xref: /openbmc/linux/drivers/media/platform/qcom/camss/camss-csid.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * camss-csid.c
4  *
5  * Qualcomm MSM Camera Subsystem - CSID (CSI Decoder) Module
6  *
7  * Copyright (c) 2011-2015, The Linux Foundation. All rights reserved.
8  * Copyright (C) 2015-2018 Linaro Ltd.
9  */
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regulator/consumer.h>
19 #include <media/media-entity.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-event.h>
22 #include <media/v4l2-subdev.h>
23 
24 #include "camss-csid.h"
25 #include "camss.h"
26 
27 #define MSM_CSID_NAME "msm_csid"
28 
29 #define CAMSS_CSID_HW_VERSION		0x0
30 #define CAMSS_CSID_CORE_CTRL_0		0x004
31 #define CAMSS_CSID_CORE_CTRL_1		0x008
32 #define CAMSS_CSID_RST_CMD(v)		((v) == CAMSS_8x16 ? 0x00c : 0x010)
33 #define CAMSS_CSID_CID_LUT_VC_n(v, n)	\
34 			(((v) == CAMSS_8x16 ? 0x010 : 0x014) + 0x4 * (n))
35 #define CAMSS_CSID_CID_n_CFG(v, n)	\
36 			(((v) == CAMSS_8x16 ? 0x020 : 0x024) + 0x4 * (n))
37 #define CAMSS_CSID_CID_n_CFG_ISPIF_EN	BIT(0)
38 #define CAMSS_CSID_CID_n_CFG_RDI_EN	BIT(1)
39 #define CAMSS_CSID_CID_n_CFG_DECODE_FORMAT_SHIFT	4
40 #define CAMSS_CSID_CID_n_CFG_PLAIN_FORMAT_8		(0 << 8)
41 #define CAMSS_CSID_CID_n_CFG_PLAIN_FORMAT_16		(1 << 8)
42 #define CAMSS_CSID_CID_n_CFG_PLAIN_ALIGNMENT_LSB	(0 << 9)
43 #define CAMSS_CSID_CID_n_CFG_PLAIN_ALIGNMENT_MSB	(1 << 9)
44 #define CAMSS_CSID_CID_n_CFG_RDI_MODE_RAW_DUMP		(0 << 10)
45 #define CAMSS_CSID_CID_n_CFG_RDI_MODE_PLAIN_PACKING	(1 << 10)
46 #define CAMSS_CSID_IRQ_CLEAR_CMD(v)	((v) == CAMSS_8x16 ? 0x060 : 0x064)
47 #define CAMSS_CSID_IRQ_MASK(v)		((v) == CAMSS_8x16 ? 0x064 : 0x068)
48 #define CAMSS_CSID_IRQ_STATUS(v)	((v) == CAMSS_8x16 ? 0x068 : 0x06c)
49 #define CAMSS_CSID_TG_CTRL(v)		((v) == CAMSS_8x16 ? 0x0a0 : 0x0a8)
50 #define CAMSS_CSID_TG_CTRL_DISABLE	0xa06436
51 #define CAMSS_CSID_TG_CTRL_ENABLE	0xa06437
52 #define CAMSS_CSID_TG_VC_CFG(v)		((v) == CAMSS_8x16 ? 0x0a4 : 0x0ac)
53 #define CAMSS_CSID_TG_VC_CFG_H_BLANKING		0x3ff
54 #define CAMSS_CSID_TG_VC_CFG_V_BLANKING		0x7f
55 #define CAMSS_CSID_TG_DT_n_CGG_0(v, n)	\
56 			(((v) == CAMSS_8x16 ? 0x0ac : 0x0b4) + 0xc * (n))
57 #define CAMSS_CSID_TG_DT_n_CGG_1(v, n)	\
58 			(((v) == CAMSS_8x16 ? 0x0b0 : 0x0b8) + 0xc * (n))
59 #define CAMSS_CSID_TG_DT_n_CGG_2(v, n)	\
60 			(((v) == CAMSS_8x16 ? 0x0b4 : 0x0bc) + 0xc * (n))
61 
62 #define DATA_TYPE_EMBEDDED_DATA_8BIT	0x12
63 #define DATA_TYPE_YUV422_8BIT		0x1e
64 #define DATA_TYPE_RAW_6BIT		0x28
65 #define DATA_TYPE_RAW_8BIT		0x2a
66 #define DATA_TYPE_RAW_10BIT		0x2b
67 #define DATA_TYPE_RAW_12BIT		0x2c
68 #define DATA_TYPE_RAW_14BIT		0x2d
69 
70 #define DECODE_FORMAT_UNCOMPRESSED_6_BIT	0x0
71 #define DECODE_FORMAT_UNCOMPRESSED_8_BIT	0x1
72 #define DECODE_FORMAT_UNCOMPRESSED_10_BIT	0x2
73 #define DECODE_FORMAT_UNCOMPRESSED_12_BIT	0x3
74 #define DECODE_FORMAT_UNCOMPRESSED_14_BIT	0x8
75 
76 #define CSID_RESET_TIMEOUT_MS 500
77 
78 struct csid_format {
79 	u32 code;
80 	u8 data_type;
81 	u8 decode_format;
82 	u8 bpp;
83 	u8 spp; /* bus samples per pixel */
84 };
85 
86 static const struct csid_format csid_formats_8x16[] = {
87 	{
88 		MEDIA_BUS_FMT_UYVY8_2X8,
89 		DATA_TYPE_YUV422_8BIT,
90 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
91 		8,
92 		2,
93 	},
94 	{
95 		MEDIA_BUS_FMT_VYUY8_2X8,
96 		DATA_TYPE_YUV422_8BIT,
97 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
98 		8,
99 		2,
100 	},
101 	{
102 		MEDIA_BUS_FMT_YUYV8_2X8,
103 		DATA_TYPE_YUV422_8BIT,
104 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
105 		8,
106 		2,
107 	},
108 	{
109 		MEDIA_BUS_FMT_YVYU8_2X8,
110 		DATA_TYPE_YUV422_8BIT,
111 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
112 		8,
113 		2,
114 	},
115 	{
116 		MEDIA_BUS_FMT_SBGGR8_1X8,
117 		DATA_TYPE_RAW_8BIT,
118 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
119 		8,
120 		1,
121 	},
122 	{
123 		MEDIA_BUS_FMT_SGBRG8_1X8,
124 		DATA_TYPE_RAW_8BIT,
125 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
126 		8,
127 		1,
128 	},
129 	{
130 		MEDIA_BUS_FMT_SGRBG8_1X8,
131 		DATA_TYPE_RAW_8BIT,
132 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
133 		8,
134 		1,
135 	},
136 	{
137 		MEDIA_BUS_FMT_SRGGB8_1X8,
138 		DATA_TYPE_RAW_8BIT,
139 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
140 		8,
141 		1,
142 	},
143 	{
144 		MEDIA_BUS_FMT_SBGGR10_1X10,
145 		DATA_TYPE_RAW_10BIT,
146 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
147 		10,
148 		1,
149 	},
150 	{
151 		MEDIA_BUS_FMT_SGBRG10_1X10,
152 		DATA_TYPE_RAW_10BIT,
153 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
154 		10,
155 		1,
156 	},
157 	{
158 		MEDIA_BUS_FMT_SGRBG10_1X10,
159 		DATA_TYPE_RAW_10BIT,
160 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
161 		10,
162 		1,
163 	},
164 	{
165 		MEDIA_BUS_FMT_SRGGB10_1X10,
166 		DATA_TYPE_RAW_10BIT,
167 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
168 		10,
169 		1,
170 	},
171 	{
172 		MEDIA_BUS_FMT_SBGGR12_1X12,
173 		DATA_TYPE_RAW_12BIT,
174 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
175 		12,
176 		1,
177 	},
178 	{
179 		MEDIA_BUS_FMT_SGBRG12_1X12,
180 		DATA_TYPE_RAW_12BIT,
181 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
