1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * R-Car Gen3 Digital Radio Interface (DRIF) driver
4  *
5  * Copyright (C) 2017 Renesas Electronics Corporation
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12 
13 /*
14  * The R-Car DRIF is a receive only MSIOF like controller with an
15  * external master device driving the SCK. It receives data into a FIFO,
16  * then this driver uses the SYS-DMAC engine to move the data from
17  * the device to memory.
18  *
19  * Each DRIF channel DRIFx (as per datasheet) contains two internal
20  * channels DRIFx0 & DRIFx1 within itself with each having its own resources
21  * like module clk, register set, irq and dma. These internal channels share
22  * common CLK & SYNC from master. The two data pins D0 & D1 shall be
23  * considered to represent the two internal channels. This internal split
24  * is not visible to the master device.
25  *
26  * Depending on the master device, a DRIF channel can use
27  *  (1) both internal channels (D0 & D1) to receive data in parallel (or)
28  *  (2) one internal channel (D0 or D1) to receive data
29  *
30  * The primary design goal of this controller is to act as a Digital Radio
31  * Interface that receives digital samples from a tuner device. Hence the
32  * driver exposes the device as a V4L2 SDR device. In order to qualify as
33  * a V4L2 SDR device, it should possess a tuner interface as mandated by the
34  * framework. This driver expects a tuner driver (sub-device) to bind
35  * asynchronously with this device and the combined drivers shall expose
36  * a V4L2 compliant SDR device. The DRIF driver is independent of the
37  * tuner vendor.
38  *
39  * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
40  * This driver is tested for I2S mode only because of the availability of
41  * suitable master devices. Hence, not all configurable options of DRIF h/w
42  * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
43  * are used. These can be exposed later if needed after testing.
44  */
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/dmaengine.h>
49 #include <linux/ioctl.h>
50 #include <linux/iopoll.h>
51 #include <linux/module.h>
52 #include <linux/of_graph.h>
53 #include <linux/of_device.h>
54 #include <linux/platform_device.h>
55 #include <linux/sched.h>
56 #include <media/v4l2-async.h>
57 #include <media/v4l2-ctrls.h>
58 #include <media/v4l2-device.h>
59 #include <media/v4l2-event.h>
60 #include <media/v4l2-fh.h>
61 #include <media/v4l2-ioctl.h>
62 #include <media/videobuf2-v4l2.h>
63 #include <media/videobuf2-vmalloc.h>
64 
65 /* DRIF register offsets */
66 #define RCAR_DRIF_SITMDR1			0x00
67 #define RCAR_DRIF_SITMDR2			0x04
68 #define RCAR_DRIF_SITMDR3			0x08
69 #define RCAR_DRIF_SIRMDR1			0x10
70 #define RCAR_DRIF_SIRMDR2			0x14
71 #define RCAR_DRIF_SIRMDR3			0x18
72 #define RCAR_DRIF_SICTR				0x28
73 #define RCAR_DRIF_SIFCTR			0x30
74 #define RCAR_DRIF_SISTR				0x40
75 #define RCAR_DRIF_SIIER				0x44
76 #define RCAR_DRIF_SIRFDR			0x60
77 
78 #define RCAR_DRIF_RFOVF			BIT(3)	/* Receive FIFO overflow */
79 #define RCAR_DRIF_RFUDF			BIT(4)	/* Receive FIFO underflow */
80 #define RCAR_DRIF_RFSERR		BIT(5)	/* Receive frame sync error */
81 #define RCAR_DRIF_REOF			BIT(7)	/* Frame reception end */
82 #define RCAR_DRIF_RDREQ			BIT(12) /* Receive data xfer req */
83 #define RCAR_DRIF_RFFUL			BIT(13)	/* Receive FIFO full */
84 
85 /* SIRMDR1 */
86 #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME		(0 << 28)
87 #define RCAR_DRIF_SIRMDR1_SYNCMD_LR		(3 << 28)
88 
89 #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH	(0 << 25)
90 #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW	(1 << 25)
91 
92 #define RCAR_DRIF_SIRMDR1_MSB_FIRST		(0 << 24)
93 #define RCAR_DRIF_SIRMDR1_LSB_FIRST		(1 << 24)
94 
95 #define RCAR_DRIF_SIRMDR1_DTDL_0		(0 << 20)
96 #define RCAR_DRIF_SIRMDR1_DTDL_1		(1 << 20)
97 #define RCAR_DRIF_SIRMDR1_DTDL_2		(2 << 20)
98 #define RCAR_DRIF_SIRMDR1_DTDL_0PT5		(5 << 20)
99 #define RCAR_DRIF_SIRMDR1_DTDL_1PT5		(6 << 20)
100 
101 #define RCAR_DRIF_SIRMDR1_SYNCDL_0		(0 << 20)
102 #define RCAR_DRIF_SIRMDR1_SYNCDL_1		(1 << 20)
103 #define RCAR_DRIF_SIRMDR1_SYNCDL_2		(2 << 20)
104 #define RCAR_DRIF_SIRMDR1_SYNCDL_3		(3 << 20)
105 #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5		(5 << 20)
106 #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5		(6 << 20)
107 
108 #define RCAR_DRIF_MDR_GRPCNT(n)			(((n) - 1) << 30)
109 #define RCAR_DRIF_MDR_BITLEN(n)			(((n) - 1) << 24)
110 #define RCAR_DRIF_MDR_WDCNT(n)			(((n) - 1) << 16)
111 
112 /* Hidden Transmit register that controls CLK & SYNC */
113 #define RCAR_DRIF_SITMDR1_PCON			BIT(30)
114 
115 #define RCAR_DRIF_SICTR_RX_RISING_EDGE		BIT(26)
116 #define RCAR_DRIF_SICTR_RX_EN			BIT(8)
117 #define RCAR_DRIF_SICTR_RESET			BIT(0)
118 
119 /* Constants */
120 #define RCAR_DRIF_NUM_HWBUFS			32
121 #define RCAR_DRIF_MAX_DEVS			4
122 #define RCAR_DRIF_DEFAULT_NUM_HWBUFS		16
123 #define RCAR_DRIF_DEFAULT_HWBUF_SIZE		(4 * PAGE_SIZE)
124 #define RCAR_DRIF_MAX_CHANNEL			2
125 #define RCAR_SDR_BUFFER_SIZE			SZ_64K
126 
127 /* Internal buffer status flags */
128 #define RCAR_DRIF_BUF_DONE			BIT(0)	/* DMA completed */
129 #define RCAR_DRIF_BUF_OVERFLOW			BIT(1)	/* Overflow detected */
130 
131 #define to_rcar_drif_buf_pair(sdr, ch_num, idx)			\
132 	(&((sdr)->ch[!(ch_num)]->buf[(idx)]))
133 
134 #define for_each_rcar_drif_channel(ch, ch_mask)			\
135 	for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)
136 
137 /* Debug */
138 #define rdrif_dbg(sdr, fmt, arg...)				\
139 	dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)
140 
141 #define rdrif_err(sdr, fmt, arg...)				\
142 	dev_err(sdr->v4l2_dev.dev, fmt, ## arg)
143 
144 /* Stream formats */
145 struct rcar_drif_format {
146 	u32	pixelformat;
147 	u32	buffersize;
148 	u32	bitlen;
149 	u32	wdcnt;
150 	u32	num_ch;
151 };
152 
153 /* Format descriptions for capture */
154 static const struct rcar_drif_format formats[] = {
155 	{
156 		.pixelformat	= V4L2_SDR_FMT_PCU16BE,
