1 /* 2 * tw68 functions to handle video data 3 * 4 * Much of this code is derived from the cx88 and sa7134 drivers, which 5 * were in turn derived from the bt87x driver. The original work was by 6 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab, 7 * Hans Verkuil, Andy Walls and many others. Their work is gratefully 8 * acknowledged. Full credit goes to them - any problems within this code 9 * are mine. 10 * 11 * Copyright (C) 2009 William M. Brack 12 * 13 * Refactored and updated to the latest v4l core frameworks: 14 * 15 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl> 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/module.h> 29 #include <media/v4l2-common.h> 30 #include <media/v4l2-event.h> 31 #include <media/videobuf2-dma-sg.h> 32 33 #include "tw68.h" 34 #include "tw68-reg.h" 35 36 /* ------------------------------------------------------------------ */ 37 /* data structs for video */ 38 /* 39 * FIXME - 40 * Note that the saa7134 has formats, e.g. YUV420, which are classified 41 * as "planar". These affect overlay mode, and are flagged with a field 42 * ".planar" in the format. Do we need to implement this in this driver? 43 */ 44 static const struct tw68_format formats[] = { 45 { 46 .name = "15 bpp RGB, le", 47 .fourcc = V4L2_PIX_FMT_RGB555, 48 .depth = 16, 49 .twformat = ColorFormatRGB15, 50 }, { 51 .name = "15 bpp RGB, be", 52 .fourcc = V4L2_PIX_FMT_RGB555X, 53 .depth = 16, 54 .twformat = ColorFormatRGB15 | ColorFormatBSWAP, 55 }, { 56 .name = "16 bpp RGB, le", 57 .fourcc = V4L2_PIX_FMT_RGB565, 58 .depth = 16, 59 .twformat = ColorFormatRGB16, 60 }, { 61 .name = "16 bpp RGB, be", 62 .fourcc = V4L2_PIX_FMT_RGB565X, 63 .depth = 16, 64 .twformat = ColorFormatRGB16 | ColorFormatBSWAP, 65 }, { 66 .name = "24 bpp RGB, le", 67 .fourcc = V4L2_PIX_FMT_BGR24, 68 .depth = 24, 69 .twformat = ColorFormatRGB24, 70 }, { 71 .name = "24 bpp RGB, be", 72 .fourcc = V4L2_PIX_FMT_RGB24, 73 .depth = 24, 74 .twformat = ColorFormatRGB24 | ColorFormatBSWAP, 75 }, { 76 .name = "32 bpp RGB, le", 77 .fourcc = V4L2_PIX_FMT_BGR32, 78 .depth = 32, 79 .twformat = ColorFormatRGB32, 80 }, { 81 .name = "32 bpp RGB, be", 82 .fourcc = V4L2_PIX_FMT_RGB32, 83 .depth = 32, 84 .twformat = ColorFormatRGB32 | ColorFormatBSWAP | 85 ColorFormatWSWAP, 86 }, { 87 .name = "4:2:2 packed, YUYV", 88 .fourcc = V4L2_PIX_FMT_YUYV, 89 .depth = 16, 90 .twformat = ColorFormatYUY2, 91 }, { 92 .name = "4:2:2 packed, UYVY", 93 .fourcc = V4L2_PIX_FMT_UYVY, 94 .depth = 16, 95 .twformat = ColorFormatYUY2 | ColorFormatBSWAP, 96 } 97 }; 98 #define FORMATS ARRAY_SIZE(formats) 99 100 #define NORM_625_50 \ 101 .h_delay = 3, \ 102 .h_delay0 = 133, \ 103 .h_start = 0, \ 104 .h_stop = 719, \ 105 .v_delay = 24, \ 106 .vbi_v_start_0 = 7, \ 107 .vbi_v_stop_0 = 22, \ 108 .video_v_start = 24, \ 109 .video_v_stop = 311, \ 110 .vbi_v_start_1 = 319 111 112 #define NORM_525_60 \ 113 .h_delay = 8, \ 114 .h_delay0 = 138, \ 115 .h_start = 0, \ 116 .h_stop = 719, \ 117 .v_delay = 22, \ 118 .vbi_v_start_0 = 10, \ 119 .vbi_v_stop_0 = 21, \ 120 .video_v_start = 22, \ 121 .video_v_stop = 262, \ 122 .vbi_v_start_1 = 273 123 124 /* 125 * The following table is searched by tw68_s_std, first for a specific 126 * match, then for an entry which contains the desired id. The table 127 * entries should therefore be ordered in ascending order of specificity. 