182 		12,
183 		1,
184 	},
185 	{
186 		MEDIA_BUS_FMT_SGRBG12_1X12,
187 		DATA_TYPE_RAW_12BIT,
188 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
189 		12,
190 		1,
191 	},
192 	{
193 		MEDIA_BUS_FMT_SRGGB12_1X12,
194 		DATA_TYPE_RAW_12BIT,
195 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
196 		12,
197 		1,
198 	},
199 	{
200 		MEDIA_BUS_FMT_Y10_1X10,
201 		DATA_TYPE_RAW_10BIT,
202 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
203 		10,
204 		1,
205 	},
206 };
207 
208 static const struct csid_format csid_formats_8x96[] = {
209 	{
210 		MEDIA_BUS_FMT_UYVY8_2X8,
211 		DATA_TYPE_YUV422_8BIT,
212 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
213 		8,
214 		2,
215 	},
216 	{
217 		MEDIA_BUS_FMT_VYUY8_2X8,
218 		DATA_TYPE_YUV422_8BIT,
219 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
220 		8,
221 		2,
222 	},
223 	{
224 		MEDIA_BUS_FMT_YUYV8_2X8,
225 		DATA_TYPE_YUV422_8BIT,
226 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
227 		8,
228 		2,
229 	},
230 	{
231 		MEDIA_BUS_FMT_YVYU8_2X8,
232 		DATA_TYPE_YUV422_8BIT,
233 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
234 		8,
235 		2,
236 	},
237 	{
238 		MEDIA_BUS_FMT_SBGGR8_1X8,
239 		DATA_TYPE_RAW_8BIT,
240 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
241 		8,
242 		1,
243 	},
244 	{
245 		MEDIA_BUS_FMT_SGBRG8_1X8,
246 		DATA_TYPE_RAW_8BIT,
247 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
248 		8,
249 		1,
250 	},
251 	{
252 		MEDIA_BUS_FMT_SGRBG8_1X8,
253 		DATA_TYPE_RAW_8BIT,
254 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
255 		8,
256 		1,
257 	},
258 	{
259 		MEDIA_BUS_FMT_SRGGB8_1X8,
260 		DATA_TYPE_RAW_8BIT,
261 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
262 		8,
263 		1,
264 	},
265 	{
266 		MEDIA_BUS_FMT_SBGGR10_1X10,
267 		DATA_TYPE_RAW_10BIT,
268 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
269 		10,
270 		1,
271 	},
272 	{
273 		MEDIA_BUS_FMT_SGBRG10_1X10,
274 		DATA_TYPE_RAW_10BIT,
275 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
276 		10,
277 		1,
278 	},
279 	{
280 		MEDIA_BUS_FMT_SGRBG10_1X10,
281 		DATA_TYPE_RAW_10BIT,
282 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
283 		10,
284 		1,
285 	},
286 	{
287 		MEDIA_BUS_FMT_SRGGB10_1X10,
288 		DATA_TYPE_RAW_10BIT,
289 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
290 		10,
291 		1,
292 	},
293 	{
294 		MEDIA_BUS_FMT_SBGGR12_1X12,
295 		DATA_TYPE_RAW_12BIT,
296 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
297 		12,
298 		1,
299 	},
300 	{
301 		MEDIA_BUS_FMT_SGBRG12_1X12,
302 		DATA_TYPE_RAW_12BIT,
303 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
304 		12,
305 		1,
306 	},
307 	{
308 		MEDIA_BUS_FMT_SGRBG12_1X12,
309 		DATA_TYPE_RAW_12BIT,
310 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
311 		12,
312 		1,
313 	},
314 	{
315 		MEDIA_BUS_FMT_SRGGB12_1X12,
316 		DATA_TYPE_RAW_12BIT,
317 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
318 		12,
319 		1,
320 	},
321 	{
322 		MEDIA_BUS_FMT_SBGGR14_1X14,
323 		DATA_TYPE_RAW_14BIT,
324 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
325 		14,
326 		1,
327 	},
328 	{
329 		MEDIA_BUS_FMT_SGBRG14_1X14,
330 		DATA_TYPE_RAW_14BIT,
331 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
332 		14,
333 		1,
334 	},
335 	{
336 		MEDIA_BUS_FMT_SGRBG14_1X14,
337 		DATA_TYPE_RAW_14BIT,
338 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
339 		14,
340 		1,
341 	},
342 	{
343 		MEDIA_BUS_FMT_SRGGB14_1X14,
344 		DATA_TYPE_RAW_14BIT,
345 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
346 		14,
347 		1,
348 	},
349 	{
350 		MEDIA_BUS_FMT_Y10_1X10,
351 		DATA_TYPE_RAW_10BIT,
352 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
353 		10,
354 		1,
355 	},
356 };
357 
358 static u32 csid_find_code(u32 *code, unsigned int n_code,
359 			  unsigned int index, u32 req_code)
360 {
361 	int i;
362 
363 	if (!req_code && (index >= n_code))
364 		return 0;
365 
366 	for (i = 0; i < n_code; i++)
367 		if (req_code) {
368 			if (req_code == code[i])
369 				return req_code;
370 		} else {
371 			if (i == index)
372 				return code[i];
373 		}
374 
375 	return code[0];
376 }
377 
378 static u32 csid_src_pad_code(struct csid_device *csid, u32 sink_code,
379 			     unsigned int index, u32 src_req_code)
380 {
381 	if (csid->camss->version == CAMSS_8x16) {
382 		if (index > 0)
383 			return 0;
384 
385 		return sink_code;
386 	} else if (csid->camss->version == CAMSS_8x96) {
387 		switch (sink_code) {
388 		case MEDIA_BUS_FMT_SBGGR10_1X10:
389 		{
390 			u32 src_code[] = {
391 				MEDIA_BUS_FMT_SBGGR10_1X10,
392 				MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE,
393 			};
394 
395 			return csid_find_code(src_code, ARRAY_SIZE(src_code),
396 					      index, src_req_code);
397 		}
398 		case MEDIA_BUS_FMT_Y10_1X10:
399 		{
400 			u32 src_code[] = {
401 				MEDIA_BUS_FMT_Y10_1X10,
402 				MEDIA_BUS_FMT_Y10_2X8_PADHI_LE,
403 			};
404 
405 			return csid_find_code(src_code, ARRAY_SIZE(src_code),
406 					      index, src_req_code);
407 		}
408 		default:
409 			if (index > 0)
410 				return 0;
411 
412 			return sink_code;
413 		}
414 	} else {
415 		return 0;
416 	}
417 }
418 
