1 /* 2 * tw68 functions to handle video data 3 * 4 * Much of this code is derived from the cx88 and sa7134 drivers, which 5 * were in turn derived from the bt87x driver. The original work was by 6 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab, 7 * Hans Verkuil, Andy Walls and many others. Their work is gratefully 8 * acknowledged. Full credit goes to them - any problems within this code 9 * are mine. 10 * 11 * Copyright (C) 2009 William M. Brack 12 * 13 * Refactored and updated to the latest v4l core frameworks: 14 * 15 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl> 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/module.h> 29 #include <media/v4l2-common.h> 30 #include <media/v4l2-event.h> 31 #include <media/videobuf2-dma-sg.h> 32 33 #include "tw68.h" 34 #include "tw68-reg.h" 35 36 /* ------------------------------------------------------------------ */ 37 /* data structs for video */ 38 /* 39 * FIXME - 40 * Note that the saa7134 has formats, e.g. YUV420, which are classified 41 * as "planar". These affect overlay mode, and are flagged with a field 42 * ".planar" in the format. Do we need to implement this in this driver? 43 */ 44 static const struct tw68_format formats[] = { 45 { 46 .name = "15 bpp RGB, le", 47 .fourcc = V4L2_PIX_FMT_RGB555, 48 .depth = 16, 49 .twformat = ColorFormatRGB15, 50 }, { 51 .name = "15 bpp RGB, be", 52 .fourcc = V4L2_PIX_FMT_RGB555X, 53 .depth = 16, 54 .twformat = ColorFormatRGB15 | ColorFormatBSWAP, 55 }, { 56 .name = "16 bpp RGB, le", 57 .fourcc = V4L2_PIX_FMT_RGB565, 58 .depth = 16, 59 .twformat = ColorFormatRGB16, 60 }, { 61 .name = "16 bpp RGB, be", 62 .fourcc = V4L2_PIX_FMT_RGB565X, 63 .depth = 16, 64 .twformat = ColorFormatRGB16 | ColorFormatBSWAP, 65 }, { 66 .name = "24 bpp RGB, le", 67 .fourcc = V4L2_PIX_FMT_BGR24, 68 .depth = 24, 69 .twformat = ColorFormatRGB24, 70 }, { 71 .name = "24 bpp RGB, be", 72 .fourcc = V4L2_PIX_FMT_RGB24, 73 .depth = 24, 74 .twformat = ColorFormatRGB24 | ColorFormatBSWAP, 75 }, { 76 .name = "32 bpp RGB, le", 77 .fourcc = V4L2_PIX_FMT_BGR32, 78 .depth = 32, 79 .twformat = ColorFormatRGB32, 80 }, { 81 .name = "32 bpp RGB, be", 82 .fourcc = V4L2_PIX_FMT_RGB32, 83 .depth = 32, 84 .twformat = ColorFormatRGB32 | ColorFormatBSWAP | 85 ColorFormatWSWAP, 86 }, { 87 .name = "4:2:2 packed, YUYV", 88 .fourcc = V4L2_PIX_FMT_YUYV, 89 .depth = 16, 90 .twformat = ColorFormatYUY2, 91 }, { 92 .name = "4:2:2 packed, UYVY", 93 .fourcc = V4L2_PIX_FMT_UYVY, 94 .depth = 16, 95 .twformat = ColorFormatYUY2 | ColorFormatBSWAP, 96 } 97 }; 98 #define FORMATS ARRAY_SIZE(formats) 99 100 #define NORM_625_50 \ 101 .h_delay = 3, \ 102 .h_delay0 = 133, \ 103 .h_start = 0, \ 104 .h_stop = 719, \ 105 .v_delay = 24, \ 106 .vbi_v_start_0 = 7, \ 107 .vbi_v_stop_0 = 22, \ 108 .video_v_start = 24, \ 109 .video_v_stop = 311, \ 110 .vbi_v_start_1 = 319 111 112 #define NORM_525_60 \ 113 .h_delay = 8, \ 114 .h_delay0 = 138, \ 115 .h_start = 0, \ 116 .h_stop = 719, \ 117 .v_delay = 22, \ 118 .vbi_v_start_0 = 10, \ 119 .vbi_v_stop_0 = 21, \ 120 .video_v_start = 22, \ 121 .video_v_stop = 262, \ 122 .vbi_v_start_1 = 273 123 124 /* 125 * The following table is searched by tw68_s_std, first for a specific 126 * match, then for an entry which contains the desired id. The table 127 * entries should therefore be ordered in ascending order of specificity. 128 */ 129 static const struct tw68_tvnorm tvnorms[] = { 130 { 131 .name = "PAL", /* autodetect */ 132 .id = V4L2_STD_PAL, 133 NORM_625_50, 134 135 .sync_control = 0x18, 136 .luma_control = 0x40, 137 .chroma_ctrl1 = 0x81, 138 .chroma_gain = 0x2a, 139 .chroma_ctrl2 = 0x06, 140 .vgate_misc = 0x1c, 141 .format = VideoFormatPALBDGHI, 142 }, { 143 .name = "NTSC", 144 .id = V4L2_STD_NTSC, 145 NORM_525_60, 146 147 .sync_control = 0x59, 148 .luma_control = 0x40, 149 .chroma_ctrl1 = 0x89, 150 .chroma_gain = 0x2a, 151 .chroma_ctrl2 = 0x0e, 152 .vgate_misc = 0x18, 153 .format = VideoFormatNTSC, 154 }, { 