1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * V4L2 Driver for Renesas Capture Engine Unit (CEU) interface
4  * Copyright (C) 2017-2018 Jacopo Mondi <jacopo+renesas@jmondi.org>
5  *
6  * Based on soc-camera driver "soc_camera/sh_mobile_ceu_camera.c"
7  * Copyright (C) 2008 Magnus Damm
8  *
9  * Based on V4L2 Driver for PXA camera host - "pxa_camera.c",
10  * Copyright (C) 2006, Sascha Hauer, Pengutronix
11  * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/time.h>
31 #include <linux/videodev2.h>
32 
33 #include <media/v4l2-async.h>
34 #include <media/v4l2-common.h>
35 #include <media/v4l2-ctrls.h>
36 #include <media/v4l2-dev.h>
37 #include <media/v4l2-device.h>
38 #include <media/v4l2-event.h>
39 #include <media/v4l2-fwnode.h>
40 #include <media/v4l2-image-sizes.h>
41 #include <media/v4l2-ioctl.h>
42 #include <media/v4l2-mediabus.h>
43 #include <media/videobuf2-dma-contig.h>
44 
45 #include <media/drv-intf/renesas-ceu.h>
46 
47 #define DRIVER_NAME	"renesas-ceu"
48 
49 /* CEU registers offsets and masks. */
50 #define CEU_CAPSR	0x00 /* Capture start register			*/
51 #define CEU_CAPCR	0x04 /* Capture control register		*/
52 #define CEU_CAMCR	0x08 /* Capture interface control register	*/
53 #define CEU_CAMOR	0x10 /* Capture interface offset register	*/
54 #define CEU_CAPWR	0x14 /* Capture interface width register	*/
55 #define CEU_CAIFR	0x18 /* Capture interface input format register */
56 #define CEU_CRCNTR	0x28 /* CEU register control register		*/
57 #define CEU_CRCMPR	0x2c /* CEU register forcible control register	*/
58 #define CEU_CFLCR	0x30 /* Capture filter control register		*/
59 #define CEU_CFSZR	0x34 /* Capture filter size clip register	*/
60 #define CEU_CDWDR	0x38 /* Capture destination width register	*/
61 #define CEU_CDAYR	0x3c /* Capture data address Y register		*/
62 #define CEU_CDACR	0x40 /* Capture data address C register		*/
63 #define CEU_CFWCR	0x5c /* Firewall operation control register	*/
64 #define CEU_CDOCR	0x64 /* Capture data output control register	*/
65 #define CEU_CEIER	0x70 /* Capture event interrupt enable register	*/
66 #define CEU_CETCR	0x74 /* Capture event flag clear register	*/
67 #define CEU_CSTSR	0x7c /* Capture status register			*/
68 #define CEU_CSRTR	0x80 /* Capture software reset register		*/
69 
70 /* Data synchronous fetch mode. */
71 #define CEU_CAMCR_JPEG			BIT(4)
72 
73 /* Input components ordering: CEU_CAMCR.DTARY field. */
74 #define CEU_CAMCR_DTARY_8_UYVY		(0x00 << 8)
75 #define CEU_CAMCR_DTARY_8_VYUY		(0x01 << 8)
76 #define CEU_CAMCR_DTARY_8_YUYV		(0x02 << 8)
77 #define CEU_CAMCR_DTARY_8_YVYU		(0x03 << 8)
78 /* TODO: input components ordering for 16 bits input. */
79 
80 /* Bus transfer MTU. */
81 #define CEU_CAPCR_BUS_WIDTH256		(0x3 << 20)
82 
83 /* Bus width configuration. */
84 #define CEU_CAMCR_DTIF_16BITS		BIT(12)
85 
86 /* No downsampling to planar YUV420 in image fetch mode. */
87 #define CEU_CDOCR_NO_DOWSAMPLE		BIT(4)
88 
89 /* Swap all input data in 8-bit, 16-bits and 32-bits units (Figure 46.45). */
90 #define CEU_CDOCR_SWAP_ENDIANNESS	(7)
91 
92 /* Capture reset and enable bits. */
93 #define CEU_CAPSR_CPKIL			BIT(16)
94 #define CEU_CAPSR_CE			BIT(0)
95 
96 /* CEU operating flag bit. */
97 #define CEU_CAPCR_CTNCP			BIT(16)
98 #define CEU_CSTRST_CPTON		BIT(0)
99 
100 /* Platform specific IRQ source flags. */
101 #define CEU_CETCR_ALL_IRQS_RZ		0x397f313
102 #define CEU_CETCR_ALL_IRQS_SH4		0x3d7f313
103 
104 /* Prohibited register access interrupt bit. */
105 #define CEU_CETCR_IGRW			BIT(4)
106 /* One-frame capture end interrupt. */
107 #define CEU_CEIER_CPE			BIT(0)
108 /* VBP error. */
109 #define CEU_CEIER_VBP			BIT(20)
110 #define CEU_CEIER_MASK			(CEU_CEIER_CPE | CEU_CEIER_VBP)
111 
112 #define CEU_MAX_WIDTH	2560
113 #define CEU_MAX_HEIGHT	1920
114 #define CEU_MAX_BPL	8188
115 #define CEU_W_MAX(w)	((w) < CEU_MAX_WIDTH ? (w) : CEU_MAX_WIDTH)
116 #define CEU_H_MAX(h)	((h) < CEU_MAX_HEIGHT ? (h) : CEU_MAX_HEIGHT)
117 
118 /*
119  * ceu_bus_fmt - describe a 8-bits yuyv format the sensor can produce
120  *
121  * @mbus_code: bus format code
122  * @fmt_order: CEU_CAMCR.DTARY ordering of input components (Y, Cb, Cr)
123  * @fmt_order_swap: swapped CEU_CAMCR.DTARY ordering of input components
124  *		    (Y, Cr, Cb)
125  * @swapped: does Cr appear before Cb?
126  * @bps: number of bits sent over bus for each sample
127  * @bpp: number of bits per pixels unit
128  */
129 struct ceu_mbus_fmt {
130 	u32	mbus_code;
131 	u32	fmt_order;
132 	u32	fmt_order_swap;
133 	bool	swapped;
134 	u8	bps;
135 	u8	bpp;
136 };
137 
138 /*
139  * ceu_buffer - Link vb2 buffer to the list of available buffers.
140  */
141 struct ceu_buffer {
142 	struct vb2_v4l2_buffer vb;
143 	struct list_head queue;
144 };
145 
146 static inline struct ceu_buffer *vb2_to_ceu(struct vb2_v4l2_buffer *vbuf)
147 {
148 	return container_of(vbuf, struct ceu_buffer, vb);
149 }
150 
151 /*
152  * ceu_subdev - Wraps v4l2 sub-device and provides async subdevice.
153  */
154 struct ceu_subdev {
155 	struct v4l2_async_subdev asd;
156 	struct v4l2_subdev *v4l2_sd;
157 
158 	/* per-subdevice mbus configuration options */
159 	unsigned int mbus_flags;
160 	struct ceu_mbus_fmt mbus_fmt;
161 };
162 
163 static struct ceu_subdev *to_ceu_subdev(struct v4l2_async_subdev *asd)
164 {
165 	return container_of(asd, struct ceu_subdev, asd);
166 }
167 
168 /*
169  * ceu_device - CEU device instance
170  */
171 struct ceu_device {
172 	struct device		*dev;
173 	struct video_device	vdev;
174 	struct v4l2_device	v4l2_dev;
175 
176 	/* subdevices descriptors */
177 	struct ceu_subdev	**subdevs;
178 	/* the subdevice currently in use */
179 	struct ceu_subdev	*sd;
180 	unsigned int		sd_index;
181 	unsigned int		num_sd;
182 
183 	/* platform specific mask with all IRQ sources flagged */
184 	u32			irq_mask;
185 
186 	/* currently configured field and pixel format */
187 	enum v4l2_field	field;
188 	struct v4l2_pix_format_mplane v4l2_pix;
189 
190 	/* async subdev notification helpers */
191 	struct v4l2_async_notifier notifier;
192 
193 	/* vb2 queue, capture buffer list and active buffer pointer */
194 	struct vb2_queue	vb2_vq;
195 	struct list_head	capture;
196 	struct vb2_v4l2_buffer	*active;
197 	unsigned int		sequence;
198 
199 	/* mlock - lock access to interface reset and vb2 queue */
200 	struct mutex	mlock;
201 
202 	/* lock - lock access to capture buffer queue and active buffer */
203 	spinlock_t	lock;
204 
205 	/* base - CEU memory base address */
206 	void __iomem	*base;
207 };
208 
209 static inline struct ceu_device *v4l2_to_ceu(struct v4l2_device *v4l2_dev)
210 {
211 	return container_of(v4l2_dev, struct ceu_device, v4l2_dev);
212 }
213 
214 /* --- CEU memory output formats --- */
215 
216 /*
217  * ceu_fmt - describe a memory output format supported by CEU interface.
