1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Renesas R-Car MIPI CSI-2 Receiver
4  *
5  * Copyright (C) 2018 Renesas Electronics Corp.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_graph.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17 #include <linux/sys_soc.h>
18 
19 #include <media/mipi-csi2.h>
20 #include <media/v4l2-ctrls.h>
21 #include <media/v4l2-device.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-mc.h>
24 #include <media/v4l2-subdev.h>
25 
26 struct rcar_csi2;
27 
28 /* Register offsets and bits */
29 
30 /* Control Timing Select */
31 #define TREF_REG			0x00
32 #define TREF_TREF			BIT(0)
33 
34 /* Software Reset */
35 #define SRST_REG			0x04
36 #define SRST_SRST			BIT(0)
37 
38 /* PHY Operation Control */
39 #define PHYCNT_REG			0x08
40 #define PHYCNT_SHUTDOWNZ		BIT(17)
41 #define PHYCNT_RSTZ			BIT(16)
42 #define PHYCNT_ENABLECLK		BIT(4)
43 #define PHYCNT_ENABLE_3			BIT(3)
44 #define PHYCNT_ENABLE_2			BIT(2)
45 #define PHYCNT_ENABLE_1			BIT(1)
46 #define PHYCNT_ENABLE_0			BIT(0)
47 
48 /* Checksum Control */
49 #define CHKSUM_REG			0x0c
50 #define CHKSUM_ECC_EN			BIT(1)
51 #define CHKSUM_CRC_EN			BIT(0)
52 
53 /*
54  * Channel Data Type Select
55  * VCDT[0-15]:  Channel 0 VCDT[16-31]:  Channel 1
56  * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57  */
58 #define VCDT_REG			0x10
59 #define VCDT2_REG			0x14
60 #define VCDT_VCDTN_EN			BIT(15)
61 #define VCDT_SEL_VC(n)			(((n) & 0x3) << 8)
62 #define VCDT_SEL_DTN_ON			BIT(6)
63 #define VCDT_SEL_DT(n)			(((n) & 0x3f) << 0)
64 
65 /* Frame Data Type Select */
66 #define FRDT_REG			0x18
67 
68 /* Field Detection Control */
69 #define FLD_REG				0x1c
70 #define FLD_FLD_NUM(n)			(((n) & 0xff) << 16)
71 #define FLD_DET_SEL(n)			(((n) & 0x3) << 4)
72 #define FLD_FLD_EN4			BIT(3)
73 #define FLD_FLD_EN3			BIT(2)
74 #define FLD_FLD_EN2			BIT(1)
75 #define FLD_FLD_EN			BIT(0)
76 
77 /* Automatic Standby Control */
78 #define ASTBY_REG			0x20
79 
80 /* Long Data Type Setting 0 */
81 #define LNGDT0_REG			0x28
82 
83 /* Long Data Type Setting 1 */
84 #define LNGDT1_REG			0x2c
85 
86 /* Interrupt Enable */
87 #define INTEN_REG			0x30
88 #define INTEN_INT_AFIFO_OF		BIT(27)
89 #define INTEN_INT_ERRSOTHS		BIT(4)
90 #define INTEN_INT_ERRSOTSYNCHS		BIT(3)
91 
92 /* Interrupt Source Mask */
93 #define INTCLOSE_REG			0x34
94 
95 /* Interrupt Status Monitor */
96 #define INTSTATE_REG			0x38
97 #define INTSTATE_INT_ULPS_START		BIT(7)
98 #define INTSTATE_INT_ULPS_END		BIT(6)
99 
100 /* Interrupt Error Status Monitor */
101 #define INTERRSTATE_REG			0x3c
102 
103 /* Short Packet Data */
104 #define SHPDAT_REG			0x40
105 
106 /* Short Packet Count */
107 #define SHPCNT_REG			0x44
108 
109 /* LINK Operation Control */
110 #define LINKCNT_REG			0x48
111 #define LINKCNT_MONITOR_EN		BIT(31)
112 #define LINKCNT_REG_MONI_PACT_EN	BIT(25)
113 #define LINKCNT_ICLK_NONSTOP		BIT(24)
114 
115 /* Lane Swap */
116 #define LSWAP_REG			0x4c
117 #define LSWAP_L3SEL(n)			(((n) & 0x3) << 6)
118 #define LSWAP_L2SEL(n)			(((n) & 0x3) << 4)
119 #define LSWAP_L1SEL(n)			(((n) & 0x3) << 2)
120 #define LSWAP_L0SEL(n)			(((n) & 0x3) << 0)
121 
122 /* PHY Test Interface Write Register */
123 #define PHTW_REG			0x50
124 #define PHTW_DWEN			BIT(24)
125 #define PHTW_TESTDIN_DATA(n)		(((n & 0xff)) << 16)
126 #define PHTW_CWEN			BIT(8)
127 #define PHTW_TESTDIN_CODE(n)		((n & 0xff))
128 
129 #define PHYFRX_REG			0x64
130 #define PHYFRX_FORCERX_MODE_3		BIT(3)
131 #define PHYFRX_FORCERX_MODE_2		BIT(2)
132 #define PHYFRX_FORCERX_MODE_1		BIT(1)
133 #define PHYFRX_FORCERX_MODE_0		BIT(0)
134 
135 struct phtw_value {
136 	u16 data;
137 	u16 code;
138 };
139 
140 struct rcsi2_mbps_reg {
141 	u16 mbps;
142 	u16 reg;
143 };
144 
145 static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
146 	{ .mbps = 1500, .reg = 0xcc },
147 	{ .mbps = 1550, .reg = 0x1d },
148 	{ .mbps = 1600, .reg = 0x27 },
149 	{ .mbps = 1650, .reg = 0x30 },
150 	{ .mbps = 1700, .reg = 0x39 },
151 	{ .mbps = 1750, .reg = 0x42 },
152 	{ .mbps = 1800, .reg = 0x4b },
153 	{ .mbps = 1850, .reg = 0x55 },
154 	{ .mbps = 1900, .reg = 0x5e },
155 	{ .mbps = 1950, .reg = 0x67 },
156 	{ .mbps = 2000, .reg = 0x71 },
157 	{ .mbps = 2050, .reg = 0x79 },
158 	{ .mbps = 2100, .reg = 0x83 },
159 	{ .mbps = 2150, .reg = 0x8c },
160 	{ .mbps = 2200, .reg = 0x95 },
161 	{ .mbps = 2250, .reg = 0x9e },
162 	{ .mbps = 2300, .reg = 0xa7 },
163 	{ .mbps = 2350, .reg = 0xb0 },
164 	{ .mbps = 2400, .reg = 0xba },
165 	{ .mbps = 2450, .reg = 0xc3 },
166 	{ .mbps = 2500, .reg = 0xcc },
167 	{ /* sentinel */ },
168 };
169 
170 static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
171 	{ .mbps =   80, .reg = 0x86 },
172 	{ .mbps =   90, .reg = 0x86 },
173 	{ .mbps =  100, .reg = 0x87 },
174 	{ .mbps =  110, .reg = 0x87 },
175 	{ .mbps =  120, .reg = 0x88 },
176 	{ .mbps =  130, .reg = 0x88 },
177 	{ .mbps =  140, .reg = 0x89 },
178 	{ .mbps =  150, .reg = 0x89 },
179 	{ .mbps =  160, .reg = 0x8a },
180 	{ .mbps =  170, .reg = 0x8a },
181 	{ .mbps =  180, .reg = 0x8b },
182 	{ .mbps =  190, .reg = 0x8b },
183 	{ .mbps =  205, .reg = 0x8c },
184 	{ .mbps =  220, .reg = 0x8d },
185 	{ .mbps =  235, .reg = 0x8e },
186 	{ .mbps =  250, .reg = 0x8e },
187 	{ /* sentinel */ },
188 };
189 