155 .name = "SECAM", 156 .id = V4L2_STD_SECAM, 157 NORM_625_50, 158 159 .sync_control = 0x18, 160 .luma_control = 0x1b, 161 .chroma_ctrl1 = 0xd1, 162 .chroma_gain = 0x80, 163 .chroma_ctrl2 = 0x00, 164 .vgate_misc = 0x1c, 165 .format = VideoFormatSECAM, 166 }, { 167 .name = "PAL-M", 168 .id = V4L2_STD_PAL_M, 169 NORM_525_60, 170 171 .sync_control = 0x59, 172 .luma_control = 0x40, 173 .chroma_ctrl1 = 0xb9, 174 .chroma_gain = 0x2a, 175 .chroma_ctrl2 = 0x0e, 176 .vgate_misc = 0x18, 177 .format = VideoFormatPALM, 178 }, { 179 .name = "PAL-Nc", 180 .id = V4L2_STD_PAL_Nc, 181 NORM_625_50, 182 183 .sync_control = 0x18, 184 .luma_control = 0x40, 185 .chroma_ctrl1 = 0xa1, 186 .chroma_gain = 0x2a, 187 .chroma_ctrl2 = 0x06, 188 .vgate_misc = 0x1c, 189 .format = VideoFormatPALNC, 190 }, { 191 .name = "PAL-60", 192 .id = V4L2_STD_PAL_60, 193 .h_delay = 186, 194 .h_start = 0, 195 .h_stop = 719, 196 .v_delay = 26, 197 .video_v_start = 23, 198 .video_v_stop = 262, 199 .vbi_v_start_0 = 10, 200 .vbi_v_stop_0 = 21, 201 .vbi_v_start_1 = 273, 202 203 .sync_control = 0x18, 204 .luma_control = 0x40, 205 .chroma_ctrl1 = 0x81, 206 .chroma_gain = 0x2a, 207 .chroma_ctrl2 = 0x06, 208 .vgate_misc = 0x1c, 209 .format = VideoFormatPAL60, 210 } 211 }; 212 #define TVNORMS ARRAY_SIZE(tvnorms) 213 214 static const struct tw68_format *format_by_fourcc(unsigned int fourcc) 215 { 216 unsigned int i; 217 218 for (i = 0; i < FORMATS; i++) 219 if (formats[i].fourcc == fourcc) 220 return formats+i; 221 return NULL; 222 } 223 224 225 /* ------------------------------------------------------------------ */ 226 /* 227 * Note that the cropping rectangles are described in terms of a single 228 * frame, i.e. line positions are only 1/2 the interlaced equivalent 229 */ 230 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm) 231 { 232 if (norm != dev->tvnorm) { 233 dev->width = 720; 234 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576; 235 dev->tvnorm = norm; 236 tw68_set_tvnorm_hw(dev); 237 } 238 } 239 240 /* 241 * tw68_set_scale 242 * 243 * Scaling and Cropping for video decoding 244 * 245 * We are working with 3 values for horizontal and vertical - scale, 246 * delay and active. 247 * 248 * HACTIVE represent the actual number of pixels in the "usable" image, 249 * before scaling. HDELAY represents the number of pixels skipped 250 * between the start of the horizontal sync and the start of the image. 251 * HSCALE is calculated using the formula 252 * HSCALE = (HACTIVE / (#pixels desired)) * 256 253 * 254 * The vertical registers are similar, except based upon the total number 255 * of lines in the image, and the first line of the image (i.e. ignoring 256 * vertical sync and VBI). 257 * 258 * Note that the number of bytes reaching the FIFO (and hence needing 259 * to be processed by the DMAP program) is completely dependent upon 260 * these values, especially HSCALE. 261 * 262 * Parameters: 263 * @dev pointer to the device structure, needed for 264 * getting current norm (as well as debug print) 265 * @width actual image width (from user buffer) 266 * @height actual image height 267 * @field indicates Top, Bottom or Interlaced 268 */ 269 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width, 270 unsigned int height, enum v4l2_field field) 271 { 272 const struct tw68_tvnorm *norm = dev->tvnorm; 273 /* set individually for debugging clarity */ 274 int hactive, hdelay, hscale; 275 int vactive, vdelay, vscale; 276 int comb; 277 278 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */ 279 height /= 2; /* we must set for 1-frame */ 280 281 pr_debug("%s: width=%d, height=%d, both=%d\n" 282 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, " 283 "v_delay=%d, v_start=%d, v_stop=%d\n" , __func__, 284 width, height, V4L2_FIELD_HAS_BOTH(field), 285 norm->h_delay, norm->h_start, norm->h_stop, 286 norm->v_delay, norm->video_v_start, 287 norm->video_v_stop); 288 289 switch (dev->vdecoder) { 290 case TW6800: 291 hdelay = norm->h_delay0; 292 break; 293 default: 294 hdelay = norm->h_delay; 295 break; 296 } 297 298 hdelay += norm->h_start; 299 hactive = norm->h_stop - norm->h_start + 1; 300 301 hscale = (hactive * 256) / (width); 302 303 vdelay = norm->v_delay; 304 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start; 305 vscale = (vactive * 256) / height; 306 307 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__, 308 width, height, 309 V4L2_FIELD_HAS_TOP(field) ? "T" : "", 310 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", 311 v4l2_norm_to_name(dev->tvnorm->id)); 312 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; " 313 "vactive=%d, vdelay=%d, vscale=%d\n", __func__, 314 hactive, hdelay, hscale, vactive, vdelay, vscale); 315 316 comb = ((vdelay & 0x300) >> 2) | 317 ((vactive & 0x300) >> 4) | 318 ((hdelay & 0x300) >> 6) | 319 ((hactive & 0x300) >> 8); 320 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, " 321 "VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n", 322 __func__, comb, vdelay, vactive, hdelay, hactive); 323 tw_writeb(TW68_CROP_HI, comb); 324 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff); 325 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff); 326 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff); 327 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff); 328 329 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8); 330 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, " 331 "HSCALE_LO=%02x\n", __func__, comb, vscale, hscale); 332 tw_writeb(TW68_SCALE_HI, comb); 333 tw_writeb(TW68_VSCALE_LO, vscale); 334 tw_writeb(TW68_HSCALE_LO, hscale); 335 336 return 0; 337 } 338 339 /* ------------------------------------------------------------------ */ 340 341 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf) 342 { 343 /* Set cropping and scaling */ 344 tw68_set_scale(dev, dev->width, dev->height, dev->field); 345 /* 346 * Set start address for RISC program. Note that if the DMAP 347 * processor is currently running, it must be stopped before 348 * a new address can be set. 349 */ 350 tw_clearl(TW68_DMAC, TW68_DMAP_EN); 351 tw_writel(TW68_DMAP_SA, buf->dma); 352 /* Clear any pending interrupts */ 353 tw_writel(TW68_INTSTAT, dev->board_virqmask); 354 /* Enable the risc engine and the fifo */ 355 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat | 356 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN); 357 dev->pci_irqmask |= dev->board_virqmask; 358 tw_setl(TW68_INTMASK, dev->pci_irqmask); 359 return 0; 360 } 361 362 /* ------------------------------------------------------------------ */ 363 364 /* calc max # of buffers from size (must not exceed the 4MB virtual 365 * address space per DMA channel) */ 366 static int tw68_buffer_count(unsigned int size, unsigned int count) 367 { 368 unsigned int maxcount; 369 370 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE); 371 if (count > maxcount) 372 count = maxcount; 373 return count; 374 } 375 376 /* ------------------------------------------------------------- */ 377 /* vb2 queue operations */ 378 379 static int tw68_queue_setup(struct vb2_queue *q, const struct v4l2_format *fmt, 380 unsigned int *num_buffers, unsigned int *num_planes, 381 unsigned int sizes[], void *alloc_ctxs[]) 382 { 383 struct tw68_dev *dev = vb2_get_drv_priv(q); 384 unsigned tot_bufs = q->num_buffers + *num_buffers; 385 386 sizes[0] = (dev->fmt->depth * dev->width * dev->height) >> 3; 387 /* 388 * We allow create_bufs, but only if the sizeimage is the same as the 389 * current sizeimage. The tw68_buffer_count calculation becomes quite 390 * difficult otherwise. 391 */ 392 if (fmt && fmt->fmt.pix.sizeimage < sizes[0]) 393 return -EINVAL; 394 *num_planes = 1; 395 if (tot_bufs < 2) 396 tot_bufs = 2; 397 tot_bufs = tw68_buffer_count(sizes[0], tot_bufs); 398 *num_buffers = tot_bufs - q->num_buffers; 399 400 return 0; 401 } 402 403 /* 404 * The risc program for each buffers works as follows: it starts with a simple 405 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the 406 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping 407 * the initial JUMP). 