128 */ 129 static const struct tw68_tvnorm tvnorms[] = { 130 { 131 .name = "PAL", /* autodetect */ 132 .id = V4L2_STD_PAL, 133 NORM_625_50, 134 135 .sync_control = 0x18, 136 .luma_control = 0x40, 137 .chroma_ctrl1 = 0x81, 138 .chroma_gain = 0x2a, 139 .chroma_ctrl2 = 0x06, 140 .vgate_misc = 0x1c, 141 .format = VideoFormatPALBDGHI, 142 }, { 143 .name = "NTSC", 144 .id = V4L2_STD_NTSC, 145 NORM_525_60, 146 147 .sync_control = 0x59, 148 .luma_control = 0x40, 149 .chroma_ctrl1 = 0x89, 150 .chroma_gain = 0x2a, 151 .chroma_ctrl2 = 0x0e, 152 .vgate_misc = 0x18, 153 .format = VideoFormatNTSC, 154 }, { 155 .name = "SECAM", 156 .id = V4L2_STD_SECAM, 157 NORM_625_50, 158 159 .sync_control = 0x18, 160 .luma_control = 0x1b, 161 .chroma_ctrl1 = 0xd1, 162 .chroma_gain = 0x80, 163 .chroma_ctrl2 = 0x00, 164 .vgate_misc = 0x1c, 165 .format = VideoFormatSECAM, 166 }, { 167 .name = "PAL-M", 168 .id = V4L2_STD_PAL_M, 169 NORM_525_60, 170 171 .sync_control = 0x59, 172 .luma_control = 0x40, 173 .chroma_ctrl1 = 0xb9, 174 .chroma_gain = 0x2a, 175 .chroma_ctrl2 = 0x0e, 176 .vgate_misc = 0x18, 177 .format = VideoFormatPALM, 178 }, { 179 .name = "PAL-Nc", 180 .id = V4L2_STD_PAL_Nc, 181 NORM_625_50, 182 183 .sync_control = 0x18, 184 .luma_control = 0x40, 185 .chroma_ctrl1 = 0xa1, 186 .chroma_gain = 0x2a, 187 .chroma_ctrl2 = 0x06, 188 .vgate_misc = 0x1c, 189 .format = VideoFormatPALNC, 190 }, { 191 .name = "PAL-60", 192 .id = V4L2_STD_PAL_60, 193 .h_delay = 186, 194 .h_start = 0, 195 .h_stop = 719, 196 .v_delay = 26, 197 .video_v_start = 23, 198 .video_v_stop = 262, 199 .vbi_v_start_0 = 10, 200 .vbi_v_stop_0 = 21, 201 .vbi_v_start_1 = 273, 202 203 .sync_control = 0x18, 204 .luma_control = 0x40, 205 .chroma_ctrl1 = 0x81, 206 .chroma_gain = 0x2a, 207 .chroma_ctrl2 = 0x06, 208 .vgate_misc = 0x1c, 209 .format = VideoFormatPAL60, 210 } 211 }; 212 #define TVNORMS ARRAY_SIZE(tvnorms) 213 214 static const struct tw68_format *format_by_fourcc(unsigned int fourcc) 215 { 216 unsigned int i; 217 218 for (i = 0; i < FORMATS; i++) 219 if (formats[i].fourcc == fourcc) 220 return formats+i; 221 return NULL; 222 } 223 224 225 /* ------------------------------------------------------------------ */ 226 /* 227 * Note that the cropping rectangles are described in terms of a single 228 * frame, i.e. line positions are only 1/2 the interlaced equivalent 229 */ 230 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm) 231 { 232 if (norm != dev->tvnorm) { 233 dev->width = 720; 234 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576; 235 dev->tvnorm = norm; 236 tw68_set_tvnorm_hw(dev); 237 } 238 } 239 240 /* 241 * tw68_set_scale 242 * 243 * Scaling and Cropping for video decoding 244 * 245 * We are working with 3 values for horizontal and vertical - scale, 246 * delay and active. 247 * 248 * HACTIVE represent the actual number of pixels in the "usable" image, 249 * before scaling. HDELAY represents the number of pixels skipped 250 * between the start of the horizontal sync and the start of the image. 251 * HSCALE is calculated using the formula 252 * HSCALE = (HACTIVE / (#pixels desired)) * 256 253 * 254 * The vertical registers are similar, except based upon the total number 255 * of lines in the image, and the first line of the image (i.e. ignoring 256 * vertical sync and VBI). 257 * 258 * Note that the number of bytes reaching the FIFO (and hence needing 259 * to be processed by the DMAP program) is completely dependent upon 260 * these values, especially HSCALE. 261 * 262 * Parameters: 263 * @dev pointer to the device structure, needed for 264 * getting current norm (as well as debug print) 265 * @width actual image width (from user buffer) 266 * @height actual image height 267 * @field indicates Top, Bottom or Interlaced 268 */ 269 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width, 270 unsigned int height, enum v4l2_field field) 271 { 272 const struct tw68_tvnorm *norm = dev->tvnorm; 273 /* set individually for debugging clarity */ 274 int hactive, hdelay, hscale; 275 int vactive, vdelay, vscale; 276 int comb; 277 278 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */ 279 height /= 2; /* we must set for 1-frame */ 280 281 pr_debug("%s: width=%d, height=%d, both=%d\n" 282 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, " 283 "v_delay=%d, v_start=%d, v_stop=%d\n" , __func__, 284 width, height, V4L2_FIELD_HAS_BOTH(field), 285 norm->h_delay, norm->h_start, norm->h_stop, 286 norm->v_delay, norm->video_v_start, 287 norm->video_v_stop); 288 289 switch (dev->vdecoder) { 