190 static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
191 	{ .mbps =   80, .reg = 0x00 },
192 	{ .mbps =   90, .reg = 0x20 },
193 	{ .mbps =  100, .reg = 0x40 },
194 	{ .mbps =  110, .reg = 0x02 },
195 	{ .mbps =  130, .reg = 0x22 },
196 	{ .mbps =  140, .reg = 0x42 },
197 	{ .mbps =  150, .reg = 0x04 },
198 	{ .mbps =  170, .reg = 0x24 },
199 	{ .mbps =  180, .reg = 0x44 },
200 	{ .mbps =  200, .reg = 0x06 },
201 	{ .mbps =  220, .reg = 0x26 },
202 	{ .mbps =  240, .reg = 0x46 },
203 	{ .mbps =  250, .reg = 0x08 },
204 	{ .mbps =  270, .reg = 0x28 },
205 	{ .mbps =  300, .reg = 0x0a },
206 	{ .mbps =  330, .reg = 0x2a },
207 	{ .mbps =  360, .reg = 0x4a },
208 	{ .mbps =  400, .reg = 0x0c },
209 	{ .mbps =  450, .reg = 0x2c },
210 	{ .mbps =  500, .reg = 0x0e },
211 	{ .mbps =  550, .reg = 0x2e },
212 	{ .mbps =  600, .reg = 0x10 },
213 	{ .mbps =  650, .reg = 0x30 },
214 	{ .mbps =  700, .reg = 0x12 },
215 	{ .mbps =  750, .reg = 0x32 },
216 	{ .mbps =  800, .reg = 0x52 },
217 	{ .mbps =  850, .reg = 0x72 },
218 	{ .mbps =  900, .reg = 0x14 },
219 	{ .mbps =  950, .reg = 0x34 },
220 	{ .mbps = 1000, .reg = 0x54 },
221 	{ .mbps = 1050, .reg = 0x74 },
222 	{ .mbps = 1125, .reg = 0x16 },
223 	{ /* sentinel */ },
224 };
225 
226 /* PHY Test Interface Clear */
227 #define PHTC_REG			0x58
228 #define PHTC_TESTCLR			BIT(0)
229 
230 /* PHY Frequency Control */
231 #define PHYPLL_REG			0x68
232 #define PHYPLL_HSFREQRANGE(n)		((n) << 16)
233 
234 static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
235 	{ .mbps =   80, .reg = 0x00 },
236 	{ .mbps =   90, .reg = 0x10 },
237 	{ .mbps =  100, .reg = 0x20 },
238 	{ .mbps =  110, .reg = 0x30 },
239 	{ .mbps =  120, .reg = 0x01 },
240 	{ .mbps =  130, .reg = 0x11 },
241 	{ .mbps =  140, .reg = 0x21 },
242 	{ .mbps =  150, .reg = 0x31 },
243 	{ .mbps =  160, .reg = 0x02 },
244 	{ .mbps =  170, .reg = 0x12 },
245 	{ .mbps =  180, .reg = 0x22 },
246 	{ .mbps =  190, .reg = 0x32 },
247 	{ .mbps =  205, .reg = 0x03 },
248 	{ .mbps =  220, .reg = 0x13 },
249 	{ .mbps =  235, .reg = 0x23 },
250 	{ .mbps =  250, .reg = 0x33 },
251 	{ .mbps =  275, .reg = 0x04 },
252 	{ .mbps =  300, .reg = 0x14 },
253 	{ .mbps =  325, .reg = 0x25 },
254 	{ .mbps =  350, .reg = 0x35 },
255 	{ .mbps =  400, .reg = 0x05 },
256 	{ .mbps =  450, .reg = 0x16 },
257 	{ .mbps =  500, .reg = 0x26 },
258 	{ .mbps =  550, .reg = 0x37 },
259 	{ .mbps =  600, .reg = 0x07 },
260 	{ .mbps =  650, .reg = 0x18 },
261 	{ .mbps =  700, .reg = 0x28 },
262 	{ .mbps =  750, .reg = 0x39 },
263 	{ .mbps =  800, .reg = 0x09 },
264 	{ .mbps =  850, .reg = 0x19 },
265 	{ .mbps =  900, .reg = 0x29 },
266 	{ .mbps =  950, .reg = 0x3a },
267 	{ .mbps = 1000, .reg = 0x0a },
268 	{ .mbps = 1050, .reg = 0x1a },
269 	{ .mbps = 1100, .reg = 0x2a },
270 	{ .mbps = 1150, .reg = 0x3b },
271 	{ .mbps = 1200, .reg = 0x0b },
272 	{ .mbps = 1250, .reg = 0x1b },
273 	{ .mbps = 1300, .reg = 0x2b },
274 	{ .mbps = 1350, .reg = 0x3c },
275 	{ .mbps = 1400, .reg = 0x0c },
276 	{ .mbps = 1450, .reg = 0x1c },
277 	{ .mbps = 1500, .reg = 0x2c },
278 	{ .mbps = 1550, .reg = 0x3d },
279 	{ .mbps = 1600, .reg = 0x0d },
280 	{ .mbps = 1650, .reg = 0x1d },
281 	{ .mbps = 1700, .reg = 0x2e },
282 	{ .mbps = 1750, .reg = 0x3e },
283 	{ .mbps = 1800, .reg = 0x0e },
284 	{ .mbps = 1850, .reg = 0x1e },
285 	{ .mbps = 1900, .reg = 0x2f },
286 	{ .mbps = 1950, .reg = 0x3f },
287 	{ .mbps = 2000, .reg = 0x0f },
288 	{ .mbps = 2050, .reg = 0x40 },
289 	{ .mbps = 2100, .reg = 0x41 },
290 	{ .mbps = 2150, .reg = 0x42 },
291 	{ .mbps = 2200, .reg = 0x43 },
292 	{ .mbps = 2300, .reg = 0x45 },
293 	{ .mbps = 2350, .reg = 0x46 },
294 	{ .mbps = 2400, .reg = 0x47 },
295 	{ .mbps = 2450, .reg = 0x48 },
296 	{ .mbps = 2500, .reg = 0x49 },
297 	{ /* sentinel */ },
298 };
299 
300 static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
301 	{ .mbps =   80, .reg = 0x00 },
302 	{ .mbps =   90, .reg = 0x10 },
303 	{ .mbps =  100, .reg = 0x20 },
304 	{ .mbps =  110, .reg = 0x30 },
305 	{ .mbps =  120, .reg = 0x01 },
306 	{ .mbps =  130, .reg = 0x11 },
307 	{ .mbps =  140, .reg = 0x21 },
308 	{ .mbps =  150, .reg = 0x31 },
309 	{ .mbps =  160, .reg = 0x02 },
310 	{ .mbps =  170, .reg = 0x12 },
311 	{ .mbps =  180, .reg = 0x22 },
312 	{ .mbps =  190, .reg = 0x32 },
313 	{ .mbps =  205, .reg = 0x03 },
314 	{ .mbps =  220, .reg = 0x13 },
315 	{ .mbps =  235, .reg = 0x23 },
316 	{ .mbps =  250, .reg = 0x33 },
317 	{ .mbps =  275, .reg = 0x04 },
318 	{ .mbps =  300, .reg = 0x14 },
319 	{ .mbps =  325, .reg = 0x25 },
320 	{ .mbps =  350, .reg = 0x35 },
321 	{ .mbps =  400, .reg = 0x05 },
322 	{ .mbps =  450, .reg = 0x16 },
323 	{ .mbps =  500, .reg = 0x26 },
324 	{ .mbps =  550, .reg = 0x37 },
325 	{ .mbps =  600, .reg = 0x07 },
326 	{ .mbps =  650, .reg = 0x18 },
327 	{ .mbps =  700, .reg = 0x28 },
328 	{ .mbps =  750, .reg = 0x39 },
329 	{ .mbps =  800, .reg = 0x09 },
330 	{ .mbps =  850, .reg = 0x19 },
331 	{ .mbps =  900, .reg = 0x29 },
332 	{ .mbps =  950, .reg = 0x3a },
333 	{ .mbps = 1000, .reg = 0x0a },
334 	{ .mbps = 1050, .reg = 0x1a },
335 	{ .mbps = 1100, .reg = 0x2a },
336 	{ .mbps = 1150, .reg = 0x3b },
337 	{ .mbps = 1200, .reg = 0x0b },
338 	{ .mbps = 1250, .reg = 0x1b },
339 	{ .mbps = 1300, .reg = 0x2b },
