xref: /openbmc/linux/drivers/media/platform/qcom/camss/camss-csid.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * camss-csid.c
4  *
5  * Qualcomm MSM Camera Subsystem - CSID (CSI Decoder) Module
6  *
7  * Copyright (c) 2011-2015, The Linux Foundation. All rights reserved.
8  * Copyright (C) 2015-2018 Linaro Ltd.
9  */
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regulator/consumer.h>
19 #include <media/media-entity.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-event.h>
22 #include <media/v4l2-subdev.h>
23 
24 #include "camss-csid.h"
25 #include "camss.h"
26 
27 #define MSM_CSID_NAME "msm_csid"
28 
29 #define CAMSS_CSID_HW_VERSION		0x0
30 #define CAMSS_CSID_CORE_CTRL_0		0x004
31 #define CAMSS_CSID_CORE_CTRL_1		0x008
32 #define CAMSS_CSID_RST_CMD(v)		((v) == CAMSS_8x16 ? 0x00c : 0x010)
33 #define CAMSS_CSID_CID_LUT_VC_n(v, n)	\
34 			(((v) == CAMSS_8x16 ? 0x010 : 0x014) + 0x4 * (n))
35 #define CAMSS_CSID_CID_n_CFG(v, n)	\
36 			(((v) == CAMSS_8x16 ? 0x020 : 0x024) + 0x4 * (n))
37 #define CAMSS_CSID_CID_n_CFG_ISPIF_EN	BIT(0)
38 #define CAMSS_CSID_CID_n_CFG_RDI_EN	BIT(1)
39 #define CAMSS_CSID_CID_n_CFG_DECODE_FORMAT_SHIFT	4
40 #define CAMSS_CSID_CID_n_CFG_PLAIN_FORMAT_8		(0 << 8)
41 #define CAMSS_CSID_CID_n_CFG_PLAIN_FORMAT_16		(1 << 8)
42 #define CAMSS_CSID_CID_n_CFG_PLAIN_ALIGNMENT_LSB	(0 << 9)
43 #define CAMSS_CSID_CID_n_CFG_PLAIN_ALIGNMENT_MSB	(1 << 9)
44 #define CAMSS_CSID_CID_n_CFG_RDI_MODE_RAW_DUMP		(0 << 10)
45 #define CAMSS_CSID_CID_n_CFG_RDI_MODE_PLAIN_PACKING	(1 << 10)
46 #define CAMSS_CSID_IRQ_CLEAR_CMD(v)	((v) == CAMSS_8x16 ? 0x060 : 0x064)
47 #define CAMSS_CSID_IRQ_MASK(v)		((v) == CAMSS_8x16 ? 0x064 : 0x068)
48 #define CAMSS_CSID_IRQ_STATUS(v)	((v) == CAMSS_8x16 ? 0x068 : 0x06c)
49 #define CAMSS_CSID_TG_CTRL(v)		((v) == CAMSS_8x16 ? 0x0a0 : 0x0a8)
50 #define CAMSS_CSID_TG_CTRL_DISABLE	0xa06436
51 #define CAMSS_CSID_TG_CTRL_ENABLE	0xa06437
52 #define CAMSS_CSID_TG_VC_CFG(v)		((v) == CAMSS_8x16 ? 0x0a4 : 0x0ac)
53 #define CAMSS_CSID_TG_VC_CFG_H_BLANKING		0x3ff
54 #define CAMSS_CSID_TG_VC_CFG_V_BLANKING		0x7f
55 #define CAMSS_CSID_TG_DT_n_CGG_0(v, n)	\
56 			(((v) == CAMSS_8x16 ? 0x0ac : 0x0b4) + 0xc * (n))
57 #define CAMSS_CSID_TG_DT_n_CGG_1(v, n)	\
58 			(((v) == CAMSS_8x16 ? 0x0b0 : 0x0b8) + 0xc * (n))
59 #define CAMSS_CSID_TG_DT_n_CGG_2(v, n)	\
60 			(((v) == CAMSS_8x16 ? 0x0b4 : 0x0bc) + 0xc * (n))
61 
62 #define DATA_TYPE_EMBEDDED_DATA_8BIT	0x12
63 #define DATA_TYPE_YUV422_8BIT		0x1e
64 #define DATA_TYPE_RAW_6BIT		0x28
65 #define DATA_TYPE_RAW_8BIT		0x2a
66 #define DATA_TYPE_RAW_10BIT		0x2b
67 #define DATA_TYPE_RAW_12BIT		0x2c
68 #define DATA_TYPE_RAW_14BIT		0x2d
69 
70 #define DECODE_FORMAT_UNCOMPRESSED_6_BIT	0x0
71 #define DECODE_FORMAT_UNCOMPRESSED_8_BIT	0x1
72 #define DECODE_FORMAT_UNCOMPRESSED_10_BIT	0x2
73 #define DECODE_FORMAT_UNCOMPRESSED_12_BIT	0x3
74 #define DECODE_FORMAT_UNCOMPRESSED_14_BIT	0x8
75 
76 #define CSID_RESET_TIMEOUT_MS 500
77 
78 struct csid_format {
79 	u32 code;
80 	u8 data_type;
81 	u8 decode_format;
82 	u8 bpp;
83 	u8 spp; /* bus samples per pixel */
84 };
85 
86 static const struct csid_format csid_formats_8x16[] = {
87 	{
88 		MEDIA_BUS_FMT_UYVY8_2X8,
89 		DATA_TYPE_YUV422_8BIT,
90 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
91 		8,
92 		2,
93 	},
94 	{
95 		MEDIA_BUS_FMT_VYUY8_2X8,
96 		DATA_TYPE_YUV422_8BIT,
97 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
98 		8,
99 		2,
100 	},
101 	{
102 		MEDIA_BUS_FMT_YUYV8_2X8,
103 		DATA_TYPE_YUV422_8BIT,
104 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
105 		8,
106 		2,
107 	},
108 	{
109 		MEDIA_BUS_FMT_YVYU8_2X8,
110 		DATA_TYPE_YUV422_8BIT,
111 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
112 		8,
113 		2,
114 	},
115 	{
116 		MEDIA_BUS_FMT_SBGGR8_1X8,
117 		DATA_TYPE_RAW_8BIT,
118 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
119 		8,
120 		1,
121 	},
122 	{
123 		MEDIA_BUS_FMT_SGBRG8_1X8,
124 		DATA_TYPE_RAW_8BIT,
125 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
126 		8,
127 		1,
128 	},
129 	{
130 		MEDIA_BUS_FMT_SGRBG8_1X8,
131 		DATA_TYPE_RAW_8BIT,
132 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
133 		8,
134 		1,
135 	},
136 	{
137 		MEDIA_BUS_FMT_SRGGB8_1X8,
138 		DATA_TYPE_RAW_8BIT,
139 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
140 		8,
141 		1,
142 	},
143 	{
144 		MEDIA_BUS_FMT_SBGGR10_1X10,
145 		DATA_TYPE_RAW_10BIT,
146 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
147 		10,
148 		1,
149 	},
150 	{
151 		MEDIA_BUS_FMT_SGBRG10_1X10,
152 		DATA_TYPE_RAW_10BIT,
153 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
154 		10,
155 		1,
156 	},
157 	{
158 		MEDIA_BUS_FMT_SGRBG10_1X10,
159 		DATA_TYPE_RAW_10BIT,
160 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
161 		10,
162 		1,
163 	},
164 	{
165 		MEDIA_BUS_FMT_SRGGB10_1X10,
166 		DATA_TYPE_RAW_10BIT,
167 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