419 static const struct csid_format *csid_get_fmt_entry(
420 					const struct csid_format *formats,
421 					unsigned int nformat,
422 					u32 code)
423 {
424 	unsigned int i;
425 
426 	for (i = 0; i < nformat; i++)
427 		if (code == formats[i].code)
428 			return &formats[i];
429 
430 	WARN(1, "Unknown format\n");
431 
432 	return &formats[0];
433 }
434 
435 /*
436  * csid_isr - CSID module interrupt handler
437  * @irq: Interrupt line
438  * @dev: CSID device
439  *
440  * Return IRQ_HANDLED on success
441  */
442 static irqreturn_t csid_isr(int irq, void *dev)
443 {
444 	struct csid_device *csid = dev;
445 	enum camss_version ver = csid->camss->version;
446 	u32 value;
447 
448 	value = readl_relaxed(csid->base + CAMSS_CSID_IRQ_STATUS(ver));
449 	writel_relaxed(value, csid->base + CAMSS_CSID_IRQ_CLEAR_CMD(ver));
450 
451 	if ((value >> 11) & 0x1)
452 		complete(&csid->reset_complete);
453 
454 	return IRQ_HANDLED;
455 }
456 
457 /*
458  * csid_set_clock_rates - Calculate and set clock rates on CSID module
459  * @csiphy: CSID device
460  */
461 static int csid_set_clock_rates(struct csid_device *csid)
462 {
463 	struct device *dev = csid->camss->dev;
464 	u32 pixel_clock;
465 	int i, j;
466 	int ret;
467 
468 	ret = camss_get_pixel_clock(&csid->subdev.entity, &pixel_clock);
469 	if (ret)
470 		pixel_clock = 0;
471 
472 	for (i = 0; i < csid->nclocks; i++) {
473 		struct camss_clock *clock = &csid->clock[i];
474 
475 		if (!strcmp(clock->name, "csi0") ||
476 		    !strcmp(clock->name, "csi1") ||
477 		    !strcmp(clock->name, "csi2") ||
478 		    !strcmp(clock->name, "csi3")) {
479 			const struct csid_format *f = csid_get_fmt_entry(
480 				csid->formats,
481 				csid->nformats,
482 				csid->fmt[MSM_CSIPHY_PAD_SINK].code);
483 			u8 num_lanes = csid->phy.lane_cnt;
484 			u64 min_rate = pixel_clock * f->bpp /
485 							(2 * num_lanes * 4);
486 			long rate;
487 
488 			camss_add_clock_margin(&min_rate);
489 
490 			for (j = 0; j < clock->nfreqs; j++)
491 				if (min_rate < clock->freq[j])
492 					break;
493 
494 			if (j == clock->nfreqs) {
495 				dev_err(dev,
496 					"Pixel clock is too high for CSID\n");
497 				return -EINVAL;
498 			}
499 
500 			/* if sensor pixel clock is not available */
501 			/* set highest possible CSID clock rate */
502 			if (min_rate == 0)
503 				j = clock->nfreqs - 1;
504 
505 			rate = clk_round_rate(clock->clk, clock->freq[j]);
506 			if (rate < 0) {
507 				dev_err(dev, "clk round rate failed: %ld\n",
508 					rate);
509 				return -EINVAL;
510 			}
511 
512 			ret = clk_set_rate(clock->clk, rate);
513 			if (ret < 0) {
514 				dev_err(dev, "clk set rate failed: %d\n", ret);
515 				return ret;
516 			}
517 		}
518 	}
519 
520 	return 0;
521 }
522 
523 /*
524  * csid_reset - Trigger reset on CSID module and wait to complete
525  * @csid: CSID device
526  *
527  * Return 0 on success or a negative error code otherwise
528  */
529 static int csid_reset(struct csid_device *csid)
530 {
531 	unsigned long time;
532 
533 	reinit_completion(&csid->reset_complete);
534 
535 	writel_relaxed(0x7fff, csid->base +
536 		       CAMSS_CSID_RST_CMD(csid->camss->version));
537 
538 	time = wait_for_completion_timeout(&csid->reset_complete,
539 		msecs_to_jiffies(CSID_RESET_TIMEOUT_MS));
540 	if (!time) {
541 		dev_err(csid->camss->dev, "CSID reset timeout\n");
542 		return -EIO;
543 	}
544 
545 	return 0;
546 }
547 
548 /*
549  * csid_set_power - Power on/off CSID module
550  * @sd: CSID V4L2 subdevice
551  * @on: Requested power state
552  *
553  * Return 0 on success or a negative error code otherwise
554  */
555 static int csid_set_power(struct v4l2_subdev *sd, int on)
556 {
557 	struct csid_device *csid = v4l2_get_subdevdata(sd);
558 	struct device *dev = csid->camss->dev;
559 	int ret;
560 
561 	if (on) {
562 		u32 hw_version;
563 
564 		ret = pm_runtime_get_sync(dev);
565 		if (ret < 0)
566 			return ret;
567 
568 		ret = regulator_enable(csid->vdda);
569 		if (ret < 0) {
570 			pm_runtime_put_sync(dev);
571 			return ret;
572 		}
573 
574 		ret = csid_set_clock_rates(csid);
575 		if (ret < 0) {
576 			regulator_disable(csid->vdda);
577 			pm_runtime_put_sync(dev);
578 			return ret;
579 		}
580 
581 		ret = camss_enable_clocks(csid->nclocks, csid->clock, dev);
582 		if (ret < 0) {
583 			regulator_disable(csid->vdda);
584 			pm_runtime_put_sync(dev);
585 			return ret;
586 		}
587 
588 		enable_irq(csid->irq);
589 
590 		ret = csid_reset(csid);
591 		if (ret < 0) {
592 			disable_irq(csid->irq);
593 			camss_disable_clocks(csid->nclocks, csid->clock);
594 			regulator_disable(csid->vdda);
595 			pm_runtime_put_sync(dev);
596 			return ret;
597 		}
598 
599 		hw_version = readl_relaxed(csid->base + CAMSS_CSID_HW_VERSION);
600 		dev_dbg(dev, "CSID HW Version = 0x%08x\n", hw_version);
601 	} else {
602 		disable_irq(csid->irq);
603 		camss_disable_clocks(csid->nclocks, csid->clock);
604 		ret = regulator_disable(csid->vdda);
605 		pm_runtime_put_sync(dev);
606 	}
607 
608 	return ret;
609 }
610 
611 /*
612  * csid_set_stream - Enable/disable streaming on CSID module
613  * @sd: CSID V4L2 subdevice
614  * @enable: Requested streaming state
615  *
616  * Main configuration of CSID module is also done here.