408 * 409 * This is the program of the first buffer to be queued if the active list is 410 * empty and it just keeps DMAing this buffer without generating any interrupts. 411 * 412 * If a new buffer is added then the initial JUMP in the program generates an 413 * interrupt as well which signals that the previous buffer has been DMAed 414 * successfully and that it can be returned to userspace. 415 * 416 * It also sets the final jump of the previous buffer to the start of the new 417 * buffer, thus chaining the new buffer into the DMA chain. This is a single 418 * atomic u32 write, so there is no race condition. 419 * 420 * The end-result of all this that you only get an interrupt when a buffer 421 * is ready, so the control flow is very easy. 422 */ 423 static void tw68_buf_queue(struct vb2_buffer *vb) 424 { 425 struct vb2_queue *vq = vb->vb2_queue; 426 struct tw68_dev *dev = vb2_get_drv_priv(vq); 427 struct tw68_buf *buf = container_of(vb, struct tw68_buf, vb); 428 struct tw68_buf *prev; 429 unsigned long flags; 430 431 spin_lock_irqsave(&dev->slock, flags); 432 433 /* append a 'JUMP to start of buffer' to the buffer risc program */ 434 buf->jmp[0] = cpu_to_le32(RISC_JUMP); 435 buf->jmp[1] = cpu_to_le32(buf->dma + 8); 436 437 if (!list_empty(&dev->active)) { 438 prev = list_entry(dev->active.prev, struct tw68_buf, list); 439 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT); 440 prev->jmp[1] = cpu_to_le32(buf->dma); 441 } 442 list_add_tail(&buf->list, &dev->active); 443 spin_unlock_irqrestore(&dev->slock, flags); 444 } 445 446 /* 447 * buffer_prepare 448 * 449 * Set the ancilliary information into the buffer structure. This 450 * includes generating the necessary risc program if it hasn't already 451 * been done for the current buffer format. 452 * The structure fh contains the details of the format requested by the 453 * user - type, width, height and #fields. This is compared with the 454 * last format set for the current buffer. If they differ, the risc 455 * code (which controls the filling of the buffer) is (re-)generated. 456 */ 457 static int tw68_buf_prepare(struct vb2_buffer *vb) 458 { 459 struct vb2_queue *vq = vb->vb2_queue; 460 struct tw68_dev *dev = vb2_get_drv_priv(vq); 461 struct tw68_buf *buf = container_of(vb, struct tw68_buf, vb); 462 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0); 463 unsigned size, bpl; 464 int rc; 465 466 size = (dev->width * dev->height * dev->fmt->depth) >> 3; 467 if (vb2_plane_size(vb, 0) < size) 468 return -EINVAL; 469 vb2_set_plane_payload(vb, 0, size); 470 471 rc = dma_map_sg(&dev->pci->dev, dma->sgl, dma->nents, DMA_FROM_DEVICE); 472 if (!rc) 473 return -EIO; 474 475 bpl = (dev->width * dev->fmt->depth) >> 3; 476 switch (dev->field) { 477 case V4L2_FIELD_TOP: 478 tw68_risc_buffer(dev->pci, buf, dma->sgl, 479 0, UNSET, bpl, 0, dev->height); 480 break; 481 case V4L2_FIELD_BOTTOM: 482 tw68_risc_buffer(dev->pci, buf, dma->sgl, 483 UNSET, 0, bpl, 0, dev->height); 484 break; 485 case V4L2_FIELD_SEQ_TB: 486 tw68_risc_buffer(dev->pci, buf, dma->sgl, 487 0, bpl * (dev->height >> 1), 488 bpl, 0, dev->height >> 1); 489 break; 490 case V4L2_FIELD_SEQ_BT: 491 tw68_risc_buffer(dev->pci, buf, dma->sgl, 492 bpl * (dev->height >> 1), 0, 493 bpl, 0, dev->height >> 1); 494 break; 495 case V4L2_FIELD_INTERLACED: 496 default: 497 tw68_risc_buffer(dev->pci, buf, dma->sgl, 498 0, bpl, bpl, bpl, dev->height >> 1); 499 break; 500 } 501 return 0; 502 } 503 504 static void tw68_buf_finish(struct vb2_buffer *vb) 505 { 506 struct vb2_queue *vq = vb->vb2_queue; 507 struct tw68_dev *dev = vb2_get_drv_priv(vq); 508 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0); 509 struct tw68_buf *buf = container_of(vb, struct tw68_buf, vb); 510 511 