168 		10,
169 		1,
170 	},
171 	{
172 		MEDIA_BUS_FMT_SBGGR12_1X12,
173 		DATA_TYPE_RAW_12BIT,
174 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
175 		12,
176 		1,
177 	},
178 	{
179 		MEDIA_BUS_FMT_SGBRG12_1X12,
180 		DATA_TYPE_RAW_12BIT,
181 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
182 		12,
183 		1,
184 	},
185 	{
186 		MEDIA_BUS_FMT_SGRBG12_1X12,
187 		DATA_TYPE_RAW_12BIT,
188 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
189 		12,
190 		1,
191 	},
192 	{
193 		MEDIA_BUS_FMT_SRGGB12_1X12,
194 		DATA_TYPE_RAW_12BIT,
195 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
196 		12,
197 		1,
198 	},
199 	{
200 		MEDIA_BUS_FMT_Y10_1X10,
201 		DATA_TYPE_RAW_10BIT,
202 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
203 		10,
204 		1,
205 	},
206 };
207 
208 static const struct csid_format csid_formats_8x96[] = {
209 	{
210 		MEDIA_BUS_FMT_UYVY8_2X8,
211 		DATA_TYPE_YUV422_8BIT,
212 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
213 		8,
214 		2,
215 	},
216 	{
217 		MEDIA_BUS_FMT_VYUY8_2X8,
218 		DATA_TYPE_YUV422_8BIT,
219 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
220 		8,
221 		2,
222 	},
223 	{
224 		MEDIA_BUS_FMT_YUYV8_2X8,
225 		DATA_TYPE_YUV422_8BIT,
226 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
227 		8,
228 		2,
229 	},
230 	{
231 		MEDIA_BUS_FMT_YVYU8_2X8,
232 		DATA_TYPE_YUV422_8BIT,
233 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
234 		8,
235 		2,
236 	},
237 	{
238 		MEDIA_BUS_FMT_SBGGR8_1X8,
239 		DATA_TYPE_RAW_8BIT,
240 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
241 		8,
242 		1,
243 	},
244 	{
245 		MEDIA_BUS_FMT_SGBRG8_1X8,
246 		DATA_TYPE_RAW_8BIT,
247 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
248 		8,
249 		1,
250 	},
251 	{
252 		MEDIA_BUS_FMT_SGRBG8_1X8,
253 		DATA_TYPE_RAW_8BIT,
254 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
255 		8,
256 		1,
257 	},
258 	{
259 		MEDIA_BUS_FMT_SRGGB8_1X8,
260 		DATA_TYPE_RAW_8BIT,
261 		DECODE_FORMAT_UNCOMPRESSED_8_BIT,
262 		8,
263 		1,
264 	},
265 	{
266 		MEDIA_BUS_FMT_SBGGR10_1X10,
267 		DATA_TYPE_RAW_10BIT,
268 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
269 		10,
270 		1,
271 	},
272 	{
273 		MEDIA_BUS_FMT_SGBRG10_1X10,
274 		DATA_TYPE_RAW_10BIT,
275 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
276 		10,
277 		1,
278 	},
279 	{
280 		MEDIA_BUS_FMT_SGRBG10_1X10,
281 		DATA_TYPE_RAW_10BIT,
282 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
283 		10,
284 		1,
285 	},
286 	{
287 		MEDIA_BUS_FMT_SRGGB10_1X10,
288 		DATA_TYPE_RAW_10BIT,
289 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
290 		10,
291 		1,
292 	},
293 	{
294 		MEDIA_BUS_FMT_SBGGR12_1X12,
295 		DATA_TYPE_RAW_12BIT,
296 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
297 		12,
298 		1,
299 	},
300 	{
301 		MEDIA_BUS_FMT_SGBRG12_1X12,
302 		DATA_TYPE_RAW_12BIT,
303 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
304 		12,
305 		1,
306 	},
307 	{
308 		MEDIA_BUS_FMT_SGRBG12_1X12,
309 		DATA_TYPE_RAW_12BIT,
310 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
311 		12,
312 		1,
313 	},
314 	{
315 		MEDIA_BUS_FMT_SRGGB12_1X12,
316 		DATA_TYPE_RAW_12BIT,
317 		DECODE_FORMAT_UNCOMPRESSED_12_BIT,
318 		12,
319 		1,
320 	},
321 	{
322 		MEDIA_BUS_FMT_SBGGR14_1X14,
323 		DATA_TYPE_RAW_14BIT,
324 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
325 		14,
326 		1,
327 	},
328 	{
329 		MEDIA_BUS_FMT_SGBRG14_1X14,
330 		DATA_TYPE_RAW_14BIT,
331 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
332 		14,
333 		1,
334 	},
335 	{
336 		MEDIA_BUS_FMT_SGRBG14_1X14,
337 		DATA_TYPE_RAW_14BIT,
338 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
339 		14,
340 		1,
341 	},
342 	{
343 		MEDIA_BUS_FMT_SRGGB14_1X14,
344 		DATA_TYPE_RAW_14BIT,
345 		DECODE_FORMAT_UNCOMPRESSED_14_BIT,
346 		14,
347 		1,
348 	},
349 	{
350 		MEDIA_BUS_FMT_Y10_1X10,
351 		DATA_TYPE_RAW_10BIT,
352 		DECODE_FORMAT_UNCOMPRESSED_10_BIT,
353 		10,
354 		1,
355 	},
356 };
357 
358 static u32 csid_find_code(u32 *code, unsigned int n_code,
359 			  unsigned int index, u32 req_code)
360 {
361 	int i;
362 
363 	if (!req_code && (index >= n_code))
364 		return 0;
365 
366 	for (i = 0; i < n_code; i++)
367 		if (req_code) {
368 			if (req_code == code[i])
369 				return req_code;
370 		} else {
371 			if (i == index)
372 				return code[i];
373 		}
374 
375 	return code[0];
376 }
377 
378 static u32 csid_src_pad_code(struct csid_device *csid, u32 sink_code,
379 			     unsigned int index, u32 src_req_code)
380 {
381 	if (csid->camss->version == CAMSS_8x16) {
382 		if (index > 0)
383 			return 0;
384 
385 		return sink_code;
386 	} else if (csid->camss->version == CAMSS_8x96 ||
387 		   csid->camss->version == CAMSS_660) {
388 		switch (sink_code) {
389 		case MEDIA_BUS_FMT_SBGGR10_1X10:
390 		{
391 			u32 src_code[] = {
392 				MEDIA_BUS_FMT_SBGGR10_1X10,
