1037 
1038 	return ret;
1039 }
1040 
1041 static const struct vb2_ops rkisp1_vb2_ops = {
1042 	.queue_setup = rkisp1_vb2_queue_setup,
1043 	.buf_queue = rkisp1_vb2_buf_queue,
1044 	.buf_prepare = rkisp1_vb2_buf_prepare,
1045 	.wait_prepare = vb2_ops_wait_prepare,
1046 	.wait_finish = vb2_ops_wait_finish,
1047 	.stop_streaming = rkisp1_vb2_stop_streaming,
1048 	.start_streaming = rkisp1_vb2_start_streaming,
1049 };
1050 
1051 /* ----------------------------------------------------------------------------
1052  * IOCTLs operations
1053  */
1054 
1055 static const struct v4l2_format_info *
1056 rkisp1_fill_pixfmt(struct v4l2_pix_format_mplane *pixm,
1057 		   enum rkisp1_stream_id id)
1058 {
1059 	struct v4l2_plane_pix_format *plane_y = &pixm->plane_fmt[0];
1060 	const struct v4l2_format_info *info;
1061 	unsigned int i;
1062 	u32 stride;
1063 
1064 	memset(pixm->plane_fmt, 0, sizeof(pixm->plane_fmt));
1065 	info = v4l2_format_info(pixm->pixelformat);
1066 	pixm->num_planes = info->mem_planes;
1067 	stride = info->bpp[0] * pixm->width;
1068 	/* Self path supports custom stride but Main path doesn't */
1069 	if (id == RKISP1_MAINPATH || plane_y->bytesperline < stride)
1070 		plane_y->bytesperline = stride;
1071 	plane_y->sizeimage = plane_y->bytesperline * pixm->height;
1072 
1073 	/* normalize stride to pixels per line */
1074 	stride = DIV_ROUND_UP(plane_y->bytesperline, info->bpp[0]);
1075 
1076 	for (i = 1; i < info->comp_planes; i++) {
1077 		struct v4l2_plane_pix_format *plane = &pixm->plane_fmt[i];
1078 
1079 		/* bytesperline for other components derive from Y component */
1080 		plane->bytesperline = DIV_ROUND_UP(stride, info->hdiv) *
1081 				      info->bpp[i];
1082 		plane->sizeimage = plane->bytesperline *
1083 				   DIV_ROUND_UP(pixm->height, info->vdiv);
1084 	}
1085 
1086 	/*
1087 	 * If pixfmt is packed, then plane_fmt[0] should contain the total size
1088 	 * considering all components. plane_fmt[i] for i > 0 should be ignored
1089 	 * by userspace as mem_planes == 1, but we are keeping information there
1090 	 * for convenience.
1091 	 */
1092 	if (info->mem_planes == 1)
1093 		for (i = 1; i < info->comp_planes; i++)
1094 			plane_y->sizeimage += pixm->plane_fmt[i].sizeimage;
1095 
1096 	return info;
1097 }
1098 
1099 static const struct rkisp1_capture_fmt_cfg *
1100 rkisp1_find_fmt_cfg(const struct rkisp1_capture *cap, const u32 pixelfmt)
1101 {
1102 	unsigned int i;
1103 
1104 	for (i = 0; i < cap->config->fmt_size; i++) {
1105 		if (cap->config->fmts[i].fourcc == pixelfmt)
1106 			return &cap->config->fmts[i];
1107 	}
1108 	return NULL;
1109 }
1110 
1111 static void rkisp1_try_fmt(const struct rkisp1_capture *cap,
1112 			   struct v4l2_pix_format_mplane *pixm,
1113 			   const struct rkisp1_capture_fmt_cfg **fmt_cfg,
1114 			   const struct v4l2_format_info **fmt_info)
1115 {
1116 	const struct rkisp1_capture_config *config = cap->config;
1117 	const struct rkisp1_capture_fmt_cfg *fmt;
1118 	const struct v4l2_format_info *info;
1119 	const unsigned int max_widths[] = { RKISP1_RSZ_MP_SRC_MAX_WIDTH,
1120 					    RKISP1_RSZ_SP_SRC_MAX_WIDTH };
1121 	const unsigned int max_heights[] = { RKISP1_RSZ_MP_SRC_MAX_HEIGHT,
1122 					     RKISP1_RSZ_SP_SRC_MAX_HEIGHT};
1123 
1124 	fmt = rkisp1_find_fmt_cfg(cap, pixm->pixelformat);