dma_unmap_sg(&dev->pci->dev, dma->sgl, dma->nents, DMA_FROM_DEVICE); 512 513 pci_free_consistent(dev->pci, buf->size, buf->cpu, buf->dma); 514 } 515 516 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count) 517 { 518 struct tw68_dev *dev = vb2_get_drv_priv(q); 519 struct tw68_buf *buf = 520 container_of(dev->active.next, struct tw68_buf, list); 521 522 dev->seqnr = 0; 523 tw68_video_start_dma(dev, buf); 524 return 0; 525 } 526 527 static void tw68_stop_streaming(struct vb2_queue *q) 528 { 529 struct tw68_dev *dev = vb2_get_drv_priv(q); 530 531 /* Stop risc & fifo */ 532 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN); 533 while (!list_empty(&dev->active)) { 534 struct tw68_buf *buf = 535 container_of(dev->active.next, struct tw68_buf, list); 536 537 list_del(&buf->list); 538 vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR); 539 } 540 } 541 542 static struct vb2_ops tw68_video_qops = { 543 .queue_setup = tw68_queue_setup, 544 .buf_queue = tw68_buf_queue, 545 .buf_prepare = tw68_buf_prepare, 546 .buf_finish = tw68_buf_finish, 547 .start_streaming = tw68_start_streaming, 548 .stop_streaming = tw68_stop_streaming, 549 .wait_prepare = vb2_ops_wait_prepare, 550 .wait_finish = vb2_ops_wait_finish, 551 }; 552 553 /* ------------------------------------------------------------------ */ 554 555 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl) 556 { 557 struct tw68_dev *dev = 558 container_of(ctrl->handler, struct tw68_dev, hdl); 559 560 switch (ctrl->id) { 561 case V4L2_CID_BRIGHTNESS: 562 tw_writeb(TW68_BRIGHT, ctrl->val); 563 break; 564 case V4L2_CID_HUE: 565 tw_writeb(TW68_HUE, ctrl->val); 566 break; 567 case V4L2_CID_CONTRAST: 568 tw_writeb(TW68_CONTRAST, ctrl->val); 569 break; 570 case V4L2_CID_SATURATION: 571 tw_writeb(TW68_SAT_U, ctrl->val); 572 tw_writeb(TW68_SAT_V, ctrl->val); 573 break; 574 case V4L2_CID_COLOR_KILLER: 575 if (ctrl->val) 576 tw_andorb(TW68_MISC2, 0xe0, 0xe0); 577 else 578 tw_andorb(TW68_MISC2, 0xe0, 0x00); 579 break; 580 case V4L2_CID_CHROMA_AGC: 581 if (ctrl->val) 582 tw_andorb(TW68_LOOP, 0x30, 0x20); 583 else 584 tw_andorb(TW68_LOOP, 0x30, 0x00); 585 break; 586 } 587 return 0; 588 } 589 590 /* ------------------------------------------------------------------ */ 591 592 /* 593 * Note that this routine returns what is stored in the fh structure, and 594 * does not interrogate any of the device registers. 595 */ 596 static int tw68_g_fmt_vid_cap(struct file *file, void *priv, 597 struct v4l2_format *f) 598 { 599 struct tw68_dev *dev = video_drvdata(file); 600 601 f->fmt.pix.width = dev->width; 602 f->fmt.pix.height = dev->height; 603 f->fmt.pix.field = dev->field; 604 f->fmt.pix.pixelformat = dev->fmt->fourcc; 605 f->fmt.pix.bytesperline = 606 (f->fmt.pix.width * (dev->fmt->depth)) >> 3; 607 f->fmt.pix.sizeimage = 608 f->fmt.pix.height * f->fmt.pix.bytesperline; 609 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 610 f->fmt.pix.priv = 0; 611 return 0; 612 } 613 614 static int tw68_try_fmt_vid_cap(struct file *file, void *priv, 615 struct v4l2_format *f) 616 { 617 struct tw68_dev *dev = video_drvdata(file); 618 const struct tw68_format *fmt; 619 enum v4l2_field field; 620 unsigned int maxh; 621 622 fmt = format_by_fourcc(f->fmt.pix.pixelformat); 623 if (NULL == fmt) 624 return -EINVAL; 625 626 field = f->fmt.pix.field; 627 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576; 628 629 switch (field) { 630 case V4L2_FIELD_TOP: 631 case V4L2_FIELD_BOTTOM: 632 break; 633 case V4L2_FIELD_INTERLACED: 634 case V4L2_FIELD_SEQ_BT: 635 case V4L2_FIELD_SEQ_TB: 636 maxh = maxh * 2; 637 break; 638 default: 639 field = (f->fmt.pix.height > maxh / 2) 640 ? V4L2_FIELD_INTERLACED 641 : V4L2_FIELD_BOTTOM; 642 break; 643 } 644 645 f->fmt.pix.field = field; 646 if (f->fmt.pix.width < 48) 647 f->fmt.pix.width = 48; 648 if (f->fmt.pix.height < 32) 649 f->fmt.pix.height = 32; 650 if (f->fmt.pix.width > 720) 651 f->fmt.pix.width = 720; 652 if (f->fmt.pix.height > maxh) 653 f->fmt.pix.height = maxh; 654 f->fmt.pix.width &= ~0x03; 655 f->fmt.pix.bytesperline = 656 (f->fmt.pix.width * (fmt->depth)) >> 3; 657 f->fmt.pix.sizeimage = 658 f->fmt.pix.height * f->fmt.pix.bytesperline; 659 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 660 return 0; 661 } 662 663 /* 664 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure, 665 * and it will be used for all future new buffers. However, there could be 666 * some number of buffers on the "active" chain which will be filled before 667 * the change takes place. 