393 				MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE,
394 			};
395 
396 			return csid_find_code(src_code, ARRAY_SIZE(src_code),
397 					      index, src_req_code);
398 		}
399 		case MEDIA_BUS_FMT_Y10_1X10:
400 		{
401 			u32 src_code[] = {
402 				MEDIA_BUS_FMT_Y10_1X10,
403 				MEDIA_BUS_FMT_Y10_2X8_PADHI_LE,
404 			};
405 
406 			return csid_find_code(src_code, ARRAY_SIZE(src_code),
407 					      index, src_req_code);
408 		}
409 		default:
410 			if (index > 0)
411 				return 0;
412 
413 			return sink_code;
414 		}
415 	} else {
416 		return 0;
417 	}
418 }
419 
420 static const struct csid_format *csid_get_fmt_entry(
421 					const struct csid_format *formats,
422 					unsigned int nformat,
423 					u32 code)
424 {
425 	unsigned int i;
426 
427 	for (i = 0; i < nformat; i++)
428 		if (code == formats[i].code)
429 			return &formats[i];
430 
431 	WARN(1, "Unknown format\n");
432 
433 	return &formats[0];
434 }
435 
436 /*
437  * csid_isr - CSID module interrupt handler
438  * @irq: Interrupt line
439  * @dev: CSID device
440  *
441  * Return IRQ_HANDLED on success
442  */
443 static irqreturn_t csid_isr(int irq, void *dev)
444 {
445 	struct csid_device *csid = dev;
446 	enum camss_version ver = csid->camss->version;
447 	u32 value;
448 
449 	value = readl_relaxed(csid->base + CAMSS_CSID_IRQ_STATUS(ver));
450 	writel_relaxed(value, csid->base + CAMSS_CSID_IRQ_CLEAR_CMD(ver));
451 
452 	if ((value >> 11) & 0x1)
453 		complete(&csid->reset_complete);
454 
455 	return IRQ_HANDLED;
456 }
457 
458 /*
459  * csid_set_clock_rates - Calculate and set clock rates on CSID module
460  * @csiphy: CSID device
461  */
462 static int csid_set_clock_rates(struct csid_device *csid)
463 {
464 	struct device *dev = csid->camss->dev;
465 	u32 pixel_clock;
466 	int i, j;
467 	int ret;
468 
469 	ret = camss_get_pixel_clock(&csid->subdev.entity, &pixel_clock);
470 	if (ret)
471 		pixel_clock = 0;
472 
473 	for (i = 0; i < csid->nclocks; i++) {
474 		struct camss_clock *clock = &csid->clock[i];
475 
476 		if (!strcmp(clock->name, "csi0") ||
477 		    !strcmp(clock->name, "csi1") ||
478 		    !strcmp(clock->name, "csi2") ||
479 		    !strcmp(clock->name, "csi3")) {
480 			const struct csid_format *f = csid_get_fmt_entry(
481 				csid->formats,
482 				csid->nformats,
483 				csid->fmt[MSM_CSIPHY_PAD_SINK].code);
484 			u8 num_lanes = csid->phy.lane_cnt;
485 			u64 min_rate = pixel_clock * f->bpp /
486 							(2 * num_lanes * 4);
487 			long rate;
488 
489 			camss_add_clock_margin(&min_rate);
490 
491 			for (j = 0; j < clock->nfreqs; j++)
492 				if (min_rate < clock->freq[j])
493 					break;
494 
495 			if (j == clock->nfreqs) {
496 				dev_err(dev,
497 					"Pixel clock is too high for CSID\n");
498 				return -EINVAL;
499 			}
500 
501 			/* if sensor pixel clock is not available */
502 			/* set highest possible CSID clock rate */
503 			if (min_rate == 0)
504 				j = clock->nfreqs - 1;
505 
506 			rate = clk_round_rate(clock->clk, clock->freq[j]);
507 			if (rate < 0) {
508 				dev_err(dev, "clk round rate failed: %ld\n",
509 					rate);
510 				return -EINVAL;
511 			}
512 
513 			ret = clk_set_rate(clock->clk, rate);
514 			if (ret < 0) {
515 				dev_err(dev, "clk set rate failed: %d\n", ret);
516 				return ret;
517 			}
518 		}
519 	}
520 
521 	return 0;
522 }
523 
524 /*
525  * csid_reset - Trigger reset on CSID module and wait to complete
526  * @csid: CSID device
527  *
528  * Return 0 on success or a negative error code otherwise
529  */
530 static int csid_reset(struct csid_device *csid)
531 {
532 	unsigned long time;
533 
534 	reinit_completion(&csid->reset_complete);
535 
536 	writel_relaxed(0x7fff, csid->base +
537 		       CAMSS_CSID_RST_CMD(csid->camss->version));
538 
539 	time = wait_for_completion_timeout(&csid->reset_complete,
540 		msecs_to_jiffies(CSID_RESET_TIMEOUT_MS));
541 	if (!time) {
542 		dev_err(csid->camss->dev, "CSID reset timeout\n");
543 		return -EIO;
544 	}
545 
546 	return 0;
547 }
548 
549 /*
550  * csid_set_power - Power on/off CSID module
551  * @sd: CSID V4L2 subdevice
552  * @on: Requested power state
553  *
554  * Return 0 on success or a negative error code otherwise
555  */
556 static int csid_set_power(struct v4l2_subdev *sd, int on)
557 {
558 	struct csid_device *csid = v4l2_get_subdevdata(sd);
559 	struct device *dev = csid->camss->dev;
560 	int ret;
561 
562 	if (on) {
563 		u32 hw_version;
564 
565 		ret = pm_runtime_get_sync(dev);
566 		if (ret < 0) {
567 			pm_runtime_put_sync(dev);
568 			return ret;
569 		}
570 
571 		ret = regulator_enable(csid->vdda);
572 		if (ret < 0) {
573 			pm_runtime_put_sync(dev);
574 			return ret;
575 		}
576 
577 		ret = csid_set_clock_rates(csid);
578 		if (ret < 0) {
579 			regulator_disable(csid->vdda);
580 			pm_runtime_put_sync(dev);
581 			return ret;
582 		}
583 