290 case TW6800: 291 hdelay = norm->h_delay0; 292 break; 293 default: 294 hdelay = norm->h_delay; 295 break; 296 } 297 298 hdelay += norm->h_start; 299 hactive = norm->h_stop - norm->h_start + 1; 300 301 hscale = (hactive * 256) / (width); 302 303 vdelay = norm->v_delay; 304 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start; 305 vscale = (vactive * 256) / height; 306 307 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__, 308 width, height, 309 V4L2_FIELD_HAS_TOP(field) ? "T" : "", 310 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", 311 v4l2_norm_to_name(dev->tvnorm->id)); 312 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; " 313 "vactive=%d, vdelay=%d, vscale=%d\n", __func__, 314 hactive, hdelay, hscale, vactive, vdelay, vscale); 315 316 comb = ((vdelay & 0x300) >> 2) | 317 ((vactive & 0x300) >> 4) | 318 ((hdelay & 0x300) >> 6) | 319 ((hactive & 0x300) >> 8); 320 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, " 321 "VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n", 322 __func__, comb, vdelay, vactive, hdelay, hactive); 323 tw_writeb(TW68_CROP_HI, comb); 324 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff); 325 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff); 326 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff); 327 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff); 328 329 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8); 330 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, " 331 "HSCALE_LO=%02x\n", __func__, comb, vscale, hscale); 332 tw_writeb(TW68_SCALE_HI, comb); 333 tw_writeb(TW68_VSCALE_LO, vscale); 334 tw_writeb(TW68_HSCALE_LO, hscale); 335 336 return 0; 337 } 338 339 /* ------------------------------------------------------------------ */ 340 341 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf) 342 { 343 /* Set cropping and scaling */ 344 tw68_set_scale(dev, dev->width, dev->height, dev->field); 345 /* 346 * Set start address for RISC program. Note that if the DMAP 347 * processor is currently running, it must be stopped before 348 * a new address can be set. 349 */ 350 tw_clearl(TW68_DMAC, TW68_DMAP_EN); 351 tw_writel(TW68_DMAP_SA, buf->dma); 352 /* Clear any pending interrupts */ 353 tw_writel(TW68_INTSTAT, dev->board_virqmask); 354 /* Enable the risc engine and the fifo */ 355 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat | 356 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN); 357 dev->pci_irqmask |= dev->board_virqmask; 358 tw_setl(TW68_INTMASK, dev->pci_irqmask); 359 return 0; 360 } 361 362 /* ------------------------------------------------------------------ */ 363 364 /* calc max # of buffers from size (must not exceed the 4MB virtual 365 * address space per DMA channel) */ 366 static int tw68_buffer_count(unsigned int size, unsigned int count) 367 { 368 unsigned int maxcount; 369 370 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE); 371 if (count > maxcount) 372 count = maxcount; 373 return count; 374 } 375 376 /* ------------------------------------------------------------- */ 377 /* vb2 queue operations */ 378 379 static int tw68_queue_setup(struct vb2_queue *q, 380 unsigned int *num_buffers, unsigned int *num_planes, 381 unsigned int sizes[], struct device *alloc_devs[]) 382 { 383 struct tw68_dev *dev = vb2_get_drv_priv(q); 384 unsigned tot_bufs = q->num_buffers + *num_buffers; 385 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3; 386 387 if (tot_bufs < 2) 388 tot_bufs = 2; 389 tot_bufs = tw68_buffer_count(size, tot_bufs); 390 *num_buffers = tot_bufs - q->num_buffers; 391 /* 392 * We allow create_bufs, but only if the sizeimage is >= as the 393 * current sizeimage. The tw68_buffer_count calculation becomes quite 394 * difficult otherwise. 