xref: /openbmc/linux/drivers/media/platform/renesas/rcar-vin/rcar-csi2.c (revision 359f608f66b4434fb83b74e23ad14631ea3efc4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Renesas R-Car MIPI CSI-2 Receiver
4  *
5  * Copyright (C) 2018 Renesas Electronics Corp.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/sys_soc.h>
19 
20 #include <media/mipi-csi2.h>
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-device.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/v4l2-mc.h>
25 #include <media/v4l2-subdev.h>
26 
27 struct rcar_csi2;
28 
29 /* Register offsets and bits */
30 
31 /* Control Timing Select */
32 #define TREF_REG			0x00
33 #define TREF_TREF			BIT(0)
34 
35 /* Software Reset */
36 #define SRST_REG			0x04
37 #define SRST_SRST			BIT(0)
38 
39 /* PHY Operation Control */
40 #define PHYCNT_REG			0x08
41 #define PHYCNT_SHUTDOWNZ		BIT(17)
42 #define PHYCNT_RSTZ			BIT(16)
43 #define PHYCNT_ENABLECLK		BIT(4)
44 #define PHYCNT_ENABLE_3			BIT(3)
45 #define PHYCNT_ENABLE_2			BIT(2)
46 #define PHYCNT_ENABLE_1			BIT(1)
47 #define PHYCNT_ENABLE_0			BIT(0)
48 
49 /* Checksum Control */
50 #define CHKSUM_REG			0x0c
51 #define CHKSUM_ECC_EN			BIT(1)
52 #define CHKSUM_CRC_EN			BIT(0)
53 
54 /*
55  * Channel Data Type Select
56  * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
57  * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
58  */
59 #define VCDT_REG			0x10
60 #define VCDT2_REG			0x14
61 #define VCDT_VCDTN_EN			BIT(15)
62 #define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
63 #define VCDT_SEL_DTN_ON			BIT(6)
64 #define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
65 
66 /* Frame Data Type Select */
67 #define FRDT_REG			0x18
68 
69 /* Field Detection Control */
70 #define FLD_REG				0x1c
71 #define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
72 #define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
73 #define FLD_FLD_EN4			BIT(3)
74 #define FLD_FLD_EN3			BIT(2)
75 #define FLD_FLD_EN2			BIT(1)
76 #define FLD_FLD_EN			BIT(0)
77 
78 /* Automatic Standby Control */
79 #define ASTBY_REG			0x20
80 
81 /* Long Data Type Setting 0 */
82 #define LNGDT0_REG			0x28
83 
84 /* Long Data Type Setting 1 */
85 #define LNGDT1_REG			0x2c
86 
87 /* Interrupt Enable */
88 #define INTEN_REG			0x30
89 #define INTEN_INT_AFIFO_OF		BIT(27)
90 #define INTEN_INT_ERRSOTHS		BIT(4)
91 #define INTEN_INT_ERRSOTSYNCHS		BIT(3)
92 
93 /* Interrupt Source Mask */
94 #define INTCLOSE_REG			0x34
95 
96 /* Interrupt Status Monitor */
97 #define INTSTATE_REG			0x38
98 #define INTSTATE_INT_ULPS_START		BIT(7)
99 #define INTSTATE_INT_ULPS_END		BIT(6)
100 
101 /* Interrupt Error Status Monitor */
102 #define INTERRSTATE_REG			0x3c
103 
104 /* Short Packet Data */
105 #define SHPDAT_REG			0x40
106 
107 /* Short Packet Count */
108 #define SHPCNT_REG			0x44
109 
110 /* LINK Operation Control */
111 #define LINKCNT_REG			0x48
112 #define LINKCNT_MONITOR_EN		BIT(31)
113 #define LINKCNT_REG_MONI_PACT_EN	BIT(25)
114 #define LINKCNT_ICLK_NONSTOP		BIT(24)
115 
116 /* Lane Swap */
117 #define LSWAP_REG			0x4c
118 #define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
119 #define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
120 #define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
121 #define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
122 
123 /* PHY Test Interface Write Register */
124 #define PHTW_REG			0x50
125 #define PHTW_DWEN			BIT(24)
126 #define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
127 #define PHTW_CWEN			BIT(8)
128 #define PHTW_TESTDIN_CODE(n)		((n & 0xff))
129 
130 #define PHYFRX_REG			0x64
131 #define PHYFRX_FORCERX_MODE_3		BIT(3)
132 #define PHYFRX_FORCERX_MODE_2		BIT(2)
133 #define PHYFRX_FORCERX_MODE_1		BIT(1)
134 #define PHYFRX_FORCERX_MODE_0		BIT(0)
135 
136 struct phtw_value {
137 	u16 data;
138 	u16 code;
139 };
140 
141 struct rcsi2_mbps_reg {
142 	u16 mbps;
143 	u16 reg;
144 };
145 
146 static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
147 	{ .mbps = 1500, .reg = 0xcc },
148 	{ .mbps = 1550, .reg = 0x1d },
149 	{ .mbps = 1600, .reg = 0x27 },
150 	{ .mbps = 1650, .reg = 0x30 },
151 	{ .mbps = 1700, .reg = 0x39 },
152 	{ .mbps = 1750, .reg = 0x42 },
153 	{ .mbps = 1800, .reg = 0x4b },
154 	{ .mbps = 1850, .reg = 0x55 },
155 	{ .mbps = 1900, .reg = 0x5e },
156 	{ .mbps = 1950, .reg = 0x67 },
157 	{ .mbps = 2000, .reg = 0x71 },
158 	{ .mbps = 2050, .reg = 0x79 },
159 	{ .mbps = 2100, .reg = 0x83 },
160 	{ .mbps = 2150, .reg = 0x8c },
161 	{ .mbps = 2200, .reg = 0x95 },
162 	{ .mbps = 2250, .reg = 0x9e },
163 	{ .mbps = 2300, .reg = 0xa7 },
164 	{ .mbps = 2350, .reg = 0xb0 },
165 	{ .mbps = 2400, .reg = 0xba },
166 	{ .mbps = 2450, .reg = 0xc3 },
167 	{ .mbps = 2500, .reg = 0xcc },
168 	{ /* sentinel */ },
169 };
170 
171 static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
172 	{ .mbps =   80, .reg = 0x86 },
173 	{ .mbps =   90, .reg = 0x86 },
174 	{ .mbps =  100, .reg = 0x87 },
175 	{ .mbps =  110, .reg = 0x87 },
176 	{ .mbps =  120, .reg = 0x88 },
177 	{ .mbps =  130, .reg = 0x88 },
178 	{ .mbps =  140, .reg = 0x89 },
179 	{ .mbps =  150, .reg = 0x89 },