668 */ 669 static int tw68_s_fmt_vid_cap(struct file *file, void *priv, 670 struct v4l2_format *f) 671 { 672 struct tw68_dev *dev = video_drvdata(file); 673 int err; 674 675 err = tw68_try_fmt_vid_cap(file, priv, f); 676 if (0 != err) 677 return err; 678 679 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat); 680 dev->width = f->fmt.pix.width; 681 dev->height = f->fmt.pix.height; 682 dev->field = f->fmt.pix.field; 683 return 0; 684 } 685 686 static int tw68_enum_input(struct file *file, void *priv, 687 struct v4l2_input *i) 688 { 689 struct tw68_dev *dev = video_drvdata(file); 690 unsigned int n; 691 692 n = i->index; 693 if (n >= TW68_INPUT_MAX) 694 return -EINVAL; 695 i->index = n; 696 i->type = V4L2_INPUT_TYPE_CAMERA; 697 snprintf(i->name, sizeof(i->name), "Composite %d", n); 698 699 /* If the query is for the current input, get live data */ 700 if (n == dev->input) { 701 int v1 = tw_readb(TW68_STATUS1); 702 int v2 = tw_readb(TW68_MVSN); 703 704 if (0 != (v1 & (1 << 7))) 705 i->status |= V4L2_IN_ST_NO_SYNC; 706 if (0 != (v1 & (1 << 6))) 707 i->status |= V4L2_IN_ST_NO_H_LOCK; 708 if (0 != (v1 & (1 << 2))) 709 i->status |= V4L2_IN_ST_NO_SIGNAL; 710 if (0 != (v1 & 1 << 1)) 711 i->status |= V4L2_IN_ST_NO_COLOR; 712 if (0 != (v2 & (1 << 2))) 713 i->status |= V4L2_IN_ST_MACROVISION; 714 } 715 i->std = video_devdata(file)->tvnorms; 716 return 0; 717 } 718 719 static int tw68_g_input(struct file *file, void *priv, unsigned int *i) 720 { 721 struct tw68_dev *dev = video_drvdata(file); 722 723 *i = dev->input; 724 return 0; 725 } 726 727 static int tw68_s_input(struct file *file, void *priv, unsigned int i) 728 { 729 struct tw68_dev *dev = video_drvdata(file); 730 731 if (i >= TW68_INPUT_MAX) 732 return -EINVAL; 733 dev->input = i; 734 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2); 735 return 0; 736 } 737 738 static int tw68_querycap(struct file *file, void *priv, 739 struct v4l2_capability *cap) 740 { 741 struct tw68_dev *dev = video_drvdata(file); 742 743 strcpy(cap->driver, "tw68"); 744 strlcpy(cap->card, "Techwell Capture Card", 745 sizeof(cap->card)); 746 sprintf(cap->bus_info, "PCI:%s", pci_name(dev->pci)); 747 cap->device_caps = 748 V4L2_CAP_VIDEO_CAPTURE | 749 V4L2_CAP_READWRITE | 750 V4L2_CAP_STREAMING; 751 752 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; 753 return 0; 754 } 755 756 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id) 757 { 758 struct tw68_dev *dev = video_drvdata(file); 759 unsigned int i; 760 761 if (vb2_is_busy(&dev->vidq)) 762 return -EBUSY; 763 764 /* Look for match on complete norm id (may have mult bits) */ 765 for (i = 0; i < TVNORMS; i++) { 766 if (id == tvnorms[i].id) 767 break; 768 } 769 770 /* If no exact match, look for norm which contains this one */ 771 if (i == TVNORMS) { 772 for (i = 0; i < TVNORMS; i++) 773 if (id & tvnorms[i].id) 774 break; 775 } 776 /* If still not matched, give up */ 777 if (i == TVNORMS) 778 return -EINVAL; 779 780 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */ 781 return 0; 782 } 783 784 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id) 785 { 786 struct tw68_dev *dev = video_drvdata(file); 787 788 *id = dev->tvnorm->id; 789 return 0; 790 } 791 792 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv, 793 struct v4l2_fmtdesc *f) 794 { 795 if (f->index >= FORMATS) 796 return -EINVAL; 797 798 strlcpy(f->description, formats[f->index].name, 799 sizeof(f->description)); 800 801 f->pixelformat = formats[f->index].fourcc; 802 803 return 0; 804 } 805 806 /* 807 * Used strictly for internal development and debugging, this routine 808 * prints out the current register contents for the tw68xx device. 