157 		.buffersize	= RCAR_SDR_BUFFER_SIZE,
158 		.bitlen		= 16,
159 		.wdcnt		= 1,
160 		.num_ch		= 2,
161 	},
162 	{
163 		.pixelformat	= V4L2_SDR_FMT_PCU18BE,
164 		.buffersize	= RCAR_SDR_BUFFER_SIZE,
165 		.bitlen		= 18,
166 		.wdcnt		= 1,
167 		.num_ch		= 2,
168 	},
169 	{
170 		.pixelformat	= V4L2_SDR_FMT_PCU20BE,
171 		.buffersize	= RCAR_SDR_BUFFER_SIZE,
172 		.bitlen		= 20,
173 		.wdcnt		= 1,
174 		.num_ch		= 2,
175 	},
176 };
177 
178 /* Buffer for a received frame from one or both internal channels */
179 struct rcar_drif_frame_buf {
180 	/* Common v4l buffer stuff -- must be first */
181 	struct vb2_v4l2_buffer vb;
182 	struct list_head list;
183 };
184 
185 /* OF graph endpoint's V4L2 async data */
186 struct rcar_drif_graph_ep {
187 	struct v4l2_subdev *subdev;	/* Async matched subdev */
188 };
189 
190 /* DMA buffer */
191 struct rcar_drif_hwbuf {
192 	void *addr;			/* CPU-side address */
193 	unsigned int status;		/* Buffer status flags */
194 };
195 
196 /* Internal channel */
197 struct rcar_drif {
198 	struct rcar_drif_sdr *sdr;	/* Group device */
199 	struct platform_device *pdev;	/* Channel's pdev */
200 	void __iomem *base;		/* Base register address */
201 	resource_size_t start;		/* I/O resource offset */
202 	struct dma_chan *dmach;		/* Reserved DMA channel */
203 	struct clk *clk;		/* Module clock */
204 	struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
205 	dma_addr_t dma_handle;		/* Handle for all bufs */
206 	unsigned int num;		/* Channel number */
207 	bool acting_sdr;		/* Channel acting as SDR device */
208 };
209 
210 /* DRIF V4L2 SDR */
211 struct rcar_drif_sdr {
212 	struct device *dev;		/* Platform device */
213 	struct video_device *vdev;	/* V4L2 SDR device */
214 	struct v4l2_device v4l2_dev;	/* V4L2 device */
215 
216 	/* Videobuf2 queue and queued buffers list */
217 	struct vb2_queue vb_queue;
218 	struct list_head queued_bufs;
219 	spinlock_t queued_bufs_lock;	/* Protects queued_bufs */
220 	spinlock_t dma_lock;		/* To serialize DMA cb of channels */
221 
222 	struct mutex v4l2_mutex;	/* To serialize ioctls */
223 	struct mutex vb_queue_mutex;	/* To serialize streaming ioctls */
224 	struct v4l2_ctrl_handler ctrl_hdl;	/* SDR control handler */
225 	struct v4l2_async_notifier notifier;	/* For subdev (tuner) */
226 	struct rcar_drif_graph_ep ep;	/* Endpoint V4L2 async data */
227 
228 	/* Current V4L2 SDR format ptr */
229 	const struct rcar_drif_format *fmt;
230 
231 	/* Device tree SYNC properties */
232 	u32 mdr1;
233 
234 	/* Internals */
235 	struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
236 	unsigned long hw_ch_mask;	/* Enabled channels per DT */
237 	unsigned long cur_ch_mask;	/* Used channels for an SDR FMT */
238 	u32 num_hw_ch;			/* Num of DT enabled channels */
239 	u32 num_cur_ch;			/* Num of used channels */
240 	u32 hwbuf_size;			/* Each DMA buffer size */
241 	u32 produced;			/* Buffers produced by sdr dev */
242 };
243 
244 /* Register access functions */
245 static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
246 {
247 	writel(data, ch->base + offset);
248 }
249 
250 static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
251 {
252 	return readl(ch->base + offset);
253 }
254 
255 /* Release DMA channels */
256 static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
257 {
258 	unsigned int i;
259 
260 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
261 		if (sdr->ch[i]->dmach) {
262 			dma_release_channel(sdr->ch[i]->dmach);
263 			sdr->ch[i]->dmach = NULL;
264 		}
265 }
266 
267 /* Allocate DMA channels */
268 static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
269 {
270 	struct dma_slave_config dma_cfg;
271 	unsigned int i;
272 	int ret;
273 
274 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
275 		struct rcar_drif *ch = sdr->ch[i];
276 
277 		ch->dmach = dma_request_chan(&ch->pdev->dev, "rx");
278 		if (IS_ERR(ch->dmach)) {
279 			ret = PTR_ERR(ch->dmach);
280 			if (ret != -EPROBE_DEFER)
281 				rdrif_err(sdr,
282 					  "ch%u: dma channel req failed: %pe\n",
283 					  i, ch->dmach);
284 			ch->dmach = NULL;
285 			goto dmach_error;
286 		}
287 
288 		/* Configure slave */
289 		memset(&dma_cfg, 0, sizeof(dma_cfg));
290 		dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
291 		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
292 		ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
293 		if (ret) {
294 			rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
295 			goto dmach_error;
296 		}
297 	}
298 	return 0;
299 
300 dmach_error:
301 	rcar_drif_release_dmachannels(sdr);
302 	return ret;
303 }
304 
305 /* Release queued vb2 buffers */
306 static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
307 					  enum vb2_buffer_state state)
308 {
309 	struct rcar_drif_frame_buf *fbuf, *tmp;
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
313 	list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
314 		list_del(&fbuf->list);
315 		vb2_buffer_done(&fbuf->vb.vb2_buf, state);
316 	}
317 	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
318 }
319 
320 /* Set MDR defaults */
321 static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
322 {
323 	unsigned int i;
324 
325 	/* Set defaults for enabled internal channels */
326 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
327 		/* Refer MSIOF section in manual for this register setting */
328 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
329 				RCAR_DRIF_SITMDR1_PCON);
330 
331 		/* Setup MDR1 value */
332 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);
333 
334 		rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
335 			  i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
336 	}
337 }
338 
339 /* Set DRIF receive format */
340 static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
341 {
342 	unsigned int i;
343 
344 	rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
345 		  sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);
346 
347 	/* Sanity check */