584 		ret = camss_enable_clocks(csid->nclocks, csid->clock, dev);
585 		if (ret < 0) {
586 			regulator_disable(csid->vdda);
587 			pm_runtime_put_sync(dev);
588 			return ret;
589 		}
590 
591 		enable_irq(csid->irq);
592 
593 		ret = csid_reset(csid);
594 		if (ret < 0) {
595 			disable_irq(csid->irq);
596 			camss_disable_clocks(csid->nclocks, csid->clock);
597 			regulator_disable(csid->vdda);
598 			pm_runtime_put_sync(dev);
599 			return ret;
600 		}
601 
602 		hw_version = readl_relaxed(csid->base + CAMSS_CSID_HW_VERSION);
603 		dev_dbg(dev, "CSID HW Version = 0x%08x\n", hw_version);
604 	} else {
605 		disable_irq(csid->irq);
606 		camss_disable_clocks(csid->nclocks, csid->clock);
607 		ret = regulator_disable(csid->vdda);
608 		pm_runtime_put_sync(dev);
609 	}
610 
611 	return ret;
612 }
613 
614 /*
615  * csid_set_stream - Enable/disable streaming on CSID module
616  * @sd: CSID V4L2 subdevice
617  * @enable: Requested streaming state
618  *
619  * Main configuration of CSID module is also done here.
620  *
621  * Return 0 on success or a negative error code otherwise
622  */
623 static int csid_set_stream(struct v4l2_subdev *sd, int enable)
624 {
625 	struct csid_device *csid = v4l2_get_subdevdata(sd);
626 	struct csid_testgen_config *tg = &csid->testgen;
627 	enum camss_version ver = csid->camss->version;
628 	u32 val;
629 
630 	if (enable) {
631 		u8 vc = 0; /* Virtual Channel 0 */
632 		u8 cid = vc * 4; /* id of Virtual Channel and Data Type set */
633 		u8 dt, dt_shift, df;
634 		int ret;
635 
636 		ret = v4l2_ctrl_handler_setup(&csid->ctrls);
637 		if (ret < 0) {
638 			dev_err(csid->camss->dev,
639 				"could not sync v4l2 controls: %d\n", ret);
640 			return ret;
641 		}
642 
643 		if (!tg->enabled &&
644 		    !media_entity_remote_pad(&csid->pads[MSM_CSID_PAD_SINK]))
645 			return -ENOLINK;
646 
647 		if (tg->enabled) {
648 			/* Config Test Generator */
649 			struct v4l2_mbus_framefmt *f =
650 					&csid->fmt[MSM_CSID_PAD_SRC];
651 			const struct csid_format *format = csid_get_fmt_entry(
652 					csid->formats, csid->nformats, f->code);
653 			u32 num_bytes_per_line =
654 				f->width * format->bpp * format->spp / 8;
655 			u32 num_lines = f->height;
656 
657 			/* 31:24 V blank, 23:13 H blank, 3:2 num of active DT */
658 			/* 1:0 VC */
659 			val = ((CAMSS_CSID_TG_VC_CFG_V_BLANKING & 0xff) << 24) |
660 			      ((CAMSS_CSID_TG_VC_CFG_H_BLANKING & 0x7ff) << 13);
661 			writel_relaxed(val, csid->base +
662 				       CAMSS_CSID_TG_VC_CFG(ver));
663 
664 			/* 28:16 bytes per lines, 12:0 num of lines */
665 			val = ((num_bytes_per_line & 0x1fff) << 16) |
666 			      (num_lines & 0x1fff);
667 			writel_relaxed(val, csid->base +
668 				       CAMSS_CSID_TG_DT_n_CGG_0(ver, 0));
669 
670 			dt = format->data_type;
671 
672 			/* 5:0 data type */
673 			val = dt;
674 			writel_relaxed(val, csid->base +
675 				       CAMSS_CSID_TG_DT_n_CGG_1(ver, 0));
676 
677 			/* 2:0 output test pattern */
678 			val = tg->payload_mode;
679 			writel_relaxed(val, csid->base +
680 				       CAMSS_CSID_TG_DT_n_CGG_2(ver, 0));
681 
682 			df = format->decode_format;
683 		} else {
684 			struct v4l2_mbus_framefmt *f =
685 					&csid->fmt[MSM_CSID_PAD_SINK];
686 			const struct csid_format *format = csid_get_fmt_entry(
687 					csid->formats, csid->nformats, f->code);
688 			struct csid_phy_config *phy = &csid->phy;
689 
690 			val = phy->lane_cnt - 1;
691 			val |= phy->lane_assign << 4;
692 
693 			writel_relaxed(val,
694 				       csid->base + CAMSS_CSID_CORE_CTRL_0);
695 
696 			val = phy->csiphy_id << 17;
697 			val |= 0x9;
698 
699 			writel_relaxed(val,
700 				       csid->base + CAMSS_CSID_CORE_CTRL_1);
701 
702 			dt = format->data_type;
703 			df = format->decode_format;
704 		}
705 
706 		/* Config LUT */
707 
708 		dt_shift = (cid % 4) * 8;
709 
710 		val = readl_relaxed(csid->base +
711 				    CAMSS_CSID_CID_LUT_VC_n(ver, vc));
712 		val &= ~(0xff << dt_shift);
713 		val |= dt << dt_shift;
714 		writel_relaxed(val, csid->base +
715 			       CAMSS_CSID_CID_LUT_VC_n(ver, vc));
716 
717 		val = CAMSS_CSID_CID_n_CFG_ISPIF_EN;
718 		val |= CAMSS_CSID_CID_n_CFG_RDI_EN;
719 		val |= df << CAMSS_CSID_CID_n_CFG_DECODE_FORMAT_SHIFT;
720 		val |= CAMSS_CSID_CID_n_CFG_RDI_MODE_RAW_DUMP;
721 
722 		if (csid->camss->version == CAMSS_8x96 ||
723 		    csid->camss->version == CAMSS_660) {
724 			u32 sink_code = csid->fmt[MSM_CSID_PAD_SINK].code;
725 			u32 src_code = csid->fmt[MSM_CSID_PAD_SRC].code;
726 
727 			if ((sink_code == MEDIA_BUS_FMT_SBGGR10_1X10 &&
728 			     src_code == MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE) ||
729 			    (sink_code == MEDIA_BUS_FMT_Y10_1X10 &&
730 			     src_code == MEDIA_BUS_FMT_Y10_2X8_PADHI_LE)) {
731 				val |= CAMSS_CSID_CID_n_CFG_RDI_MODE_PLAIN_PACKING;
732 				val |= CAMSS_CSID_CID_n_CFG_PLAIN_FORMAT_16;
733 				val |= CAMSS_CSID_CID_n_CFG_PLAIN_ALIGNMENT_LSB;