617  *
618  * Return 0 on success or a negative error code otherwise
619  */
620 static int csid_set_stream(struct v4l2_subdev *sd, int enable)
621 {
622 	struct csid_device *csid = v4l2_get_subdevdata(sd);
623 	struct csid_testgen_config *tg = &csid->testgen;
624 	enum camss_version ver = csid->camss->version;
625 	u32 val;
626 
627 	if (enable) {
628 		u8 vc = 0; /* Virtual Channel 0 */
629 		u8 cid = vc * 4; /* id of Virtual Channel and Data Type set */
630 		u8 dt, dt_shift, df;
631 		int ret;
632 
633 		ret = v4l2_ctrl_handler_setup(&csid->ctrls);
634 		if (ret < 0) {
635 			dev_err(csid->camss->dev,
636 				"could not sync v4l2 controls: %d\n", ret);
637 			return ret;
638 		}
639 
640 		if (!tg->enabled &&
641 		    !media_entity_remote_pad(&csid->pads[MSM_CSID_PAD_SINK]))
642 			return -ENOLINK;
643 
644 		if (tg->enabled) {
645 			/* Config Test Generator */
646 			struct v4l2_mbus_framefmt *f =
647 					&csid->fmt[MSM_CSID_PAD_SRC];
648 			const struct csid_format *format = csid_get_fmt_entry(
649 					csid->formats, csid->nformats, f->code);
650 			u32 num_bytes_per_line =
651 				f->width * format->bpp * format->spp / 8;
652 			u32 num_lines = f->height;
653 
654 			/* 31:24 V blank, 23:13 H blank, 3:2 num of active DT */
655 			/* 1:0 VC */
656 			val = ((CAMSS_CSID_TG_VC_CFG_V_BLANKING & 0xff) << 24) |
657 			      ((CAMSS_CSID_TG_VC_CFG_H_BLANKING & 0x7ff) << 13);
658 			writel_relaxed(val, csid->base +
659 				       CAMSS_CSID_TG_VC_CFG(ver));
660 
661 			/* 28:16 bytes per lines, 12:0 num of lines */
662 			val = ((num_bytes_per_line & 0x1fff) << 16) |
663 			      (num_lines & 0x1fff);
664 			writel_relaxed(val, csid->base +
665 				       CAMSS_CSID_TG_DT_n_CGG_0(ver, 0));
666 
667 			dt = format->data_type;
668 
669 			/* 5:0 data type */
670 			val = dt;
671 			writel_relaxed(val, csid->base +
672 				       CAMSS_CSID_TG_DT_n_CGG_1(ver, 0));
673 
674 			/* 2:0 output test pattern */
675 			val = tg->payload_mode;
676 			writel_relaxed(val, csid->base +
677 				       CAMSS_CSID_TG_DT_n_CGG_2(ver, 0));
678 
679 			df = format->decode_format;
680 		} else {
681 			struct v4l2_mbus_framefmt *f =
682 					&csid->fmt[MSM_CSID_PAD_SINK];
683 			const struct csid_format *format = csid_get_fmt_entry(
684 					csid->formats, csid->nformats, f->code);
685 			struct csid_phy_config *phy = &csid->phy;
686 
687 			val = phy->lane_cnt - 1;
688 			val |= phy->lane_assign << 4;
689 
690 			writel_relaxed(val,
691 				       csid->base + CAMSS_CSID_CORE_CTRL_0);
692 
693 			val = phy->csiphy_id << 17;
694 			val |= 0x9;
695 
696 			writel_relaxed(val,
697 				       csid->base + CAMSS_CSID_CORE_CTRL_1);
698 
699 			dt = format->data_type;
700 			df = format->decode_format;
701 		}
702 
703 		/* Config LUT */
704 
705 		dt_shift = (cid % 4) * 8;
706 
707 		val = readl_relaxed(csid->base +
708 				    CAMSS_CSID_CID_LUT_VC_n(ver, vc));
709 		val &= ~(0xff << dt_shift);
710 		val |= dt << dt_shift;
711 		writel_relaxed(val, csid->base +
712 			       CAMSS_CSID_CID_LUT_VC_n(ver, vc));
713 
714 		val = CAMSS_CSID_CID_n_CFG_ISPIF_EN;
715 		val |= CAMSS_CSID_CID_n_CFG_RDI_EN;
716 		val |= df << CAMSS_CSID_CID_n_CFG_DECODE_FORMAT_SHIFT;
717 		val |= CAMSS_CSID_CID_n_CFG_RDI_MODE_RAW_DUMP;
718 
719 		if (csid->camss->version == CAMSS_8x96) {
720 			u32 sink_code = csid->fmt[MSM_CSID_PAD_SINK].code;
721 			u32 src_code = csid->fmt[MSM_CSID_PAD_SRC].code;
722 
723 			if ((sink_code == MEDIA_BUS_FMT_SBGGR10_1X10 &&
724 			     src_code == MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE) ||
725 			    (sink_code == MEDIA_BUS_FMT_Y10_1X10 &&
726 			     src_code == MEDIA_BUS_FMT_Y10_2X8_PADHI_LE)) {
727 				val |= CAMSS_CSID_CID_n_CFG_RDI_MODE_PLAIN_PACKING;
728 				val |= CAMSS_CSID_CID_n_CFG_PLAIN_FORMAT_16;
729 				val |= CAMSS_CSID_CID_n_CFG_PLAIN_ALIGNMENT_LSB;
730 			}
731 		}
732 
733 		writel_relaxed(val, csid->base +
734 			       CAMSS_CSID_CID_n_CFG(ver, cid));
735 
736 		if (tg->enabled) {
737 			val = CAMSS_CSID_TG_CTRL_ENABLE;
738 			writel_relaxed(val, csid->base +
739 				       CAMSS_CSID_TG_CTRL(ver));
740 		}
741 	} else {
742 		if (tg->enabled) {
743 			val = CAMSS_CSID_TG_CTRL_DISABLE;
744 			writel_relaxed(val, csid->base +
745 				       CAMSS_CSID_TG_CTRL(ver));
746 		}
747 	}
748 
749 	return 0;
750 }
751 
752 /*
753  * __csid_get_format - Get pointer to format structure
754  * @csid: CSID device
755  * @cfg: V4L2 subdev pad configuration
756  * @pad: pad from which format is requested
757  * @which: TRY or ACTIVE format
758  *
759  * Return pointer to TRY or ACTIVE format structure
760  */
761 static struct v4l2_mbus_framefmt *