348 	if (sdr->fmt->num_ch > sdr->num_cur_ch) {
349 		rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
350 			  sdr->fmt->num_ch, sdr->num_cur_ch);
351 		return -EINVAL;
352 	}
353 
354 	/* Setup group, bitlen & wdcnt */
355 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
356 		u32 mdr;
357 
358 		/* Two groups */
359 		mdr = RCAR_DRIF_MDR_GRPCNT(2) |
360 			RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
361 			RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
362 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);
363 
364 		mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
365 			RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
366 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);
367 
368 		rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
369 			  i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
370 			  rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
371 	}
372 	return 0;
373 }
374 
375 /* Release DMA buffers */
376 static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
377 {
378 	unsigned int i;
379 
380 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
381 		struct rcar_drif *ch = sdr->ch[i];
382 
383 		/* First entry contains the dma buf ptr */
384 		if (ch->buf[0].addr) {
385 			dma_free_coherent(&ch->pdev->dev,
386 				sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
387 				ch->buf[0].addr, ch->dma_handle);
388 			ch->buf[0].addr = NULL;
389 		}
390 	}
391 }
392 
393 /* Request DMA buffers */
394 static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
395 {
396 	int ret = -ENOMEM;
397 	unsigned int i, j;
398 	void *addr;
399 
400 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
401 		struct rcar_drif *ch = sdr->ch[i];
402 
403 		/* Allocate DMA buffers */
404 		addr = dma_alloc_coherent(&ch->pdev->dev,
405 				sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
406 				&ch->dma_handle, GFP_KERNEL);
407 		if (!addr) {
408 			rdrif_err(sdr,
409 			"ch%u: dma alloc failed. num hwbufs %u size %u\n",
410 			i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
411 			goto error;
412 		}
413 
414 		/* Split the chunk and populate bufctxt */
415 		for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
416 			ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
417 			ch->buf[j].status = 0;
418 		}
419 	}
420 	return 0;
421 error:
422 	return ret;
423 }
424 
425 /* Setup vb_queue minimum buffer requirements */
426 static int rcar_drif_queue_setup(struct vb2_queue *vq,
427 			unsigned int *num_buffers, unsigned int *num_planes,
428 			unsigned int sizes[], struct device *alloc_devs[])
429 {
430 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
431 
432 	/* Need at least 16 buffers */
433 	if (vq->num_buffers + *num_buffers < 16)
434 		*num_buffers = 16 - vq->num_buffers;
435 
436 	*num_planes = 1;
437 	sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
438 	rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);
439 
440 	return 0;
441 }
442 
443 /* Enqueue buffer */
444 static void rcar_drif_buf_queue(struct vb2_buffer *vb)
445 {
446 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
447 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
448 	struct rcar_drif_frame_buf *fbuf =
449 			container_of(vbuf, struct rcar_drif_frame_buf, vb);
450 	unsigned long flags;
451 
452 	rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
453 	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
454 	list_add_tail(&fbuf->list, &sdr->queued_bufs);
455 	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
456 }
457 
458 /* Get a frame buf from list */
459 static struct rcar_drif_frame_buf *
460 rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
461 {
462 	struct rcar_drif_frame_buf *fbuf;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
466 	fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
467 					rcar_drif_frame_buf, list);
468 	if (!fbuf) {
469 		/*
470 		 * App is late in enqueing buffers. Samples lost & there will
471 		 * be a gap in sequence number when app recovers
472 		 */
473 		rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
474 		spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
475 		return NULL;
476 	}
477 	list_del(&fbuf->list);
478 	spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
479 
480 	return fbuf;
481 }
482 
483 /* Helpers to set/clear buf pair status */
484 static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
485 {
486 	return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
487 }
488 
489 static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
490 {
491 	return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
492 }
493 
494 static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
495 					unsigned int bit)
496 {
497 	unsigned int i;
498 
499 	for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
500 		buf[i]->status &= ~bit;
501 }
502 
503 /* Channel DMA complete */
504 static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
505 {
506 	u32 str;
507 
508 	ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;
509 
510 	/* Check for DRIF errors */
511 	str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
512 	if (unlikely(str & RCAR_DRIF_RFOVF)) {
513 		/* Writing the same clears it */
514 		rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
515 
516 		/* Overflow: some samples are lost */
517 		ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
518 	}
519 }
520 
521 /* DMA callback for each stage */
522 static void rcar_drif_dma_complete(void *dma_async_param)
523 {
524 	struct rcar_drif *ch = dma_async_param;
525 	struct rcar_drif_sdr *sdr = ch->sdr;
526 	struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
527 	struct rcar_drif_frame_buf *fbuf;
528 	bool overflow = false;
529 	u32 idx, produced;
530 	unsigned int i;
531 
532 	spin_lock(&sdr->dma_lock);
533 
534 	/* DMA can be terminated while the callback was waiting on lock */
535 	if (!vb2_is_streaming(&sdr->vb_queue)) {