395 */ 396 if (*num_planes) 397 return sizes[0] < size ? -EINVAL : 0; 398 *num_planes = 1; 399 sizes[0] = size; 400 401 return 0; 402 } 403 404 /* 405 * The risc program for each buffers works as follows: it starts with a simple 406 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the 407 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping 408 * the initial JUMP). 409 * 410 * This is the program of the first buffer to be queued if the active list is 411 * empty and it just keeps DMAing this buffer without generating any interrupts. 412 * 413 * If a new buffer is added then the initial JUMP in the program generates an 414 * interrupt as well which signals that the previous buffer has been DMAed 415 * successfully and that it can be returned to userspace. 416 * 417 * It also sets the final jump of the previous buffer to the start of the new 418 * buffer, thus chaining the new buffer into the DMA chain. This is a single 419 * atomic u32 write, so there is no race condition. 420 * 421 * The end-result of all this that you only get an interrupt when a buffer 422 * is ready, so the control flow is very easy. 423 */ 424 static void tw68_buf_queue(struct vb2_buffer *vb) 425 { 426 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 427 struct vb2_queue *vq = vb->vb2_queue; 428 struct tw68_dev *dev = vb2_get_drv_priv(vq); 429 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 430 struct tw68_buf *prev; 431 unsigned long flags; 432 433 spin_lock_irqsave(&dev->slock, flags); 434 435 /* append a 'JUMP to start of buffer' to the buffer risc program */ 436 buf->jmp[0] = cpu_to_le32(RISC_JUMP); 437 buf->jmp[1] = cpu_to_le32(buf->dma + 8); 438 439 if (!list_empty(&dev->active)) { 440 prev = list_entry(dev->active.prev, struct tw68_buf, list); 441 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT); 442 prev->jmp[1] = cpu_to_le32(buf->dma); 443 } 444 list_add_tail(&buf->list, &dev->active); 445 spin_unlock_irqrestore(&dev->slock, flags); 446 } 447 448 /* 449 * buffer_prepare 450 * 451 * Set the ancilliary information into the buffer structure. This 452 * includes generating the necessary risc program if it hasn't already 453 * been done for the current buffer format. 454 * The structure fh contains the details of the format requested by the 455 * user - type, width, height and #fields. This is compared with the 456 * last format set for the current buffer. If they differ, the risc 457 * code (which controls the filling of the buffer) is (re-)generated. 458 */ 459 static int tw68_buf_prepare(struct vb2_buffer *vb) 460 { 461 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 462 struct vb2_queue *vq = vb->vb2_queue; 463 struct tw68_dev *dev = vb2_get_drv_priv(vq); 464 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 465 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0); 466 unsigned size, bpl; 467 468 size = (dev->width * dev->height * dev->fmt->depth) >> 3; 469 if (vb2_plane_size(vb, 0) < size) 470 return -EINVAL; 471 vb2_set_plane_payload(vb, 0, size); 472 473 bpl = (dev->width * dev->fmt->depth) >> 3; 474 switch (dev->field) { 475 case V4L2_FIELD_TOP: 476 tw68_risc_buffer(dev->pci, buf, dma->sgl, 477 0, UNSET, bpl, 0, dev->height); 478 break; 479 case V4L2_FIELD_BOTTOM: 480 tw68_risc_buffer(dev->pci, buf, dma->sgl, 481 UNSET, 0, bpl, 0, dev->height); 482 break; 483 case V4L2_FIELD_SEQ_TB: 484 tw68_risc_buffer(dev->pci, buf, dma->sgl, 485 0, bpl * (dev->height >> 1), 486 bpl, 0, dev->height >> 1); 487 break; 488 case V4L2_FIELD_SEQ_BT: 489 tw68_risc_buffer(dev->pci, buf, dma->sgl, 490 bpl * (dev->height >> 1), 0, 491 bpl, 0, dev->height >> 1); 492 break; 493 case V4L2_FIELD_INTERLACED: 494 default: 495 tw68_risc_buffer(dev->pci, buf, dma->sgl, 496 0, bpl, bpl, bpl, dev->height >> 1); 497 break; 498 } 499 return 0; 500 } 501 502 static void tw68_buf_finish(struct vb2_buffer *vb) 503 { 504 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 505 struct vb2_queue *vq = vb->vb2_queue; 506 struct tw68_dev *dev = vb2_get_drv_priv(vq); 507 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 508 509 pci_free_consistent(dev->pci, buf->size, buf->cpu, buf->dma); 