180 	{ .mbps =  160, .reg = 0x8a },
181 	{ .mbps =  170, .reg = 0x8a },
182 	{ .mbps =  180, .reg = 0x8b },
183 	{ .mbps =  190, .reg = 0x8b },
184 	{ .mbps =  205, .reg = 0x8c },
185 	{ .mbps =  220, .reg = 0x8d },
186 	{ .mbps =  235, .reg = 0x8e },
187 	{ .mbps =  250, .reg = 0x8e },
188 	{ /* sentinel */ },
189 };
190 
191 static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
192 	{ .mbps =   80, .reg = 0x00 },
193 	{ .mbps =   90, .reg = 0x20 },
194 	{ .mbps =  100, .reg = 0x40 },
195 	{ .mbps =  110, .reg = 0x02 },
196 	{ .mbps =  130, .reg = 0x22 },
197 	{ .mbps =  140, .reg = 0x42 },
198 	{ .mbps =  150, .reg = 0x04 },
199 	{ .mbps =  170, .reg = 0x24 },
200 	{ .mbps =  180, .reg = 0x44 },
201 	{ .mbps =  200, .reg = 0x06 },
202 	{ .mbps =  220, .reg = 0x26 },
203 	{ .mbps =  240, .reg = 0x46 },
204 	{ .mbps =  250, .reg = 0x08 },
205 	{ .mbps =  270, .reg = 0x28 },
206 	{ .mbps =  300, .reg = 0x0a },
207 	{ .mbps =  330, .reg = 0x2a },
208 	{ .mbps =  360, .reg = 0x4a },
209 	{ .mbps =  400, .reg = 0x0c },
210 	{ .mbps =  450, .reg = 0x2c },
211 	{ .mbps =  500, .reg = 0x0e },
212 	{ .mbps =  550, .reg = 0x2e },
213 	{ .mbps =  600, .reg = 0x10 },
214 	{ .mbps =  650, .reg = 0x30 },
215 	{ .mbps =  700, .reg = 0x12 },
216 	{ .mbps =  750, .reg = 0x32 },
217 	{ .mbps =  800, .reg = 0x52 },
218 	{ .mbps =  850, .reg = 0x72 },
219 	{ .mbps =  900, .reg = 0x14 },
220 	{ .mbps =  950, .reg = 0x34 },
221 	{ .mbps = 1000, .reg = 0x54 },
222 	{ .mbps = 1050, .reg = 0x74 },
223 	{ .mbps = 1125, .reg = 0x16 },
224 	{ /* sentinel */ },
225 };
226 
227 /* PHY Test Interface Clear */
228 #define PHTC_REG			0x58
229 #define PHTC_TESTCLR			BIT(0)
230 
231 /* PHY Frequency Control */
232 #define PHYPLL_REG			0x68
233 #define PHYPLL_HSFREQRANGE(n)		((n) << 16)
234 
235 static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
236 	{ .mbps =   80, .reg = 0x00 },
237 	{ .mbps =   90, .reg = 0x10 },
238 	{ .mbps =  100, .reg = 0x20 },
239 	{ .mbps =  110, .reg = 0x30 },
240 	{ .mbps =  120, .reg = 0x01 },
241 	{ .mbps =  130, .reg = 0x11 },
242 	{ .mbps =  140, .reg = 0x21 },
243 	{ .mbps =  150, .reg = 0x31 },
244 	{ .mbps =  160, .reg = 0x02 },
245 	{ .mbps =  170, .reg = 0x12 },
246 	{ .mbps =  180, .reg = 0x22 },
247 	{ .mbps =  190, .reg = 0x32 },
248 	{ .mbps =  205, .reg = 0x03 },
249 	{ .mbps =  220, .reg = 0x13 },
250 	{ .mbps =  235, .reg = 0x23 },
251 	{ .mbps =  250, .reg = 0x33 },
252 	{ .mbps =  275, .reg = 0x04 },
253 	{ .mbps =  300, .reg = 0x14 },
254 	{ .mbps =  325, .reg = 0x25 },
255 	{ .mbps =  350, .reg = 0x35 },
256 	{ .mbps =  400, .reg = 0x05 },
257 	{ .mbps =  450, .reg = 0x16 },
258 	{ .mbps =  500, .reg = 0x26 },
259 	{ .mbps =  550, .reg = 0x37 },
260 	{ .mbps =  600, .reg = 0x07 },
261 	{ .mbps =  650, .reg = 0x18 },
262 	{ .mbps =  700, .reg = 0x28 },
263 	{ .mbps =  750, .reg = 0x39 },
264 	{ .mbps =  800, .reg = 0x09 },
265 	{ .mbps =  850, .reg = 0x19 },
266 	{ .mbps =  900, .reg = 0x29 },
267 	{ .mbps =  950, .reg = 0x3a },
268 	{ .mbps = 1000, .reg = 0x0a },
269 	{ .mbps = 1050, .reg = 0x1a },
270 	{ .mbps = 1100, .reg = 0x2a },
271 	{ .mbps = 1150, .reg = 0x3b },
272 	{ .mbps = 1200, .reg = 0x0b },
273 	{ .mbps = 1250, .reg = 0x1b },
274 	{ .mbps = 1300, .reg = 0x2b },
275 	{ .mbps = 1350, .reg = 0x3c },
276 	{ .mbps = 1400, .reg = 0x0c },
277 	{ .mbps = 1450, .reg = 0x1c },
278 	{ .mbps = 1500, .reg = 0x2c },
279 	{ .mbps = 1550, .reg = 0x3d },
280 	{ .mbps = 1600, .reg = 0x0d },
281 	{ .mbps = 1650, .reg = 0x1d },
282 	{ .mbps = 1700, .reg = 0x2e },
283 	{ .mbps = 1750, .reg = 0x3e },
284 	{ .mbps = 1800, .reg = 0x0e },
285 	{ .mbps = 1850, .reg = 0x1e },
286 	{ .mbps = 1900, .reg = 0x2f },
287 	{ .mbps = 1950, .reg = 0x3f },
288 	{ .mbps = 2000, .reg = 0x0f },
289 	{ .mbps = 2050, .reg = 0x40 },
290 	{ .mbps = 2100, .reg = 0x41 },
291 	{ .mbps = 2150, .reg = 0x42 },
292 	{ .mbps = 2200, .reg = 0x43 },
293 	{ .mbps = 2300, .reg = 0x45 },
294 	{ .mbps = 2350, .reg = 0x46 },
295 	{ .mbps = 2400, .reg = 0x47 },
296 	{ .mbps = 2450, .reg = 0x48 },
297 	{ .mbps = 2500, .reg = 0x49 },
298 	{ /* sentinel */ },
299 };
300 
301 static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
302 	{ .mbps =   80, .reg = 0x00 },
303 	{ .mbps =   90, .reg = 0x10 },
304 	{ .mbps =  100, .reg = 0x20 },
305 	{ .mbps =  110, .reg = 0x30 },
306 	{ .mbps =  120, .reg = 0x01 },
307 	{ .mbps =  130, .reg = 0x11 },
308 	{ .mbps =  140, .reg = 0x21 },
309 	{ .mbps =  150, .reg = 0x31 },
310 	{ .mbps =  160, .reg = 0x02 },
311 	{ .mbps =  170, .reg = 0x12 },
312 	{ .mbps =  180, .reg = 0x22 },
313 	{ .mbps =  190, .reg = 0x32 },
314 	{ .mbps =  205, .reg = 0x03 },
315 	{ .mbps =  220, .reg = 0x13 },
316 	{ .mbps =  235, .reg = 0x23 },
317 	{ .mbps =  250, .reg = 0x33 },
318 	{ .mbps =  275, .reg = 0x04 },
319 	{ .mbps =  300, .reg = 0x14 },
320 	{ .mbps =  325, .reg = 0x25 },
321 	{ .mbps =  350, .reg = 0x35 },
322 	{ .mbps =  400, .reg = 0x05 },
323 	{ .mbps =  450, .reg = 0x16 },
324 	{ .mbps =  500, .reg = 0x26 },
325 	{ .mbps =  550, .reg = 0x37 },
326 	{ .mbps =  600, .reg = 0x07 },
327 	{ .mbps =  650, .reg = 0x18 },
328 	{ .mbps =  700, .reg = 0x28 },