218  *
219  * @fourcc: memory layout fourcc format code
220  * @bpp: number of bits for each pixel stored in memory
221  */
222 struct ceu_fmt {
223 	u32	fourcc;
224 	u32	bpp;
225 };
226 
227 /*
228  * ceu_format_list - List of supported memory output formats
229  *
230  * If sensor provides any YUYV bus format, all the following planar memory
231  * formats are available thanks to CEU re-ordering and sub-sampling
232  * capabilities.
233  */
234 static const struct ceu_fmt ceu_fmt_list[] = {
235 	{
236 		.fourcc	= V4L2_PIX_FMT_NV16,
237 		.bpp	= 16,
238 	},
239 	{
240 		.fourcc = V4L2_PIX_FMT_NV61,
241 		.bpp	= 16,
242 	},
243 	{
244 		.fourcc	= V4L2_PIX_FMT_NV12,
245 		.bpp	= 12,
246 	},
247 	{
248 		.fourcc	= V4L2_PIX_FMT_NV21,
249 		.bpp	= 12,
250 	},
251 	{
252 		.fourcc	= V4L2_PIX_FMT_YUYV,
253 		.bpp	= 16,
254 	},
255 	{
256 		.fourcc	= V4L2_PIX_FMT_UYVY,
257 		.bpp	= 16,
258 	},
259 	{
260 		.fourcc	= V4L2_PIX_FMT_YVYU,
261 		.bpp	= 16,
262 	},
263 	{
264 		.fourcc	= V4L2_PIX_FMT_VYUY,
265 		.bpp	= 16,
266 	},
267 };
268 
269 static const struct ceu_fmt *get_ceu_fmt_from_fourcc(unsigned int fourcc)
270 {
271 	const struct ceu_fmt *fmt = &ceu_fmt_list[0];
272 	unsigned int i;
273 
274 	for (i = 0; i < ARRAY_SIZE(ceu_fmt_list); i++, fmt++)
275 		if (fmt->fourcc == fourcc)
276 			return fmt;
277 
278 	return NULL;
279 }
280 
281 static bool ceu_fmt_mplane(struct v4l2_pix_format_mplane *pix)
282 {
283 	switch (pix->pixelformat) {
284 	case V4L2_PIX_FMT_YUYV:
285 	case V4L2_PIX_FMT_UYVY:
286 	case V4L2_PIX_FMT_YVYU:
287 	case V4L2_PIX_FMT_VYUY:
288 		return false;
289 	case V4L2_PIX_FMT_NV16:
290 	case V4L2_PIX_FMT_NV61:
291 	case V4L2_PIX_FMT_NV12:
292 	case V4L2_PIX_FMT_NV21:
293 		return true;
294 	default:
295 		return false;
296 	}
297 }
298 
299 /* --- CEU HW operations --- */
300 
301 static void ceu_write(struct ceu_device *priv, unsigned int reg_offs, u32 data)
302 {
303 	iowrite32(data, priv->base + reg_offs);
304 }
305 
306 static u32 ceu_read(struct ceu_device *priv, unsigned int reg_offs)
307 {
308 	return ioread32(priv->base + reg_offs);
309 }
310 
311 /*
312  * ceu_soft_reset() - Software reset the CEU interface.
313  * @ceu_device: CEU device.
314  *
315  * Returns 0 for success, -EIO for error.
316  */
317 static int ceu_soft_reset(struct ceu_device *ceudev)
318 {
319 	unsigned int i;
320 
321 	ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CPKIL);
322 
323 	for (i = 0; i < 100; i++) {
324 		if (!(ceu_read(ceudev, CEU_CSTSR) & CEU_CSTRST_CPTON))
325 			break;
326 		udelay(1);
327 	}
328 
329 	if (i == 100) {
330 		dev_err(ceudev->dev, "soft reset time out\n");
331 		return -EIO;
332 	}
333 
334 	for (i = 0; i < 100; i++) {
335 		if (!(ceu_read(ceudev, CEU_CAPSR) & CEU_CAPSR_CPKIL))
336 			return 0;
337 		udelay(1);
338 	}
339 
340 	/* If we get here, CEU has not reset properly. */
341 	return -EIO;
342 }
343 
344 /* --- CEU Capture Operations --- */
345 
346 /*
347  * ceu_hw_config() - Configure CEU interface registers.
348  */
349 static int ceu_hw_config(struct ceu_device *ceudev)
350 {
351 	u32 camcr, cdocr, cfzsr, cdwdr, capwr;
352 	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
353 	struct ceu_subdev *ceu_sd = ceudev->sd;
354 	struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
355 	unsigned int mbus_flags = ceu_sd->mbus_flags;
356 
357 	/* Start configuring CEU registers */
358 	ceu_write(ceudev, CEU_CAIFR, 0);
359 	ceu_write(ceudev, CEU_CFWCR, 0);
360 	ceu_write(ceudev, CEU_CRCNTR, 0);
361 	ceu_write(ceudev, CEU_CRCMPR, 0);
362 
363 	/* Set the frame capture period for both image capture and data sync. */
364 	capwr = (pix->height << 16) | pix->width * mbus_fmt->bpp / 8;
365 
366 	/*
367 	 * Swap input data endianness by default.
368 	 * In data fetch mode bytes are received in chunks of 8 bytes.
369 	 * D0, D1, D2, D3, D4, D5, D6, D7 (D0 received first)
370 	 * The data is however by default written to memory in reverse order:
371 	 * D7, D6, D5, D4, D3, D2, D1, D0 (D7 written to lowest byte)
372 	 *
373 	 * Use CEU_CDOCR[2:0] to swap data ordering.
374 	 */
375 	cdocr = CEU_CDOCR_SWAP_ENDIANNESS;
376 
377 	/*
378 	 * Configure CAMCR and CDOCR:
379 	 * match input components ordering with memory output format and
380 	 * handle downsampling to YUV420.
381 	 *
382 	 * If the memory output planar format is 'swapped' (Cr before Cb) and
383 	 * input format is not, use the swapped version of CAMCR.DTARY.
384 	 *
385 	 * If the memory output planar format is not 'swapped' (Cb before Cr)
386 	 * and input format is, use the swapped version of CAMCR.DTARY.
387 	 *
388 	 * CEU by default downsample to planar YUV420 (CDCOR[4] = 0).
389 	 * If output is planar YUV422 set CDOCR[4] = 1
390 	 *
391 	 * No downsample for data fetch sync mode.
392 	 */
393 	switch (pix->pixelformat) {
394 	/* Data fetch sync mode */
395 	case V4L2_PIX_FMT_YUYV:
396 	case V4L2_PIX_FMT_YVYU:
397 	case V4L2_PIX_FMT_UYVY:
398 	case V4L2_PIX_FMT_VYUY:
399 		camcr	= CEU_CAMCR_JPEG;
400 		cdocr	|= CEU_CDOCR_NO_DOWSAMPLE;
401 		cfzsr	= (pix->height << 16) | pix->width;
402 		cdwdr	= pix->plane_fmt[0].bytesperline;
403 		break;
404 
405 	/* Non-swapped planar image capture mode. */
406 	case V4L2_PIX_FMT_NV16:
407 		cdocr	|= CEU_CDOCR_NO_DOWSAMPLE;
408 		fallthrough;
409 	case V4L2_PIX_FMT_NV12:
410 		if (mbus_fmt->swapped)
411 			camcr = mbus_fmt->fmt_order_swap;
412 		else
413 			camcr = mbus_fmt->fmt_order;
414 
415 		cfzsr	= (pix->height << 16) | pix->width;
416 		cdwdr	= pix->width;
417 		break;
418 
419 	/* Swapped planar image capture mode. */
420 	case V4L2_PIX_FMT_NV61:
421 		cdocr	|= CEU_CDOCR_NO_DOWSAMPLE;
422 		fallthrough;
423 	case V4L2_PIX_FMT_NV21:
424 		if (mbus_fmt->swapped)
425 			camcr = mbus_fmt->fmt_order;
426 		else
427 			camcr = mbus_fmt->fmt_order_swap;
428 
429 		cfzsr	= (pix->height << 16) | pix->width;
430 		cdwdr	= pix->width;
431 		break;
432 
433 	default:
434 		return -EINVAL;
435 	}
436 
437 	camcr |= mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_LOW ? 1 << 1 : 0;
438 	camcr |= mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_LOW ? 1 << 0 : 0;
439 
440 	/* TODO: handle 16 bit bus width with DTIF bit in CAMCR */
441 	ceu_write(ceudev, CEU_CAMCR, camcr);
442 	ceu_write(ceudev, CEU_CDOCR, cdocr);
443 	ceu_write(ceudev, CEU_CAPCR, CEU_CAPCR_BUS_WIDTH256);
444 
445 	/*
446 	 * TODO: make CAMOR offsets configurable.