510 } 511 512 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count) 513 { 514 struct tw68_dev *dev = vb2_get_drv_priv(q); 515 struct tw68_buf *buf = 516 container_of(dev->active.next, struct tw68_buf, list); 517 518 dev->seqnr = 0; 519 tw68_video_start_dma(dev, buf); 520 return 0; 521 } 522 523 static void tw68_stop_streaming(struct vb2_queue *q) 524 { 525 struct tw68_dev *dev = vb2_get_drv_priv(q); 526 527 /* Stop risc & fifo */ 528 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN); 529 while (!list_empty(&dev->active)) { 530 struct tw68_buf *buf = 531 container_of(dev->active.next, struct tw68_buf, list); 532 533 list_del(&buf->list); 534 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); 535 } 536 } 537 538 static struct vb2_ops tw68_video_qops = { 539 .queue_setup = tw68_queue_setup, 540 .buf_queue = tw68_buf_queue, 541 .buf_prepare = tw68_buf_prepare, 542 .buf_finish = tw68_buf_finish, 543 .start_streaming = tw68_start_streaming, 544 .stop_streaming = tw68_stop_streaming, 545 .wait_prepare = vb2_ops_wait_prepare, 546 .wait_finish = vb2_ops_wait_finish, 547 }; 548 549 /* ------------------------------------------------------------------ */ 550 551 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl) 552 { 553 struct tw68_dev *dev = 554 container_of(ctrl->handler, struct tw68_dev, hdl); 555 556 switch (ctrl->id) { 557 case V4L2_CID_BRIGHTNESS: 558 tw_writeb(TW68_BRIGHT, ctrl->val); 559 break; 560 case V4L2_CID_HUE: 561 tw_writeb(TW68_HUE, ctrl->val); 562 break; 563 case V4L2_CID_CONTRAST: 564 tw_writeb(TW68_CONTRAST, ctrl->val); 565 break; 566 case V4L2_CID_SATURATION: 567 tw_writeb(TW68_SAT_U, ctrl->val); 568 tw_writeb(TW68_SAT_V, ctrl->val); 569 break; 570 case V4L2_CID_COLOR_KILLER: 571 if (ctrl->val) 572 tw_andorb(TW68_MISC2, 0xe0, 0xe0); 573 else 574 tw_andorb(TW68_MISC2, 0xe0, 0x00); 575 break; 576 case V4L2_CID_CHROMA_AGC: 577 if (ctrl->val) 578 tw_andorb(TW68_LOOP, 0x30, 0x20); 579 else 580 tw_andorb(TW68_LOOP, 0x30, 0x00); 581 break; 582 } 583 return 0; 584 } 585 586 /* ------------------------------------------------------------------ */ 587 588 /* 589 * Note that this routine returns what is stored in the fh structure, and 590 * does not interrogate any of the device registers. 591 */ 592 static int tw68_g_fmt_vid_cap(struct file *file, void *priv, 593 struct v4l2_format *f) 594 { 595 struct tw68_dev *dev = video_drvdata(file); 596 597 f->fmt.pix.width = dev->width; 598 f->fmt.pix.height = dev->height; 599 f->fmt.pix.field = dev->field; 600 f->fmt.pix.pixelformat = dev->fmt->fourcc; 601 f->fmt.pix.bytesperline = 602 (f->fmt.pix.width * (dev->fmt->depth)) >> 3; 603 f->fmt.pix.sizeimage = 604 f->fmt.pix.height * f->fmt.pix.bytesperline; 605 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 606 f->fmt.pix.priv = 0; 607 return 0; 608 } 609 610 static int tw68_try_fmt_vid_cap(struct file *file, void *priv, 611 struct v4l2_format *f) 612 { 613 struct tw68_dev *dev = video_drvdata(file); 614 const struct tw68_format *fmt; 615 enum v4l2_field field; 616 unsigned int maxh; 617 618 fmt = format_by_fourcc(f->fmt.pix.pixelformat); 619 if (NULL == fmt) 620 return -EINVAL; 621 622 field = f->fmt.pix.field; 623 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576; 624 625 switch (field) { 626 case V4L2_FIELD_TOP: 627 case V4L2_FIELD_BOTTOM: 628 break; 629 case V4L2_FIELD_INTERLACED: 630 case V4L2_FIELD_SEQ_BT: 631 case V4L2_FIELD_SEQ_TB: 632 maxh = maxh * 2; 633 break; 634 default: 635 field = (f->fmt.pix.height > maxh / 2) 636 ? V4L2_FIELD_INTERLACED 637 : V4L2_FIELD_BOTTOM; 638 break; 639 } 640 641 f->fmt.pix.field = field; 642 if (f->fmt.pix.width < 48) 643 f->fmt.pix.width = 48; 644 if (f->fmt.pix.height < 32) 645 f->fmt.pix.height = 32; 646 if (f->fmt.pix.width > 720) 647 f->fmt.pix.width = 720; 648 if (f->fmt.pix.height > maxh) 649 f->fmt.pix.height = maxh; 650 f->fmt.pix.width &= ~0x03; 651 f->fmt.pix.bytesperline = 652 (f->fmt.pix.width * (fmt->depth)) >> 3; 653 f->fmt.pix.sizeimage = 654 f->fmt.pix.height * f->fmt.pix.bytesperline; 655 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 656 return 0; 657 } 658 659 /* 660 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure, 661 * and it will be used for all future new buffers. However, there could be 662 * some number of buffers on the "active" chain which will be filled before 663 * the change takes place. 