734 			}
735 		}
736 
737 		writel_relaxed(val, csid->base +
738 			       CAMSS_CSID_CID_n_CFG(ver, cid));
739 
740 		if (tg->enabled) {
741 			val = CAMSS_CSID_TG_CTRL_ENABLE;
742 			writel_relaxed(val, csid->base +
743 				       CAMSS_CSID_TG_CTRL(ver));
744 		}
745 	} else {
746 		if (tg->enabled) {
747 			val = CAMSS_CSID_TG_CTRL_DISABLE;
748 			writel_relaxed(val, csid->base +
749 				       CAMSS_CSID_TG_CTRL(ver));
750 		}
751 	}
752 
753 	return 0;
754 }
755 
756 /*
757  * __csid_get_format - Get pointer to format structure
758  * @csid: CSID device
759  * @cfg: V4L2 subdev pad configuration
760  * @pad: pad from which format is requested
761  * @which: TRY or ACTIVE format
762  *
763  * Return pointer to TRY or ACTIVE format structure
764  */
765 static struct v4l2_mbus_framefmt *
766 __csid_get_format(struct csid_device *csid,
767 		  struct v4l2_subdev_pad_config *cfg,
768 		  unsigned int pad,
769 		  enum v4l2_subdev_format_whence which)
770 {
771 	if (which == V4L2_SUBDEV_FORMAT_TRY)
772 		return v4l2_subdev_get_try_format(&csid->subdev, cfg, pad);
773 
774 	return &csid->fmt[pad];
775 }
776 
777 /*
778  * csid_try_format - Handle try format by pad subdev method
779  * @csid: CSID device
780  * @cfg: V4L2 subdev pad configuration
781  * @pad: pad on which format is requested
782  * @fmt: pointer to v4l2 format structure
783  * @which: wanted subdev format
784  */
785 static void csid_try_format(struct csid_device *csid,
786 			    struct v4l2_subdev_pad_config *cfg,
787 			    unsigned int pad,
788 			    struct v4l2_mbus_framefmt *fmt,
789 			    enum v4l2_subdev_format_whence which)
790 {
791 	unsigned int i;
792 
793 	switch (pad) {
794 	case MSM_CSID_PAD_SINK:
795 		/* Set format on sink pad */
796 
797 		for (i = 0; i < csid->nformats; i++)
798 			if (fmt->code == csid->formats[i].code)
799 				break;
800 
801 		/* If not found, use UYVY as default */
802 		if (i >= csid->nformats)
803 			fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
804 
805 		fmt->width = clamp_t(u32, fmt->width, 1, 8191);
806 		fmt->height = clamp_t(u32, fmt->height, 1, 8191);
807 
808 		fmt->field = V4L2_FIELD_NONE;
809 		fmt->colorspace = V4L2_COLORSPACE_SRGB;
810 
811 		break;
812 
813 	case MSM_CSID_PAD_SRC:
814 		if (csid->testgen_mode->cur.val == 0) {
815 			/* Test generator is disabled, */
816 			/* keep pad formats in sync */
817 			u32 code = fmt->code;
818 
819 			*fmt = *__csid_get_format(csid, cfg,
820 						      MSM_CSID_PAD_SINK, which);
821 			fmt->code = csid_src_pad_code(csid, fmt->code, 0, code);
822 		} else {
823 			/* Test generator is enabled, set format on source */
824 			/* pad to allow test generator usage */
825 
826 			for (i = 0; i < csid->nformats; i++)
827 				if (csid->formats[i].code == fmt->code)
828 					break;
829 
830 			/* If not found, use UYVY as default */
831 			if (i >= csid->nformats)
832 				fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
833 
834 			fmt->width = clamp_t(u32, fmt->width, 1, 8191);
835 			fmt->height = clamp_t(u32, fmt->height, 1, 8191);
836 
837 			fmt->field = V4L2_FIELD_NONE;
838 		}
839 		break;
840 	}
841 
842 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
843 }
844 
845 /*
846  * csid_enum_mbus_code - Handle pixel format enumeration
847  * @sd: CSID V4L2 subdevice
848  * @cfg: V4L2 subdev pad configuration
849  * @code: pointer to v4l2_subdev_mbus_code_enum structure
850  * return -EINVAL or zero on success
851  */
852 static int csid_enum_mbus_code(struct v4l2_subdev *sd,
853 			       struct v4l2_subdev_pad_config *cfg,
854 			       struct v4l2_subdev_mbus_code_enum *code)
855 {
856 	struct csid_device *csid = v4l2_get_subdevdata(sd);
857 
858 	if (code->pad == MSM_CSID_PAD_SINK) {
859 		if (code->index >= csid->nformats)
860 			return -EINVAL;
861 
862 		code->code = csid->formats[code->index].code;
863 	} else {
864 		if (csid->testgen_mode->cur.val == 0) {
865 			struct v4l2_mbus_framefmt *sink_fmt;
866 
867 			sink_fmt = __csid_get_format(csid, cfg,
868 						     MSM_CSID_PAD_SINK,
869 						     code->which);
870 
871 			code->code = csid_src_pad_code(csid, sink_fmt->code,
872 						       code->index, 0);
873 			if (!code->code)
874 				return -EINVAL;
875 		} else {
876 			if (code->index >= csid->nformats)
877 				return -EINVAL;
878 
879 			code->code = csid->formats[code->index].code;
880 		}
881 	}
882 
883 	return 0;
884 }
885 
886 /*
887  * csid_enum_frame_size - Handle frame size enumeration
888  * @sd: CSID V4L2 subdevice
889  * @cfg: V4L2 subdev pad configuration
890  * @fse: pointer to v4l2_subdev_frame_size_enum structure
891  * return -EINVAL or zero on success
892  */
893 static int csid_enum_frame_size(struct v4l2_subdev *sd,
894 				struct v4l2_subdev_pad_config *cfg,
895 				struct v4l2_subdev_frame_size_enum *fse)
896 {
897 	struct csid_device *csid = v4l2_get_subdevdata(sd);