329 	{ .mbps =  750, .reg = 0x39 },
330 	{ .mbps =  800, .reg = 0x09 },
331 	{ .mbps =  850, .reg = 0x19 },
332 	{ .mbps =  900, .reg = 0x29 },
333 	{ .mbps =  950, .reg = 0x3a },
334 	{ .mbps = 1000, .reg = 0x0a },
335 	{ .mbps = 1050, .reg = 0x1a },
336 	{ .mbps = 1100, .reg = 0x2a },
337 	{ .mbps = 1150, .reg = 0x3b },
338 	{ .mbps = 1200, .reg = 0x0b },
339 	{ .mbps = 1250, .reg = 0x1b },
340 	{ .mbps = 1300, .reg = 0x2b },
341 	{ .mbps = 1350, .reg = 0x3c },
342 	{ .mbps = 1400, .reg = 0x0c },
343 	{ .mbps = 1450, .reg = 0x1c },
344 	{ .mbps = 1500, .reg = 0x2c },
345 	{ /* sentinel */ },
346 };
347 
348 static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
349 	{ .mbps =   80,	.reg = 0x00 },
350 	{ .mbps =   90,	.reg = 0x10 },
351 	{ .mbps =  100,	.reg = 0x20 },
352 	{ .mbps =  110,	.reg = 0x30 },
353 	{ .mbps =  120,	.reg = 0x01 },
354 	{ .mbps =  130,	.reg = 0x11 },
355 	{ .mbps =  140,	.reg = 0x21 },
356 	{ .mbps =  150,	.reg = 0x31 },
357 	{ .mbps =  160,	.reg = 0x02 },
358 	{ .mbps =  170,	.reg = 0x12 },
359 	{ .mbps =  180,	.reg = 0x22 },
360 	{ .mbps =  190,	.reg = 0x32 },
361 	{ .mbps =  205,	.reg = 0x03 },
362 	{ .mbps =  220,	.reg = 0x13 },
363 	{ .mbps =  235,	.reg = 0x23 },
364 	{ .mbps =  250,	.reg = 0x33 },
365 	{ .mbps =  275,	.reg = 0x04 },
366 	{ .mbps =  300,	.reg = 0x14 },
367 	{ .mbps =  325,	.reg = 0x05 },
368 	{ .mbps =  350,	.reg = 0x15 },
369 	{ .mbps =  400,	.reg = 0x25 },
370 	{ .mbps =  450,	.reg = 0x06 },
371 	{ .mbps =  500,	.reg = 0x16 },
372 	{ .mbps =  550,	.reg = 0x07 },
373 	{ .mbps =  600,	.reg = 0x17 },
374 	{ .mbps =  650,	.reg = 0x08 },
375 	{ .mbps =  700,	.reg = 0x18 },
376 	{ .mbps =  750,	.reg = 0x09 },
377 	{ .mbps =  800,	.reg = 0x19 },
378 	{ .mbps =  850,	.reg = 0x29 },
379 	{ .mbps =  900,	.reg = 0x39 },
380 	{ .mbps =  950,	.reg = 0x0a },
381 	{ .mbps = 1000,	.reg = 0x1a },
382 	{ .mbps = 1050,	.reg = 0x2a },
383 	{ .mbps = 1100,	.reg = 0x3a },
384 	{ .mbps = 1150,	.reg = 0x0b },
385 	{ .mbps = 1200,	.reg = 0x1b },
386 	{ .mbps = 1250,	.reg = 0x2b },
387 	{ .mbps = 1300,	.reg = 0x3b },
388 	{ .mbps = 1350,	.reg = 0x0c },
389 	{ .mbps = 1400,	.reg = 0x1c },
390 	{ .mbps = 1450,	.reg = 0x2c },
391 	{ .mbps = 1500,	.reg = 0x3c },
392 	{ /* sentinel */ },
393 };
394 
395 /* PHY ESC Error Monitor */
396 #define PHEERM_REG			0x74
397 
398 /* PHY Clock Lane Monitor */
399 #define PHCLM_REG			0x78
400 #define PHCLM_STOPSTATECKL		BIT(0)
401 
402 /* PHY Data Lane Monitor */
403 #define PHDLM_REG			0x7c
404 
405 /* CSI0CLK Frequency Configuration Preset Register */
406 #define CSI0CLKFCPR_REG			0x260
407 #define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
408 
409 struct rcar_csi2_format {
410 	u32 code;
411 	unsigned int datatype;
412 	unsigned int bpp;
413 };
414 
415 static const struct rcar_csi2_format rcar_csi2_formats[] = {
416 	{
417 		.code = MEDIA_BUS_FMT_RGB888_1X24,
418 		.datatype = MIPI_CSI2_DT_RGB888,
419 		.bpp = 24,
420 	}, {
421 		.code = MEDIA_BUS_FMT_UYVY8_1X16,
422 		.datatype = MIPI_CSI2_DT_YUV422_8B,
423 		.bpp = 16,
424 	}, {
425 		.code = MEDIA_BUS_FMT_YUYV8_1X16,
426 		.datatype = MIPI_CSI2_DT_YUV422_8B,
427 		.bpp = 16,
428 	}, {
429 		.code = MEDIA_BUS_FMT_UYVY8_2X8,
430 		.datatype = MIPI_CSI2_DT_YUV422_8B,
431 		.bpp = 16,
432 	}, {
433 		.code = MEDIA_BUS_FMT_YUYV10_2X10,
434 		.datatype = MIPI_CSI2_DT_YUV422_8B,
435 		.bpp = 20,
436 	}, {
437 		.code = MEDIA_BUS_FMT_Y10_1X10,
438 		.datatype = MIPI_CSI2_DT_RAW10,
439 		.bpp = 10,
440 	}, {
441 		.code = MEDIA_BUS_FMT_SBGGR8_1X8,
442 		.datatype = MIPI_CSI2_DT_RAW8,
443 		.bpp = 8,
444 	}, {
445 		.code = MEDIA_BUS_FMT_SGBRG8_1X8,
446 		.datatype = MIPI_CSI2_DT_RAW8,
447 		.bpp = 8,
448 	}, {
449 		.code = MEDIA_BUS_FMT_SGRBG8_1X8,
450 		.datatype = MIPI_CSI2_DT_RAW8,
451 		.bpp = 8,
452 	}, {
453 		.code = MEDIA_BUS_FMT_SRGGB8_1X8,
454 		.datatype = MIPI_CSI2_DT_RAW8,
455 		.bpp = 8,
456 	}, {
457 		.code = MEDIA_BUS_FMT_Y8_1X8,
458 		.datatype = MIPI_CSI2_DT_RAW8,
459 		.bpp = 8,
460 	},
461 };
462 
463 static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
464 {
465 	unsigned int i;
466 
467 	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
468 		if (rcar_csi2_formats[i].code == code)
469 			return &rcar_csi2_formats[i];
470 
471 	return NULL;
472 }
473 
474 enum rcar_csi2_pads {
475 	RCAR_CSI2_SINK,
476 	RCAR_CSI2_SOURCE_VC0,
477 	RCAR_CSI2_SOURCE_VC1,
478 	RCAR_CSI2_SOURCE_VC2,
479 	RCAR_CSI2_SOURCE_VC3,
480 	NR_OF_RCAR_CSI2_PAD,
481 };
482 
483 struct rcar_csi2_info {
484 	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
485 	int (*phy_post_init)(struct rcar_csi2 *priv);
486 	const struct rcsi2_mbps_reg *hsfreqrange;
487 	unsigned int csi0clkfreqrange;
488 	unsigned int num_channels;
489 	bool clear_ulps;
490 	bool use_isp;
491 };
492 
493 struct rcar_csi2 {
494 	struct device *dev;
495 	void __iomem *base;
496 	const struct rcar_csi2_info *info;
497 	struct reset_control *rstc;
498 
499 	struct v4l2_subdev subdev;
500 	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
501 
502 	struct v4l2_async_notifier notifier;
503 	struct v4l2_subdev *remote;
504 	unsigned int remote_pad;