664 */ 665 static int tw68_s_fmt_vid_cap(struct file *file, void *priv, 666 struct v4l2_format *f) 667 { 668 struct tw68_dev *dev = video_drvdata(file); 669 int err; 670 671 err = tw68_try_fmt_vid_cap(file, priv, f); 672 if (0 != err) 673 return err; 674 675 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat); 676 dev->width = f->fmt.pix.width; 677 dev->height = f->fmt.pix.height; 678 dev->field = f->fmt.pix.field; 679 return 0; 680 } 681 682 static int tw68_enum_input(struct file *file, void *priv, 683 struct v4l2_input *i) 684 { 685 struct tw68_dev *dev = video_drvdata(file); 686 unsigned int n; 687 688 n = i->index; 689 if (n >= TW68_INPUT_MAX) 690 return -EINVAL; 691 i->index = n; 692 i->type = V4L2_INPUT_TYPE_CAMERA; 693 snprintf(i->name, sizeof(i->name), "Composite %d", n); 694 695 /* If the query is for the current input, get live data */ 696 if (n == dev->input) { 697 int v1 = tw_readb(TW68_STATUS1); 698 int v2 = tw_readb(TW68_MVSN); 699 700 if (0 != (v1 & (1 << 7))) 701 i->status |= V4L2_IN_ST_NO_SYNC; 702 if (0 != (v1 & (1 << 6))) 703 i->status |= V4L2_IN_ST_NO_H_LOCK; 704 if (0 != (v1 & (1 << 2))) 705 i->status |= V4L2_IN_ST_NO_SIGNAL; 706 if (0 != (v1 & 1 << 1)) 707 i->status |= V4L2_IN_ST_NO_COLOR; 708 if (0 != (v2 & (1 << 2))) 709 i->status |= V4L2_IN_ST_MACROVISION; 710 } 711 i->std = video_devdata(file)->tvnorms; 712 return 0; 713 } 714 715 static int tw68_g_input(struct file *file, void *priv, unsigned int *i) 716 { 717 struct tw68_dev *dev = video_drvdata(file); 718 719 *i = dev->input; 720 return 0; 721 } 722 723 static int tw68_s_input(struct file *file, void *priv, unsigned int i) 724 { 725 struct tw68_dev *dev = video_drvdata(file); 726 727 if (i >= TW68_INPUT_MAX) 728 return -EINVAL; 729 dev->input = i; 730 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2); 731 return 0; 732 } 733 734 static int tw68_querycap(struct file *file, void *priv, 735 struct v4l2_capability *cap) 736 { 737 struct tw68_dev *dev = video_drvdata(file); 738 739 strcpy(cap->driver, "tw68"); 740 strlcpy(cap->card, "Techwell Capture Card", 741 sizeof(cap->card)); 742 sprintf(cap->bus_info, "PCI:%s", pci_name(dev->pci)); 743 cap->device_caps = 744 V4L2_CAP_VIDEO_CAPTURE | 745 V4L2_CAP_READWRITE | 746 V4L2_CAP_STREAMING; 747 748 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; 749 return 0; 750 } 751 752 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id) 753 { 754 struct tw68_dev *dev = video_drvdata(file); 755 unsigned int i; 756 757 if (vb2_is_busy(&dev->vidq)) 758 return -EBUSY; 759 760 /* Look for match on complete norm id (may have mult bits) */ 761 for (i = 0; i < TVNORMS; i++) { 762 if (id == tvnorms[i].id) 763 break; 764 } 765 766 /* If no exact match, look for norm which contains this one */ 767 if (i == TVNORMS) { 768 for (i = 0; i < TVNORMS; i++) 769 if (id & tvnorms[i].id) 770 break; 771 } 772 /* If still not matched, give up */ 773 if (i == TVNORMS) 774 return -EINVAL; 775 776 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */ 777 return 0; 778 } 779 780 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id) 781 { 782 struct tw68_dev *dev = video_drvdata(file); 783 784 *id = dev->tvnorm->id; 785 return 0; 786 } 787 788 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv, 789 struct v4l2_fmtdesc *f) 790 { 791 if (f->index >= FORMATS) 792 return -EINVAL; 793 794 strlcpy(f->description, formats[f->index].name, 795 sizeof(f->description)); 796 797 f->pixelformat = formats[f->index].fourcc; 798 799 return 0; 800 } 801 802 /* 803 * Used strictly for internal development and debugging, this routine 804 * prints out the current register contents for the tw68xx device. 