1125 	if (!fmt) {
1126 		fmt = config->fmts;
1127 		pixm->pixelformat = fmt->fourcc;
1128 	}
1129 
1130 	pixm->width = clamp_t(u32, pixm->width,
1131 			      RKISP1_RSZ_SRC_MIN_WIDTH, max_widths[cap->id]);
1132 	pixm->height = clamp_t(u32, pixm->height,
1133 			       RKISP1_RSZ_SRC_MIN_HEIGHT, max_heights[cap->id]);
1134 
1135 	pixm->field = V4L2_FIELD_NONE;
1136 	pixm->colorspace = V4L2_COLORSPACE_DEFAULT;
1137 	pixm->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1138 	pixm->quantization = V4L2_QUANTIZATION_DEFAULT;
1139 
1140 	info = rkisp1_fill_pixfmt(pixm, cap->id);
1141 
1142 	if (fmt_cfg)
1143 		*fmt_cfg = fmt;
1144 	if (fmt_info)
1145 		*fmt_info = info;
1146 }
1147 
1148 static void rkisp1_set_fmt(struct rkisp1_capture *cap,
1149 			   struct v4l2_pix_format_mplane *pixm)
1150 {
1151 	rkisp1_try_fmt(cap, pixm, &cap->pix.cfg, &cap->pix.info);
1152 	cap->pix.fmt = *pixm;
1153 
1154 	/* SP supports custom stride in number of pixels of the Y plane */
1155 	if (cap->id == RKISP1_SELFPATH)
1156 		cap->sp_y_stride = pixm->plane_fmt[0].bytesperline /
1157 				   cap->pix.info->bpp[0];
1158 }
1159 
1160 static int rkisp1_try_fmt_vid_cap_mplane(struct file *file, void *fh,
1161 					 struct v4l2_format *f)
1162 {
1163 	struct rkisp1_capture *cap = video_drvdata(file);
1164 
1165 	rkisp1_try_fmt(cap, &f->fmt.pix_mp, NULL, NULL);
1166 
1167 	return 0;
1168 }
1169 
1170 static int rkisp1_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
1171 					  struct v4l2_fmtdesc *f)
1172 {
1173 	struct rkisp1_capture *cap = video_drvdata(file);
1174 	const struct rkisp1_capture_fmt_cfg *fmt = NULL;
1175 	unsigned int i, n = 0;
1176 
1177 	if (!f->mbus_code) {
1178 		if (f->index >= cap->config->fmt_size)
1179 			return -EINVAL;
1180 
1181 		fmt = &cap->config->fmts[f->index];
1182 		f->pixelformat = fmt->fourcc;
1183 		return 0;
1184 	}
1185 
1186 	for (i = 0; i < cap->config->fmt_size; i++) {
1187 		if (cap->config->fmts[i].mbus != f->mbus_code)
1188 			continue;
1189 
1190 		if (n++ == f->index) {
1191 			f->pixelformat = cap->config->fmts[i].fourcc;
1192 			return 0;
1193 		}
1194 	}
1195 	return -EINVAL;
1196 }
1197 
1198 static int rkisp1_s_fmt_vid_cap_mplane(struct file *file,
1199 				       void *priv, struct v4l2_format *f)
1200 {
1201 	struct rkisp1_capture *cap = video_drvdata(file);
1202 	struct rkisp1_vdev_node *node =
1203 				rkisp1_vdev_to_node(&cap->vnode.vdev);
1204 
1205 	if (vb2_is_busy(&node->buf_queue))
1206 		return -EBUSY;
1207 
1208 	rkisp1_set_fmt(cap, &f->fmt.pix_mp);
1209 
1210 	return 0;
1211 }
1212 
1213 static int rkisp1_g_fmt_vid_cap_mplane(struct file *file, void *fh,
1214 				       struct v4l2_format *f)
1215 {
1216 	struct rkisp1_capture *cap = video_drvdata(file);
1217 
1218 	f->fmt.pix_mp = cap->pix.fmt;
1219 
1220 	return 0;
1221 }
1222 
1223 static int
1224 rkisp1_querycap(struct file *file, void *priv, struct v4l2_capability *cap)
1225 {
1226 	struct rkisp1_capture *cap_dev = video_drvdata(file);
1227 	struct rkisp1_device *rkisp1 = cap_dev->rkisp1;
1228 
1229 	strscpy(cap->driver, rkisp1->dev->driver->name, sizeof(cap->driver));
1230 	strscpy(cap->card, rkisp1->dev->driver->name, sizeof(cap->card));
1231 	strscpy(cap->bus_info, RKISP1_BUS_INFO, sizeof(cap->bus_info));
1232 