505 
506 	int channel_vc[4];
507 
508 	struct mutex lock; /* Protects mf and stream_count. */
509 	struct v4l2_mbus_framefmt mf;
510 	int stream_count;
511 
512 	unsigned short lanes;
513 	unsigned char lane_swap[4];
514 };
515 
516 static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
517 {
518 	return container_of(sd, struct rcar_csi2, subdev);
519 }
520 
521 static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
522 {
523 	return container_of(n, struct rcar_csi2, notifier);
524 }
525 
526 static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
527 {
528 	return ioread32(priv->base + reg);
529 }
530 
531 static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
532 {
533 	iowrite32(data, priv->base + reg);
534 }
535 
536 static void rcsi2_enter_standby(struct rcar_csi2 *priv)
537 {
538 	rcsi2_write(priv, PHYCNT_REG, 0);
539 	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
540 	reset_control_assert(priv->rstc);
541 	usleep_range(100, 150);
542 	pm_runtime_put(priv->dev);
543 }
544 
545 static int rcsi2_exit_standby(struct rcar_csi2 *priv)
546 {
547 	int ret;
548 
549 	ret = pm_runtime_resume_and_get(priv->dev);
550 	if (ret < 0)
551 		return ret;
552 
553 	reset_control_deassert(priv->rstc);
554 
555 	return 0;
556 }
557 
558 static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
559 				unsigned int lanes)
560 {
561 	unsigned int timeout;
562 
563 	/* Wait for the clock and data lanes to enter LP-11 state. */
564 	for (timeout = 0; timeout <= 20; timeout++) {
565 		const u32 lane_mask = (1 << lanes) - 1;
566 
567 		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
568 		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
569 			return 0;
570 
571 		usleep_range(1000, 2000);
572 	}
573 
574 	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
575 
576 	return -ETIMEDOUT;
577 }
578 
579 static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
580 {
581 	const struct rcsi2_mbps_reg *hsfreq;
582 	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
583 
584 	if (mbps < priv->info->hsfreqrange->mbps)
585 		dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
586 			 mbps, priv->info->hsfreqrange->mbps);
587 
588 	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
589 		if (hsfreq->mbps >= mbps)
590 			break;
591 		hsfreq_prev = hsfreq;
592 	}
593 
594 	if (!hsfreq->mbps) {
595 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
596 		return -ERANGE;
597 	}
598 
599 	if (hsfreq_prev &&
600 	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
601 		hsfreq = hsfreq_prev;
602 
603 	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
604 
605 	return 0;
606 }
607 
608 static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
609 			   unsigned int lanes)
610 {
611 	struct v4l2_subdev *source;
612 	struct v4l2_ctrl *ctrl;
613 	u64 mbps;
614 
615 	if (!priv->remote)
616 		return -ENODEV;
617 
618 	source = priv->remote;
619 
620 	/* Read the pixel rate control from remote. */
621 	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
622 	if (!ctrl) {
623 		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
624 			source->name);
625 		return -EINVAL;
626 	}
627 
628 	/*
629 	 * Calculate the phypll in mbps.
630 	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
631 	 * bps = link_freq * 2
632 	 */
633 	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
634 	do_div(mbps, lanes * 1000000);
635 
636 	return mbps;
637 }
638 
639 static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
640 				  unsigned int *lanes)
641 {
642 	struct v4l2_mbus_config mbus_config = { 0 };
643 	int ret;
644 
645 	*lanes = priv->lanes;
646 
647 	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
648 			       priv->remote_pad, &mbus_config);
649 	if (ret == -ENOIOCTLCMD) {
650 		dev_dbg(priv->dev, "No remote mbus configuration available\n");
651 		return 0;
652 	}
653 
654 	if (ret) {
655 		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
656 		return ret;
657 	}
658 
659 	if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
660 		dev_err(priv->dev, "Unsupported media bus type %u\n",
661 			mbus_config.type);
662 		return -EINVAL;
663 	}
664 
665 	if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
666 		dev_err(priv->dev,
667 			"Unsupported mbus config: too many data lanes %u\n",
668 			mbus_config.bus.mipi_csi2.num_data_lanes);
669 		return -EINVAL;
670 	}
671 
672 	*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
673 
674 	return 0;
675 }
676 
677 static int rcsi2_start_receiver(struct rcar_csi2 *priv)
678 {
679 	const struct rcar_csi2_format *format;
680 	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
681 	unsigned int lanes;
682 	unsigned int i;
683 	int mbps, ret;
684 
685 	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
686 		priv->mf.width, priv->mf.height,
687 		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
688 
689 	/* Code is validated in set_fmt. */
690 	format = rcsi2_code_to_fmt(priv->mf.code);
691 	if (!format)
692 		return -EINVAL;
693 
694 	/*
695 	 * Enable all supported CSI-2 channels with virtual channel and
696 	 * data type matching.