340 	{ .mbps = 1350, .reg = 0x3c },
341 	{ .mbps = 1400, .reg = 0x0c },
342 	{ .mbps = 1450, .reg = 0x1c },
343 	{ .mbps = 1500, .reg = 0x2c },
344 	{ /* sentinel */ },
345 };
346 
347 static const struct rcsi2_mbps_reg hsfreqrange_m3w[] = {
348 	{ .mbps =   80,	.reg = 0x00 },
349 	{ .mbps =   90,	.reg = 0x10 },
350 	{ .mbps =  100,	.reg = 0x20 },
351 	{ .mbps =  110,	.reg = 0x30 },
352 	{ .mbps =  120,	.reg = 0x01 },
353 	{ .mbps =  130,	.reg = 0x11 },
354 	{ .mbps =  140,	.reg = 0x21 },
355 	{ .mbps =  150,	.reg = 0x31 },
356 	{ .mbps =  160,	.reg = 0x02 },
357 	{ .mbps =  170,	.reg = 0x12 },
358 	{ .mbps =  180,	.reg = 0x22 },
359 	{ .mbps =  190,	.reg = 0x32 },
360 	{ .mbps =  205,	.reg = 0x03 },
361 	{ .mbps =  220,	.reg = 0x13 },
362 	{ .mbps =  235,	.reg = 0x23 },
363 	{ .mbps =  250,	.reg = 0x33 },
364 	{ .mbps =  275,	.reg = 0x04 },
365 	{ .mbps =  300,	.reg = 0x14 },
366 	{ .mbps =  325,	.reg = 0x05 },
367 	{ .mbps =  350,	.reg = 0x15 },
368 	{ .mbps =  400,	.reg = 0x25 },
369 	{ .mbps =  450,	.reg = 0x06 },
370 	{ .mbps =  500,	.reg = 0x16 },
371 	{ .mbps =  550,	.reg = 0x07 },
372 	{ .mbps =  600,	.reg = 0x17 },
373 	{ .mbps =  650,	.reg = 0x08 },
374 	{ .mbps =  700,	.reg = 0x18 },
375 	{ .mbps =  750,	.reg = 0x09 },
376 	{ .mbps =  800,	.reg = 0x19 },
377 	{ .mbps =  850,	.reg = 0x29 },
378 	{ .mbps =  900,	.reg = 0x39 },
379 	{ .mbps =  950,	.reg = 0x0a },
380 	{ .mbps = 1000,	.reg = 0x1a },
381 	{ .mbps = 1050,	.reg = 0x2a },
382 	{ .mbps = 1100,	.reg = 0x3a },
383 	{ .mbps = 1150,	.reg = 0x0b },
384 	{ .mbps = 1200,	.reg = 0x1b },
385 	{ .mbps = 1250,	.reg = 0x2b },
386 	{ .mbps = 1300,	.reg = 0x3b },
387 	{ .mbps = 1350,	.reg = 0x0c },
388 	{ .mbps = 1400,	.reg = 0x1c },
389 	{ .mbps = 1450,	.reg = 0x2c },
390 	{ .mbps = 1500,	.reg = 0x3c },
391 	{ /* sentinel */ },
392 };
393 
394 /* PHY ESC Error Monitor */
395 #define PHEERM_REG			0x74
396 
397 /* PHY Clock Lane Monitor */
398 #define PHCLM_REG			0x78
399 #define PHCLM_STOPSTATECKL		BIT(0)
400 
401 /* PHY Data Lane Monitor */
402 #define PHDLM_REG			0x7c
403 
404 /* CSI0CLK Frequency Configuration Preset Register */
405 #define CSI0CLKFCPR_REG			0x260
406 #define CSI0CLKFREQRANGE(n)		((n & 0x3f) << 16)
407 
408 struct rcar_csi2_format {
409 	u32 code;
410 	unsigned int datatype;
411 	unsigned int bpp;
412 };
413 
414 static const struct rcar_csi2_format rcar_csi2_formats[] = {
415 	{
416 		.code = MEDIA_BUS_FMT_RGB888_1X24,
417 		.datatype = MIPI_CSI2_DT_RGB888,
418 		.bpp = 24,
419 	}, {
420 		.code = MEDIA_BUS_FMT_UYVY8_1X16,
421 		.datatype = MIPI_CSI2_DT_YUV422_8B,
422 		.bpp = 16,
423 	}, {
424 		.code = MEDIA_BUS_FMT_YUYV8_1X16,
425 		.datatype = MIPI_CSI2_DT_YUV422_8B,
426 		.bpp = 16,
427 	}, {
428 		.code = MEDIA_BUS_FMT_UYVY8_2X8,
429 		.datatype = MIPI_CSI2_DT_YUV422_8B,
430 		.bpp = 16,
431 	}, {
432 		.code = MEDIA_BUS_FMT_YUYV10_2X10,
433 		.datatype = MIPI_CSI2_DT_YUV422_8B,
434 		.bpp = 20,
435 	}, {
436 		.code = MEDIA_BUS_FMT_Y10_1X10,
437 		.datatype = MIPI_CSI2_DT_RAW10,
438 		.bpp = 10,
439 	}, {
440 		.code = MEDIA_BUS_FMT_SBGGR8_1X8,
441 		.datatype = MIPI_CSI2_DT_RAW8,
442 		.bpp = 8,
443 	}, {
444 		.code = MEDIA_BUS_FMT_SGBRG8_1X8,
445 		.datatype = MIPI_CSI2_DT_RAW8,
446 		.bpp = 8,
447 	}, {
448 		.code = MEDIA_BUS_FMT_SGRBG8_1X8,
449 		.datatype = MIPI_CSI2_DT_RAW8,
450 		.bpp = 8,
451 	}, {
452 		.code = MEDIA_BUS_FMT_SRGGB8_1X8,
453 		.datatype = MIPI_CSI2_DT_RAW8,
454 		.bpp = 8,
455 	}, {
456 		.code = MEDIA_BUS_FMT_Y8_1X8,
457 		.datatype = MIPI_CSI2_DT_RAW8,
458 		.bpp = 8,
459 	},
460 };
461 
462 static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
463 {
464 	unsigned int i;
465 
466 	for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
467 		if (rcar_csi2_formats[i].code == code)
468 			return &rcar_csi2_formats[i];
469 
470 	return NULL;
471 }
472 
473 enum rcar_csi2_pads {
474 	RCAR_CSI2_SINK,
475 	RCAR_CSI2_SOURCE_VC0,
476 	RCAR_CSI2_SOURCE_VC1,
477 	RCAR_CSI2_SOURCE_VC2,
478 	RCAR_CSI2_SOURCE_VC3,
479 	NR_OF_RCAR_CSI2_PAD,
480 };
481 
482 struct rcar_csi2_info {
483 	int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
484 	int (*phy_post_init)(struct rcar_csi2 *priv);
485 	int (*start_receiver)(struct rcar_csi2 *priv);
486 	void (*enter_standby)(struct rcar_csi2 *priv);
487 	const struct rcsi2_mbps_reg *hsfreqrange;
488 	unsigned int csi0clkfreqrange;
489 	unsigned int num_channels;
490 	bool clear_ulps;
491 	bool use_isp;
492 	bool support_dphy;
493 	bool support_cphy;
494 };
495 
496 struct rcar_csi2 {
497 	struct device *dev;
498 	void __iomem *base;
499 	const struct rcar_csi2_info *info;
500 	struct reset_control *rstc;
501 
502 	struct v4l2_subdev subdev;
503 	struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
504 
505 	struct v4l2_async_notifier notifier;
506 	struct v4l2_subdev *remote;
507 	unsigned int remote_pad;
508 
509 	int channel_vc[4];
510 
511 	struct mutex lock; /* Protects mf and stream_count. */
512 	struct v4l2_mbus_framefmt mf;
513 	int stream_count;
514 
515 	bool cphy;
516 	unsigned short lanes;
517 	unsigned char lane_swap[4];
518 };
519 
520 static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
521 {
522 	return container_of(sd, struct rcar_csi2, subdev);
523 }
524 
525 static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