536 		spin_unlock(&sdr->dma_lock);
537 		return;
538 	}
539 
540 	idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
541 	rcar_drif_channel_complete(ch, idx);
542 
543 	if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
544 		buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
545 				&ch->buf[idx];
546 		buf[1] = ch->num ? &ch->buf[idx] :
547 				to_rcar_drif_buf_pair(sdr, ch->num, idx);
548 
549 		/* Check if both DMA buffers are done */
550 		if (!rcar_drif_bufs_done(buf)) {
551 			spin_unlock(&sdr->dma_lock);
552 			return;
553 		}
554 
555 		/* Clear buf done status */
556 		rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);
557 
558 		if (rcar_drif_bufs_overflow(buf)) {
559 			overflow = true;
560 			/* Clear the flag in status */
561 			rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
562 		}
563 	} else {
564 		buf[0] = &ch->buf[idx];
565 		if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
566 			overflow = true;
567 			/* Clear the flag in status */
568 			buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
569 		}
570 	}
571 
572 	/* Buffer produced for consumption */
573 	produced = sdr->produced++;
574 	spin_unlock(&sdr->dma_lock);
575 
576 	rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);
577 
578 	/* Get fbuf */
579 	fbuf = rcar_drif_get_fbuf(sdr);
580 	if (!fbuf)
581 		return;
582 
583 	for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
584 		memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
585 		       i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);
586 
587 	fbuf->vb.field = V4L2_FIELD_NONE;
588 	fbuf->vb.sequence = produced;
589 	fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
590 	vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);
591 
592 	/* Set error state on overflow */
593 	vb2_buffer_done(&fbuf->vb.vb2_buf,
594 			overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
595 }
596 
597 static int rcar_drif_qbuf(struct rcar_drif *ch)
598 {
599 	struct rcar_drif_sdr *sdr = ch->sdr;
600 	dma_addr_t addr = ch->dma_handle;
601 	struct dma_async_tx_descriptor *rxd;
602 	dma_cookie_t cookie;
603 	int ret = -EIO;
604 
605 	/* Setup cyclic DMA with given buffers */
606 	rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
607 					sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
608 					sdr->hwbuf_size, DMA_DEV_TO_MEM,
609 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
610 	if (!rxd) {
611 		rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
612 		return ret;
613 	}
614 
615 	/* Submit descriptor */
616 	rxd->callback = rcar_drif_dma_complete;
617 	rxd->callback_param = ch;
618 	cookie = dmaengine_submit(rxd);
619 	if (dma_submit_error(cookie)) {
620 		rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
621 		return ret;
622 	}
623 
624 	dma_async_issue_pending(ch->dmach);
625 	return 0;
626 }
627 
628 /* Enable reception */
629 static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
630 {
631 	unsigned int i;
632 	u32 ctr;
633 	int ret = -EINVAL;
634 
635 	/*
636 	 * When both internal channels are enabled, they can be synchronized
637 	 * only by the master
638 	 */
639 
640 	/* Enable receive */
641 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
642 		ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
643 		ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
644 			 RCAR_DRIF_SICTR_RX_EN);
645 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
646 	}
647 
648 	/* Check receive enabled */
649 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
650 		ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
651 				ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
652 		if (ret) {
653 			rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
654 				  rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
655 			break;
656 		}
657 	}
658 	return ret;
659 }
660 
661 /* Disable reception */
662 static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
663 {
664 	unsigned int i;
665 	u32 ctr;
666 	int ret;
667 
668 	/* Disable receive */
669 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
670 		ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
671 		ctr &= ~RCAR_DRIF_SICTR_RX_EN;
672 		rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
673 	}
674 
675 	/* Check receive disabled */
676 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
677 		ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
678 				ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
679 		if (ret)
680 			dev_warn(&sdr->vdev->dev,
681 			"ch%u: failed to disable rx. ctr 0x%08x\n",
682 			i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
683 	}
684 }
685 
686 /* Stop channel */
687 static void rcar_drif_stop_channel(struct rcar_drif *ch)
688 {
689 	/* Disable DMA receive interrupt */
690 	rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);
691 
692 	/* Terminate all DMA transfers */
693 	dmaengine_terminate_sync(ch->dmach);
694 }
695 
696 /* Stop receive operation */
697 static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
698 {
699 	unsigned int i;
700 
701 	/* Disable Rx */
702 	rcar_drif_disable_rx(sdr);
703 
704 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
705 		rcar_drif_stop_channel(sdr->ch[i]);
706 }
707 
708 /* Start channel */
709 static int rcar_drif_start_channel(struct rcar_drif *ch)
710 {
711 	struct rcar_drif_sdr *sdr = ch->sdr;
712 	u32 ctr, str;
713 	int ret;
714 
715 	/* Reset receive */
716 	rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
717 	ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
718 				 !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
719 	if (ret) {
720 		rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
721 			  ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
722 		return ret;
723 	}
724 
725 	/* Queue buffers for DMA */
726 	ret = rcar_drif_qbuf(ch);
727 	if (ret)
728 		return ret;
729 
730 	/* Clear status register flags */
731 	str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