697 	 *
698 	 * NOTE: It's not possible to get individual datatype for each
699 	 *       source virtual channel. Once this is possible in V4L2
700 	 *       it should be used here.
701 	 */
702 	for (i = 0; i < priv->info->num_channels; i++) {
703 		u32 vcdt_part;
704 
705 		if (priv->channel_vc[i] < 0)
706 			continue;
707 
708 		vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
709 			VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
710 
711 		/* Store in correct reg and offset. */
712 		if (i < 2)
713 			vcdt |= vcdt_part << ((i % 2) * 16);
714 		else
715 			vcdt2 |= vcdt_part << ((i % 2) * 16);
716 	}
717 
718 	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
719 		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
720 			| FLD_FLD_EN;
721 
722 		if (priv->mf.height == 240)
723 			fld |= FLD_FLD_NUM(0);
724 		else
725 			fld |= FLD_FLD_NUM(1);
726 	}
727 
728 	/*
729 	 * Get the number of active data lanes inspecting the remote mbus
730 	 * configuration.
731 	 */
732 	ret = rcsi2_get_active_lanes(priv, &lanes);
733 	if (ret)
734 		return ret;
735 
736 	phycnt = PHYCNT_ENABLECLK;
737 	phycnt |= (1 << lanes) - 1;
738 
739 	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
740 	if (mbps < 0)
741 		return mbps;
742 
743 	/* Enable interrupts. */
744 	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
745 		    | INTEN_INT_ERRSOTSYNCHS);
746 
747 	/* Init */
748 	rcsi2_write(priv, TREF_REG, TREF_TREF);
749 	rcsi2_write(priv, PHTC_REG, 0);
750 
751 	/* Configure */
752 	if (!priv->info->use_isp) {
753 		rcsi2_write(priv, VCDT_REG, vcdt);
754 		if (vcdt2)
755 			rcsi2_write(priv, VCDT2_REG, vcdt2);
756 	}
757 
758 	/* Lanes are zero indexed. */
759 	rcsi2_write(priv, LSWAP_REG,
760 		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
761 		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
762 		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
763 		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
764 
765 	/* Start */
766 	if (priv->info->init_phtw) {
767 		ret = priv->info->init_phtw(priv, mbps);
768 		if (ret)
769 			return ret;
770 	}
771 
772 	if (priv->info->hsfreqrange) {
773 		ret = rcsi2_set_phypll(priv, mbps);
774 		if (ret)
775 			return ret;
776 	}
777 
778 	if (priv->info->csi0clkfreqrange)
779 		rcsi2_write(priv, CSI0CLKFCPR_REG,
780 			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
781 
782 	if (priv->info->use_isp)
783 		rcsi2_write(priv, PHYFRX_REG,
784 			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
785 			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
786 
787 	rcsi2_write(priv, PHYCNT_REG, phycnt);
788 	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
789 		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
790 	rcsi2_write(priv, FLD_REG, fld);
791 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
792 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
793 
794 	ret = rcsi2_wait_phy_start(priv, lanes);
795 	if (ret)
796 		return ret;
797 
798 	if (priv->info->use_isp)
799 		rcsi2_write(priv, PHYFRX_REG, 0);
800 
801 	/* Run post PHY start initialization, if needed. */
802 	if (priv->info->phy_post_init) {
803 		ret = priv->info->phy_post_init(priv);
804 		if (ret)
805 			return ret;
806 	}
807 
808 	/* Clear Ultra Low Power interrupt. */
809 	if (priv->info->clear_ulps)
810 		rcsi2_write(priv, INTSTATE_REG,
811 			    INTSTATE_INT_ULPS_START |
812 			    INTSTATE_INT_ULPS_END);
813 	return 0;
814 }
815 
816 static int rcsi2_start(struct rcar_csi2 *priv)
817 {
818 	int ret;
819 
820 	ret = rcsi2_exit_standby(priv);
821 	if (ret < 0)
822 		return ret;
823 
824 	ret = rcsi2_start_receiver(priv);
825 	if (ret) {
826 		rcsi2_enter_standby(priv);
827 		return ret;
828 	}
829 
830 	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
831 	if (ret) {
832 		rcsi2_enter_standby(priv);
833 		return ret;
834 	}
835 
836 	return 0;
837 }
838 
839 static void rcsi2_stop(struct rcar_csi2 *priv)
840 {
841 	rcsi2_enter_standby(priv);
842 	v4l2_subdev_call(priv->remote, video, s_stream, 0);
843 }
844 
845 static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
846 {
847 	struct rcar_csi2 *priv = sd_to_csi2(sd);
848 	int ret = 0;
849 
850 	mutex_lock(&priv->lock);
851 
852 	if (!priv->remote) {
853 		ret = -ENODEV;
854 		goto out;
855 	}
856 
857 	if (enable && priv->stream_count == 0) {
858 		ret = rcsi2_start(priv);
859 		if (ret)
860 			goto out;
861 	} else if (!enable && priv->stream_count == 1) {
862 		rcsi2_stop(priv);
863 	}
864 
865 	priv->stream_count += enable ? 1 : -1;
866 out:
867 	mutex_unlock(&priv->lock);
868 
869 	return ret;
870 }
871 
872 static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
873 				struct v4l2_subdev_state *sd_state,
874 				struct v4l2_subdev_format *format)
875 {
876 	struct rcar_csi2 *priv = sd_to_csi2(sd);
877 	struct v4l2_mbus_framefmt *framefmt;
878 
879 	mutex_lock(&priv->lock);
880 
881 	if (!rcsi2_code_to_fmt(format->format.code))
882 		format->format.code = rcar_csi2_formats[0].code;
883 
884 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
885 		priv->mf = format->format;
886 	} else {
887 		framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
888 		*framefmt = format->format;
889 	}
890 
891 	mutex_unlock(&priv->lock);
892 
893 	return 0;
894 }
895 
896 static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
897 				struct v4l2_subdev_state *sd_state,
898 				struct v4l2_subdev_format *format)
899 {
900 	struct rcar_csi2 *priv = sd_to_csi2(sd);
901 
902 	mutex_lock(&priv->lock);
903 
904 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
905 		format->format = priv->mf;
906 	else
907 		format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
908 
909 	mutex_unlock(&priv->lock);
910 
911 	return 0;
912 }
913 
914 static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
915 	.s_stream = rcsi2_s_stream,
916 };
917 
918 static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
919 	.set_fmt = rcsi2_set_pad_format,
920 	.get_fmt = rcsi2_get_pad_format,
921 };
922 
923 static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
924 	.video	= &rcar_csi2_video_ops,
925 	.pad	= &rcar_csi2_pad_ops,
926 };
927 
928 static irqreturn_t rcsi2_irq(int irq, void *data)
929 {
930 	struct rcar_csi2 *priv = data;
931 	u32 status, err_status;
932 
933 	status = rcsi2_read(priv, INTSTATE_REG);
934 	err_status = rcsi2_read(priv, INTERRSTATE_REG);
935 
936 	if (!status)
937 		return IRQ_HANDLED;
938 
939 	rcsi2_write(priv, INTSTATE_REG, status);
940 
941 	if (!err_status)
942 		return IRQ_HANDLED;
943 
944 	rcsi2_write(priv, INTERRSTATE_REG, err_status);
945 
946 	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
947 
948 	return IRQ_WAKE_THREAD;
949 }
950 
951 static irqreturn_t rcsi2_irq_thread(int irq, void *data)
952 {
953 	struct rcar_csi2 *priv = data;
954 
955 	mutex_lock(&priv->lock);
956 	rcsi2_stop(priv);
957 	usleep_range(1000, 2000);
958 	if (rcsi2_start(priv))
959 		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
960 	mutex_unlock(&priv->lock);
961 
962 	return IRQ_HANDLED;
963 }
964 
965 /* -----------------------------------------------------------------------------
966  * Async handling and registration of subdevices and links.