898 	struct v4l2_mbus_framefmt format;
899 
900 	if (fse->index != 0)
901 		return -EINVAL;
902 
903 	format.code = fse->code;
904 	format.width = 1;
905 	format.height = 1;
906 	csid_try_format(csid, cfg, fse->pad, &format, fse->which);
907 	fse->min_width = format.width;
908 	fse->min_height = format.height;
909 
910 	if (format.code != fse->code)
911 		return -EINVAL;
912 
913 	format.code = fse->code;
914 	format.width = -1;
915 	format.height = -1;
916 	csid_try_format(csid, cfg, fse->pad, &format, fse->which);
917 	fse->max_width = format.width;
918 	fse->max_height = format.height;
919 
920 	return 0;
921 }
922 
923 /*
924  * csid_get_format - Handle get format by pads subdev method
925  * @sd: CSID V4L2 subdevice
926  * @cfg: V4L2 subdev pad configuration
927  * @fmt: pointer to v4l2 subdev format structure
928  *
929  * Return -EINVAL or zero on success
930  */
931 static int csid_get_format(struct v4l2_subdev *sd,
932 			   struct v4l2_subdev_pad_config *cfg,
933 			   struct v4l2_subdev_format *fmt)
934 {
935 	struct csid_device *csid = v4l2_get_subdevdata(sd);
936 	struct v4l2_mbus_framefmt *format;
937 
938 	format = __csid_get_format(csid, cfg, fmt->pad, fmt->which);
939 	if (format == NULL)
940 		return -EINVAL;
941 
942 	fmt->format = *format;
943 
944 	return 0;
945 }
946 
947 /*
948  * csid_set_format - Handle set format by pads subdev method
949  * @sd: CSID V4L2 subdevice
950  * @cfg: V4L2 subdev pad configuration
951  * @fmt: pointer to v4l2 subdev format structure
952  *
953  * Return -EINVAL or zero on success
954  */
955 static int csid_set_format(struct v4l2_subdev *sd,
956 			   struct v4l2_subdev_pad_config *cfg,
957 			   struct v4l2_subdev_format *fmt)
958 {
959 	struct csid_device *csid = v4l2_get_subdevdata(sd);
960 	struct v4l2_mbus_framefmt *format;
961 
962 	format = __csid_get_format(csid, cfg, fmt->pad, fmt->which);
963 	if (format == NULL)
964 		return -EINVAL;
965 
966 	csid_try_format(csid, cfg, fmt->pad, &fmt->format, fmt->which);
967 	*format = fmt->format;
968 
969 	/* Propagate the format from sink to source */
970 	if (fmt->pad == MSM_CSID_PAD_SINK) {
971 		format = __csid_get_format(csid, cfg, MSM_CSID_PAD_SRC,
972 					   fmt->which);
973 
974 		*format = fmt->format;
975 		csid_try_format(csid, cfg, MSM_CSID_PAD_SRC, format,
976 				fmt->which);
977 	}
978 
979 	return 0;
980 }
981 
982 /*
983  * csid_init_formats - Initialize formats on all pads
984  * @sd: CSID V4L2 subdevice
985  * @fh: V4L2 subdev file handle
986  *
987  * Initialize all pad formats with default values.
988  *
989  * Return 0 on success or a negative error code otherwise
990  */
991 static int csid_init_formats(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
992 {
993 	struct v4l2_subdev_format format = {
994 		.pad = MSM_CSID_PAD_SINK,
995 		.which = fh ? V4L2_SUBDEV_FORMAT_TRY :
996 			      V4L2_SUBDEV_FORMAT_ACTIVE,
997 		.format = {
998 			.code = MEDIA_BUS_FMT_UYVY8_2X8,
999 			.width = 1920,
1000 			.height = 1080
1001 		}
1002 	};
1003 
1004 	return csid_set_format(sd, fh ? fh->pad : NULL, &format);
1005 }
1006 
1007 static const char * const csid_test_pattern_menu[] = {
1008 	"Disabled",
1009 	"Incrementing",
1010 	"Alternating 0x55/0xAA",
1011 	"All Zeros 0x00",
1012 	"All Ones 0xFF",
1013 	"Pseudo-random Data",
1014 };
1015 
1016 /*
1017  * csid_set_test_pattern - Set test generator's pattern mode
1018  * @csid: CSID device
1019  * @value: desired test pattern mode
1020  *
1021  * Return 0 on success or a negative error code otherwise
1022  */
1023 static int csid_set_test_pattern(struct csid_device *csid, s32 value)
1024 {
1025 	struct csid_testgen_config *tg = &csid->testgen;
1026 
1027 	/* If CSID is linked to CSIPHY, do not allow to enable test generator */
1028 	if (value && media_entity_remote_pad(&csid->pads[MSM_CSID_PAD_SINK]))
1029 		return -EBUSY;
1030 
1031 	tg->enabled = !!value;
1032 
1033 	switch (value) {
1034 	case 1:
1035 		tg->payload_mode = CSID_PAYLOAD_MODE_INCREMENTING;
1036 		break;
1037 	case 2:
1038 		tg->payload_mode = CSID_PAYLOAD_MODE_ALTERNATING_55_AA;
1039 		break;
1040 	case 3:
1041 		tg->payload_mode = CSID_PAYLOAD_MODE_ALL_ZEROES;
1042 		break;
1043 	case 4:
1044 		tg->payload_mode = CSID_PAYLOAD_MODE_ALL_ONES;
1045 		break;
1046 	case 5:
1047 		tg->payload_mode = CSID_PAYLOAD_MODE_RANDOM;
1048 		break;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /*
1055  * csid_s_ctrl - Handle set control subdev method
1056  * @ctrl: pointer to v4l2 control structure
1057  *
1058  * Return 0 on success or a negative error code otherwise
1059  */
1060 static int csid_s_ctrl(struct v4l2_ctrl *ctrl)
1061 {
1062 	struct csid_device *csid = container_of(ctrl->handler,
1063 						struct csid_device, ctrls);
1064 	int ret = -EINVAL;
1065 
1066 	switch (ctrl->id) {
1067 	case V4L2_CID_TEST_PATTERN:
1068 		ret = csid_set_test_pattern(csid, ctrl->val);
1069 		break;