526 {
527 	return container_of(n, struct rcar_csi2, notifier);
528 }
529 
530 static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
531 {
532 	return ioread32(priv->base + reg);
533 }
534 
535 static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
536 {
537 	iowrite32(data, priv->base + reg);
538 }
539 
540 static void rcsi2_enter_standby_gen3(struct rcar_csi2 *priv)
541 {
542 	rcsi2_write(priv, PHYCNT_REG, 0);
543 	rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
544 }
545 
546 static void rcsi2_enter_standby(struct rcar_csi2 *priv)
547 {
548 	if (priv->info->enter_standby)
549 		priv->info->enter_standby(priv);
550 
551 	reset_control_assert(priv->rstc);
552 	usleep_range(100, 150);
553 	pm_runtime_put(priv->dev);
554 }
555 
556 static int rcsi2_exit_standby(struct rcar_csi2 *priv)
557 {
558 	int ret;
559 
560 	ret = pm_runtime_resume_and_get(priv->dev);
561 	if (ret < 0)
562 		return ret;
563 
564 	reset_control_deassert(priv->rstc);
565 
566 	return 0;
567 }
568 
569 static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
570 				unsigned int lanes)
571 {
572 	unsigned int timeout;
573 
574 	/* Wait for the clock and data lanes to enter LP-11 state. */
575 	for (timeout = 0; timeout <= 20; timeout++) {
576 		const u32 lane_mask = (1 << lanes) - 1;
577 
578 		if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL)  &&
579 		    (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
580 			return 0;
581 
582 		usleep_range(1000, 2000);
583 	}
584 
585 	dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
586 
587 	return -ETIMEDOUT;
588 }
589 
590 static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
591 {
592 	const struct rcsi2_mbps_reg *hsfreq;
593 	const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
594 
595 	if (mbps < priv->info->hsfreqrange->mbps)
596 		dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
597 			 mbps, priv->info->hsfreqrange->mbps);
598 
599 	for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
600 		if (hsfreq->mbps >= mbps)
601 			break;
602 		hsfreq_prev = hsfreq;
603 	}
604 
605 	if (!hsfreq->mbps) {
606 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
607 		return -ERANGE;
608 	}
609 
610 	if (hsfreq_prev &&
611 	    ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
612 		hsfreq = hsfreq_prev;
613 
614 	rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
615 
616 	return 0;
617 }
618 
619 static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
620 			   unsigned int lanes)
621 {
622 	struct v4l2_subdev *source;
623 	struct v4l2_ctrl *ctrl;
624 	u64 mbps;
625 
626 	if (!priv->remote)
627 		return -ENODEV;
628 
629 	source = priv->remote;
630 
631 	/* Read the pixel rate control from remote. */
632 	ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
633 	if (!ctrl) {
634 		dev_err(priv->dev, "no pixel rate control in subdev %s\n",
635 			source->name);
636 		return -EINVAL;
637 	}
638 
639 	/*
640 	 * Calculate the phypll in mbps.
641 	 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
642 	 * bps = link_freq * 2
643 	 */
644 	mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
645 	do_div(mbps, lanes * 1000000);
646 
647 	return mbps;
648 }
649 
650 static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
651 				  unsigned int *lanes)
652 {
653 	struct v4l2_mbus_config mbus_config = { 0 };
654 	int ret;
655 
656 	*lanes = priv->lanes;
657 
658 	ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
659 			       priv->remote_pad, &mbus_config);
660 	if (ret == -ENOIOCTLCMD) {
661 		dev_dbg(priv->dev, "No remote mbus configuration available\n");
662 		return 0;
663 	}
664 
665 	if (ret) {
666 		dev_err(priv->dev, "Failed to get remote mbus configuration\n");
667 		return ret;
668 	}
669 
670 	switch (mbus_config.type) {
671 	case V4L2_MBUS_CSI2_CPHY:
672 		if (!priv->cphy)
673 			return -EINVAL;
674 		break;
675 	case V4L2_MBUS_CSI2_DPHY:
676 		if (priv->cphy)
677 			return -EINVAL;
678 		break;
679 	default:
680 		dev_err(priv->dev, "Unsupported media bus type %u\n",
681 			mbus_config.type);
682 		return -EINVAL;
683 	}
684 
685 	if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
686 		dev_err(priv->dev,
687 			"Unsupported mbus config: too many data lanes %u\n",
688 			mbus_config.bus.mipi_csi2.num_data_lanes);
689 		return -EINVAL;
690 	}
691 
692 	*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
693 
694 	return 0;
695 }
696 
697 static int rcsi2_start_receiver_gen3(struct rcar_csi2 *priv)
698 {
699 	const struct rcar_csi2_format *format;
700 	u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
701 	unsigned int lanes;
702 	unsigned int i;
703 	int mbps, ret;
704 
705 	dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
706 		priv->mf.width, priv->mf.height,
707 		priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
708 
709 	/* Code is validated in set_fmt. */
710 	format = rcsi2_code_to_fmt(priv->mf.code);
711 	if (!format)
712 		return -EINVAL;
713 
714 	/*
715 	 * Enable all supported CSI-2 channels with virtual channel and
716 	 * data type matching.
717 	 *
718 	 * NOTE: It's not possible to get individual datatype for each
719 	 *       source virtual channel. Once this is possible in V4L2
720 	 *       it should be used here.