762 __csid_get_format(struct csid_device *csid,
763 		  struct v4l2_subdev_pad_config *cfg,
764 		  unsigned int pad,
765 		  enum v4l2_subdev_format_whence which)
766 {
767 	if (which == V4L2_SUBDEV_FORMAT_TRY)
768 		return v4l2_subdev_get_try_format(&csid->subdev, cfg, pad);
769 
770 	return &csid->fmt[pad];
771 }
772 
773 /*
774  * csid_try_format - Handle try format by pad subdev method
775  * @csid: CSID device
776  * @cfg: V4L2 subdev pad configuration
777  * @pad: pad on which format is requested
778  * @fmt: pointer to v4l2 format structure
779  * @which: wanted subdev format
780  */
781 static void csid_try_format(struct csid_device *csid,
782 			    struct v4l2_subdev_pad_config *cfg,
783 			    unsigned int pad,
784 			    struct v4l2_mbus_framefmt *fmt,
785 			    enum v4l2_subdev_format_whence which)
786 {
787 	unsigned int i;
788 
789 	switch (pad) {
790 	case MSM_CSID_PAD_SINK:
791 		/* Set format on sink pad */
792 
793 		for (i = 0; i < csid->nformats; i++)
794 			if (fmt->code == csid->formats[i].code)
795 				break;
796 
797 		/* If not found, use UYVY as default */
798 		if (i >= csid->nformats)
799 			fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
800 
801 		fmt->width = clamp_t(u32, fmt->width, 1, 8191);
802 		fmt->height = clamp_t(u32, fmt->height, 1, 8191);
803 
804 		fmt->field = V4L2_FIELD_NONE;
805 		fmt->colorspace = V4L2_COLORSPACE_SRGB;
806 
807 		break;
808 
809 	case MSM_CSID_PAD_SRC:
810 		if (csid->testgen_mode->cur.val == 0) {
811 			/* Test generator is disabled, */
812 			/* keep pad formats in sync */
813 			u32 code = fmt->code;
814 
815 			*fmt = *__csid_get_format(csid, cfg,
816 						      MSM_CSID_PAD_SINK, which);
817 			fmt->code = csid_src_pad_code(csid, fmt->code, 0, code);
818 		} else {
819 			/* Test generator is enabled, set format on source */
820 			/* pad to allow test generator usage */
821 
822 			for (i = 0; i < csid->nformats; i++)
823 				if (csid->formats[i].code == fmt->code)
824 					break;
825 
826 			/* If not found, use UYVY as default */
827 			if (i >= csid->nformats)
828 				fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
829 
830 			fmt->width = clamp_t(u32, fmt->width, 1, 8191);
831 			fmt->height = clamp_t(u32, fmt->height, 1, 8191);
832 
833 			fmt->field = V4L2_FIELD_NONE;
834 		}
835 		break;
836 	}
837 
838 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
839 }
840 
841 /*
842  * csid_enum_mbus_code - Handle pixel format enumeration
843  * @sd: CSID V4L2 subdevice
844  * @cfg: V4L2 subdev pad configuration
845  * @code: pointer to v4l2_subdev_mbus_code_enum structure
846  * return -EINVAL or zero on success
847  */
848 static int csid_enum_mbus_code(struct v4l2_subdev *sd,
849 			       struct v4l2_subdev_pad_config *cfg,
850 			       struct v4l2_subdev_mbus_code_enum *code)
851 {
852 	struct csid_device *csid = v4l2_get_subdevdata(sd);
853 
854 	if (code->pad == MSM_CSID_PAD_SINK) {
855 		if (code->index >= csid->nformats)
856 			return -EINVAL;
857 
858 		code->code = csid->formats[code->index].code;
859 	} else {
860 		if (csid->testgen_mode->cur.val == 0) {
861 			struct v4l2_mbus_framefmt *sink_fmt;
862 
863 			sink_fmt = __csid_get_format(csid, cfg,
864 						     MSM_CSID_PAD_SINK,
865 						     code->which);
866 
867 			code->code = csid_src_pad_code(csid, sink_fmt->code,
868 						       code->index, 0);
869 			if (!code->code)
870 				return -EINVAL;
871 		} else {
872 			if (code->index >= csid->nformats)
873 				return -EINVAL;
874 
875 			code->code = csid->formats[code->index].code;
876 		}
877 	}
878 
879 	return 0;
880 }
881 
882 /*
883  * csid_enum_frame_size - Handle frame size enumeration
884  * @sd: CSID V4L2 subdevice
885  * @cfg: V4L2 subdev pad configuration
886  * @fse: pointer to v4l2_subdev_frame_size_enum structure
887  * return -EINVAL or zero on success
888  */
889 static int csid_enum_frame_size(struct v4l2_subdev *sd,
890 				struct v4l2_subdev_pad_config *cfg,
891 				struct v4l2_subdev_frame_size_enum *fse)
892 {
893 	struct csid_device *csid = v4l2_get_subdevdata(sd);
894 	struct v4l2_mbus_framefmt format;
895 
896 	if (fse->index != 0)
897 		return -EINVAL;
898 
899 	format.code = fse->code;
900 	format.width = 1;
901 	format.height = 1;
902 	csid_try_format(csid, cfg, fse->pad, &format, fse->which);
903 	fse->min_width = format.width;
904 	fse->min_height = format.height;
905 
906 	if (format.code != fse->code)
907 		return -EINVAL;
908 
909 	format.code = fse->code;
910 	format.width = -1;
911 	format.height = -1;
912 	csid_try_format(csid, cfg, fse->pad, &format, fse->which);
913 	fse->max_width = format.width;
914 	fse->max_height = format.height;
915 
916 	return 0;