1070 	}
1071 
1072 	return ret;
1073 }
1074 
1075 static const struct v4l2_ctrl_ops csid_ctrl_ops = {
1076 	.s_ctrl = csid_s_ctrl,
1077 };
1078 
1079 /*
1080  * msm_csid_subdev_init - Initialize CSID device structure and resources
1081  * @csid: CSID device
1082  * @res: CSID module resources table
1083  * @id: CSID module id
1084  *
1085  * Return 0 on success or a negative error code otherwise
1086  */
1087 int msm_csid_subdev_init(struct camss *camss, struct csid_device *csid,
1088 			 const struct resources *res, u8 id)
1089 {
1090 	struct device *dev = camss->dev;
1091 	struct platform_device *pdev = to_platform_device(dev);
1092 	struct resource *r;
1093 	int i, j;
1094 	int ret;
1095 
1096 	csid->camss = camss;
1097 	csid->id = id;
1098 
1099 	if (camss->version == CAMSS_8x16) {
1100 		csid->formats = csid_formats_8x16;
1101 		csid->nformats =
1102 				ARRAY_SIZE(csid_formats_8x16);
1103 	} else if (camss->version == CAMSS_8x96 ||
1104 		   camss->version == CAMSS_660) {
1105 		csid->formats = csid_formats_8x96;
1106 		csid->nformats =
1107 				ARRAY_SIZE(csid_formats_8x96);
1108 	} else {
1109 		return -EINVAL;
1110 	}
1111 
1112 	/* Memory */
1113 
1114 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res->reg[0]);
1115 	csid->base = devm_ioremap_resource(dev, r);
1116 	if (IS_ERR(csid->base)) {
1117 		dev_err(dev, "could not map memory\n");
1118 		return PTR_ERR(csid->base);
1119 	}
1120 
1121 	/* Interrupt */
1122 
1123 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
1124 					 res->interrupt[0]);
1125 	if (!r) {
1126 		dev_err(dev, "missing IRQ\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	csid->irq = r->start;
1131 	snprintf(csid->irq_name, sizeof(csid->irq_name), "%s_%s%d",
1132 		 dev_name(dev), MSM_CSID_NAME, csid->id);
1133 	ret = devm_request_irq(dev, csid->irq, csid_isr,
1134 		IRQF_TRIGGER_RISING, csid->irq_name, csid);
1135 	if (ret < 0) {
1136 		dev_err(dev, "request_irq failed: %d\n", ret);
1137 		return ret;
1138 	}
1139 
1140 	disable_irq(csid->irq);
1141 
1142 	/* Clocks */
1143 
1144 	csid->nclocks = 0;
1145 	while (res->clock[csid->nclocks])
1146 		csid->nclocks++;
1147 
1148 	csid->clock = devm_kcalloc(dev, csid->nclocks, sizeof(*csid->clock),
1149 				    GFP_KERNEL);
1150 	if (!csid->clock)
1151 		return -ENOMEM;
1152 
1153 	for (i = 0; i < csid->nclocks; i++) {
1154 		struct camss_clock *clock = &csid->clock[i];
1155 
1156 		clock->clk = devm_clk_get(dev, res->clock[i]);
1157 		if (IS_ERR(clock->clk))
1158 			return PTR_ERR(clock->clk);
1159 
1160 		clock->name = res->clock[i];
1161 
1162 		clock->nfreqs = 0;
1163 		while (res->clock_rate[i][clock->nfreqs])
1164 			clock->nfreqs++;
1165 
1166 		if (!clock->nfreqs) {
1167 			clock->freq = NULL;
1168 			continue;
1169 		}
1170 
1171 		clock->freq = devm_kcalloc(dev,
1172 					   clock->nfreqs,
1173 					   sizeof(*clock->freq),
1174 					   GFP_KERNEL);
1175 		if (!clock->freq)
1176 			return -ENOMEM;
1177 
1178 		for (j = 0; j < clock->nfreqs; j++)
1179 			clock->freq[j] = res->clock_rate[i][j];
1180 	}
1181 
1182 	/* Regulator */
1183 
1184 	csid->vdda = devm_regulator_get(dev, res->regulator[0]);
1185 	if (IS_ERR(csid->vdda)) {
1186 		dev_err(dev, "could not get regulator\n");
1187 		return PTR_ERR(csid->vdda);
1188 	}
1189 
1190 	init_completion(&csid->reset_complete);
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * msm_csid_get_csid_id - Get CSID HW module id
1197  * @entity: Pointer to CSID media entity structure
1198  * @id: Return CSID HW module id here
1199  */
1200 void msm_csid_get_csid_id(struct media_entity *entity, u8 *id)
1201 {
1202 	struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1203 	struct csid_device *csid = v4l2_get_subdevdata(sd);
1204 
1205 	*id = csid->id;
1206 }
1207 
1208 /*
1209  * csid_get_lane_assign - Calculate CSI2 lane assign configuration parameter
1210  * @lane_cfg - CSI2 lane configuration
1211  *
1212  * Return lane assign
1213  */
1214 static u32 csid_get_lane_assign(struct csiphy_lanes_cfg *lane_cfg)
1215 {
1216 	u32 lane_assign = 0;
1217 	int i;
1218 
1219 	for (i = 0; i < lane_cfg->num_data; i++)
1220 		lane_assign |= lane_cfg->data[i].pos << (i * 4);
1221 
1222 	return lane_assign;
1223 }
1224 
1225 /*
1226  * csid_link_setup - Setup CSID connections
1227  * @entity: Pointer to media entity structure
1228  * @local: Pointer to local pad
1229  * @remote: Pointer to remote pad
1230  * @flags: Link flags
1231  *
1232  * Return 0 on success
1233  */
1234 static int csid_link_setup(struct media_entity *entity,
1235 			   const struct media_pad *local,
1236 			   const struct media_pad *remote, u32 flags)
1237 {
1238 	if (flags & MEDIA_LNK_FL_ENABLED)
1239 		if (media_entity_remote_pad(local))
1240 			return -EBUSY;
1241 
1242 	if ((local->flags & MEDIA_PAD_FL_SINK) &&
1243 	    (flags & MEDIA_LNK_FL_ENABLED)) {
1244 		struct v4l2_subdev *sd;