447 	 * CAMOR wants to know the number of blanks between a VS/HS signal
448 	 * and valid data. This value should actually come from the sensor...
449 	 */
450 	ceu_write(ceudev, CEU_CAMOR, 0);
451 
452 	/* TODO: 16 bit bus width require re-calculation of cdwdr and cfzsr */
453 	ceu_write(ceudev, CEU_CAPWR, capwr);
454 	ceu_write(ceudev, CEU_CFSZR, cfzsr);
455 	ceu_write(ceudev, CEU_CDWDR, cdwdr);
456 
457 	return 0;
458 }
459 
460 /*
461  * ceu_capture() - Trigger start of a capture sequence.
462  *
463  * Program the CEU DMA registers with addresses where to transfer image data.
464  */
465 static int ceu_capture(struct ceu_device *ceudev)
466 {
467 	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
468 	dma_addr_t phys_addr_top;
469 
470 	phys_addr_top =
471 		vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf, 0);
472 	ceu_write(ceudev, CEU_CDAYR, phys_addr_top);
473 
474 	/* Ignore CbCr plane for non multi-planar image formats. */
475 	if (ceu_fmt_mplane(pix)) {
476 		phys_addr_top =
477 			vb2_dma_contig_plane_dma_addr(&ceudev->active->vb2_buf,
478 						      1);
479 		ceu_write(ceudev, CEU_CDACR, phys_addr_top);
480 	}
481 
482 	/*
483 	 * Trigger new capture start: once for each frame, as we work in
484 	 * one-frame capture mode.
485 	 */
486 	ceu_write(ceudev, CEU_CAPSR, CEU_CAPSR_CE);
487 
488 	return 0;
489 }
490 
491 static irqreturn_t ceu_irq(int irq, void *data)
492 {
493 	struct ceu_device *ceudev = data;
494 	struct vb2_v4l2_buffer *vbuf;
495 	struct ceu_buffer *buf;
496 	u32 status;
497 
498 	/* Clean interrupt status. */
499 	status = ceu_read(ceudev, CEU_CETCR);
500 	ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask);
501 
502 	/* Unexpected interrupt. */
503 	if (!(status & CEU_CEIER_MASK))
504 		return IRQ_NONE;
505 
506 	spin_lock(&ceudev->lock);
507 
508 	/* Stale interrupt from a released buffer, ignore it. */
509 	vbuf = ceudev->active;
510 	if (!vbuf) {
511 		spin_unlock(&ceudev->lock);
512 		return IRQ_HANDLED;
513 	}
514 
515 	/*
516 	 * When a VBP interrupt occurs, no capture end interrupt will occur
517 	 * and the image of that frame is not captured correctly.
518 	 */
519 	if (status & CEU_CEIER_VBP) {
520 		dev_err(ceudev->dev, "VBP interrupt: abort capture\n");
521 		goto error_irq_out;
522 	}
523 
524 	/* Prepare to return the 'previous' buffer. */
525 	vbuf->vb2_buf.timestamp = ktime_get_ns();
526 	vbuf->sequence = ceudev->sequence++;
527 	vbuf->field = ceudev->field;
528 
529 	/* Prepare a new 'active' buffer and trigger a new capture. */
530 	if (!list_empty(&ceudev->capture)) {
531 		buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
532 				       queue);
533 		list_del(&buf->queue);
534 		ceudev->active = &buf->vb;
535 
536 		ceu_capture(ceudev);
537 	}
538 
539 	/* Return the 'previous' buffer. */
540 	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
541 
542 	spin_unlock(&ceudev->lock);
543 
544 	return IRQ_HANDLED;
545 
546 error_irq_out:
547 	/* Return the 'previous' buffer and all queued ones. */
548 	vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_ERROR);
549 
550 	list_for_each_entry(buf, &ceudev->capture, queue)
551 		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
552 
553 	spin_unlock(&ceudev->lock);
554 
555 	return IRQ_HANDLED;
556 }
557 
558 /* --- CEU Videobuf2 operations --- */
559 
560 static void ceu_update_plane_sizes(struct v4l2_plane_pix_format *plane,
561 				   unsigned int bpl, unsigned int szimage)
562 {
563 	memset(plane, 0, sizeof(*plane));
564 
565 	plane->sizeimage = szimage;
566 	if (plane->bytesperline < bpl || plane->bytesperline > CEU_MAX_BPL)
567 		plane->bytesperline = bpl;
568 }
569 
570 /*
571  * ceu_calc_plane_sizes() - Fill per-plane 'struct v4l2_plane_pix_format'
572  *			    information according to the currently configured
573  *			    pixel format.
574  * @ceu_device: CEU device.
575  * @ceu_fmt: Active image format.
576  * @pix: Pixel format information (store line width and image sizes)
577  */
578 static void ceu_calc_plane_sizes(struct ceu_device *ceudev,
579 				 const struct ceu_fmt *ceu_fmt,
580 				 struct v4l2_pix_format_mplane *pix)
581 {
582 	unsigned int bpl, szimage;
583 
584 	switch (pix->pixelformat) {
585 	case V4L2_PIX_FMT_YUYV:
586 	case V4L2_PIX_FMT_UYVY:
587 	case V4L2_PIX_FMT_YVYU:
588 	case V4L2_PIX_FMT_VYUY:
589 		pix->num_planes	= 1;
590 		bpl		= pix->width * ceu_fmt->bpp / 8;
591 		szimage		= pix->height * bpl;
592 		ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
593 		break;
594 
595 	case V4L2_PIX_FMT_NV12:
596 	case V4L2_PIX_FMT_NV21:
597 		pix->num_planes	= 2;
598 		bpl		= pix->width;
599 		szimage		= pix->height * pix->width;
600 		ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
601 		ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage / 2);
602 		break;
603 
604 	case V4L2_PIX_FMT_NV16:
605 	case V4L2_PIX_FMT_NV61:
606 	default:
607 		pix->num_planes	= 2;
608 		bpl		= pix->width;
609 		szimage		= pix->height * pix->width;
610 		ceu_update_plane_sizes(&pix->plane_fmt[0], bpl, szimage);
611 		ceu_update_plane_sizes(&pix->plane_fmt[1], bpl, szimage);
612 		break;
613 	}
614 }
615 
616 /*
617  * ceu_vb2_setup() - is called to check whether the driver can accept the
618  *		     requested number of buffers and to fill in plane sizes
619  *		     for the current frame format, if required.