917 }
918 
919 /*
920  * csid_get_format - Handle get format by pads subdev method
921  * @sd: CSID V4L2 subdevice
922  * @cfg: V4L2 subdev pad configuration
923  * @fmt: pointer to v4l2 subdev format structure
924  *
925  * Return -EINVAL or zero on success
926  */
927 static int csid_get_format(struct v4l2_subdev *sd,
928 			   struct v4l2_subdev_pad_config *cfg,
929 			   struct v4l2_subdev_format *fmt)
930 {
931 	struct csid_device *csid = v4l2_get_subdevdata(sd);
932 	struct v4l2_mbus_framefmt *format;
933 
934 	format = __csid_get_format(csid, cfg, fmt->pad, fmt->which);
935 	if (format == NULL)
936 		return -EINVAL;
937 
938 	fmt->format = *format;
939 
940 	return 0;
941 }
942 
943 /*
944  * csid_set_format - Handle set format by pads subdev method
945  * @sd: CSID V4L2 subdevice
946  * @cfg: V4L2 subdev pad configuration
947  * @fmt: pointer to v4l2 subdev format structure
948  *
949  * Return -EINVAL or zero on success
950  */
951 static int csid_set_format(struct v4l2_subdev *sd,
952 			   struct v4l2_subdev_pad_config *cfg,
953 			   struct v4l2_subdev_format *fmt)
954 {
955 	struct csid_device *csid = v4l2_get_subdevdata(sd);
956 	struct v4l2_mbus_framefmt *format;
957 
958 	format = __csid_get_format(csid, cfg, fmt->pad, fmt->which);
959 	if (format == NULL)
960 		return -EINVAL;
961 
962 	csid_try_format(csid, cfg, fmt->pad, &fmt->format, fmt->which);
963 	*format = fmt->format;
964 
965 	/* Propagate the format from sink to source */
966 	if (fmt->pad == MSM_CSID_PAD_SINK) {
967 		format = __csid_get_format(csid, cfg, MSM_CSID_PAD_SRC,
968 					   fmt->which);
969 
970 		*format = fmt->format;
971 		csid_try_format(csid, cfg, MSM_CSID_PAD_SRC, format,
972 				fmt->which);
973 	}
974 
975 	return 0;
976 }
977 
978 /*
979  * csid_init_formats - Initialize formats on all pads
980  * @sd: CSID V4L2 subdevice
981  * @fh: V4L2 subdev file handle
982  *
983  * Initialize all pad formats with default values.
984  *
985  * Return 0 on success or a negative error code otherwise
986  */
987 static int csid_init_formats(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
988 {
989 	struct v4l2_subdev_format format = {
990 		.pad = MSM_CSID_PAD_SINK,
991 		.which = fh ? V4L2_SUBDEV_FORMAT_TRY :
992 			      V4L2_SUBDEV_FORMAT_ACTIVE,
993 		.format = {
994 			.code = MEDIA_BUS_FMT_UYVY8_2X8,
995 			.width = 1920,
996 			.height = 1080
997 		}
998 	};
999 
1000 	return csid_set_format(sd, fh ? fh->pad : NULL, &format);
1001 }
1002 
1003 static const char * const csid_test_pattern_menu[] = {
1004 	"Disabled",
1005 	"Incrementing",
1006 	"Alternating 0x55/0xAA",
1007 	"All Zeros 0x00",
1008 	"All Ones 0xFF",
1009 	"Pseudo-random Data",
1010 };
1011 
1012 /*
1013  * csid_set_test_pattern - Set test generator's pattern mode
1014  * @csid: CSID device
1015  * @value: desired test pattern mode
1016  *
1017  * Return 0 on success or a negative error code otherwise
1018  */
1019 static int csid_set_test_pattern(struct csid_device *csid, s32 value)
1020 {
1021 	struct csid_testgen_config *tg = &csid->testgen;
1022 
1023 	/* If CSID is linked to CSIPHY, do not allow to enable test generator */
1024 	if (value && media_entity_remote_pad(&csid->pads[MSM_CSID_PAD_SINK]))
1025 		return -EBUSY;
1026 
1027 	tg->enabled = !!value;
1028 
1029 	switch (value) {
1030 	case 1:
1031 		tg->payload_mode = CSID_PAYLOAD_MODE_INCREMENTING;
1032 		break;
1033 	case 2:
1034 		tg->payload_mode = CSID_PAYLOAD_MODE_ALTERNATING_55_AA;
1035 		break;
1036 	case 3:
1037 		tg->payload_mode = CSID_PAYLOAD_MODE_ALL_ZEROES;
1038 		break;
1039 	case 4:
1040 		tg->payload_mode = CSID_PAYLOAD_MODE_ALL_ONES;
1041 		break;
1042 	case 5:
1043 		tg->payload_mode = CSID_PAYLOAD_MODE_RANDOM;
1044 		break;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 /*
1051  * csid_s_ctrl - Handle set control subdev method
1052  * @ctrl: pointer to v4l2 control structure
1053  *
1054  * Return 0 on success or a negative error code otherwise
1055  */
1056 static int csid_s_ctrl(struct v4l2_ctrl *ctrl)
1057 {
1058 	struct csid_device *csid = container_of(ctrl->handler,
1059 						struct csid_device, ctrls);
1060 	int ret = -EINVAL;
1061 
1062 	switch (ctrl->id) {
1063 	case V4L2_CID_TEST_PATTERN:
1064 		ret = csid_set_test_pattern(csid, ctrl->val);
1065 		break;
1066 	}
1067 
1068 	return ret;
1069 }
1070 
1071 static const struct v4l2_ctrl_ops csid_ctrl_ops = {
1072 	.s_ctrl = csid_s_ctrl,
1073 };
1074 
1075 /*
1076  * msm_csid_subdev_init - Initialize CSID device structure and resources
1077  * @csid: CSID device
1078  * @res: CSID module resources table
1079  * @id: CSID module id
1080  *
1081  * Return 0 on success or a negative error code otherwise