732 		RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
733 	rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
734 
735 	/* Enable DMA receive interrupt */
736 	rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);
737 
738 	return ret;
739 }
740 
741 /* Start receive operation */
742 static int rcar_drif_start(struct rcar_drif_sdr *sdr)
743 {
744 	unsigned long enabled = 0;
745 	unsigned int i;
746 	int ret;
747 
748 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
749 		ret = rcar_drif_start_channel(sdr->ch[i]);
750 		if (ret)
751 			goto start_error;
752 		enabled |= BIT(i);
753 	}
754 
755 	ret = rcar_drif_enable_rx(sdr);
756 	if (ret)
757 		goto enable_error;
758 
759 	sdr->produced = 0;
760 	return ret;
761 
762 enable_error:
763 	rcar_drif_disable_rx(sdr);
764 start_error:
765 	for_each_rcar_drif_channel(i, &enabled)
766 		rcar_drif_stop_channel(sdr->ch[i]);
767 
768 	return ret;
769 }
770 
771 /* Start streaming */
772 static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
773 {
774 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
775 	unsigned long enabled = 0;
776 	unsigned int i;
777 	int ret;
778 
779 	mutex_lock(&sdr->v4l2_mutex);
780 
781 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
782 		ret = clk_prepare_enable(sdr->ch[i]->clk);
783 		if (ret)
784 			goto error;
785 		enabled |= BIT(i);
786 	}
787 
788 	/* Set default MDRx settings */
789 	rcar_drif_set_mdr1(sdr);
790 
791 	/* Set new format */
792 	ret = rcar_drif_set_format(sdr);
793 	if (ret)
794 		goto error;
795 
796 	if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
797 		sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
798 	else
799 		sdr->hwbuf_size = sdr->fmt->buffersize;
800 
801 	rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
802 		RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
803 
804 	/* Alloc DMA channel */
805 	ret = rcar_drif_alloc_dmachannels(sdr);
806 	if (ret)
807 		goto error;
808 
809 	/* Request buffers */
810 	ret = rcar_drif_request_buf(sdr);
811 	if (ret)
812 		goto error;
813 
814 	/* Start Rx */
815 	ret = rcar_drif_start(sdr);
816 	if (ret)
817 		goto error;
818 
819 	mutex_unlock(&sdr->v4l2_mutex);
820 
821 	return ret;
822 
823 error:
824 	rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
825 	rcar_drif_release_buf(sdr);
826 	rcar_drif_release_dmachannels(sdr);
827 	for_each_rcar_drif_channel(i, &enabled)
828 		clk_disable_unprepare(sdr->ch[i]->clk);
829 
830 	mutex_unlock(&sdr->v4l2_mutex);
831 
832 	return ret;
833 }
834 
835 /* Stop streaming */
836 static void rcar_drif_stop_streaming(struct vb2_queue *vq)
837 {
838 	struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
839 	unsigned int i;
840 
841 	mutex_lock(&sdr->v4l2_mutex);
842 
843 	/* Stop hardware streaming */
844 	rcar_drif_stop(sdr);
845 
846 	/* Return all queued buffers to vb2 */
847 	rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);
848 
849 	/* Release buf */
850 	rcar_drif_release_buf(sdr);
851 
852 	/* Release DMA channel resources */
853 	rcar_drif_release_dmachannels(sdr);
854 
855 	for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
856 		clk_disable_unprepare(sdr->ch[i]->clk);
857 
858 	mutex_unlock(&sdr->v4l2_mutex);
859 }
860 
861 /* Vb2 ops */
862 static const struct vb2_ops rcar_drif_vb2_ops = {
863 	.queue_setup            = rcar_drif_queue_setup,
864 	.buf_queue              = rcar_drif_buf_queue,
865 	.start_streaming        = rcar_drif_start_streaming,
866 	.stop_streaming         = rcar_drif_stop_streaming,
867 	.wait_prepare		= vb2_ops_wait_prepare,
868 	.wait_finish		= vb2_ops_wait_finish,
869 };
870 
871 static int rcar_drif_querycap(struct file *file, void *fh,
872 			      struct v4l2_capability *cap)
873 {
874 	struct rcar_drif_sdr *sdr = video_drvdata(file);
875 
876 	strscpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
877 	strscpy(cap->card, sdr->vdev->name, sizeof(cap->card));
878 	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
879 		 sdr->vdev->name);
880 
881 	return 0;
882 }
883 
884 static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
885 {
886 	unsigned int i;
887 
888 	for (i = 0; i < ARRAY_SIZE(formats); i++) {
889 		/* Matching fmt based on required channels is set as default */
890 		if (sdr->num_hw_ch == formats[i].num_ch) {
891 			sdr->fmt = &formats[i];
892 			sdr->cur_ch_mask = sdr->hw_ch_mask;
893 			sdr->num_cur_ch = sdr->num_hw_ch;
894 			dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
895 				i, sdr->cur_ch_mask, sdr->num_cur_ch);
896 			return 0;
897 		}
898 	}
899 	return -EINVAL;
900 }
901 
902 static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
903 				      struct v4l2_fmtdesc *f)
904 {
905 	if (f->index >= ARRAY_SIZE(formats))
906 		return -EINVAL;
907 
908 	f->pixelformat = formats[f->index].pixelformat;
909 
910 	return 0;
911 }
912 
913 static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
914 				   struct v4l2_format *f)
915 {
916 	struct rcar_drif_sdr *sdr = video_drvdata(file);
917 
918 	f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
919 	f->fmt.sdr.buffersize = sdr->fmt->buffersize;
920 
921 	return 0;
922 }
923 
924 static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
925 				   struct v4l2_format *f)
926 {
927 	struct rcar_drif_sdr *sdr = video_drvdata(file);
928 	struct vb2_queue *q = &sdr->vb_queue;
929 	unsigned int i;
930 
931 	if (vb2_is_busy(q))
932 		return -EBUSY;
933 
934 	for (i = 0; i < ARRAY_SIZE(formats); i++) {
935 		if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
936 			break;
937 	}
938 
939 	if (i == ARRAY_SIZE(formats))
940 		i = 0;		/* Set the 1st format as default on no match */
941 
942 	sdr->fmt = &formats[i];
943 	f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
944 	f->fmt.sdr.buffersize = formats[i].buffersize;
945 	memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
946 
947 	/*
948 	 * If a format demands one channel only out of two
949 	 * enabled channels, pick the 0th channel.