809 */ 810 static void tw68_dump_regs(struct tw68_dev *dev) 811 { 812 unsigned char line[80]; 813 int i, j, k; 814 unsigned char *cptr; 815 816 pr_info("Full dump of TW68 registers:\n"); 817 /* First we do the PCI regs, 8 4-byte regs per line */ 818 for (i = 0; i < 0x100; i += 32) { 819 cptr = line; 820 cptr += sprintf(cptr, "%03x ", i); 821 /* j steps through the next 4 words */ 822 for (j = i; j < i + 16; j += 4) 823 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 824 *cptr++ = ' '; 825 for (; j < i + 32; j += 4) 826 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 827 *cptr++ = '\n'; 828 *cptr = 0; 829 pr_info("%s", line); 830 } 831 /* Next the control regs, which are single-byte, address mod 4 */ 832 while (i < 0x400) { 833 cptr = line; 834 cptr += sprintf(cptr, "%03x ", i); 835 /* Print out 4 groups of 4 bytes */ 836 for (j = 0; j < 4; j++) { 837 for (k = 0; k < 4; k++) { 838 cptr += sprintf(cptr, "%02x ", 839 tw_readb(i)); 840 i += 4; 841 } 842 *cptr++ = ' '; 843 } 844 *cptr++ = '\n'; 845 *cptr = 0; 846 pr_info("%s", line); 847 } 848 } 849 850 static int vidioc_log_status(struct file *file, void *priv) 851 { 852 struct tw68_dev *dev = video_drvdata(file); 853 854 tw68_dump_regs(dev); 855 return v4l2_ctrl_log_status(file, priv); 856 } 857 858 #ifdef CONFIG_VIDEO_ADV_DEBUG 859 static int vidioc_g_register(struct file *file, void *priv, 860 struct v4l2_dbg_register *reg) 861 { 862 struct tw68_dev *dev = video_drvdata(file); 863 864 if (reg->size == 1) 865 reg->val = tw_readb(reg->reg); 866 else 867 reg->val = tw_readl(reg->reg); 868 return 0; 869 } 870 871 static int vidioc_s_register(struct file *file, void *priv, 872 const struct v4l2_dbg_register *reg) 873 { 874 struct tw68_dev *dev = video_drvdata(file); 875 876 if (reg->size == 1) 877 tw_writeb(reg->reg, reg->val); 878 else 879 tw_writel(reg->reg & 0xffff, reg->val); 880 return 0; 881 } 882 #endif 883 884 static const struct v4l2_ctrl_ops tw68_ctrl_ops = { 885 .s_ctrl = tw68_s_ctrl, 886 }; 887 888 static const struct v4l2_file_operations video_fops = { 889 .owner = THIS_MODULE, 890 .open = v4l2_fh_open, 891 .release = vb2_fop_release, 892 .read = vb2_fop_read, 893 .poll = vb2_fop_poll, 894 .mmap = vb2_fop_mmap, 895 .unlocked_ioctl = video_ioctl2, 896 }; 897 898 static const struct v4l2_ioctl_ops video_ioctl_ops = { 899 .vidioc_querycap = tw68_querycap, 900 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap, 901 .vidioc_reqbufs = vb2_ioctl_reqbufs, 902 .vidioc_create_bufs = vb2_ioctl_create_bufs, 903 .vidioc_querybuf = vb2_ioctl_querybuf, 904 .vidioc_qbuf = vb2_ioctl_qbuf, 905 .vidioc_dqbuf = vb2_ioctl_dqbuf, 906 .vidioc_s_std = tw68_s_std, 907 .vidioc_g_std = tw68_g_std, 908 .vidioc_enum_input = tw68_enum_input, 909 .vidioc_g_input = tw68_g_input, 910 .vidioc_s_input = tw68_s_input, 911 .vidioc_streamon = vb2_ioctl_streamon, 912 .vidioc_streamoff = vb2_ioctl_streamoff, 913 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap, 914 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap, 915 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap, 916 .vidioc_log_status = vidioc_log_status, 917 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, 918 .vidioc_unsubscribe_event = v4l2_event_unsubscribe, 919 #ifdef CONFIG_VIDEO_ADV_DEBUG 920 .vidioc_g_register = vidioc_g_register, 921 .vidioc_s_register = vidioc_s_register, 922 #endif 923 }; 924 925 static struct video_device tw68_video_template = { 926 .name = "tw68_video", 927 .fops = &video_fops, 928 .ioctl_ops = &video_ioctl_ops, 929 .release = video_device_release_empty, 930 .tvnorms = TW68_NORMS, 931 }; 932 933 /* ------------------------------------------------------------------ */ 934 /* exported