805 */ 806 static void tw68_dump_regs(struct tw68_dev *dev) 807 { 808 unsigned char line[80]; 809 int i, j, k; 810 unsigned char *cptr; 811 812 pr_info("Full dump of TW68 registers:\n"); 813 /* First we do the PCI regs, 8 4-byte regs per line */ 814 for (i = 0; i < 0x100; i += 32) { 815 cptr = line; 816 cptr += sprintf(cptr, "%03x ", i); 817 /* j steps through the next 4 words */ 818 for (j = i; j < i + 16; j += 4) 819 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 820 *cptr++ = ' '; 821 for (; j < i + 32; j += 4) 822 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 823 *cptr++ = '\n'; 824 *cptr = 0; 825 pr_info("%s", line); 826 } 827 /* Next the control regs, which are single-byte, address mod 4 */ 828 while (i < 0x400) { 829 cptr = line; 830 cptr += sprintf(cptr, "%03x ", i); 831 /* Print out 4 groups of 4 bytes */ 832 for (j = 0; j < 4; j++) { 833 for (k = 0; k < 4; k++) { 834 cptr += sprintf(cptr, "%02x ", 835 tw_readb(i)); 836 i += 4; 837 } 838 *cptr++ = ' '; 839 } 840 *cptr++ = '\n'; 841 *cptr = 0; 842 pr_info("%s", line); 843 } 844 } 845 846 static int vidioc_log_status(struct file *file, void *priv) 847 { 848 struct tw68_dev *dev = video_drvdata(file); 849 850 tw68_dump_regs(dev); 851 return v4l2_ctrl_log_status(file, priv); 852 } 853 854 #ifdef CONFIG_VIDEO_ADV_DEBUG 855 static int vidioc_g_register(struct file *file, void *priv, 856 struct v4l2_dbg_register *reg) 857 { 858 struct tw68_dev *dev = video_drvdata(file); 859 860 if (reg->size == 1) 861 reg->val = tw_readb(reg->reg); 862 else 863 reg->val = tw_readl(reg->reg); 864 return 0; 865 } 866 867 static int vidioc_s_register(struct file *file, void *priv, 868 const struct v4l2_dbg_register *reg) 869 { 870 struct tw68_dev *dev = video_drvdata(file); 871 872 if (reg->size == 1) 873 tw_writeb(reg->reg, reg->val); 874 else 875 tw_writel(reg->reg & 0xffff, reg->val); 876 return 0; 877 } 878 #endif 879 880 static const struct v4l2_ctrl_ops tw68_ctrl_ops = { 881 .s_ctrl = tw68_s_ctrl, 882 }; 883 884 static const struct v4l2_file_operations video_fops = { 885 .owner = THIS_MODULE, 886 .open = v4l2_fh_open, 887 .release = vb2_fop_release, 888 .read = vb2_fop_read, 889 .poll = vb2_fop_poll, 890 .mmap = vb2_fop_mmap, 891 .unlocked_ioctl = video_ioctl2, 892 }; 893 894 static const struct v4l2_ioctl_ops video_ioctl_ops = { 895 .vidioc_querycap = tw68_querycap, 896 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap, 897 .vidioc_reqbufs = vb2_ioctl_reqbufs, 898 .vidioc_create_bufs = vb2_ioctl_create_bufs, 899 .vidioc_querybuf = vb2_ioctl_querybuf, 900 .vidioc_qbuf = vb2_ioctl_qbuf, 901 .vidioc_dqbuf = vb2_ioctl_dqbuf, 902 .vidioc_s_std = tw68_s_std, 903 .vidioc_g_std = tw68_g_std, 904 .vidioc_enum_input = tw68_enum_input, 905 .vidioc_g_input = tw68_g_input, 906 .vidioc_s_input = tw68_s_input, 907 .vidioc_streamon = vb2_ioctl_streamon, 908 .vidioc_streamoff = vb2_ioctl_streamoff, 909 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap, 910 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap, 911 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap, 912 .vidioc_log_status = vidioc_log_status, 913 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, 914 .vidioc_unsubscribe_event = v4l2_event_unsubscribe, 915 #ifdef CONFIG_VIDEO_ADV_DEBUG 916 .vidioc_g_register = vidioc_g_register, 917 .vidioc_s_register = vidioc_s_register, 918 #endif 919 }; 920 921 static struct video_device tw68_video_template = { 922 .name = "tw68_video", 923 .fops = &video_fops, 924 .ioctl_ops = &video_ioctl_ops, 925 .release = video_device_release_empty, 926 .tvnorms = TW68_NORMS, 927 }; 928 929 /* ------------------------------------------------------------------ */ 930 /* exported stuff */ 931 void tw68_set_tvnorm_hw(struct