721 	 */
722 	for (i = 0; i < priv->info->num_channels; i++) {
723 		u32 vcdt_part;
724 
725 		if (priv->channel_vc[i] < 0)
726 			continue;
727 
728 		vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
729 			VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
730 
731 		/* Store in correct reg and offset. */
732 		if (i < 2)
733 			vcdt |= vcdt_part << ((i % 2) * 16);
734 		else
735 			vcdt2 |= vcdt_part << ((i % 2) * 16);
736 	}
737 
738 	if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
739 		fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
740 			| FLD_FLD_EN;
741 
742 		if (priv->mf.height == 240)
743 			fld |= FLD_FLD_NUM(0);
744 		else
745 			fld |= FLD_FLD_NUM(1);
746 	}
747 
748 	/*
749 	 * Get the number of active data lanes inspecting the remote mbus
750 	 * configuration.
751 	 */
752 	ret = rcsi2_get_active_lanes(priv, &lanes);
753 	if (ret)
754 		return ret;
755 
756 	phycnt = PHYCNT_ENABLECLK;
757 	phycnt |= (1 << lanes) - 1;
758 
759 	mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
760 	if (mbps < 0)
761 		return mbps;
762 
763 	/* Enable interrupts. */
764 	rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
765 		    | INTEN_INT_ERRSOTSYNCHS);
766 
767 	/* Init */
768 	rcsi2_write(priv, TREF_REG, TREF_TREF);
769 	rcsi2_write(priv, PHTC_REG, 0);
770 
771 	/* Configure */
772 	if (!priv->info->use_isp) {
773 		rcsi2_write(priv, VCDT_REG, vcdt);
774 		if (vcdt2)
775 			rcsi2_write(priv, VCDT2_REG, vcdt2);
776 	}
777 
778 	/* Lanes are zero indexed. */
779 	rcsi2_write(priv, LSWAP_REG,
780 		    LSWAP_L0SEL(priv->lane_swap[0] - 1) |
781 		    LSWAP_L1SEL(priv->lane_swap[1] - 1) |
782 		    LSWAP_L2SEL(priv->lane_swap[2] - 1) |
783 		    LSWAP_L3SEL(priv->lane_swap[3] - 1));
784 
785 	/* Start */
786 	if (priv->info->init_phtw) {
787 		ret = priv->info->init_phtw(priv, mbps);
788 		if (ret)
789 			return ret;
790 	}
791 
792 	if (priv->info->hsfreqrange) {
793 		ret = rcsi2_set_phypll(priv, mbps);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	if (priv->info->csi0clkfreqrange)
799 		rcsi2_write(priv, CSI0CLKFCPR_REG,
800 			    CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
801 
802 	if (priv->info->use_isp)
803 		rcsi2_write(priv, PHYFRX_REG,
804 			    PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
805 			    PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
806 
807 	rcsi2_write(priv, PHYCNT_REG, phycnt);
808 	rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
809 		    LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
810 	rcsi2_write(priv, FLD_REG, fld);
811 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
812 	rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
813 
814 	ret = rcsi2_wait_phy_start(priv, lanes);
815 	if (ret)
816 		return ret;
817 
818 	if (priv->info->use_isp)
819 		rcsi2_write(priv, PHYFRX_REG, 0);
820 
821 	/* Run post PHY start initialization, if needed. */
822 	if (priv->info->phy_post_init) {
823 		ret = priv->info->phy_post_init(priv);
824 		if (ret)
825 			return ret;
826 	}
827 
828 	/* Clear Ultra Low Power interrupt. */
829 	if (priv->info->clear_ulps)
830 		rcsi2_write(priv, INTSTATE_REG,
831 			    INTSTATE_INT_ULPS_START |
832 			    INTSTATE_INT_ULPS_END);
833 	return 0;
834 }
835 
836 static int rcsi2_start(struct rcar_csi2 *priv)
837 {
838 	int ret;
839 
840 	ret = rcsi2_exit_standby(priv);
841 	if (ret < 0)
842 		return ret;
843 
844 	ret = priv->info->start_receiver(priv);
845 	if (ret) {
846 		rcsi2_enter_standby(priv);
847 		return ret;
848 	}
849 
850 	ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
851 	if (ret) {
852 		rcsi2_enter_standby(priv);
853 		return ret;
854 	}
855 
856 	return 0;
857 }
858 
859 static void rcsi2_stop(struct rcar_csi2 *priv)
860 {
861 	rcsi2_enter_standby(priv);
862 	v4l2_subdev_call(priv->remote, video, s_stream, 0);
863 }
864 
865 static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
866 {
867 	struct rcar_csi2 *priv = sd_to_csi2(sd);
868 	int ret = 0;
869 
870 	mutex_lock(&priv->lock);
871 
872 	if (!priv->remote) {
873 		ret = -ENODEV;
874 		goto out;
875 	}
876 
877 	if (enable && priv->stream_count == 0) {
878 		ret = rcsi2_start(priv);
879 		if (ret)
880 			goto out;
881 	} else if (!enable && priv->stream_count == 1) {
882 		rcsi2_stop(priv);
883 	}
884 
885 	priv->stream_count += enable ? 1 : -1;
886 out:
887 	mutex_unlock(&priv->lock);
888 
889 	return ret;
890 }
891 
892 static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
893 				struct v4l2_subdev_state *sd_state,
894 				struct v4l2_subdev_format *format)
895 {
896 	struct rcar_csi2 *priv = sd_to_csi2(sd);
897 	struct v4l2_mbus_framefmt *framefmt;
898 
899 	mutex_lock(&priv->lock);
900 
901 	if (!rcsi2_code_to_fmt(format->format.code))
902 		format->format.code = rcar_csi2_formats[0].code;
903 
904 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
905 		priv->mf = format->format;
906 	} else {
907 		framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
908 		*framefmt = format->format;
909 	}
910 
911 	mutex_unlock(&priv->lock);
912 
913 	return 0;
914 }
915 
916 static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
917 				struct v4l2_subdev_state *sd_state,
918 				struct v4l2_subdev_format *format)
919 {
920 	struct rcar_csi2 *priv = sd_to_csi2(sd);
921 
922 	mutex_lock(&priv->lock);
923 
924 	if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
925 		format->format = priv->mf;
926 	else
927 		format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
928 
929 	mutex_unlock(&priv->lock);
930 
931 	return 0;
932 }
933 
934 static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
935 	.s_stream = rcsi2_s_stream,
936 };
937 
938 static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
939 	.set_fmt = rcsi2_set_pad_format,
940 	.get_fmt = rcsi2_get_pad_format,
941 };
942 
943 static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
944 	.video	= &rcar_csi2_video_ops,
945 	.pad	= &rcar_csi2_pad_ops,
946 };
947 
948 static irqreturn_t rcsi2_irq(int irq, void *data)
949 {
950 	struct rcar_csi2 *priv = data;
951 	u32 status, err_status;
952 
953 	status = rcsi2_read(priv, INTSTATE_REG);
954 	err_status = rcsi2_read(priv, INTERRSTATE_REG);
955 
956 	if (!status)
957 		return IRQ_HANDLED;
958 
959 	rcsi2_write(priv, INTSTATE_REG, status);
960 
961 	if (!err_status)
962 		return IRQ_HANDLED;
963 
964 	rcsi2_write(priv, INTERRSTATE_REG, err_status);
965 
966 	dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
967 
968 	return IRQ_WAKE_THREAD;
969 }
970 
971 static irqreturn_t rcsi2_irq_thread(int irq, void *data)
972 {
973 	struct rcar_csi2 *priv = data;
974 
975 	mutex_lock(&priv->lock);
976 	rcsi2_stop(priv);
977 	usleep_range(1000, 2000);
978 	if (rcsi2_start(priv))
979 		dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
980 	mutex_unlock(&priv->lock);
981 
982 	return IRQ_HANDLED;
983 }
984 
985 /* -----------------------------------------------------------------------------
986  * Async handling and registration of subdevices and links.