950 	 */
951 	if (formats[i].num_ch < sdr->num_hw_ch) {
952 		sdr->cur_ch_mask = BIT(0);
953 		sdr->num_cur_ch = formats[i].num_ch;
954 	} else {
955 		sdr->cur_ch_mask = sdr->hw_ch_mask;
956 		sdr->num_cur_ch = sdr->num_hw_ch;
957 	}
958 
959 	rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
960 		  i, sdr->cur_ch_mask, sdr->num_cur_ch);
961 
962 	return 0;
963 }
964 
965 static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
966 				     struct v4l2_format *f)
967 {
968 	unsigned int i;
969 
970 	for (i = 0; i < ARRAY_SIZE(formats); i++) {
971 		if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
972 			f->fmt.sdr.buffersize = formats[i].buffersize;
973 			return 0;
974 		}
975 	}
976 
977 	f->fmt.sdr.pixelformat = formats[0].pixelformat;
978 	f->fmt.sdr.buffersize = formats[0].buffersize;
979 	memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
980 
981 	return 0;
982 }
983 
984 /* Tuner subdev ioctls */
985 static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
986 				     struct v4l2_frequency_band *band)
987 {
988 	struct rcar_drif_sdr *sdr = video_drvdata(file);
989 
990 	return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
991 }
992 
993 static int rcar_drif_g_frequency(struct file *file, void *priv,
994 				 struct v4l2_frequency *f)
995 {
996 	struct rcar_drif_sdr *sdr = video_drvdata(file);
997 
998 	return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
999 }
1000 
1001 static int rcar_drif_s_frequency(struct file *file, void *priv,
1002 				 const struct v4l2_frequency *f)
1003 {
1004 	struct rcar_drif_sdr *sdr = video_drvdata(file);
1005 
1006 	return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
1007 }
1008 
1009 static int rcar_drif_g_tuner(struct file *file, void *priv,
1010 			     struct v4l2_tuner *vt)
1011 {
1012 	struct rcar_drif_sdr *sdr = video_drvdata(file);
1013 
1014 	return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
1015 }
1016 
1017 static int rcar_drif_s_tuner(struct file *file, void *priv,
1018 			     const struct v4l2_tuner *vt)
1019 {
1020 	struct rcar_drif_sdr *sdr = video_drvdata(file);
1021 
1022 	return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
1023 }
1024 
1025 static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
1026 	.vidioc_querycap          = rcar_drif_querycap,
1027 
1028 	.vidioc_enum_fmt_sdr_cap  = rcar_drif_enum_fmt_sdr_cap,
1029 	.vidioc_g_fmt_sdr_cap     = rcar_drif_g_fmt_sdr_cap,
1030 	.vidioc_s_fmt_sdr_cap     = rcar_drif_s_fmt_sdr_cap,
1031 	.vidioc_try_fmt_sdr_cap   = rcar_drif_try_fmt_sdr_cap,
1032 
1033 	.vidioc_reqbufs           = vb2_ioctl_reqbufs,
1034 	.vidioc_create_bufs       = vb2_ioctl_create_bufs,
1035 	.vidioc_prepare_buf       = vb2_ioctl_prepare_buf,
1036 	.vidioc_querybuf          = vb2_ioctl_querybuf,
1037 	.vidioc_qbuf              = vb2_ioctl_qbuf,
1038 	.vidioc_dqbuf             = vb2_ioctl_dqbuf,
1039 
1040 	.vidioc_streamon          = vb2_ioctl_streamon,
1041 	.vidioc_streamoff         = vb2_ioctl_streamoff,
1042 
1043 	.vidioc_s_frequency       = rcar_drif_s_frequency,
1044 	.vidioc_g_frequency       = rcar_drif_g_frequency,
1045 	.vidioc_s_tuner		  = rcar_drif_s_tuner,
1046 	.vidioc_g_tuner		  = rcar_drif_g_tuner,
1047 	.vidioc_enum_freq_bands   = rcar_drif_enum_freq_bands,
1048 	.vidioc_subscribe_event   = v4l2_ctrl_subscribe_event,
1049 	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1050 	.vidioc_log_status        = v4l2_ctrl_log_status,
1051 };
1052 
1053 static const struct v4l2_file_operations rcar_drif_fops = {
1054 	.owner                    = THIS_MODULE,
1055 	.open                     = v4l2_fh_open,
1056 	.release                  = vb2_fop_release,
1057 	.read                     = vb2_fop_read,
1058 	.poll                     = vb2_fop_poll,
1059 	.mmap                     = vb2_fop_mmap,
1060 	.unlocked_ioctl           = video_ioctl2,
1061 };
1062 
1063 static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
1064 {
1065 	int ret;
1066 
1067 	/* Init video_device structure */
1068 	sdr->vdev = video_device_alloc();
1069 	if (!sdr->vdev)
1070 		return -ENOMEM;
1071 
1072 	snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
1073 	sdr->vdev->fops = &rcar_drif_fops;
1074 	sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
1075 	sdr->vdev->release = video_device_release;
1076 	sdr->vdev->lock = &sdr->v4l2_mutex;
1077 	sdr->vdev->queue = &sdr->vb_queue;
1078 	sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
1079 	sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
1080 	sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
1081 	sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
1082 		V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
1083 	video_set_drvdata(sdr->vdev, sdr);
1084 
1085 	/* Register V4L2 SDR device */
1086 	ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
1087 	if (ret) {
1088 		video_device_release(sdr->vdev);
1089 		sdr->vdev = NULL;
1090 		dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
1091 	}
1092 
1093 	return ret;
1094 }
1095 
1096 static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
1097 {
1098 	video_unregister_device(sdr->vdev);
1099 	sdr->vdev = NULL;
1100 }
1101 
1102 /* Sub-device bound callback */
1103 static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
1104 				   struct v4l2_subdev *subdev,
1105 				   struct v4l2_async_subdev *asd)
1106 {
1107 	struct rcar_drif_sdr *sdr =
1108 		container_of(notifier, struct rcar_drif_sdr, notifier);
1109 
1110 	v4l2_set_subdev_hostdata(subdev, sdr);
1111 	sdr->ep.subdev = subdev;
1112 	rdrif_dbg(sdr, "bound asd %s\n", subdev->name);
1113 
1114 	return 0;
1115 }
1116 
1117 /* Sub-device unbind callback */
1118 static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
1119 				   struct v4l2_subdev *subdev,
1120 				   struct v4l2_async_subdev *asd)
1121 {
1122 	struct rcar_drif_sdr *sdr =
1123 		container_of(notifier, struct rcar_drif_sdr, notifier);
1124 
1125 	if (sdr->ep.subdev != subdev) {
1126 		rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
1127 		return;
1128 	}
1129 
1130 	/* Free ctrl handler if initialized */
1131 	v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
1132 	sdr->v4l2_dev.ctrl_handler = NULL;
1133 	sdr->ep.subdev = NULL;
1134 
1135 	rcar_drif_sdr_unregister(sdr);
1136 	rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
1137 }
1138 
1139 /* Sub-device registered notification callback */
1140 static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
1141 {
1142 	struct rcar_drif_sdr *sdr =
1143 		container_of(notifier, struct rcar_drif_sdr, notifier);
1144 	int ret;
1145 
1146 	/*
1147 	 * The subdev tested at this point uses 4 controls. Using 10 as a worst
1148 	 * case scenario hint. When less controls are needed there will be some
1149 	 * unused memory and when more controls are needed the framework uses
1150 	 * hash to manage controls within this number.