tw68_dev *dev) 932 { 933 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format); 934 } 935 936 int tw68_video_init1(struct tw68_dev *dev) 937 { 938 struct v4l2_ctrl_handler *hdl = &dev->hdl; 939 940 v4l2_ctrl_handler_init(hdl, 6); 941 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 942 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20); 943 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 944 V4L2_CID_CONTRAST, 0, 255, 1, 100); 945 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 946 V4L2_CID_SATURATION, 0, 255, 1, 128); 947 /* NTSC only */ 948 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 949 V4L2_CID_HUE, -128, 127, 1, 0); 950 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 951 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); 952 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 953 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1); 954 if (hdl->error) { 955 v4l2_ctrl_handler_free(hdl); 956 return hdl->error; 957 } 958 dev->v4l2_dev.ctrl_handler = hdl; 959 v4l2_ctrl_handler_setup(hdl); 960 return 0; 961 } 962 963 int tw68_video_init2(struct tw68_dev *dev, int video_nr) 964 { 965 int ret; 966 967 set_tvnorm(dev, &tvnorms[0]); 968 969 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24); 970 dev->width = 720; 971 dev->height = 576; 972 dev->field = V4L2_FIELD_INTERLACED; 973 974 INIT_LIST_HEAD(&dev->active); 975 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; 976 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; 977 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF; 978 dev->vidq.ops = &tw68_video_qops; 979 dev->vidq.mem_ops = &vb2_dma_sg_memops; 980 dev->vidq.drv_priv = dev; 981 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM; 982 dev->vidq.buf_struct_size = sizeof(struct tw68_buf); 983 dev->vidq.lock = &dev->lock; 984 dev->vidq.min_buffers_needed = 2; 985 dev->vidq.dev = &dev->pci->dev; 986 ret = vb2_queue_init(&dev->vidq); 987 if (ret) 988 return ret; 989 dev->vdev = tw68_video_template; 990 dev->vdev.v4l2_dev = &dev->v4l2_dev; 991 dev->vdev.lock = &dev->lock; 992 dev->vdev.queue = &dev->vidq; 993 video_set_drvdata(&dev->vdev, dev); 994 return video_register_device(&dev->vdev, VFL_TYPE_GRABBER, video_nr); 995 } 996 997 /* 998 * tw68_irq_video_done 999 */ 1000 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status) 1001 { 1002 __u32 reg; 1003 1004 /* reset interrupts handled by this routine */ 1005 tw_writel(TW68_INTSTAT, status); 1006 /* 1007 * Check most likely first 1008 * 1009 * DMAPI shows we have reached the end of the risc code 1010 * for the current buffer. 1011 */ 1012 if (status & TW68_DMAPI) { 1013 struct tw68_buf *buf; 1014 1015 spin_lock(&dev->slock); 1016 buf = list_entry(dev->active.next, struct tw68_buf, list); 1017 list_del(&buf->list); 1018 spin_unlock(&dev->slock); 1019 buf->vb.vb2_buf.timestamp = ktime_get_ns(); 1020 buf->vb.field = dev->field; 1021 buf->vb.sequence = dev->seqnr++; 1022 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); 1023 status &= ~(TW68_DMAPI); 1024 if (0 == status) 1025 return; 1026 } 1027 if (status & (TW68_VLOCK | TW68_HLOCK)) 1028 dev_dbg(&dev->pci->dev, "Lost sync\n"); 1029 if (status & TW68_PABORT) 1030 dev_err(&dev->pci->dev, "PABORT interrupt\n"); 1031 if (status & TW68_DMAPERR) 1032 dev_err(&dev->pci->dev, "DMAPERR interrupt\n"); 1033 /* 1034 * On TW6800, FDMIS is apparently generated if video input is switched 1035 * during operation. Therefore, it is not enabled for that chip. 1036 */ 1037 if (status & TW68_FDMIS) 1038 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n"); 1039 if (status & TW68_FFOF) { 1040 /* probably a logic error */ 1041 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN; 1042 tw_clearl(TW68_DMAC, TW68_FIFO_EN); 1043 dev_dbg(&dev->pci->dev, "FFOF interrupt\n"); 1044 tw_setl(TW68_DMAC, reg); 1045 } 1046 if (status & TW68_FFERR) 1047 dev_dbg(&dev->pci->dev, "FFERR interrupt\n"); 1048 } 1049