1233 	return 0;
1234 }
1235 
1236 static const struct v4l2_ioctl_ops rkisp1_v4l2_ioctl_ops = {
1237 	.vidioc_reqbufs = vb2_ioctl_reqbufs,
1238 	.vidioc_querybuf = vb2_ioctl_querybuf,
1239 	.vidioc_create_bufs = vb2_ioctl_create_bufs,
1240 	.vidioc_qbuf = vb2_ioctl_qbuf,
1241 	.vidioc_expbuf = vb2_ioctl_expbuf,
1242 	.vidioc_dqbuf = vb2_ioctl_dqbuf,
1243 	.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1244 	.vidioc_streamon = vb2_ioctl_streamon,
1245 	.vidioc_streamoff = vb2_ioctl_streamoff,
1246 	.vidioc_try_fmt_vid_cap_mplane = rkisp1_try_fmt_vid_cap_mplane,
1247 	.vidioc_s_fmt_vid_cap_mplane = rkisp1_s_fmt_vid_cap_mplane,
1248 	.vidioc_g_fmt_vid_cap_mplane = rkisp1_g_fmt_vid_cap_mplane,
1249 	.vidioc_enum_fmt_vid_cap = rkisp1_enum_fmt_vid_cap_mplane,
1250 	.vidioc_querycap = rkisp1_querycap,
1251 	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1252 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1253 };
1254 
1255 static int rkisp1_capture_link_validate(struct media_link *link)
1256 {
1257 	struct video_device *vdev =
1258 		media_entity_to_video_device(link->sink->entity);
1259 	struct v4l2_subdev *sd =
1260 		media_entity_to_v4l2_subdev(link->source->entity);
1261 	struct rkisp1_capture *cap = video_get_drvdata(vdev);
1262 	const struct rkisp1_capture_fmt_cfg *fmt =
1263 		rkisp1_find_fmt_cfg(cap, cap->pix.fmt.pixelformat);
1264 	struct v4l2_subdev_format sd_fmt;
1265 	int ret;
1266 
1267 	sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
1268 	sd_fmt.pad = link->source->index;
1269 	ret = v4l2_subdev_call(sd, pad, get_fmt, NULL, &sd_fmt);
1270 	if (ret)
1271 		return ret;
1272 
1273 	if (sd_fmt.format.height != cap->pix.fmt.height ||
1274 	    sd_fmt.format.width != cap->pix.fmt.width ||
1275 	    sd_fmt.format.code != fmt->mbus)
1276 		return -EPIPE;
1277 
1278 	return 0;
1279 }
1280 
1281 /* ----------------------------------------------------------------------------
1282  * core functions
1283  */
1284 
1285 static const struct media_entity_operations rkisp1_media_ops = {
1286 	.link_validate = rkisp1_capture_link_validate,
1287 };
1288 
1289 static const struct v4l2_file_operations rkisp1_fops = {
1290 	.open = v4l2_fh_open,
1291 	.release = vb2_fop_release,
1292 	.unlocked_ioctl = video_ioctl2,
1293 	.poll = vb2_fop_poll,
1294 	.mmap = vb2_fop_mmap,
1295 };
1296 
1297 static void rkisp1_unregister_capture(struct rkisp1_capture *cap)
1298 {
1299 	media_entity_cleanup(&cap->vnode.vdev.entity);
1300 	vb2_video_unregister_device(&cap->vnode.vdev);
1301 }
1302 
1303 void rkisp1_capture_devs_unregister(struct rkisp1_device *rkisp1)
1304 {
1305 	struct rkisp1_capture *mp = &rkisp1->capture_devs[RKISP1_MAINPATH];
1306 	struct rkisp1_capture *sp = &rkisp1->capture_devs[RKISP1_SELFPATH];
1307 
1308 	rkisp1_unregister_capture(mp);
1309 	rkisp1_unregister_capture(sp);
1310 }
1311 
1312 static int rkisp1_register_capture(struct rkisp1_capture *cap)
1313 {
1314 	const char * const dev_names[] = {RKISP1_MP_DEV_NAME,
1315 					  RKISP1_SP_DEV_NAME};
1316 	struct v4l2_device *v4l2_dev = &cap->rkisp1->v4l2_dev;
1317 	struct video_device *vdev = &cap->vnode.vdev;
1318 	struct rkisp1_vdev_node *node;
1319 	struct vb2_queue *q;
1320 	int ret;
1321 
1322 	strscpy(vdev->name, dev_names[cap->id], sizeof(vdev->name));