987  */
988 
989 static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
990 			      struct v4l2_subdev *subdev,
991 			      struct v4l2_async_subdev *asd)
992 {
993 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
994 	int pad;
995 
996 	pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
997 					  MEDIA_PAD_FL_SOURCE);
998 	if (pad < 0) {
999 		dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
1000 		return pad;
1001 	}
1002 
1003 	priv->remote = subdev;
1004 	priv->remote_pad = pad;
1005 
1006 	dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
1007 
1008 	return media_create_pad_link(&subdev->entity, pad,
1009 				     &priv->subdev.entity, 0,
1010 				     MEDIA_LNK_FL_ENABLED |
1011 				     MEDIA_LNK_FL_IMMUTABLE);
1012 }
1013 
1014 static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
1015 				struct v4l2_subdev *subdev,
1016 				struct v4l2_async_subdev *asd)
1017 {
1018 	struct rcar_csi2 *priv = notifier_to_csi2(notifier);
1019 
1020 	priv->remote = NULL;
1021 
1022 	dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
1023 }
1024 
1025 static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
1026 	.bound = rcsi2_notify_bound,
1027 	.unbind = rcsi2_notify_unbind,
1028 };
1029 
1030 static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
1031 			    struct v4l2_fwnode_endpoint *vep)
1032 {
1033 	unsigned int i;
1034 
1035 	/* Only port 0 endpoint 0 is valid. */
1036 	if (vep->base.port || vep->base.id)
1037 		return -ENOTCONN;
1038 
1039 	priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
1040 
1041 	switch (vep->bus_type) {
1042 	case V4L2_MBUS_CSI2_DPHY:
1043 		if (!priv->info->support_dphy) {
1044 			dev_err(priv->dev, "D-PHY not supported\n");
1045 			return -EINVAL;
1046 		}
1047 
1048 		if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
1049 			dev_err(priv->dev,
1050 				"Unsupported number of data-lanes for D-PHY: %u\n",
1051 				priv->lanes);
1052 			return -EINVAL;
1053 		}
1054 
1055 		priv->cphy = false;
1056 		break;
1057 	case V4L2_MBUS_CSI2_CPHY:
1058 		if (!priv->info->support_cphy) {
1059 			dev_err(priv->dev, "C-PHY not supported\n");
1060 			return -EINVAL;
1061 		}
1062 
1063 		if (priv->lanes != 3) {
1064 			dev_err(priv->dev,
1065 				"Unsupported number of data-lanes for C-PHY: %u\n",
1066 				priv->lanes);
1067 			return -EINVAL;
1068 		}
1069 
1070 		priv->cphy = true;
1071 		break;
1072 	default:
1073 		dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
1074 		return -EINVAL;
1075 	}
1076 
1077 	for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
1078 		priv->lane_swap[i] = i < priv->lanes ?
1079 			vep->bus.mipi_csi2.data_lanes[i] : i;
1080 
1081 		/* Check for valid lane number. */
1082 		if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
1083 			dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
1084 			return -EINVAL;
1085 		}
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int rcsi2_parse_dt(struct rcar_csi2 *priv)
1092 {
1093 	struct v4l2_async_subdev *asd;
1094 	struct fwnode_handle *fwnode;
1095 	struct fwnode_handle *ep;
1096 	struct v4l2_fwnode_endpoint v4l2_ep = {
1097 		.bus_type = V4L2_MBUS_UNKNOWN,
1098 	};
1099 	int ret;
1100 
1101 	ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
1102 	if (!ep) {
1103 		dev_err(priv->dev, "Not connected to subdevice\n");
1104 		return -EINVAL;
1105 	}
1106 
1107 	ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
1108 	if (ret) {
1109 		dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1110 		fwnode_handle_put(ep);
1111 		return -EINVAL;
1112 	}
1113 
1114 	ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
1115 	if (ret) {
1116 		fwnode_handle_put(ep);
1117 		return ret;
1118 	}
1119 
1120 	fwnode = fwnode_graph_get_remote_endpoint(ep);
1121 	fwnode_handle_put(ep);
1122 
1123 	dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1124 
1125 	v4l2_async_nf_init(&priv->notifier);
1126 	priv->notifier.ops = &rcar_csi2_notify_ops;
1127 
1128 	asd = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
1129 				       struct v4l2_async_subdev);
1130 	fwnode_handle_put(fwnode);
1131 	if (IS_ERR(asd))
1132 		return PTR_ERR(asd);
1133 
1134 	ret = v4l2_async_subdev_nf_register(&priv->subdev, &priv->notifier);
1135 	if (ret)
1136 		v4l2_async_nf_cleanup(&priv->notifier);
1137 
1138 	return ret;
1139 }
1140 
1141 /* -----------------------------------------------------------------------------
1142  * PHTW initialization sequences.
1143  *
1144  * NOTE: Magic values are from the datasheet and lack documentation.