1082  */
1083 int msm_csid_subdev_init(struct camss *camss, struct csid_device *csid,
1084 			 const struct resources *res, u8 id)
1085 {
1086 	struct device *dev = camss->dev;
1087 	struct platform_device *pdev = to_platform_device(dev);
1088 	struct resource *r;
1089 	int i, j;
1090 	int ret;
1091 
1092 	csid->camss = camss;
1093 	csid->id = id;
1094 
1095 	if (camss->version == CAMSS_8x16) {
1096 		csid->formats = csid_formats_8x16;
1097 		csid->nformats =
1098 				ARRAY_SIZE(csid_formats_8x16);
1099 	} else if (camss->version == CAMSS_8x96) {
1100 		csid->formats = csid_formats_8x96;
1101 		csid->nformats =
1102 				ARRAY_SIZE(csid_formats_8x96);
1103 	} else {
1104 		return -EINVAL;
1105 	}
1106 
1107 	/* Memory */
1108 
1109 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res->reg[0]);
1110 	csid->base = devm_ioremap_resource(dev, r);
1111 	if (IS_ERR(csid->base)) {
1112 		dev_err(dev, "could not map memory\n");
1113 		return PTR_ERR(csid->base);
1114 	}
1115 
1116 	/* Interrupt */
1117 
1118 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
1119 					 res->interrupt[0]);
1120 	if (!r) {
1121 		dev_err(dev, "missing IRQ\n");
1122 		return -EINVAL;
1123 	}
1124 
1125 	csid->irq = r->start;
1126 	snprintf(csid->irq_name, sizeof(csid->irq_name), "%s_%s%d",
1127 		 dev_name(dev), MSM_CSID_NAME, csid->id);
1128 	ret = devm_request_irq(dev, csid->irq, csid_isr,
1129 		IRQF_TRIGGER_RISING, csid->irq_name, csid);
1130 	if (ret < 0) {
1131 		dev_err(dev, "request_irq failed: %d\n", ret);
1132 		return ret;
1133 	}
1134 
1135 	disable_irq(csid->irq);
1136 
1137 	/* Clocks */
1138 
1139 	csid->nclocks = 0;
1140 	while (res->clock[csid->nclocks])
1141 		csid->nclocks++;
1142 
1143 	csid->clock = devm_kcalloc(dev, csid->nclocks, sizeof(*csid->clock),
1144 				    GFP_KERNEL);
1145 	if (!csid->clock)
1146 		return -ENOMEM;
1147 
1148 	for (i = 0; i < csid->nclocks; i++) {
1149 		struct camss_clock *clock = &csid->clock[i];
1150 
1151 		clock->clk = devm_clk_get(dev, res->clock[i]);
1152 		if (IS_ERR(clock->clk))
1153 			return PTR_ERR(clock->clk);
1154 
1155 		clock->name = res->clock[i];
1156 
1157 		clock->nfreqs = 0;
1158 		while (res->clock_rate[i][clock->nfreqs])
1159 			clock->nfreqs++;
1160 
1161 		if (!clock->nfreqs) {
1162 			clock->freq = NULL;
1163 			continue;
1164 		}
1165 
1166 		clock->freq = devm_kcalloc(dev,
1167 					   clock->nfreqs,
1168 					   sizeof(*clock->freq),
1169 					   GFP_KERNEL);
1170 		if (!clock->freq)
1171 			return -ENOMEM;
1172 
1173 		for (j = 0; j < clock->nfreqs; j++)
1174 			clock->freq[j] = res->clock_rate[i][j];
1175 	}
1176 
1177 	/* Regulator */
1178 
1179 	csid->vdda = devm_regulator_get(dev, res->regulator[0]);
1180 	if (IS_ERR(csid->vdda)) {
1181 		dev_err(dev, "could not get regulator\n");
1182 		return PTR_ERR(csid->vdda);
1183 	}
1184 
1185 	init_completion(&csid->reset_complete);
1186 
1187 	return 0;
1188 }
1189 
1190 /*
1191  * msm_csid_get_csid_id - Get CSID HW module id
1192  * @entity: Pointer to CSID media entity structure
1193  * @id: Return CSID HW module id here
1194  */
1195 void msm_csid_get_csid_id(struct media_entity *entity, u8 *id)
1196 {
1197 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1198 	struct csid_device *csid = v4l2_get_subdevdata(sd);
1199 
1200 	*id = csid->id;
1201 }
1202 
1203 /*
1204  * csid_get_lane_assign - Calculate CSI2 lane assign configuration parameter
1205  * @lane_cfg - CSI2 lane configuration
1206  *
1207  * Return lane assign
1208  */
1209 static u32 csid_get_lane_assign(struct csiphy_lanes_cfg *lane_cfg)
1210 {
1211 	u32 lane_assign = 0;
1212 	int i;
1213 
1214 	for (i = 0; i < lane_cfg->num_data; i++)
1215 		lane_assign |= lane_cfg->data[i].pos << (i * 4);
1216 
1217 	return lane_assign;
1218 }
1219 
1220 /*
1221  * csid_link_setup - Setup CSID connections
1222  * @entity: Pointer to media entity structure
1223  * @local: Pointer to local pad
1224  * @remote: Pointer to remote pad
1225  * @flags: Link flags
1226  *
1227  * Return 0 on success
1228  */
1229 static int csid_link_setup(struct media_entity *entity,
1230 			   const struct media_pad *local,
1231 			   const struct media_pad *remote, u32 flags)
1232 {
1233 	if (flags & MEDIA_LNK_FL_ENABLED)
1234 		if (media_entity_remote_pad(local))
1235 			return -EBUSY;
1236 
1237 	if ((local->flags & MEDIA_PAD_FL_SINK) &&
1238 	    (flags & MEDIA_LNK_FL_ENABLED)) {
1239 		struct v4l2_subdev *sd;
1240 		struct csid_device *csid;
1241 		struct csiphy_device *csiphy;
1242 		struct csiphy_lanes_cfg *lane_cfg;
1243 		struct v4l2_subdev_format format = { 0 };
1244 
1245 		sd = media_entity_to_v4l2_subdev(entity);