1245 		struct csid_device *csid;
1246 		struct csiphy_device *csiphy;
1247 		struct csiphy_lanes_cfg *lane_cfg;
1248 		struct v4l2_subdev_format format = { 0 };
1249 
1250 		sd = media_entity_to_v4l2_subdev(entity);
1251 		csid = v4l2_get_subdevdata(sd);
1252 
1253 		/* If test generator is enabled */
1254 		/* do not allow a link from CSIPHY to CSID */
1255 		if (csid->testgen_mode->cur.val != 0)
1256 			return -EBUSY;
1257 
1258 		sd = media_entity_to_v4l2_subdev(remote->entity);
1259 		csiphy = v4l2_get_subdevdata(sd);
1260 
1261 		/* If a sensor is not linked to CSIPHY */
1262 		/* do no allow a link from CSIPHY to CSID */
1263 		if (!csiphy->cfg.csi2)
1264 			return -EPERM;
1265 
1266 		csid->phy.csiphy_id = csiphy->id;
1267 
1268 		lane_cfg = &csiphy->cfg.csi2->lane_cfg;
1269 		csid->phy.lane_cnt = lane_cfg->num_data;
1270 		csid->phy.lane_assign = csid_get_lane_assign(lane_cfg);
1271 
1272 		/* Reset format on source pad to sink pad format */
1273 		format.pad = MSM_CSID_PAD_SRC;
1274 		format.which = V4L2_SUBDEV_FORMAT_ACTIVE;
1275 		csid_set_format(&csid->subdev, NULL, &format);
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct v4l2_subdev_core_ops csid_core_ops = {
1282 	.s_power = csid_set_power,
1283 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
1284 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
1285 };
1286 
1287 static const struct v4l2_subdev_video_ops csid_video_ops = {
1288 	.s_stream = csid_set_stream,
1289 };
1290 
1291 static const struct v4l2_subdev_pad_ops csid_pad_ops = {
1292 	.enum_mbus_code = csid_enum_mbus_code,
1293 	.enum_frame_size = csid_enum_frame_size,
1294 	.get_fmt = csid_get_format,
1295 	.set_fmt = csid_set_format,
1296 };
1297 
1298 static const struct v4l2_subdev_ops csid_v4l2_ops = {
1299 	.core = &csid_core_ops,
1300 	.video = &csid_video_ops,
1301 	.pad = &csid_pad_ops,
1302 };
1303 
1304 static const struct v4l2_subdev_internal_ops csid_v4l2_internal_ops = {
1305 	.open = csid_init_formats,
1306 };
1307 
1308 static const struct media_entity_operations csid_media_ops = {
1309 	.link_setup = csid_link_setup,
1310 	.link_validate = v4l2_subdev_link_validate,
1311 };
1312 
1313 /*
1314  * msm_csid_register_entity - Register subdev node for CSID module
1315  * @csid: CSID device
1316  * @v4l2_dev: V4L2 device
1317  *
1318  * Return 0 on success or a negative error code otherwise
1319  */
1320 int msm_csid_register_entity(struct csid_device *csid,
1321 			     struct v4l2_device *v4l2_dev)
1322 {
1323 	struct v4l2_subdev *sd = &csid->subdev;
1324 	struct media_pad *pads = csid->pads;
1325 	struct device *dev = csid->camss->dev;
1326 	int ret;
1327 
1328 	v4l2_subdev_init(sd, &csid_v4l2_ops);
1329 	sd->internal_ops = &csid_v4l2_internal_ops;
1330 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
1331 		     V4L2_SUBDEV_FL_HAS_EVENTS;
1332 	snprintf(sd->name, ARRAY_SIZE(sd->name), "%s%d",
1333 		 MSM_CSID_NAME, csid->id);
1334 	v4l2_set_subdevdata(sd, csid);
1335 
1336 	ret = v4l2_ctrl_handler_init(&csid->ctrls, 1);
1337 	if (ret < 0) {
1338 		dev_err(dev, "Failed to init ctrl handler: %d\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	csid->testgen_mode = v4l2_ctrl_new_std_menu_items(&csid->ctrls,
1343 				&csid_ctrl_ops, V4L2_CID_TEST_PATTERN,
1344 				ARRAY_SIZE(csid_test_pattern_menu) - 1, 0, 0,
1345 				csid_test_pattern_menu);
1346 
1347 	if (csid->ctrls.error) {
1348 		dev_err(dev, "Failed to init ctrl: %d\n", csid->ctrls.error);
1349 		ret = csid->ctrls.error;
1350 		goto free_ctrl;
1351 	}
1352 
1353 	csid->subdev.ctrl_handler = &csid->ctrls;
1354 
1355 	ret = csid_init_formats(sd, NULL);
1356 	if (ret < 0) {
1357 		dev_err(dev, "Failed to init format: %d\n", ret);
1358 		goto free_ctrl;
1359 	}
1360 
1361 	pads[MSM_CSID_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
1362 	pads[MSM_CSID_PAD_SRC].flags = MEDIA_PAD_FL_SOURCE;
1363 
1364 	sd->entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1365 	sd->entity.ops = &csid_media_ops;
1366 	ret = media_entity_pads_init(&sd->entity, MSM_CSID_PADS_NUM, pads);
1367 	if (ret < 0) {
1368 		dev_err(dev, "Failed to init media entity: %d\n", ret);
1369 		goto free_ctrl;
1370 	}
1371 
1372 	ret = v4l2_device_register_subdev(v4l2_dev, sd);
1373 	if (ret < 0) {
1374 		dev_err(dev, "Failed to register subdev: %d\n", ret);
1375 		goto media_cleanup;
1376 	}
1377 
1378 	return 0;
1379 
1380 media_cleanup:
1381 	media_entity_cleanup(&sd->entity);
1382 free_ctrl:
1383 	v4l2_ctrl_handler_free(&csid->ctrls);
1384 
1385 	return ret;
1386 }
1387 
1388 /*
1389  * msm_csid_unregister_entity - Unregister CSID module subdev node
1390  * @csid: CSID device
1391  */
1392 void msm_csid_unregister_entity(struct csid_device *csid)
1393 {
1394 	v4l2_device_unregister_subdev(&csid->subdev);
1395 	media_entity_cleanup(&csid->subdev.entity);
1396 	v4l2_ctrl_handler_free(&csid->ctrls);
1397 }
1398