967  */
968 
969 static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
970 			      struct v4l2_subdev *subdev,
971 			      struct v4l2_async_subdev *asd)
972 {
973 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
974 	int pad;
975 
976 	pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
977 					  MEDIA_PAD_FL_SOURCE);
978 	if (pad < 0) {
979 		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
980 		return pad;
981 	}
982 
983 	priv->remote = subdev;
984 	priv->remote_pad = pad;
985 
986 	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
987 
988 	return media_create_pad_link(&subdev->entity, pad,
989 				     &priv->subdev.entity, 0,
990 				     MEDIA_LNK_FL_ENABLED |
991 				     MEDIA_LNK_FL_IMMUTABLE);
992 }
993 
994 static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
995 				struct v4l2_subdev *subdev,
996 				struct v4l2_async_subdev *asd)
997 {
998 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
999 
1000 	priv->remote = NULL;
1001 
1002 	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
1003 }
1004 
1005 static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
1006 	.bound = rcsi2_notify_bound,
1007 	.unbind = rcsi2_notify_unbind,
1008 };
1009 
1010 static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
1011 			    struct v4l2_fwnode_endpoint *vep)
1012 {
1013 	unsigned int i;
1014 
1015 	/* Only port 0 endpoint 0 is valid. */
1016 	if (vep->base.port || vep->base.id)
1017 		return -ENOTCONN;
1018 
1019 	if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
1020 		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
1021 		return -EINVAL;
1022 	}
1023 
1024 	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
1025 	if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
1026 		dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
1027 			priv->lanes);
1028 		return -EINVAL;
1029 	}
1030 
1031 	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
1032 		priv->lane_swap[i] = i < priv->lanes ?
1033 			vep->bus.mipi_csi2.data_lanes[i] : i;
1034 
1035 		/* Check for valid lane number. */
1036 		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
1037 			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
1038 			return -EINVAL;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int rcsi2_parse_dt(struct rcar_csi2 *priv)
1046 {
1047 	struct v4l2_async_subdev *asd;
1048 	struct fwnode_handle *fwnode;
1049 	struct fwnode_handle *ep;
1050 	struct v4l2_fwnode_endpoint v4l2_ep = {
1051 		.bus_type = V4L2_MBUS_CSI2_DPHY
1052 	};
1053 	int ret;
1054 
1055 	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1056 	if (!ep) {
1057 		dev_err(priv->dev, "Not connected to subdevice\n");
1058 		return -EINVAL;
1059 	}
1060 
1061 	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1062 	if (ret) {
1063 		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1064 		fwnode_handle_put(ep);
1065 		return -EINVAL;
1066 	}
1067 
1068 	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
1069 	if (ret) {
1070 		fwnode_handle_put(ep);
1071 		return ret;
1072 	}
1073 
1074 	fwnode = fwnode_graph_get_remote_endpoint(ep);
1075 	fwnode_handle_put(ep);
1076 
1077 	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1078 
1079 	v4l2_async_nf_init(&priv->notifier);
1080 	priv->notifier.ops = &rcar_csi2_notify_ops;
1081 
1082 	asd = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
1083 				       struct v4l2_async_subdev);
1084 	fwnode_handle_put(fwnode);
1085 	if (IS_ERR(asd))
1086 		return PTR_ERR(asd);
1087 
1088 	ret = v4l2_async_subdev_nf_register(&priv->subdev, &priv->notifier);
1089 	if (ret)
1090 		v4l2_async_nf_cleanup(&priv->notifier);
1091 
1092 	return ret;
1093 }
1094 
1095 /* -----------------------------------------------------------------------------
1096  * PHTW initialization sequences.
1097  *
1098  * NOTE: Magic values are from the datasheet and lack documentation.