620  */
621 static int ceu_vb2_setup(struct vb2_queue *vq, unsigned int *count,
622 			 unsigned int *num_planes, unsigned int sizes[],
623 			 struct device *alloc_devs[])
624 {
625 	struct ceu_device *ceudev = vb2_get_drv_priv(vq);
626 	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
627 	unsigned int i;
628 
629 	/* num_planes is set: just check plane sizes. */
630 	if (*num_planes) {
631 		for (i = 0; i < pix->num_planes; i++)
632 			if (sizes[i] < pix->plane_fmt[i].sizeimage)
633 				return -EINVAL;
634 
635 		return 0;
636 	}
637 
638 	/* num_planes not set: called from REQBUFS, just set plane sizes. */
639 	*num_planes = pix->num_planes;
640 	for (i = 0; i < pix->num_planes; i++)
641 		sizes[i] = pix->plane_fmt[i].sizeimage;
642 
643 	return 0;
644 }
645 
646 static void ceu_vb2_queue(struct vb2_buffer *vb)
647 {
648 	struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue);
649 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
650 	struct ceu_buffer *buf = vb2_to_ceu(vbuf);
651 	unsigned long irqflags;
652 
653 	spin_lock_irqsave(&ceudev->lock, irqflags);
654 	list_add_tail(&buf->queue, &ceudev->capture);
655 	spin_unlock_irqrestore(&ceudev->lock, irqflags);
656 }
657 
658 static int ceu_vb2_prepare(struct vb2_buffer *vb)
659 {
660 	struct ceu_device *ceudev = vb2_get_drv_priv(vb->vb2_queue);
661 	struct v4l2_pix_format_mplane *pix = &ceudev->v4l2_pix;
662 	unsigned int i;
663 
664 	for (i = 0; i < pix->num_planes; i++) {
665 		if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) {
666 			dev_err(ceudev->dev,
667 				"Plane size too small (%lu < %u)\n",
668 				vb2_plane_size(vb, i),
669 				pix->plane_fmt[i].sizeimage);
670 			return -EINVAL;
671 		}
672 
673 		vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage);
674 	}
675 
676 	return 0;
677 }
678 
679 static int ceu_start_streaming(struct vb2_queue *vq, unsigned int count)
680 {
681 	struct ceu_device *ceudev = vb2_get_drv_priv(vq);
682 	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
683 	struct ceu_buffer *buf;
684 	unsigned long irqflags;
685 	int ret;
686 
687 	/* Program the CEU interface according to the CEU image format. */
688 	ret = ceu_hw_config(ceudev);
689 	if (ret)
690 		goto error_return_bufs;
691 
692 	ret = v4l2_subdev_call(v4l2_sd, video, s_stream, 1);
693 	if (ret && ret != -ENOIOCTLCMD) {
694 		dev_dbg(ceudev->dev,
695 			"Subdevice failed to start streaming: %d\n", ret);
696 		goto error_return_bufs;
697 	}
698 
699 	spin_lock_irqsave(&ceudev->lock, irqflags);
700 	ceudev->sequence = 0;
701 
702 	/* Grab the first available buffer and trigger the first capture. */
703 	buf = list_first_entry(&ceudev->capture, struct ceu_buffer,
704 			       queue);
705 	if (!buf) {
706 		spin_unlock_irqrestore(&ceudev->lock, irqflags);
707 		dev_dbg(ceudev->dev,
708 			"No buffer available for capture.\n");
709 		goto error_stop_sensor;
710 	}
711 
712 	list_del(&buf->queue);
713 	ceudev->active = &buf->vb;
714 
715 	/* Clean and program interrupts for first capture. */
716 	ceu_write(ceudev, CEU_CETCR, ~ceudev->irq_mask);
717 	ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK);
718 
719 	ceu_capture(ceudev);
720 
721 	spin_unlock_irqrestore(&ceudev->lock, irqflags);
722 
723 	return 0;
724 
725 error_stop_sensor:
726 	v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
727 
728 error_return_bufs:
729 	spin_lock_irqsave(&ceudev->lock, irqflags);
730 	list_for_each_entry(buf, &ceudev->capture, queue)
731 		vb2_buffer_done(&ceudev->active->vb2_buf,
732 				VB2_BUF_STATE_QUEUED);
733 	ceudev->active = NULL;
734 	spin_unlock_irqrestore(&ceudev->lock, irqflags);
735 
736 	return ret;
737 }
738 
739 static void ceu_stop_streaming(struct vb2_queue *vq)
740 {
741 	struct ceu_device *ceudev = vb2_get_drv_priv(vq);
742 	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
743 	struct ceu_buffer *buf;
744 	unsigned long irqflags;
745 
746 	/* Clean and disable interrupt sources. */
747 	ceu_write(ceudev, CEU_CETCR,
748 		  ceu_read(ceudev, CEU_CETCR) & ceudev->irq_mask);
749 	ceu_write(ceudev, CEU_CEIER, CEU_CEIER_MASK);
750 
751 	v4l2_subdev_call(v4l2_sd, video, s_stream, 0);
752 
753 	spin_lock_irqsave(&ceudev->lock, irqflags);
754 	if (ceudev->active) {
755 		vb2_buffer_done(&ceudev->active->vb2_buf,
756 				VB2_BUF_STATE_ERROR);
757 		ceudev->active = NULL;
758 	}
759 
760 	/* Release all queued buffers. */
761 	list_for_each_entry(buf, &ceudev->capture, queue)
762 		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
763 	INIT_LIST_HEAD(&ceudev->capture);
764 
765 	spin_unlock_irqrestore(&ceudev->lock, irqflags);
766 
767 	ceu_soft_reset(ceudev);
768 }
769 
770 static const struct vb2_ops ceu_vb2_ops = {
771 	.queue_setup		= ceu_vb2_setup,
772 	.buf_queue		= ceu_vb2_queue,
773 	.buf_prepare		= ceu_vb2_prepare,
774 	.wait_prepare		= vb2_ops_wait_prepare,
775 	.wait_finish		= vb2_ops_wait_finish,
776 	.start_streaming	= ceu_start_streaming,
777 	.stop_streaming		= ceu_stop_streaming,
778 };
779 
780 /* --- CEU image formats handling --- */
781 
782 /*
783  * __ceu_try_fmt() - test format on CEU and sensor
784  * @ceudev: The CEU device.
785  * @v4l2_fmt: format to test.
786  * @sd_mbus_code: the media bus code accepted by the subdevice; output param.
787  *
788  * Returns 0 for success, < 0 for errors.
789  */
790 static int __ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt,
791 			 u32 *sd_mbus_code)
792 {
793 	struct ceu_subdev *ceu_sd = ceudev->sd;
794 	struct v4l2_pix_format_mplane *pix = &v4l2_fmt->fmt.pix_mp;
795 	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
796 	struct v4l2_subdev_pad_config pad_cfg;
797 	struct v4l2_subdev_state pad_state = {
798 		.pads = &pad_cfg
799 		};
800 	const struct ceu_fmt *ceu_fmt;
801 	u32 mbus_code_old;
802 	u32 mbus_code;
803 	int ret;
804 
805 	/*
806 	 * Set format on sensor sub device: bus format used to produce memory
807 	 * format is selected depending on YUV component ordering or
808 	 * at initialization time.
809 	 */
810 	struct v4l2_subdev_format sd_format = {
811 		.which	= V4L2_SUBDEV_FORMAT_TRY,
812 	};
813 
814 	mbus_code_old = ceu_sd->mbus_fmt.mbus_code;
815 
816 	switch (pix->pixelformat) {
817 	case V4L2_PIX_FMT_YUYV:
818 		mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
819 		break;
820 	case V4L2_PIX_FMT_UYVY:
821 		mbus_code = MEDIA_BUS_FMT_UYVY8_2X8;
822 		break;
823 	case V4L2_PIX_FMT_YVYU:
824 		mbus_code = MEDIA_BUS_FMT_YVYU8_2X8;
825 		break;
826 	case V4L2_PIX_FMT_VYUY:
827 		mbus_code = MEDIA_BUS_FMT_VYUY8_2X8;
828 		break;
829 	case V4L2_PIX_FMT_NV16:
830 	case V4L2_PIX_FMT_NV61:
831 	case V4L2_PIX_FMT_NV12:
832 	case V4L2_PIX_FMT_NV21:
833 		mbus_code = ceu_sd->mbus_fmt.mbus_code;
834 		break;
835 
836 	default:
837 		pix->pixelformat = V4L2_PIX_FMT_NV16;
838 		mbus_code = ceu_sd->mbus_fmt.mbus_code;
839 		break;
840 	}
841 
842 	ceu_fmt = get_ceu_fmt_from_fourcc(pix->pixelformat);
843 
844 	/* CFSZR requires height and width to be 4-pixel aligned. */
845 	v4l_bound_align_image(&pix->width, 2, CEU_MAX_WIDTH, 4,
846 			      &pix->height, 4, CEU_MAX_HEIGHT, 4, 0);
847 
848 	v4l2_fill_mbus_format_mplane(&sd_format.format, pix);
849 
850 	/*
851 	 * Try with the mbus_code matching YUYV components ordering first,
852 	 * if that one fails, fallback to default selected at initialization
853 	 * time.