1145  */
1146 
1147 static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
1148 {
1149 	unsigned int timeout;
1150 
1151 	rcsi2_write(priv, PHTW_REG,
1152 		    PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
1153 		    PHTW_CWEN | PHTW_TESTDIN_CODE(code));
1154 
1155 	/* Wait for DWEN and CWEN to be cleared by hardware. */
1156 	for (timeout = 0; timeout <= 20; timeout++) {
1157 		if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
1158 			return 0;
1159 
1160 		usleep_range(1000, 2000);
1161 	}
1162 
1163 	dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
1164 
1165 	return -ETIMEDOUT;
1166 }
1167 
1168 static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
1169 				  const struct phtw_value *values)
1170 {
1171 	const struct phtw_value *value;
1172 	int ret;
1173 
1174 	for (value = values; value->data || value->code; value++) {
1175 		ret = rcsi2_phtw_write(priv, value->data, value->code);
1176 		if (ret)
1177 			return ret;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
1184 				 const struct rcsi2_mbps_reg *values, u16 code)
1185 {
1186 	const struct rcsi2_mbps_reg *value;
1187 	const struct rcsi2_mbps_reg *prev_value = NULL;
1188 
1189 	for (value = values; value->mbps; value++) {
1190 		if (value->mbps >= mbps)
1191 			break;
1192 		prev_value = value;
1193 	}
1194 
1195 	if (prev_value &&
1196 	    ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1197 		value = prev_value;
1198 
1199 	if (!value->mbps) {
1200 		dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1201 		return -ERANGE;
1202 	}
1203 
1204 	return rcsi2_phtw_write(priv, value->reg, code);
1205 }
1206 
1207 static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1208 					unsigned int mbps)
1209 {
1210 	static const struct phtw_value step1[] = {
1211 		{ .data = 0xcc, .code = 0xe2 },
1212 		{ .data = 0x01, .code = 0xe3 },
1213 		{ .data = 0x11, .code = 0xe4 },
1214 		{ .data = 0x01, .code = 0xe5 },
1215 		{ .data = 0x10, .code = 0x04 },
1216 		{ /* sentinel */ },
1217 	};
1218 
1219 	static const struct phtw_value step2[] = {
1220 		{ .data = 0x38, .code = 0x08 },
1221 		{ .data = 0x01, .code = 0x00 },
1222 		{ .data = 0x4b, .code = 0xac },
1223 		{ .data = 0x03, .code = 0x00 },
1224 		{ .data = 0x80, .code = 0x07 },
1225 		{ /* sentinel */ },
1226 	};
1227 
1228 	int ret;
1229 
1230 	ret = rcsi2_phtw_write_array(priv, step1);
1231 	if (ret)
1232 		return ret;
1233 
1234 	if (mbps != 0 && mbps <= 250) {
1235 		ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1236 		if (ret)
1237 			return ret;
1238 
1239 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1240 					    0xf1);
1241 		if (ret)
1242 			return ret;
1243 	}
1244 
1245 	return rcsi2_phtw_write_array(priv, step2);
1246 }
1247 
1248 static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1249 {
1250 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1251 }
1252 
1253 static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1254 {
1255 	return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1256 }
1257 
1258 static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1259 {
1260 	return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1261 }
1262 
1263 static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1264 {
1265 	static const struct phtw_value step1[] = {
1266 		{ .data = 0xee, .code = 0x34 },
1267 		{ .data = 0xee, .code = 0x44 },
1268 		{ .data = 0xee, .code = 0x54 },
1269 		{ .data = 0xee, .code = 0x84 },
1270 		{ .data = 0xee, .code = 0x94 },
1271 		{ /* sentinel */ },
1272 	};
1273 
1274 	return rcsi2_phtw_write_array(priv, step1);
1275 }
1276 
1277 static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
1278 			       unsigned int mbps)
1279 {
1280 	/* In case of 1500Mbps or less */
1281 	static const struct phtw_value step1[] = {
1282 		{ .data = 0xcc, .code = 0xe2 },
1283 		{ /* sentinel */ },
1284 	};
1285 
1286 	static const struct phtw_value step2[] = {
1287 		{ .data = 0x01, .code = 0xe3 },
1288 		{ .data = 0x11, .code = 0xe4 },
1289 		{ .data = 0x01, .code = 0xe5 },
1290 		{ /* sentinel */ },
1291 	};
1292 
1293 	/* In case of 1500Mbps or less */
1294 	static const struct phtw_value step3[] = {
1295 		{ .data = 0x38, .code = 0x08 },
1296 		{ /* sentinel */ },
1297 	};
1298 
1299 	static const struct phtw_value step4[] = {
1300 		{ .data = 0x01, .code = 0x00 },
1301 		{ .data = 0x4b, .code = 0xac },
1302 		{ .data = 0x03, .code = 0x00 },
1303 		{ .data = 0x80, .code = 0x07 },
1304 		{ /* sentinel */ },
1305 	};
1306 
1307 	int ret;
1308 
1309 	if (mbps != 0 && mbps <= 1500)
1310 		ret = rcsi2_phtw_write_array(priv, step1);
1311 	else
1312 		ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
1313 	if (ret)
1314 		return ret;
1315 
1316 	ret = rcsi2_phtw_write_array(priv, step2);
1317 	if (ret)
1318 		return ret;
1319 
1320 	if (mbps != 0 && mbps <= 1500) {
1321 		ret = rcsi2_phtw_write_array(priv, step3);
1322 		if (ret)
1323 			return ret;
1324 	}
1325 
1326 	ret = rcsi2_phtw_write_array(priv, step4);
1327 	if (ret)
1328 		return ret;
1329 
1330 	return ret;
1331 }
1332 
1333 /* -----------------------------------------------------------------------------
1334  * Platform Device Driver.
1335  */
1336 
1337 static int rcsi2_link_setup(struct media_entity *entity,
1338 			    const struct media_pad *local,
1339 			    const struct media_pad *remote, u32 flags)
1340 {
1341 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1342 	struct rcar_csi2 *priv = sd_to_csi2(sd);
1343 	struct video_device *vdev;
1344 	int channel, vc;
1345 	u32 id;
1346 
1347 	if (!is_media_entity_v4l2_video_device(remote->entity)) {
1348 		dev_err(priv->dev, "Remote is not a video device\n");
1349 		return -EINVAL;
1350 	}
1351 
1352 	vdev = media_entity_to_video_device(remote->entity);
1353 
1354 	if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
1355 		dev_err(priv->dev, "No renesas,id, can't configure routing\n");
1356 		return -EINVAL;
1357 	}
1358 
1359 	channel = id % 4;
1360 
1361 	if (flags & MEDIA_LNK_FL_ENABLED) {
1362 		if (media_pad_remote_pad_first(local)) {
1363 			dev_dbg(priv->dev,
1364 				"Each VC can only be routed to one output channel\n");
1365 			return -EINVAL;
1366 		}
1367 
1368 		vc = local->index - 1;
1369 
1370 		dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
1371 			vc, id, channel);
1372 	} else {
1373 		vc = -1;
1374 	}
1375 
1376 	priv->channel_vc[channel] = vc;
1377 
1378 	return 0;
1379 }
1380 
1381 static const struct media_entity_operations rcar_csi2_entity_ops = {
1382 	.link_setup = rcsi2_link_setup,
1383 	.link_validate = v4l2_subdev_link_validate,
1384 };
1385 
1386 static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1387 				 struct platform_device *pdev)
1388 {
1389 	int irq, ret;
1390 
1391 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1392 	if (IS_ERR(priv->base))
1393 		return PTR_ERR(priv->base);
1394 
1395 	irq = platform_get_irq(pdev, 0);
1396 	if (irq < 0)
1397 		return irq;
1398 
1399 	ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1400 					rcsi2_irq_thread, IRQF_SHARED,
1401 					KBUILD_MODNAME, priv);
1402 	if (ret)
1403 		return ret;
1404 
1405 	priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1406 
1407 	return PTR_ERR_OR_ZERO(priv->rstc);
1408 }
1409 
1410 static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1411 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1412 	.start_receiver = rcsi2_start_receiver_gen3,
1413 	.enter_standby = rcsi2_enter_standby_gen3,
1414 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1415 	.csi0clkfreqrange = 0x20,
1416 	.num_channels = 4,
1417 	.clear_ulps = true,