1151 	 */
1152 	ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
1153 	if (ret)
1154 		return -ENOMEM;
1155 
1156 	sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
1157 	ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
1158 	if (ret) {
1159 		rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
1160 		goto error;
1161 	}
1162 
1163 	ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
1164 				    sdr->ep.subdev->ctrl_handler, NULL, true);
1165 	if (ret) {
1166 		rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
1167 		goto error;
1168 	}
1169 
1170 	ret = rcar_drif_sdr_register(sdr);
1171 	if (ret)
1172 		goto error;
1173 
1174 	return ret;
1175 
1176 error:
1177 	v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
1178 
1179 	return ret;
1180 }
1181 
1182 static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = {
1183 	.bound = rcar_drif_notify_bound,
1184 	.unbind = rcar_drif_notify_unbind,
1185 	.complete = rcar_drif_notify_complete,
1186 };
1187 
1188 /* Read endpoint properties */
1189 static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
1190 					struct fwnode_handle *fwnode)
1191 {
1192 	u32 val;
1193 
1194 	/* Set the I2S defaults for SIRMDR1*/
1195 	sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
1196 		RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;
1197 
1198 	/* Parse sync polarity from endpoint */
1199 	if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
1200 		sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
1201 			RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
1202 	else
1203 		sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */
1204 
1205 	dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
1206 }
1207 
1208 /* Parse sub-devs (tuner) to find a matching device */
1209 static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
1210 {
1211 	struct v4l2_async_notifier *notifier = &sdr->notifier;
1212 	struct fwnode_handle *fwnode, *ep;
1213 	struct v4l2_async_subdev *asd;
1214 
1215 	v4l2_async_nf_init(notifier);
1216 
1217 	ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
1218 					    NULL);
1219 	if (!ep)
1220 		return 0;
1221 
1222 	/* Get the endpoint properties */
1223 	rcar_drif_get_ep_properties(sdr, ep);
1224 
1225 	fwnode = fwnode_graph_get_remote_port_parent(ep);
1226 	fwnode_handle_put(ep);
1227 	if (!fwnode) {
1228 		dev_warn(sdr->dev, "bad remote port parent\n");
1229 		return -EINVAL;
1230 	}
1231 
1232 	asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1233 				       struct v4l2_async_subdev);
1234 	fwnode_handle_put(fwnode);
1235 	if (IS_ERR(asd))
1236 		return PTR_ERR(asd);
1237 
1238 	return 0;
1239 }
1240 
1241 /* Check if the given device is the primary bond */
1242 static bool rcar_drif_primary_bond(struct platform_device *pdev)
1243 {
1244 	return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
1245 }
1246 
1247 /* Check if both devices of the bond are enabled */
1248 static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
1249 {
1250 	struct device_node *np;
1251 
1252 	np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
1253 	if (np && of_device_is_available(np))
1254 		return np;
1255 
1256 	return NULL;
1257 }
1258 
1259 /* Check if the bonded device is probed */
1260 static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
1261 				    struct device_node *np)
1262 {
1263 	struct platform_device *pdev;
1264 	struct rcar_drif *ch;
1265 	int ret = 0;
1266 
1267 	pdev = of_find_device_by_node(np);
1268 	if (!pdev) {
1269 		dev_err(sdr->dev, "failed to get bonded device from node\n");
1270 		return -ENODEV;
1271 	}
1272 
1273 	device_lock(&pdev->dev);
1274 	ch = platform_get_drvdata(pdev);
1275 	if (ch) {
1276 		/* Update sdr data in the bonded device */
1277 		ch->sdr = sdr;
1278 
1279 		/* Update sdr with bonded device data */
1280 		sdr->ch[ch->num] = ch;
1281 		sdr->hw_ch_mask |= BIT(ch->num);
1282 	} else {
1283 		/* Defer */
1284 		dev_info(sdr->dev, "defer probe\n");
1285 		ret = -EPROBE_DEFER;
1286 	}
1287 	device_unlock(&pdev->dev);
1288 
1289 	put_device(&pdev->dev);
1290 
1291 	return ret;
1292 }
1293 
1294 /* V4L2 SDR device probe */
1295 static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
1296 {
1297 	int ret;
1298 
1299 	/* Validate any supported format for enabled channels */
1300 	ret = rcar_drif_set_default_format(sdr);
1301 	if (ret) {
1302 		dev_err(sdr->dev, "failed to set default format\n");
1303 		return ret;
1304 	}
1305 
1306 	/* Set defaults */
1307 	sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;
1308 
1309 	mutex_init(&sdr->v4l2_mutex);
1310 	mutex_init(&sdr->vb_queue_mutex);
1311 	spin_lock_init(&sdr->queued_bufs_lock);
1312 	spin_lock_init(&sdr->dma_lock);
1313 	INIT_LIST_HEAD(&sdr->queued_bufs);
1314 
1315 	/* Init videobuf2 queue structure */
1316 	sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
1317 	sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
1318 	sdr->vb_queue.drv_priv = sdr;