854 	 */
855 	sd_format.format.code = mbus_code;
856 	ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, &pad_state, &sd_format);
857 	if (ret) {
858 		if (ret == -EINVAL) {
859 			/* fallback */
860 			sd_format.format.code = mbus_code_old;
861 			ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt,
862 					       &pad_state, &sd_format);
863 		}
864 
865 		if (ret)
866 			return ret;
867 	}
868 
869 	/* Apply size returned by sensor as the CEU can't scale. */
870 	v4l2_fill_pix_format_mplane(pix, &sd_format.format);
871 
872 	/* Calculate per-plane sizes based on image format. */
873 	ceu_calc_plane_sizes(ceudev, ceu_fmt, pix);
874 
875 	/* Report to caller the configured mbus format. */
876 	*sd_mbus_code = sd_format.format.code;
877 
878 	return 0;
879 }
880 
881 /*
882  * ceu_try_fmt() - Wrapper for __ceu_try_fmt; discard configured mbus_fmt
883  */
884 static int ceu_try_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
885 {
886 	u32 mbus_code;
887 
888 	return __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code);
889 }
890 
891 /*
892  * ceu_set_fmt() - Apply the supplied format to both sensor and CEU
893  */
894 static int ceu_set_fmt(struct ceu_device *ceudev, struct v4l2_format *v4l2_fmt)
895 {
896 	struct ceu_subdev *ceu_sd = ceudev->sd;
897 	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
898 	u32 mbus_code;
899 	int ret;
900 
901 	/*
902 	 * Set format on sensor sub device: bus format used to produce memory
903 	 * format is selected at initialization time.
904 	 */
905 	struct v4l2_subdev_format format = {
906 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
907 	};
908 
909 	ret = __ceu_try_fmt(ceudev, v4l2_fmt, &mbus_code);
910 	if (ret)
911 		return ret;
912 
913 	format.format.code = mbus_code;
914 	v4l2_fill_mbus_format_mplane(&format.format, &v4l2_fmt->fmt.pix_mp);
915 	ret = v4l2_subdev_call(v4l2_sd, pad, set_fmt, NULL, &format);
916 	if (ret)
917 		return ret;
918 
919 	ceudev->v4l2_pix = v4l2_fmt->fmt.pix_mp;
920 	ceudev->field = V4L2_FIELD_NONE;
921 
922 	return 0;
923 }
924 
925 /*
926  * ceu_set_default_fmt() - Apply default NV16 memory output format with VGA
927  *			   sizes.
928  */
929 static int ceu_set_default_fmt(struct ceu_device *ceudev)
930 {
931 	int ret;
932 
933 	struct v4l2_format v4l2_fmt = {
934 		.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
935 		.fmt.pix_mp = {
936 			.width		= VGA_WIDTH,
937 			.height		= VGA_HEIGHT,
938 			.field		= V4L2_FIELD_NONE,
939 			.pixelformat	= V4L2_PIX_FMT_NV16,
940 			.num_planes	= 2,
941 			.plane_fmt	= {
942 				[0]	= {
943 					.sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
944 					.bytesperline = VGA_WIDTH * 2,
945 				},
946 				[1]	= {
947 					.sizeimage = VGA_WIDTH * VGA_HEIGHT * 2,
948 					.bytesperline = VGA_WIDTH * 2,
949 				},
950 			},
951 		},
952 	};
953 
954 	ret = ceu_try_fmt(ceudev, &v4l2_fmt);
955 	if (ret)
956 		return ret;
957 
958 	ceudev->v4l2_pix = v4l2_fmt.fmt.pix_mp;
959 	ceudev->field = V4L2_FIELD_NONE;
960 
961 	return 0;
962 }
963 
964 /*
965  * ceu_init_mbus_fmt() - Query sensor for supported formats and initialize
966  *			 CEU media bus format used to produce memory formats.
967  *
968  * Find out if sensor can produce a permutation of 8-bits YUYV bus format.
969  * From a single 8-bits YUYV bus format the CEU can produce several memory
970  * output formats:
971  * - NV[12|21|16|61] through image fetch mode;
972  * - YUYV422 if sensor provides YUYV422
973  *
974  * TODO: Other YUYV422 permutations through data fetch sync mode and DTARY
975  * TODO: Binary data (eg. JPEG) and raw formats through data fetch sync mode
976  */
977 static int ceu_init_mbus_fmt(struct ceu_device *ceudev)
978 {
979 	struct ceu_subdev *ceu_sd = ceudev->sd;
980 	struct ceu_mbus_fmt *mbus_fmt = &ceu_sd->mbus_fmt;
981 	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
982 	bool yuyv_bus_fmt = false;
983 
984 	struct v4l2_subdev_mbus_code_enum sd_mbus_fmt = {
985 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
986 		.index = 0,
987 	};
988 
989 	/* Find out if sensor can produce any permutation of 8-bits YUYV422. */
990 	while (!yuyv_bus_fmt &&
991 	       !v4l2_subdev_call(v4l2_sd, pad, enum_mbus_code,
992 				 NULL, &sd_mbus_fmt)) {
993 		switch (sd_mbus_fmt.code) {
994 		case MEDIA_BUS_FMT_YUYV8_2X8:
995 		case MEDIA_BUS_FMT_YVYU8_2X8:
996 		case MEDIA_BUS_FMT_UYVY8_2X8:
997 		case MEDIA_BUS_FMT_VYUY8_2X8:
998 			yuyv_bus_fmt = true;
999 			break;
1000 		default:
1001 			/*
1002 			 * Only support 8-bits YUYV bus formats at the moment;
1003 			 *
1004 			 * TODO: add support for binary formats (data sync
1005 			 * fetch mode).
1006 			 */
1007 			break;
1008 		}
1009 
1010 		sd_mbus_fmt.index++;
1011 	}
1012 
1013 	if (!yuyv_bus_fmt)
1014 		return -ENXIO;
1015 
1016 	/*
1017 	 * Save the first encountered YUYV format as "mbus_fmt" and use it
1018 	 * to output all planar YUV422 and YUV420 (NV*) formats to memory as
1019 	 * well as for data synch fetch mode (YUYV - YVYU etc. ).
1020 	 */
1021 	mbus_fmt->mbus_code	= sd_mbus_fmt.code;
1022 	mbus_fmt->bps		= 8;
1023 
1024 	/* Annotate the selected bus format components ordering. */
1025 	switch (sd_mbus_fmt.code) {
1026 	case MEDIA_BUS_FMT_YUYV8_2X8:
1027 		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_YUYV;
1028 		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_YVYU;
1029 		mbus_fmt->swapped		= false;
1030 		mbus_fmt->bpp			= 16;
1031 		break;
1032 
1033 	case MEDIA_BUS_FMT_YVYU8_2X8:
1034 		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_YVYU;
1035 		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_YUYV;
1036 		mbus_fmt->swapped		= true;
1037 		mbus_fmt->bpp			= 16;
1038 		break;
1039 
1040 	case MEDIA_BUS_FMT_UYVY8_2X8:
1041 		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_UYVY;
1042 		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_VYUY;
1043 		mbus_fmt->swapped		= false;
1044 		mbus_fmt->bpp			= 16;
1045 		break;
1046 
1047 	case MEDIA_BUS_FMT_VYUY8_2X8:
1048 		mbus_fmt->fmt_order		= CEU_CAMCR_DTARY_8_VYUY;
1049 		mbus_fmt->fmt_order_swap	= CEU_CAMCR_DTARY_8_UYVY;
1050 		mbus_fmt->swapped		= true;
1051 		mbus_fmt->bpp			= 16;
1052 		break;
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /* --- Runtime PM Handlers --- */
1059 
1060 /*
1061  * ceu_runtime_resume() - soft-reset the interface and turn sensor power on.
1062  */
1063 static int __maybe_unused ceu_runtime_resume(struct device *dev)
1064 {
1065 	struct ceu_device *ceudev = dev_get_drvdata(dev);
1066 	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
1067 
1068 	v4l2_subdev_call(v4l2_sd, core, s_power, 1);
1069 
1070 	ceu_soft_reset(ceudev);
1071 
1072 	return 0;
1073 }
1074 
1075 /*
1076  * ceu_runtime_suspend() - disable capture and interrupts and soft-reset.
1077  *			   Turn sensor power off.