1099  */
1100 
1101 static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
1102 {
1103 	unsigned int timeout;
1104 
1105 	rcsi2_write(priv, PHTW_REG,
1106 		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
1107 		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
1108 
1109 	/* Wait for DWEN and CWEN to be cleared by hardware. */
1110 	for (timeout = 0; timeout <= 20; timeout++) {
1111 		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
1112 			return 0;
1113 
1114 		usleep_range(1000, 2000);
1115 	}
1116 
1117 	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
1118 
1119 	return -ETIMEDOUT;
1120 }
1121 
1122 static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
1123 				  const struct phtw_value *values)
1124 {
1125 	const struct phtw_value *value;
1126 	int ret;
1127 
1128 	for (value = values; value->data || value->code; value++) {
1129 		ret = rcsi2_phtw_write(priv, value->data, value->code);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
1138 				 const struct rcsi2_mbps_reg *values, u16 code)
1139 {
1140 	const struct rcsi2_mbps_reg *value;
1141 	const struct rcsi2_mbps_reg *prev_value = NULL;
1142 
1143 	for (value = values; value->mbps; value++) {
1144 		if (value->mbps >= mbps)
1145 			break;
1146 		prev_value = value;
1147 	}
1148 
1149 	if (prev_value &&
1150 	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1151 		value = prev_value;
1152 
1153 	if (!value->mbps) {
1154 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1155 		return -ERANGE;
1156 	}
1157 
1158 	return rcsi2_phtw_write(priv, value->reg, code);
1159 }
1160 
1161 static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1162 					unsigned int mbps)
1163 {
1164 	static const struct phtw_value step1[] = {
1165 		{ .data = 0xcc, .code = 0xe2 },
1166 		{ .data = 0x01, .code = 0xe3 },
1167 		{ .data = 0x11, .code = 0xe4 },
1168 		{ .data = 0x01, .code = 0xe5 },
1169 		{ .data = 0x10, .code = 0x04 },
1170 		{ /* sentinel */ },
1171 	};
1172 
1173 	static const struct phtw_value step2[] = {
1174 		{ .data = 0x38, .code = 0x08 },
1175 		{ .data = 0x01, .code = 0x00 },
1176 		{ .data = 0x4b, .code = 0xac },
1177 		{ .data = 0x03, .code = 0x00 },
1178 		{ .data = 0x80, .code = 0x07 },
1179 		{ /* sentinel */ },
1180 	};
1181 
1182 	int ret;
1183 
1184 	ret = rcsi2_phtw_write_array(priv, step1);
1185 	if (ret)
1186 		return ret;
1187 
1188 	if (mbps != 0 && mbps <= 250) {
1189 		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1190 		if (ret)
1191 			return ret;
1192 
1193 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1194 					    0xf1);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 
1199 	return rcsi2_phtw_write_array(priv, step2);
1200 }
1201 
1202 static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1203 {
1204 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1205 }
1206 
1207 static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1208 {
1209 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1210 }
1211 
1212 static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1213 {
1214 	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1215 }
1216 
1217 static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1218 {
1219 	static const struct phtw_value step1[] = {
1220 		{ .data = 0xee, .code = 0x34 },
1221 		{ .data = 0xee, .code = 0x44 },
1222 		{ .data = 0xee, .code = 0x54 },
1223 		{ .data = 0xee, .code = 0x84 },
1224 		{ .data = 0xee, .code = 0x94 },
1225 		{ /* sentinel */ },
1226 	};
1227 
1228 	return rcsi2_phtw_write_array(priv, step1);
1229 }
1230 
1231 static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
1232 			       unsigned int mbps)
1233 {
1234 	/* In case of 1500Mbps or less */
1235 	static const struct phtw_value step1[] = {
1236 		{ .data = 0xcc, .code = 0xe2 },
1237 		{ /* sentinel */ },
1238 	};
1239 
1240 	static const struct phtw_value step2[] = {
1241 		{ .data = 0x01, .code = 0xe3 },
1242 		{ .data = 0x11, .code = 0xe4 },
1243 		{ .data = 0x01, .code = 0xe5 },
1244 		{ /* sentinel */ },
1245 	};
1246 
1247 	/* In case of 1500Mbps or less */
1248 	static const struct phtw_value step3[] = {
1249 		{ .data = 0x38, .code = 0x08 },
1250 		{ /* sentinel */ },
1251 	};
1252 
1253 	static const struct phtw_value step4[] = {
1254 		{ .data = 0x01, .code = 0x00 },
1255 		{ .data = 0x4b, .code = 0xac },
1256 		{ .data = 0x03, .code = 0x00 },
1257 		{ .data = 0x80, .code = 0x07 },
1258 		{ /* sentinel */ },
1259 	};
1260 
1261 	int ret;
1262 
1263 	if (mbps != 0 && mbps <= 1500)
1264 		ret = rcsi2_phtw_write_array(priv, step1);
1265 	else
1266 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = rcsi2_phtw_write_array(priv, step2);
1271 	if (ret)
1272 		return ret;
1273 
1274 	if (mbps != 0 && mbps <= 1500) {
1275 		ret = rcsi2_phtw_write_array(priv, step3);
1276 		if (ret)
1277 			return ret;
1278 	}
1279 
1280 	ret = rcsi2_phtw_write_array(priv, step4);
1281 	if (ret)
1282 		return ret;
1283 
1284 	return ret;
1285 }
1286 
1287 /* -----------------------------------------------------------------------------
1288  * Platform Device Driver.
1289  */
1290 
1291 static int rcsi2_link_setup(struct media_entity *entity,
1292 			    const struct media_pad *local,
1293 			    const struct media_pad *remote, u32 flags)
1294 {
1295 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1296 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1297 	struct video_device *vdev;
1298 	int channel, vc;
1299 	u32 id;
1300 
1301 	if (!is_media_entity_v4l2_video_device(remote->entity)) {
1302 		dev_err(priv->dev, "Remote is not a video device\n");
1303 		return -EINVAL;
1304 	}
1305 
1306 	vdev = media_entity_to_video_device(remote->entity);
1307 
1308 	if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
1309 		dev_err(priv->dev, "No renesas,id, can't configure routing\n");
1310 		return -EINVAL;
1311 	}
1312 
1313 	channel = id % 4;
1314 
1315 	if (flags & MEDIA_LNK_FL_ENABLED) {
1316 		if (media_pad_remote_pad_first(local)) {
1317 			dev_dbg(priv->dev,
1318 				"Each VC can only be routed to one output channel\n");
1319 			return -EINVAL;
1320 		}
1321 
1322 		vc = local->index - 1;
1323 
1324 		dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
1325 			vc, id, channel);
1326 	} else {
1327 		vc = -1;
1328 	}
1329 
1330 	priv->channel_vc[channel] = vc;
1331 
1332 	return 0;
1333 }
1334 
1335 static const struct media_entity_operations rcar_csi2_entity_ops = {
1336 	.link_setup = rcsi2_link_setup,
1337 	.link_validate = v4l2_subdev_link_validate,
1338 };
1339 
1340 static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1341 				 struct platform_device *pdev)
1342 {
1343 	int irq, ret;
1344 
1345 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1346 	if (IS_ERR(priv->base))
1347 		return PTR_ERR(priv->base);
1348 
1349 	irq = platform_get_irq(pdev, 0);
1350 	if (irq < 0)
1351 		return irq;
1352 
1353 	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1354 					rcsi2_irq_thread, IRQF_SHARED,
1355 					KBUILD_MODNAME, priv);
1356 	if (ret)
1357 		return ret;
1358 
1359 	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1360 
1361 	return PTR_ERR_OR_ZERO(priv->rstc);