1246 		csid = v4l2_get_subdevdata(sd);
1247 
1248 		/* If test generator is enabled */
1249 		/* do not allow a link from CSIPHY to CSID */
1250 		if (csid->testgen_mode->cur.val != 0)
1251 			return -EBUSY;
1252 
1253 		sd = media_entity_to_v4l2_subdev(remote->entity);
1254 		csiphy = v4l2_get_subdevdata(sd);
1255 
1256 		/* If a sensor is not linked to CSIPHY */
1257 		/* do no allow a link from CSIPHY to CSID */
1258 		if (!csiphy->cfg.csi2)
1259 			return -EPERM;
1260 
1261 		csid->phy.csiphy_id = csiphy->id;
1262 
1263 		lane_cfg = &csiphy->cfg.csi2->lane_cfg;
1264 		csid->phy.lane_cnt = lane_cfg->num_data;
1265 		csid->phy.lane_assign = csid_get_lane_assign(lane_cfg);
1266 
1267 		/* Reset format on source pad to sink pad format */
1268 		format.pad = MSM_CSID_PAD_SRC;
1269 		format.which = V4L2_SUBDEV_FORMAT_ACTIVE;
1270 		csid_set_format(&csid->subdev, NULL, &format);
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static const struct v4l2_subdev_core_ops csid_core_ops = {
1277 	.s_power = csid_set_power,
1278 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
1279 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
1280 };
1281 
1282 static const struct v4l2_subdev_video_ops csid_video_ops = {
1283 	.s_stream = csid_set_stream,
1284 };
1285 
1286 static const struct v4l2_subdev_pad_ops csid_pad_ops = {
1287 	.enum_mbus_code = csid_enum_mbus_code,
1288 	.enum_frame_size = csid_enum_frame_size,
1289 	.get_fmt = csid_get_format,
1290 	.set_fmt = csid_set_format,
1291 };
1292 
1293 static const struct v4l2_subdev_ops csid_v4l2_ops = {
1294 	.core = &csid_core_ops,
1295 	.video = &csid_video_ops,
1296 	.pad = &csid_pad_ops,
1297 };
1298 
1299 static const struct v4l2_subdev_internal_ops csid_v4l2_internal_ops = {
1300 	.open = csid_init_formats,
1301 };
1302 
1303 static const struct media_entity_operations csid_media_ops = {
1304 	.link_setup = csid_link_setup,
1305 	.link_validate = v4l2_subdev_link_validate,
1306 };
1307 
1308 /*
1309  * msm_csid_register_entity - Register subdev node for CSID module
1310  * @csid: CSID device
1311  * @v4l2_dev: V4L2 device
1312  *
1313  * Return 0 on success or a negative error code otherwise
1314  */
1315 int msm_csid_register_entity(struct csid_device *csid,
1316 			     struct v4l2_device *v4l2_dev)
1317 {
1318 	struct v4l2_subdev *sd = &csid->subdev;
1319 	struct media_pad *pads = csid->pads;
1320 	struct device *dev = csid->camss->dev;
1321 	int ret;
1322 
1323 	v4l2_subdev_init(sd, &csid_v4l2_ops);
1324 	sd->internal_ops = &csid_v4l2_internal_ops;
1325 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
1326 		     V4L2_SUBDEV_FL_HAS_EVENTS;
1327 	snprintf(sd->name, ARRAY_SIZE(sd->name), "%s%d",
1328 		 MSM_CSID_NAME, csid->id);
1329 	v4l2_set_subdevdata(sd, csid);
1330 
1331 	ret = v4l2_ctrl_handler_init(&csid->ctrls, 1);
1332 	if (ret < 0) {
1333 		dev_err(dev, "Failed to init ctrl handler: %d\n", ret);
1334 		return ret;
1335 	}
1336 
1337 	csid->testgen_mode = v4l2_ctrl_new_std_menu_items(&csid->ctrls,
1338 				&csid_ctrl_ops, V4L2_CID_TEST_PATTERN,
1339 				ARRAY_SIZE(csid_test_pattern_menu) - 1, 0, 0,
1340 				csid_test_pattern_menu);
1341 
1342 	if (csid->ctrls.error) {
1343 		dev_err(dev, "Failed to init ctrl: %d\n", csid->ctrls.error);
1344 		ret = csid->ctrls.error;
1345 		goto free_ctrl;
1346 	}
1347 
1348 	csid->subdev.ctrl_handler = &csid->ctrls;
1349 
1350 	ret = csid_init_formats(sd, NULL);
1351 	if (ret < 0) {
1352 		dev_err(dev, "Failed to init format: %d\n", ret);
1353 		goto free_ctrl;
1354 	}
1355 
1356 	pads[MSM_CSID_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
1357 	pads[MSM_CSID_PAD_SRC].flags = MEDIA_PAD_FL_SOURCE;
1358 
1359 	sd->entity.function = MEDIA_ENT_F_IO_V4L;
1360 	sd->entity.ops = &csid_media_ops;
1361 	ret = media_entity_pads_init(&sd->entity, MSM_CSID_PADS_NUM, pads);
1362 	if (ret < 0) {
1363 		dev_err(dev, "Failed to init media entity: %d\n", ret);
1364 		goto free_ctrl;
1365 	}
1366 
1367 	ret = v4l2_device_register_subdev(v4l2_dev, sd);
1368 	if (ret < 0) {
1369 		dev_err(dev, "Failed to register subdev: %d\n", ret);
1370 		goto media_cleanup;
1371 	}
1372 
1373 	return 0;
1374 
1375 media_cleanup:
1376 	media_entity_cleanup(&sd->entity);
1377 free_ctrl:
1378 	v4l2_ctrl_handler_free(&csid->ctrls);
1379 
1380 	return ret;
1381 }
1382 
1383 /*
1384  * msm_csid_unregister_entity - Unregister CSID module subdev node
1385  * @csid: CSID device
1386  */
1387 void msm_csid_unregister_entity(struct csid_device *csid)
1388 {
1389 	v4l2_device_unregister_subdev(&csid->subdev);
1390 	media_entity_cleanup(&csid->subdev.entity);
1391 	v4l2_ctrl_handler_free(&csid->ctrls);
1392 }
1393