1078  */
1079 static int __maybe_unused ceu_runtime_suspend(struct device *dev)
1080 {
1081 	struct ceu_device *ceudev = dev_get_drvdata(dev);
1082 	struct v4l2_subdev *v4l2_sd = ceudev->sd->v4l2_sd;
1083 
1084 	v4l2_subdev_call(v4l2_sd, core, s_power, 0);
1085 
1086 	ceu_write(ceudev, CEU_CEIER, 0);
1087 	ceu_soft_reset(ceudev);
1088 
1089 	return 0;
1090 }
1091 
1092 /* --- File Operations --- */
1093 
1094 static int ceu_open(struct file *file)
1095 {
1096 	struct ceu_device *ceudev = video_drvdata(file);
1097 	int ret;
1098 
1099 	ret = v4l2_fh_open(file);
1100 	if (ret)
1101 		return ret;
1102 
1103 	mutex_lock(&ceudev->mlock);
1104 	/* Causes soft-reset and sensor power on on first open */
1105 	ret = pm_runtime_resume_and_get(ceudev->dev);
1106 	mutex_unlock(&ceudev->mlock);
1107 
1108 	return ret;
1109 }
1110 
1111 static int ceu_release(struct file *file)
1112 {
1113 	struct ceu_device *ceudev = video_drvdata(file);
1114 
1115 	vb2_fop_release(file);
1116 
1117 	mutex_lock(&ceudev->mlock);
1118 	/* Causes soft-reset and sensor power down on last close */
1119 	pm_runtime_put(ceudev->dev);
1120 	mutex_unlock(&ceudev->mlock);
1121 
1122 	return 0;
1123 }
1124 
1125 static const struct v4l2_file_operations ceu_fops = {
1126 	.owner			= THIS_MODULE,
1127 	.open			= ceu_open,
1128 	.release		= ceu_release,
1129 	.unlocked_ioctl		= video_ioctl2,
1130 	.mmap			= vb2_fop_mmap,
1131 	.poll			= vb2_fop_poll,
1132 };
1133 
1134 /* --- Video Device IOCTLs --- */
1135 
1136 static int ceu_querycap(struct file *file, void *priv,
1137 			struct v4l2_capability *cap)
1138 {
1139 	struct ceu_device *ceudev = video_drvdata(file);
1140 
1141 	strscpy(cap->card, "Renesas CEU", sizeof(cap->card));
1142 	strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1143 	snprintf(cap->bus_info, sizeof(cap->bus_info),
1144 		 "platform:renesas-ceu-%s", dev_name(ceudev->dev));
1145 
1146 	return 0;
1147 }
1148 
1149 static int ceu_enum_fmt_vid_cap(struct file *file, void *priv,
1150 				struct v4l2_fmtdesc *f)
1151 {
1152 	const struct ceu_fmt *fmt;
1153 
1154 	if (f->index >= ARRAY_SIZE(ceu_fmt_list))
1155 		return -EINVAL;
1156 
1157 	fmt = &ceu_fmt_list[f->index];
1158 	f->pixelformat = fmt->fourcc;
1159 
1160 	return 0;
1161 }
1162 
1163 static int ceu_try_fmt_vid_cap(struct file *file, void *priv,
1164 			       struct v4l2_format *f)
1165 {
1166 	struct ceu_device *ceudev = video_drvdata(file);
1167 
1168 	return ceu_try_fmt(ceudev, f);
1169 }
1170 
1171 static int ceu_s_fmt_vid_cap(struct file *file, void *priv,
1172 			     struct v4l2_format *f)
1173 {
1174 	struct ceu_device *ceudev = video_drvdata(file);
1175 
1176 	if (vb2_is_streaming(&ceudev->vb2_vq))
1177 		return -EBUSY;
1178 
1179 	return ceu_set_fmt(ceudev, f);
1180 }
1181 
1182 static int ceu_g_fmt_vid_cap(struct file *file, void *priv,
1183 			     struct v4l2_format *f)
1184 {
1185 	struct ceu_device *ceudev = video_drvdata(file);
1186 
1187 	f->fmt.pix_mp = ceudev->v4l2_pix;
1188 
1189 	return 0;
1190 }
1191 
1192 static int ceu_enum_input(struct file *file, void *priv,
1193 			  struct v4l2_input *inp)
1194 {
1195 	struct ceu_device *ceudev = video_drvdata(file);
1196 	struct ceu_subdev *ceusd;
1197 
1198 	if (inp->index >= ceudev->num_sd)
1199 		return -EINVAL;
1200 
1201 	ceusd = ceudev->subdevs[inp->index];
1202 
1203 	inp->type = V4L2_INPUT_TYPE_CAMERA;
1204 	inp->std = 0;
1205 	snprintf(inp->name, sizeof(inp->name), "Camera%u: %s",
1206 		 inp->index, ceusd->v4l2_sd->name);
1207 
1208 	return 0;
1209 }
1210 
1211 static int ceu_g_input(struct file *file, void *priv, unsigned int *i)
1212 {
1213 	struct ceu_device *ceudev = video_drvdata(file);
1214 
1215 	*i = ceudev->sd_index;
1216 
1217 	return 0;
1218 }
1219 
1220 static int ceu_s_input(struct file *file, void *priv, unsigned int i)
1221 {
1222 	struct ceu_device *ceudev = video_drvdata(file);
1223 	struct ceu_subdev *ceu_sd_old;
1224 	int ret;
1225 
1226 	if (i >= ceudev->num_sd)
1227 		return -EINVAL;
1228 
1229 	if (vb2_is_streaming(&ceudev->vb2_vq))
1230 		return -EBUSY;
1231 
1232 	if (i == ceudev->sd_index)
1233 		return 0;
1234 
1235 	ceu_sd_old = ceudev->sd;
1236 	ceudev->sd = ceudev->subdevs[i];
1237 
1238 	/*
1239 	 * Make sure we can generate output image formats and apply
1240 	 * default one.
1241 	 */
1242 	ret = ceu_init_mbus_fmt(ceudev);
1243 	if (ret) {
1244 		ceudev->sd = ceu_sd_old;
1245 		return -EINVAL;
1246 	}
1247 
1248 	ret = ceu_set_default_fmt(ceudev);
1249 	if (ret) {
1250 		ceudev->sd = ceu_sd_old;
1251 		return -EINVAL;
1252 	}
1253 
1254 	/* Now that we're sure we can use the sensor, power off the old one. */
1255 	v4l2_subdev_call(ceu_sd_old->v4l2_sd, core, s_power, 0);
1256 	v4l2_subdev_call(ceudev->sd->v4l2_sd, core, s_power, 1);
1257 
1258 	ceudev->sd_index = i;
1259 
1260 	return 0;
1261 }
1262 
1263 static int ceu_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
1264 {
1265 	struct ceu_device *ceudev = video_drvdata(file);
1266 
1267 	return v4l2_g_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a);
1268 }
1269 
1270 static int ceu_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
1271 {
1272 	struct ceu_device *ceudev = video_drvdata(file);
1273 
1274 	return v4l2_s_parm_cap(video_devdata(file), ceudev->sd->v4l2_sd, a);
1275 }
1276 
1277 static int ceu_enum_framesizes(struct file *file, void *fh,
1278 			       struct v4l2_frmsizeenum *fsize)
1279 {
1280 	struct ceu_device *ceudev = video_drvdata(file);
1281 	struct ceu_subdev *ceu_sd = ceudev->sd;
1282 	const struct ceu_fmt *ceu_fmt;
1283 	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
1284 	int ret;
1285 
1286 	struct v4l2_subdev_frame_size_enum fse = {
1287 		.code	= ceu_sd->mbus_fmt.mbus_code,
1288 		.index	= fsize->index,
1289 		.which	= V4L2_SUBDEV_FORMAT_ACTIVE,
1290 	};
1291 
1292 	/* Just check if user supplied pixel format is supported. */
1293 	ceu_fmt = get_ceu_fmt_from_fourcc(fsize->pixel_format);
1294 	if (!ceu_fmt)
1295 		return -EINVAL;
1296 
1297 	ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_size,
1298 			       NULL, &fse);
1299 	if (ret)
1300 		return ret;
1301 
1302 	fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1303 	fsize->discrete.width = CEU_W_MAX(fse.max_width);
1304 	fsize->discrete.height = CEU_H_MAX(fse.max_height);
1305 
1306 	return 0;
1307 }
1308 
1309 static int ceu_enum_frameintervals(struct file *file, void *fh,
1310 				   struct v4l2_frmivalenum *fival)
1311 {
1312 	struct ceu_device *ceudev = video_drvdata(file);
1313 	struct ceu_subdev *ceu_sd = ceudev->sd;
1314 	const struct ceu_fmt *ceu_fmt;
1315 	struct v4l2_subdev *v4l2_sd = ceu_sd->v4l2_sd;
1316 	int ret;
1317 
1318 	struct v4l2_subdev_frame_interval_enum fie = {
1319 		.code	= ceu_sd->mbus_fmt.mbus_code,
1320 		.index = fival->index,
1321 		.width = fival->width,