1323 	node = rkisp1_vdev_to_node(vdev);
1324 	mutex_init(&node->vlock);
1325 
1326 	vdev->ioctl_ops = &rkisp1_v4l2_ioctl_ops;
1327 	vdev->release = video_device_release_empty;
1328 	vdev->fops = &rkisp1_fops;
1329 	vdev->minor = -1;
1330 	vdev->v4l2_dev = v4l2_dev;
1331 	vdev->lock = &node->vlock;
1332 	vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1333 			    V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
1334 	vdev->entity.ops = &rkisp1_media_ops;
1335 	video_set_drvdata(vdev, cap);
1336 	vdev->vfl_dir = VFL_DIR_RX;
1337 	node->pad.flags = MEDIA_PAD_FL_SINK;
1338 
1339 	q = &node->buf_queue;
1340 	q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1341 	q->io_modes = VB2_MMAP | VB2_DMABUF;
1342 	q->drv_priv = cap;
1343 	q->ops = &rkisp1_vb2_ops;
1344 	q->mem_ops = &vb2_dma_contig_memops;
1345 	q->buf_struct_size = sizeof(struct rkisp1_buffer);
1346 	q->min_buffers_needed = RKISP1_MIN_BUFFERS_NEEDED;
1347 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1348 	q->lock = &node->vlock;
1349 	q->dev = cap->rkisp1->dev;
1350 	ret = vb2_queue_init(q);
1351 	if (ret) {
1352 		dev_err(cap->rkisp1->dev,
1353 			"vb2 queue init failed (err=%d)\n", ret);
1354 		return ret;
1355 	}
1356 
1357 	vdev->queue = q;
1358 
1359 	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
1360 	if (ret) {
1361 		dev_err(cap->rkisp1->dev,
1362 			"failed to register %s, ret=%d\n", vdev->name, ret);
1363 		return ret;
1364 	}
1365 	v4l2_info(v4l2_dev, "registered %s as /dev/video%d\n", vdev->name,
1366 		  vdev->num);
1367 
1368 	ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
1369 	if (ret) {
1370 		video_unregister_device(vdev);
1371 		return ret;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static void
1378 rkisp1_capture_init(struct rkisp1_device *rkisp1, enum rkisp1_stream_id id)
1379 {
1380 	struct rkisp1_capture *cap = &rkisp1->capture_devs[id];
1381 	struct v4l2_pix_format_mplane pixm;
1382 
1383 	memset(cap, 0, sizeof(*cap));
1384 	cap->id = id;
1385 	cap->rkisp1 = rkisp1;
1386 
1387 	INIT_LIST_HEAD(&cap->buf.queue);
1388 	init_waitqueue_head(&cap->done);
1389 	spin_lock_init(&cap->buf.lock);
1390 	if (cap->id == RKISP1_SELFPATH) {
1391 		cap->ops = &rkisp1_capture_ops_sp;
1392 		cap->config = &rkisp1_capture_config_sp;
1393 	} else {
1394 		cap->ops = &rkisp1_capture_ops_mp;
1395 		cap->config = &rkisp1_capture_config_mp;
1396 	}
1397 
1398 	cap->is_streaming = false;
1399 
1400 	memset(&pixm, 0, sizeof(pixm));
1401 	pixm.pixelformat = V4L2_PIX_FMT_YUYV;
1402 	pixm.width = RKISP1_DEFAULT_WIDTH;
1403 	pixm.height = RKISP1_DEFAULT_HEIGHT;
1404 	rkisp1_set_fmt(cap, &pixm);
1405 }
1406 
1407 int rkisp1_capture_devs_register(struct rkisp1_device *rkisp1)
1408 {
1409 	struct rkisp1_capture *cap;
1410 	unsigned int i, j;
1411 	int ret;
1412 
1413 	for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); i++) {
1414 		rkisp1_capture_init(rkisp1, i);
1415 		cap = &rkisp1->capture_devs[i];
1416 		cap->rkisp1 = rkisp1;
1417 		ret = rkisp1_register_capture(cap);
1418 		if (ret)
1419 			goto err_unreg_capture_devs;
1420 	}
1421 
1422 	return 0;
1423 
1424 err_unreg_capture_devs:
1425 	for (j = 0; j < i; j++) {
1426 		cap = &rkisp1->capture_devs[j];
1427 		rkisp1_unregister_capture(cap);
1428 	}
1429 
1430 	return ret;
1431 }
1432