stuff */ 935 void tw68_set_tvnorm_hw(struct tw68_dev *dev) 936 { 937 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format); 938 } 939 940 int tw68_video_init1(struct tw68_dev *dev) 941 { 942 struct v4l2_ctrl_handler *hdl = &dev->hdl; 943 944 v4l2_ctrl_handler_init(hdl, 6); 945 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 946 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20); 947 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 948 V4L2_CID_CONTRAST, 0, 255, 1, 100); 949 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 950 V4L2_CID_SATURATION, 0, 255, 1, 128); 951 /* NTSC only */ 952 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 953 V4L2_CID_HUE, -128, 127, 1, 0); 954 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 955 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); 956 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 957 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1); 958 if (hdl->error) { 959 v4l2_ctrl_handler_free(hdl); 960 return hdl->error; 961 } 962 dev->v4l2_dev.ctrl_handler = hdl; 963 v4l2_ctrl_handler_setup(hdl); 964 return 0; 965 } 966 967 int tw68_video_init2(struct tw68_dev *dev, int video_nr) 968 { 969 int ret; 970 971 set_tvnorm(dev, &tvnorms[0]); 972 973 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24); 974 dev->width = 720; 975 dev->height = 576; 976 dev->field = V4L2_FIELD_INTERLACED; 977 978 INIT_LIST_HEAD(&dev->active); 979 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; 980 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; 981 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF; 982 dev->vidq.ops = &tw68_video_qops; 983 dev->vidq.mem_ops = &vb2_dma_sg_memops; 984 dev->vidq.drv_priv = dev; 985 dev->vidq.gfp_flags = __GFP_DMA32; 986 dev->vidq.buf_struct_size = sizeof(struct tw68_buf); 987 dev->vidq.lock = &dev->lock; 988 dev->vidq.min_buffers_needed = 2; 989 ret = vb2_queue_init(&dev->vidq); 990 if (ret) 991 return ret; 992 dev->vdev = tw68_video_template; 993 dev->vdev.v4l2_dev = &dev->v4l2_dev; 994 dev->vdev.lock = &dev->lock; 995 dev->vdev.queue = &dev->vidq; 996 video_set_drvdata(&dev->vdev, dev); 997 return video_register_device(&dev->vdev, VFL_TYPE_GRABBER, video_nr); 998 } 999 1000 /* 1001 * tw68_irq_video_done 1002 */ 1003 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status) 1004 { 1005 __u32 reg; 1006 1007 /* reset interrupts handled by this routine */ 1008 tw_writel(TW68_INTSTAT, status); 1009 /* 1010 * Check most likely first 1011 * 1012 * DMAPI shows we have reached the end of the risc code 1013 * for the current buffer. 1014 */ 1015 if (status & TW68_DMAPI) { 1016 struct tw68_buf *buf; 1017 1018 spin_lock(&dev->slock); 1019 buf = list_entry(dev->active.next, struct tw68_buf, list); 1020 list_del(&buf->list); 1021 spin_unlock(&dev->slock); 1022 v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp); 1023 buf->vb.v4l2_buf.field = dev->field; 1024 buf->vb.v4l2_buf.sequence = dev->seqnr++; 1025 vb2_buffer_done(&buf->vb, VB2_BUF_STATE_DONE); 1026 status &= ~(TW68_DMAPI); 1027 if (0 == status) 1028 return; 1029 } 1030 if (status & (TW68_VLOCK | TW68_HLOCK)) 1031 dev_dbg(&dev->pci->dev, "Lost sync\n"); 1032 if (status & TW68_PABORT) 1033 dev_err(&dev->pci->dev, "PABORT interrupt\n"); 1034 if (status & TW68_DMAPERR) 1035 dev_err(&dev->pci->dev, "DMAPERR interrupt\n"); 1036 /* 1037 * On TW6800, FDMIS is apparently generated if video input is switched 1038 * during operation. Therefore, it is not enabled for that chip. 1039 */ 1040 if (status & TW68_FDMIS) 1041 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n"); 1042 if (status & TW68_FFOF) { 1043 /* probably a logic error */ 1044 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN; 1045 tw_clearl(TW68_DMAC, TW68_FIFO_EN); 1046 dev_dbg(&dev->pci->dev, "FFOF interrupt\n"); 1047 tw_setl(TW68_DMAC, reg); 1048 } 1049 if (status & TW68_FFERR) 1050 dev_dbg(&dev->pci->dev, "FFERR interrupt\n"); 1051 } 1052