1322 		.height = fival->height,
1323 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
1324 	};
1325 
1326 	/* Just check if user supplied pixel format is supported. */
1327 	ceu_fmt = get_ceu_fmt_from_fourcc(fival->pixel_format);
1328 	if (!ceu_fmt)
1329 		return -EINVAL;
1330 
1331 	ret = v4l2_subdev_call(v4l2_sd, pad, enum_frame_interval, NULL,
1332 			       &fie);
1333 	if (ret)
1334 		return ret;
1335 
1336 	fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1337 	fival->discrete = fie.interval;
1338 
1339 	return 0;
1340 }
1341 
1342 static const struct v4l2_ioctl_ops ceu_ioctl_ops = {
1343 	.vidioc_querycap		= ceu_querycap,
1344 
1345 	.vidioc_enum_fmt_vid_cap	= ceu_enum_fmt_vid_cap,
1346 	.vidioc_try_fmt_vid_cap_mplane	= ceu_try_fmt_vid_cap,
1347 	.vidioc_s_fmt_vid_cap_mplane	= ceu_s_fmt_vid_cap,
1348 	.vidioc_g_fmt_vid_cap_mplane	= ceu_g_fmt_vid_cap,
1349 
1350 	.vidioc_enum_input		= ceu_enum_input,
1351 	.vidioc_g_input			= ceu_g_input,
1352 	.vidioc_s_input			= ceu_s_input,
1353 
1354 	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
1355 	.vidioc_querybuf		= vb2_ioctl_querybuf,
1356 	.vidioc_qbuf			= vb2_ioctl_qbuf,
1357 	.vidioc_expbuf			= vb2_ioctl_expbuf,
1358 	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1359 	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
1360 	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
1361 	.vidioc_streamon		= vb2_ioctl_streamon,
1362 	.vidioc_streamoff		= vb2_ioctl_streamoff,
1363 
1364 	.vidioc_g_parm			= ceu_g_parm,
1365 	.vidioc_s_parm			= ceu_s_parm,
1366 	.vidioc_enum_framesizes		= ceu_enum_framesizes,
1367 	.vidioc_enum_frameintervals	= ceu_enum_frameintervals,
1368 
1369 	.vidioc_log_status              = v4l2_ctrl_log_status,
1370 	.vidioc_subscribe_event         = v4l2_ctrl_subscribe_event,
1371 	.vidioc_unsubscribe_event       = v4l2_event_unsubscribe,
1372 };
1373 
1374 /*
1375  * ceu_vdev_release() - release CEU video device memory when last reference
1376  *			to this driver is closed
1377  */
1378 static void ceu_vdev_release(struct video_device *vdev)
1379 {
1380 	struct ceu_device *ceudev = video_get_drvdata(vdev);
1381 
1382 	kfree(ceudev);
1383 }
1384 
1385 static int ceu_notify_bound(struct v4l2_async_notifier *notifier,
1386 			    struct v4l2_subdev *v4l2_sd,
1387 			    struct v4l2_async_subdev *asd)
1388 {
1389 	struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
1390 	struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
1391 	struct ceu_subdev *ceu_sd = to_ceu_subdev(asd);
1392 
1393 	ceu_sd->v4l2_sd = v4l2_sd;
1394 	ceudev->num_sd++;
1395 
1396 	return 0;
1397 }
1398 
1399 static int ceu_notify_complete(struct v4l2_async_notifier *notifier)
1400 {
1401 	struct v4l2_device *v4l2_dev = notifier->v4l2_dev;
1402 	struct ceu_device *ceudev = v4l2_to_ceu(v4l2_dev);
1403 	struct video_device *vdev = &ceudev->vdev;
1404 	struct vb2_queue *q = &ceudev->vb2_vq;
1405 	struct v4l2_subdev *v4l2_sd;
1406 	int ret;
1407 
1408 	/* Initialize vb2 queue. */
1409 	q->type			= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1410 	q->io_modes		= VB2_MMAP | VB2_DMABUF;
1411 	q->drv_priv		= ceudev;
1412 	q->ops			= &ceu_vb2_ops;
1413 	q->mem_ops		= &vb2_dma_contig_memops;
1414 	q->buf_struct_size	= sizeof(struct ceu_buffer);
1415 	q->timestamp_flags	= V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1416 	q->min_buffers_needed	= 2;
1417 	q->lock			= &ceudev->mlock;
1418 	q->dev			= ceudev->v4l2_dev.dev;
1419 
1420 	ret = vb2_queue_init(q);
1421 	if (ret)
1422 		return ret;
1423 
1424 	/*
1425 	 * Make sure at least one sensor is primary and use it to initialize
1426 	 * ceu formats.
1427 	 */
1428 	if (!ceudev->sd) {
1429 		ceudev->sd = ceudev->subdevs[0];
1430 		ceudev->sd_index = 0;
1431 	}
1432 
1433 	v4l2_sd = ceudev->sd->v4l2_sd;
1434 
1435 	ret = ceu_init_mbus_fmt(ceudev);
1436 	if (ret)
1437 		return ret;
1438 
1439 	ret = ceu_set_default_fmt(ceudev);
1440 	if (ret)
1441 		return ret;
1442 
1443 	/* Register the video device. */
1444 	strscpy(vdev->name, DRIVER_NAME, sizeof(vdev->name));
1445 	vdev->v4l2_dev		= v4l2_dev;
1446 	vdev->lock		= &ceudev->mlock;
1447 	vdev->queue		= &ceudev->vb2_vq;
1448 	vdev->ctrl_handler	= v4l2_sd->ctrl_handler;
1449 	vdev->fops		= &ceu_fops;
1450 	vdev->ioctl_ops		= &ceu_ioctl_ops;
1451 	vdev->release		= ceu_vdev_release;
1452 	vdev->device_caps	= V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1453 				  V4L2_CAP_STREAMING;
1454 	video_set_drvdata(vdev, ceudev);
1455 
1456 	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
1457 	if (ret < 0) {
1458 		v4l2_err(vdev->v4l2_dev,
1459 			 "video_register_device failed: %d\n", ret);
1460 		return ret;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static const struct v4l2_async_notifier_operations ceu_notify_ops = {
1467 	.bound		= ceu_notify_bound,
1468 	.complete	= ceu_notify_complete,
1469 };
1470 
1471 /*
1472  * ceu_init_async_subdevs() - Initialize CEU subdevices and async_subdevs in
1473  *                           ceu device. Both DT and platform data parsing use
1474  *                           this routine.
1475  *
1476  * Returns 0 for success, -ENOMEM for failure.
1477  */
1478 static int ceu_init_async_subdevs(struct ceu_device *ceudev, unsigned int n_sd)
1479 {
1480 	/* Reserve memory for 'n_sd' ceu_subdev descriptors. */
1481 	ceudev->subdevs = devm_kcalloc(ceudev->dev, n_sd,
1482 				       sizeof(*ceudev->subdevs), GFP_KERNEL);
1483 	if (!ceudev->subdevs)
1484 		return -ENOMEM;
1485 
1486 	ceudev->sd = NULL;
1487 	ceudev->sd_index = 0;
1488 	ceudev->num_sd = 0;
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * ceu_parse_platform_data() - Initialize async_subdevices using platform
1495  *			       device provided data.
1496  */
1497 static int ceu_parse_platform_data(struct ceu_device *ceudev,
1498 				   const struct ceu_platform_data *pdata)
1499 {
1500 	const struct ceu_async_subdev *async_sd;
1501 	struct ceu_subdev *ceu_sd;
1502 	unsigned int i;
1503 	int ret;
1504 
1505 	if (pdata->num_subdevs == 0)
1506 		return -ENODEV;
1507 
1508 	ret = ceu_init_async_subdevs(ceudev, pdata->num_subdevs);
1509 	if (ret)
1510 		return ret;
1511 
1512 	for (i = 0; i < pdata->num_subdevs; i++) {
1513 
1514 		/* Setup the ceu subdevice and the async subdevice. */
1515 		async_sd = &pdata->subdevs[i];
1516 		ceu_sd = v4l2_async_nf_add_i2c(&ceudev->notifier,
1517 					       async_sd->i2c_adapter_id,
1518 					       async_sd->i2c_address,
1519 					       struct ceu_subdev);
1520 		if (IS_ERR(ceu_sd)) {
1521 			v4l2_async_nf_cleanup(&ceudev->notifier);
1522 			return PTR_ERR(ceu_sd);
1523 		}
1524 		ceu_sd->mbus_flags = async_sd->flags;
1525 		ceudev->subdevs[i] = ceu_sd;
1526 	}
1527 
1528 	return pdata->num_subdevs;
1529 }
1530 
1531 /*
1532  * ceu_parse_dt() - Initialize async_subdevs parsing device tree graph.