1362 }
1363 
1364 static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1365 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1366 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1367 	.csi0clkfreqrange = 0x20,
1368 	.num_channels = 4,
1369 	.clear_ulps = true,
1370 };
1371 
1372 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
1373 	.hsfreqrange = hsfreqrange_m3w_h3es1,
1374 	.num_channels = 4,
1375 };
1376 
1377 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1378 	.init_phtw = rcsi2_init_phtw_h3es2,
1379 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1380 	.csi0clkfreqrange = 0x20,
1381 	.num_channels = 4,
1382 	.clear_ulps = true,
1383 };
1384 
1385 static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1386 	.hsfreqrange = hsfreqrange_m3w_h3es1,
1387 	.num_channels = 4,
1388 };
1389 
1390 static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1391 	.hsfreqrange = hsfreqrange_m3w_h3es1,
1392 	.num_channels = 4,
1393 };
1394 
1395 static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1396 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1397 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1398 	.csi0clkfreqrange = 0x20,
1399 	.num_channels = 4,
1400 	.clear_ulps = true,
1401 };
1402 
1403 static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1404 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1405 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1406 	.num_channels = 4,
1407 };
1408 
1409 static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1410 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1411 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1412 	.csi0clkfreqrange = 0x20,
1413 	.clear_ulps = true,
1414 };
1415 
1416 static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1417 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1418 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1419 	.num_channels = 2,
1420 };
1421 
1422 static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
1423 	.init_phtw = rcsi2_init_phtw_v3u,
1424 	.hsfreqrange = hsfreqrange_v3u,
1425 	.csi0clkfreqrange = 0x20,
1426 	.clear_ulps = true,
1427 	.use_isp = true,
1428 };
1429 
1430 static const struct of_device_id rcar_csi2_of_table[] = {
1431 	{
1432 		.compatible = "renesas,r8a774a1-csi2",
1433 		.data = &rcar_csi2_info_r8a7796,
1434 	},
1435 	{
1436 		.compatible = "renesas,r8a774b1-csi2",
1437 		.data = &rcar_csi2_info_r8a77965,
1438 	},
1439 	{
1440 		.compatible = "renesas,r8a774c0-csi2",
1441 		.data = &rcar_csi2_info_r8a77990,
1442 	},
1443 	{
1444 		.compatible = "renesas,r8a774e1-csi2",
1445 		.data = &rcar_csi2_info_r8a7795,
1446 	},
1447 	{
1448 		.compatible = "renesas,r8a7795-csi2",
1449 		.data = &rcar_csi2_info_r8a7795,
1450 	},
1451 	{
1452 		.compatible = "renesas,r8a7796-csi2",
1453 		.data = &rcar_csi2_info_r8a7796,
1454 	},
1455 	{
1456 		.compatible = "renesas,r8a77961-csi2",
1457 		.data = &rcar_csi2_info_r8a77961,
1458 	},
1459 	{
1460 		.compatible = "renesas,r8a77965-csi2",
1461 		.data = &rcar_csi2_info_r8a77965,
1462 	},
1463 	{
1464 		.compatible = "renesas,r8a77970-csi2",
1465 		.data = &rcar_csi2_info_r8a77970,
1466 	},
1467 	{
1468 		.compatible = "renesas,r8a77980-csi2",
1469 		.data = &rcar_csi2_info_r8a77980,
1470 	},
1471 	{
1472 		.compatible = "renesas,r8a77990-csi2",
1473 		.data = &rcar_csi2_info_r8a77990,
1474 	},
1475 	{
1476 		.compatible = "renesas,r8a779a0-csi2",
1477 		.data = &rcar_csi2_info_r8a779a0,
1478 	},
1479 	{ /* sentinel */ },
1480 };
1481 MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1482 
1483 static const struct soc_device_attribute r8a7795[] = {
1484 	{
1485 		.soc_id = "r8a7795", .revision = "ES1.*",
1486 		.data = &rcar_csi2_info_r8a7795es1,
1487 	},
1488 	{
1489 		.soc_id = "r8a7795", .revision = "ES2.*",
1490 		.data = &rcar_csi2_info_r8a7795es2,
1491 	},
1492 	{ /* sentinel */ }
1493 };
1494 
1495 static int rcsi2_probe(struct platform_device *pdev)
1496 {
1497 	const struct soc_device_attribute *attr;
1498 	struct rcar_csi2 *priv;
1499 	unsigned int i, num_pads;
1500 	int ret;
1501 
1502 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1503 	if (!priv)
1504 		return -ENOMEM;
1505 
1506 	priv->info = of_device_get_match_data(&pdev->dev);
1507 
1508 	/*
1509 	 * The different ES versions of r8a7795 (H3) behave differently but
1510 	 * share the same compatible string.
1511 	 */
1512 	attr = soc_device_match(r8a7795);
1513 	if (attr)
1514 		priv->info = attr->data;
1515 
1516 	priv->dev = &pdev->dev;
1517 
1518 	mutex_init(&priv->lock);
1519 	priv->stream_count = 0;
1520 
1521 	ret = rcsi2_probe_resources(priv, pdev);
1522 	if (ret) {
1523 		dev_err(priv->dev, "Failed to get resources\n");
1524 		goto error_mutex;
1525 	}
1526 
1527 	platform_set_drvdata(pdev, priv);
1528 
1529 	ret = rcsi2_parse_dt(priv);
1530 	if (ret)
1531 		goto error_mutex;
1532 
1533 	priv->subdev.owner = THIS_MODULE;
1534 	priv->subdev.dev = &pdev->dev;
1535 	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1536 	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1537 	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
1538 		 KBUILD_MODNAME, dev_name(&pdev->dev));
1539 	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1540 
1541 	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1542 	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1543 
1544 	num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;
1545 
1546 	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1547 	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1548 		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1549 
1550 	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1551 				     priv->pads);
1552 	if (ret)
1553 		goto error_async;
1554 
1555 	for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
1556 		priv->channel_vc[i] = -1;
1557 
1558 	pm_runtime_enable(&pdev->dev);
1559 
1560 	ret = v4l2_async_register_subdev(&priv->subdev);
1561 	if (ret < 0)
1562 		goto error_async;
1563 
1564 	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1565 
1566 	return 0;
1567 
1568 error_async:
1569 	v4l2_async_nf_unregister(&priv->notifier);
1570 	v4l2_async_nf_cleanup(&priv->notifier);
1571 error_mutex:
1572 	mutex_destroy(&priv->lock);
1573 
1574 	return ret;
1575 }
1576 
1577 static int rcsi2_remove(struct platform_device *pdev)
1578 {
1579 	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1580 
1581 	v4l2_async_nf_unregister(&priv->notifier);
1582 	v4l2_async_nf_cleanup(&priv->notifier);
1583 	v4l2_async_unregister_subdev(&priv->subdev);
1584 
1585 	pm_runtime_disable(&pdev->dev);
1586 
1587 	mutex_destroy(&priv->lock);
1588 
1589 	return 0;
1590 }
1591 
1592 static struct platform_driver rcar_csi2_pdrv = {
1593 	.remove	= rcsi2_remove,
1594 	.probe	= rcsi2_probe,
1595 	.driver	= {
1596 		.name	= "rcar-csi2",
1597 		.suppress_bind_attrs = true,
1598 		.of_match_table	= rcar_csi2_of_table,
1599 	},
1600 };
1601 
1602 module_platform_driver(rcar_csi2_pdrv);
1603 
1604 MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1605 MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1606 MODULE_LICENSE("GPL");
1607