1319 	sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
1320 	sdr->vb_queue.ops = &rcar_drif_vb2_ops;
1321 	sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
1322 	sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1323 
1324 	/* Init videobuf2 queue */
1325 	ret = vb2_queue_init(&sdr->vb_queue);
1326 	if (ret) {
1327 		dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
1328 		return ret;
1329 	}
1330 
1331 	/* Register the v4l2_device */
1332 	ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
1333 	if (ret) {
1334 		dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
1335 		return ret;
1336 	}
1337 
1338 	/*
1339 	 * Parse subdevs after v4l2_device_register because if the subdev
1340 	 * is already probed, bound and complete will be called immediately
1341 	 */
1342 	ret = rcar_drif_parse_subdevs(sdr);
1343 	if (ret)
1344 		goto error;
1345 
1346 	sdr->notifier.ops = &rcar_drif_notify_ops;
1347 
1348 	/* Register notifier */
1349 	ret = v4l2_async_nf_register(&sdr->v4l2_dev, &sdr->notifier);
1350 	if (ret < 0) {
1351 		dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
1352 		goto cleanup;
1353 	}
1354 
1355 	return ret;
1356 
1357 cleanup:
1358 	v4l2_async_nf_cleanup(&sdr->notifier);
1359 error:
1360 	v4l2_device_unregister(&sdr->v4l2_dev);
1361 
1362 	return ret;
1363 }
1364 
1365 /* V4L2 SDR device remove */
1366 static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
1367 {
1368 	v4l2_async_nf_unregister(&sdr->notifier);
1369 	v4l2_async_nf_cleanup(&sdr->notifier);
1370 	v4l2_device_unregister(&sdr->v4l2_dev);
1371 }
1372 
1373 /* DRIF channel probe */
1374 static int rcar_drif_probe(struct platform_device *pdev)
1375 {
1376 	struct rcar_drif_sdr *sdr;
1377 	struct device_node *np;
1378 	struct rcar_drif *ch;
1379 	struct resource	*res;
1380 	int ret;
1381 
1382 	/* Reserve memory for enabled channel */
1383 	ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
1384 	if (!ch)
1385 		return -ENOMEM;
1386 
1387 	ch->pdev = pdev;
1388 
1389 	/* Module clock */
1390 	ch->clk = devm_clk_get(&pdev->dev, "fck");
1391 	if (IS_ERR(ch->clk)) {
1392 		ret = PTR_ERR(ch->clk);
1393 		dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
1394 		return ret;
1395 	}
1396 
1397 	/* Register map */
1398 	ch->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1399 	if (IS_ERR(ch->base))
1400 		return PTR_ERR(ch->base);
1401 
1402 	ch->start = res->start;
1403 	platform_set_drvdata(pdev, ch);
1404 
1405 	/* Check if both channels of the bond are enabled */
1406 	np = rcar_drif_bond_enabled(pdev);
1407 	if (np) {
1408 		/* Check if current channel acting as primary-bond */
1409 		if (!rcar_drif_primary_bond(pdev)) {
1410 			ch->num = 1;	/* Primary bond is channel 0 always */
1411 			of_node_put(np);
1412 			return 0;
1413 		}
1414 	}
1415 
1416 	/* Reserve memory for SDR structure */
1417 	sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
1418 	if (!sdr) {
1419 		of_node_put(np);
1420 		return -ENOMEM;
1421 	}
1422 	ch->sdr = sdr;
1423 	sdr->dev = &pdev->dev;
1424 
1425 	/* Establish links between SDR and channel(s) */
1426 	sdr->ch[ch->num] = ch;
1427 	sdr->hw_ch_mask = BIT(ch->num);
1428 	if (np) {
1429 		/* Check if bonded device is ready */
1430 		ret = rcar_drif_bond_available(sdr, np);
1431 		of_node_put(np);
1432 		if (ret)
1433 			return ret;
1434 	}
1435 	sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);
1436 
1437 	return rcar_drif_sdr_probe(sdr);
1438 }
1439 
1440 /* DRIF channel remove */
1441 static int rcar_drif_remove(struct platform_device *pdev)
1442 {
1443 	struct rcar_drif *ch = platform_get_drvdata(pdev);
1444 	struct rcar_drif_sdr *sdr = ch->sdr;
1445 
1446 	/* Channel 0 will be the SDR instance */
1447 	if (ch->num)
1448 		return 0;
1449 
1450 	/* SDR instance */
1451 	rcar_drif_sdr_remove(sdr);
1452 
1453 	return 0;
1454 }
1455 
1456 /* FIXME: Implement suspend/resume support */
1457 static int __maybe_unused rcar_drif_suspend(struct device *dev)
1458 {
1459 	return 0;
1460 }
1461 
1462 static int __maybe_unused rcar_drif_resume(struct device *dev)
1463 {
1464 	return 0;
1465 }
1466 
1467 static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
1468 			 rcar_drif_resume);
1469 
1470 static const struct of_device_id rcar_drif_of_table[] = {
1471 	{ .compatible = "renesas,rcar-gen3-drif" },
1472 	{ }
1473 };
1474 MODULE_DEVICE_TABLE(of, rcar_drif_of_table);
1475 
1476 #define RCAR_DRIF_DRV_NAME "rcar_drif"
1477 static struct platform_driver rcar_drif_driver = {
1478 	.driver = {
1479 		.name = RCAR_DRIF_DRV_NAME,
1480 		.of_match_table = of_match_ptr(rcar_drif_of_table),
1481 		.pm = &rcar_drif_pm_ops,
1482 		},
1483 	.probe = rcar_drif_probe,
1484 	.remove = rcar_drif_remove,
1485 };
1486 
1487 module_platform_driver(rcar_drif_driver);
1488 
1489 MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
1490 MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
1491 MODULE_LICENSE("GPL");
1492 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1493