1533  */
1534 static int ceu_parse_dt(struct ceu_device *ceudev)
1535 {
1536 	struct device_node *of = ceudev->dev->of_node;
1537 	struct device_node *ep;
1538 	struct ceu_subdev *ceu_sd;
1539 	unsigned int i;
1540 	int num_ep;
1541 	int ret;
1542 
1543 	num_ep = of_graph_get_endpoint_count(of);
1544 	if (!num_ep)
1545 		return -ENODEV;
1546 
1547 	ret = ceu_init_async_subdevs(ceudev, num_ep);
1548 	if (ret)
1549 		return ret;
1550 
1551 	for (i = 0; i < num_ep; i++) {
1552 		struct v4l2_fwnode_endpoint fw_ep = {
1553 			.bus_type = V4L2_MBUS_PARALLEL,
1554 			.bus = {
1555 				.parallel = {
1556 					.flags = V4L2_MBUS_HSYNC_ACTIVE_HIGH |
1557 						 V4L2_MBUS_VSYNC_ACTIVE_HIGH,
1558 					.bus_width = 8,
1559 				},
1560 			},
1561 		};
1562 
1563 		ep = of_graph_get_endpoint_by_regs(of, 0, i);
1564 		if (!ep) {
1565 			dev_err(ceudev->dev,
1566 				"No subdevice connected on endpoint %u.\n", i);
1567 			ret = -ENODEV;
1568 			goto error_cleanup;
1569 		}
1570 
1571 		ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &fw_ep);
1572 		if (ret) {
1573 			dev_err(ceudev->dev,
1574 				"Unable to parse endpoint #%u: %d.\n", i, ret);
1575 			goto error_cleanup;
1576 		}
1577 
1578 		/* Setup the ceu subdevice and the async subdevice. */
1579 		ceu_sd = v4l2_async_nf_add_fwnode_remote(&ceudev->notifier,
1580 							 of_fwnode_handle(ep),
1581 							 struct ceu_subdev);
1582 		if (IS_ERR(ceu_sd)) {
1583 			ret = PTR_ERR(ceu_sd);
1584 			goto error_cleanup;
1585 		}
1586 		ceu_sd->mbus_flags = fw_ep.bus.parallel.flags;
1587 		ceudev->subdevs[i] = ceu_sd;
1588 
1589 		of_node_put(ep);
1590 	}
1591 
1592 	return num_ep;
1593 
1594 error_cleanup:
1595 	v4l2_async_nf_cleanup(&ceudev->notifier);
1596 	of_node_put(ep);
1597 	return ret;
1598 }
1599 
1600 /*
1601  * struct ceu_data - Platform specific CEU data
1602  * @irq_mask: CETCR mask with all interrupt sources enabled. The mask differs
1603  *	      between SH4 and RZ platforms.
1604  */
1605 struct ceu_data {
1606 	u32 irq_mask;
1607 };
1608 
1609 static const struct ceu_data ceu_data_sh4 = {
1610 	.irq_mask = CEU_CETCR_ALL_IRQS_SH4,
1611 };
1612 
1613 #if IS_ENABLED(CONFIG_OF)
1614 static const struct ceu_data ceu_data_rz = {
1615 	.irq_mask = CEU_CETCR_ALL_IRQS_RZ,
1616 };
1617 
1618 static const struct of_device_id ceu_of_match[] = {
1619 	{ .compatible = "renesas,r7s72100-ceu", .data = &ceu_data_rz },
1620 	{ .compatible = "renesas,r8a7740-ceu", .data = &ceu_data_rz },
1621 	{ }
1622 };
1623 MODULE_DEVICE_TABLE(of, ceu_of_match);
1624 #endif
1625 
1626 static int ceu_probe(struct platform_device *pdev)
1627 {
1628 	struct device *dev = &pdev->dev;
1629 	const struct ceu_data *ceu_data;
1630 	struct ceu_device *ceudev;
1631 	unsigned int irq;
1632 	int num_subdevs;
1633 	int ret;
1634 
1635 	ceudev = kzalloc(sizeof(*ceudev), GFP_KERNEL);
1636 	if (!ceudev)
1637 		return -ENOMEM;
1638 
1639 	platform_set_drvdata(pdev, ceudev);
1640 	ceudev->dev = dev;
1641 
1642 	INIT_LIST_HEAD(&ceudev->capture);
1643 	spin_lock_init(&ceudev->lock);
1644 	mutex_init(&ceudev->mlock);
1645 
1646 	ceudev->base = devm_platform_ioremap_resource(pdev, 0);
1647 	if (IS_ERR(ceudev->base)) {
1648 		ret = PTR_ERR(ceudev->base);
1649 		goto error_free_ceudev;
1650 	}
1651 
1652 	ret = platform_get_irq(pdev, 0);
1653 	if (ret < 0)
1654 		goto error_free_ceudev;
1655 	irq = ret;
1656 
1657 	ret = devm_request_irq(dev, irq, ceu_irq,
1658 			       0, dev_name(dev), ceudev);
1659 	if (ret) {
1660 		dev_err(&pdev->dev, "Unable to request CEU interrupt.\n");
1661 		goto error_free_ceudev;
1662 	}
1663 
1664 	pm_runtime_enable(dev);
1665 
1666 	ret = v4l2_device_register(dev, &ceudev->v4l2_dev);
1667 	if (ret)
1668 		goto error_pm_disable;
1669 
1670 	v4l2_async_nf_init(&ceudev->notifier);
1671 
1672 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1673 		ceu_data = of_device_get_match_data(dev);
1674 		num_subdevs = ceu_parse_dt(ceudev);
1675 	} else if (dev->platform_data) {
1676 		/* Assume SH4 if booting with platform data. */
1677 		ceu_data = &ceu_data_sh4;
1678 		num_subdevs = ceu_parse_platform_data(ceudev,
1679 						      dev->platform_data);
1680 	} else {
1681 		num_subdevs = -EINVAL;
1682 	}
1683 
1684 	if (num_subdevs < 0) {
1685 		ret = num_subdevs;
1686 		goto error_v4l2_unregister;
1687 	}
1688 	ceudev->irq_mask = ceu_data->irq_mask;
1689 
1690 	ceudev->notifier.v4l2_dev	= &ceudev->v4l2_dev;
1691 	ceudev->notifier.ops		= &ceu_notify_ops;
1692 	ret = v4l2_async_nf_register(&ceudev->v4l2_dev, &ceudev->notifier);
1693 	if (ret)
1694 		goto error_cleanup;
1695 
1696 	dev_info(dev, "Renesas Capture Engine Unit %s\n", dev_name(dev));
1697 
1698 	return 0;
1699 
1700 error_cleanup:
1701 	v4l2_async_nf_cleanup(&ceudev->notifier);
1702 error_v4l2_unregister:
1703 	v4l2_device_unregister(&ceudev->v4l2_dev);
1704 error_pm_disable:
1705 	pm_runtime_disable(dev);
1706 error_free_ceudev:
1707 	kfree(ceudev);
1708 
1709 	return ret;
1710 }
1711 
1712 static int ceu_remove(struct platform_device *pdev)
1713 {
1714 	struct ceu_device *ceudev = platform_get_drvdata(pdev);
1715 
1716 	pm_runtime_disable(ceudev->dev);
1717 
1718 	v4l2_async_nf_unregister(&ceudev->notifier);
1719 
1720 	v4l2_async_nf_cleanup(&ceudev->notifier);
1721 
1722 	v4l2_device_unregister(&ceudev->v4l2_dev);
1723 
1724 	video_unregister_device(&ceudev->vdev);
1725 
1726 	return 0;
1727 }
1728 
1729 static const struct dev_pm_ops ceu_pm_ops = {
1730 	SET_RUNTIME_PM_OPS(ceu_runtime_suspend,
1731 			   ceu_runtime_resume,
1732 			   NULL)
1733 };
1734 
1735 static struct platform_driver ceu_driver = {
1736 	.driver		= {
1737 		.name	= DRIVER_NAME,
1738 		.pm	= &ceu_pm_ops,
1739 		.of_match_table = of_match_ptr(ceu_of_match),
1740 	},
1741 	.probe		= ceu_probe,
1742 	.remove		= ceu_remove,
1743 };
1744 
1745 module_platform_driver(ceu_driver);
1746 
1747 MODULE_DESCRIPTION("Renesas CEU camera driver");
1748 MODULE_AUTHOR("Jacopo Mondi <jacopo+renesas@jmondi.org>");
1749 MODULE_LICENSE("GPL v2");
1750