1418 	.support_dphy = true,
1419 };
1420 
1421 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1422 	.init_phtw = rcsi2_init_phtw_h3es2,
1423 	.start_receiver = rcsi2_start_receiver_gen3,
1424 	.enter_standby = rcsi2_enter_standby_gen3,
1425 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1426 	.csi0clkfreqrange = 0x20,
1427 	.num_channels = 4,
1428 	.clear_ulps = true,
1429 	.support_dphy = true,
1430 };
1431 
1432 static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1433 	.start_receiver = rcsi2_start_receiver_gen3,
1434 	.enter_standby = rcsi2_enter_standby_gen3,
1435 	.hsfreqrange = hsfreqrange_m3w,
1436 	.num_channels = 4,
1437 	.support_dphy = true,
1438 };
1439 
1440 static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1441 	.start_receiver = rcsi2_start_receiver_gen3,
1442 	.enter_standby = rcsi2_enter_standby_gen3,
1443 	.hsfreqrange = hsfreqrange_m3w,
1444 	.num_channels = 4,
1445 	.support_dphy = true,
1446 };
1447 
1448 static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1449 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1450 	.start_receiver = rcsi2_start_receiver_gen3,
1451 	.enter_standby = rcsi2_enter_standby_gen3,
1452 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1453 	.csi0clkfreqrange = 0x20,
1454 	.num_channels = 4,
1455 	.clear_ulps = true,
1456 	.support_dphy = true,
1457 };
1458 
1459 static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1460 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1461 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1462 	.start_receiver = rcsi2_start_receiver_gen3,
1463 	.enter_standby = rcsi2_enter_standby_gen3,
1464 	.num_channels = 4,
1465 	.support_dphy = true,
1466 };
1467 
1468 static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1469 	.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1470 	.start_receiver = rcsi2_start_receiver_gen3,
1471 	.enter_standby = rcsi2_enter_standby_gen3,
1472 	.hsfreqrange = hsfreqrange_h3_v3h_m3n,
1473 	.csi0clkfreqrange = 0x20,
1474 	.clear_ulps = true,
1475 	.support_dphy = true,
1476 };
1477 
1478 static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1479 	.init_phtw = rcsi2_init_phtw_v3m_e3,
1480 	.phy_post_init = rcsi2_phy_post_init_v3m_e3,
1481 	.start_receiver = rcsi2_start_receiver_gen3,
1482 	.enter_standby = rcsi2_enter_standby_gen3,
1483 	.num_channels = 2,
1484 	.support_dphy = true,
1485 };
1486 
1487 static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
1488 	.init_phtw = rcsi2_init_phtw_v3u,
1489 	.start_receiver = rcsi2_start_receiver_gen3,
1490 	.enter_standby = rcsi2_enter_standby_gen3,
1491 	.hsfreqrange = hsfreqrange_v3u,
1492 	.csi0clkfreqrange = 0x20,
1493 	.clear_ulps = true,
1494 	.use_isp = true,
1495 	.support_dphy = true,
1496 };
1497 
1498 static const struct of_device_id rcar_csi2_of_table[] = {
1499 	{
1500 		.compatible = "renesas,r8a774a1-csi2",
1501 		.data = &rcar_csi2_info_r8a7796,
1502 	},
1503 	{
1504 		.compatible = "renesas,r8a774b1-csi2",
1505 		.data = &rcar_csi2_info_r8a77965,
1506 	},
1507 	{
1508 		.compatible = "renesas,r8a774c0-csi2",
1509 		.data = &rcar_csi2_info_r8a77990,
1510 	},
1511 	{
1512 		.compatible = "renesas,r8a774e1-csi2",
1513 		.data = &rcar_csi2_info_r8a7795,
1514 	},
1515 	{
1516 		.compatible = "renesas,r8a7795-csi2",
1517 		.data = &rcar_csi2_info_r8a7795,
1518 	},
1519 	{
1520 		.compatible = "renesas,r8a7796-csi2",
1521 		.data = &rcar_csi2_info_r8a7796,
1522 	},
1523 	{
1524 		.compatible = "renesas,r8a77961-csi2",
1525 		.data = &rcar_csi2_info_r8a77961,
1526 	},
1527 	{
1528 		.compatible = "renesas,r8a77965-csi2",
1529 		.data = &rcar_csi2_info_r8a77965,
1530 	},
1531 	{
1532 		.compatible = "renesas,r8a77970-csi2",
1533 		.data = &rcar_csi2_info_r8a77970,
1534 	},
1535 	{
1536 		.compatible = "renesas,r8a77980-csi2",
1537 		.data = &rcar_csi2_info_r8a77980,
1538 	},
1539 	{
1540 		.compatible = "renesas,r8a77990-csi2",
1541 		.data = &rcar_csi2_info_r8a77990,
1542 	},
1543 	{
1544 		.compatible = "renesas,r8a779a0-csi2",
1545 		.data = &rcar_csi2_info_r8a779a0,
1546 	},
1547 	{ /* sentinel */ },
1548 };
1549 MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1550 
1551 static const struct soc_device_attribute r8a7795[] = {
1552 	{
1553 		.soc_id = "r8a7795", .revision = "ES2.*",
1554 		.data = &rcar_csi2_info_r8a7795es2,
1555 	},
1556 	{ /* sentinel */ }
1557 };
1558 
1559 static int rcsi2_probe(struct platform_device *pdev)
1560 {
1561 	const struct soc_device_attribute *attr;
1562 	struct rcar_csi2 *priv;
1563 	unsigned int i, num_pads;
1564 	int ret;
1565 
1566 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1567 	if (!priv)
1568 		return -ENOMEM;
1569 
1570 	priv->info = of_device_get_match_data(&pdev->dev);
1571 
1572 	/*
1573 	 * The different ES versions of r8a7795 (H3) behave differently but
1574 	 * share the same compatible string.
1575 	 */
1576 	attr = soc_device_match(r8a7795);
1577 	if (attr)
1578 		priv->info = attr->data;
1579 
1580 	priv->dev = &pdev->dev;
1581 
1582 	mutex_init(&priv->lock);
1583 	priv->stream_count = 0;
1584 
1585 	ret = rcsi2_probe_resources(priv, pdev);
1586 	if (ret) {
1587 		dev_err(priv->dev, "Failed to get resources\n");
1588 		goto error_mutex;
1589 	}
1590 
1591 	platform_set_drvdata(pdev, priv);
1592 
1593 	ret = rcsi2_parse_dt(priv);
1594 	if (ret)
1595 		goto error_mutex;
1596 
1597 	priv->subdev.owner = THIS_MODULE;
1598 	priv->subdev.dev = &pdev->dev;
1599 	v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1600 	v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1601 	snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
1602 		 KBUILD_MODNAME, dev_name(&pdev->dev));
1603 	priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1604 
1605 	priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1606 	priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1607 
1608 	num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;
1609 
1610 	priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1611 	for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1612 		priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1613 
1614 	ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
1615 				     priv->pads);
1616 	if (ret)
1617 		goto error_async;
1618 
1619 	for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
1620 		priv->channel_vc[i] = -1;
1621 
1622 	pm_runtime_enable(&pdev->dev);
1623 
1624 	ret = v4l2_async_register_subdev(&priv->subdev);
1625 	if (ret < 0)
1626 		goto error_async;
1627 
1628 	dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1629 
1630 	return 0;
1631 
1632 error_async:
1633 	v4l2_async_nf_unregister(&priv->notifier);
1634 	v4l2_async_nf_cleanup(&priv->notifier);
1635 error_mutex:
1636 	mutex_destroy(&priv->lock);
1637 
1638 	return ret;
1639 }
1640 
1641 static void rcsi2_remove(struct platform_device *pdev)
1642 {
1643 	struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1644 
1645 	v4l2_async_nf_unregister(&priv->notifier);
1646 	v4l2_async_nf_cleanup(&priv->notifier);
1647 	v4l2_async_unregister_subdev(&priv->subdev);
1648 
1649 	pm_runtime_disable(&pdev->dev);
1650 
1651 	mutex_destroy(&priv->lock);
1652 }
1653 
1654 static struct platform_driver rcar_csi2_pdrv = {
1655 	.remove_new = rcsi2_remove,
1656 	.probe	= rcsi2_probe,
1657 	.driver	= {
1658 		.name	= "rcar-csi2",
1659 		.suppress_bind_attrs = true,
1660 		.of_match_table	= rcar_csi2_of_table,
1661 	},
1662 };
1663 
1664 module_platform_driver(rcar_csi2_pdrv);
1665 
1666 MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1667 MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1668 MODULE_LICENSE("GPL");
1669