1 /* 2 * tw68 functions to handle video data 3 * 4 * Much of this code is derived from the cx88 and sa7134 drivers, which 5 * were in turn derived from the bt87x driver. The original work was by 6 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab, 7 * Hans Verkuil, Andy Walls and many others. Their work is gratefully 8 * acknowledged. Full credit goes to them - any problems within this code 9 * are mine. 10 * 11 * Copyright (C) 2009 William M. Brack 12 * 13 * Refactored and updated to the latest v4l core frameworks: 14 * 15 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl> 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/module.h> 29 #include <media/v4l2-common.h> 30 #include <media/v4l2-event.h> 31 #include <media/videobuf2-dma-sg.h> 32 33 #include "tw68.h" 34 #include "tw68-reg.h" 35 36 /* ------------------------------------------------------------------ */ 37 /* data structs for video */ 38 /* 39 * FIXME - 40 * Note that the saa7134 has formats, e.g. YUV420, which are classified 41 * as "planar". These affect overlay mode, and are flagged with a field 42 * ".planar" in the format. Do we need to implement this in this driver? 43 */ 44 static const struct tw68_format formats[] = { 45 { 46 .name = "15 bpp RGB, le", 47 .fourcc = V4L2_PIX_FMT_RGB555, 48 .depth = 16, 49 .twformat = ColorFormatRGB15, 50 }, { 51 .name = "15 bpp RGB, be", 52 .fourcc = V4L2_PIX_FMT_RGB555X, 53 .depth = 16, 54 .twformat = ColorFormatRGB15 | ColorFormatBSWAP, 55 }, { 56 .name = "16 bpp RGB, le", 57 .fourcc = V4L2_PIX_FMT_RGB565, 58 .depth = 16, 59 .twformat = ColorFormatRGB16, 60 }, { 61 .name = "16 bpp RGB, be", 62 .fourcc = V4L2_PIX_FMT_RGB565X, 63 .depth = 16, 64 .twformat = ColorFormatRGB16 | ColorFormatBSWAP, 65 }, { 66 .name = "24 bpp RGB, le", 67 .fourcc = V4L2_PIX_FMT_BGR24, 68 .depth = 24, 69 .twformat = ColorFormatRGB24, 70 }, { 71 .name = "24 bpp RGB, be", 72 .fourcc = V4L2_PIX_FMT_RGB24, 73 .depth = 24, 74 .twformat = ColorFormatRGB24 | ColorFormatBSWAP, 75 }, { 76 .name = "32 bpp RGB, le", 77 .fourcc = V4L2_PIX_FMT_BGR32, 78 .depth = 32, 79 .twformat = ColorFormatRGB32, 80 }, { 81 .name = "32 bpp RGB, be", 82 .fourcc = V4L2_PIX_FMT_RGB32, 83 .depth = 32, 84 .twformat = ColorFormatRGB32 | ColorFormatBSWAP | 85 ColorFormatWSWAP, 86 }, { 87 .name = "4:2:2 packed, YUYV", 88 .fourcc = V4L2_PIX_FMT_YUYV, 89 .depth = 16, 90 .twformat = ColorFormatYUY2, 91 }, { 92 .name = "4:2:2 packed, UYVY", 93 .fourcc = V4L2_PIX_FMT_UYVY, 94 .depth = 16, 95 .twformat = ColorFormatYUY2 | ColorFormatBSWAP, 96 } 97 }; 98 #define FORMATS ARRAY_SIZE(formats) 99 100 #define NORM_625_50 \ 101 .h_delay = 3, \ 102 .h_delay0 = 133, \ 103 .h_start = 0, \ 104 .h_stop = 719, \ 105 .v_delay = 24, \ 106 .vbi_v_start_0 = 7, \ 107 .vbi_v_stop_0 = 22, \ 108 .video_v_start = 24, \ 109 .video_v_stop = 311, \ 110 .vbi_v_start_1 = 319 111 112 #define NORM_525_60 \ 113 .h_delay = 8, \ 114 .h_delay0 = 138, \ 115 .h_start = 0, \ 116 .h_stop = 719, \ 117 .v_delay = 22, \ 118 .vbi_v_start_0 = 10, \ 119 .vbi_v_stop_0 = 21, \ 120 .video_v_start = 22, \ 121 .video_v_stop = 262, \ 122 .vbi_v_start_1 = 273 123 124 /* 125 * The following table is searched by tw68_s_std, first for a specific 126 * match, then for an entry which contains the desired id. The table 127 * entries should therefore be ordered in ascending order of specificity. 128 */ 129 static const struct tw68_tvnorm tvnorms[] = { 130 { 131 .name = "PAL", /* autodetect */ 132 .id = V4L2_STD_PAL, 133 NORM_625_50, 134 135 .sync_control = 0x18, 136 .luma_control = 0x40, 137 .chroma_ctrl1 = 0x81, 138 .chroma_gain = 0x2a, 139 .chroma_ctrl2 = 0x06, 140 .vgate_misc = 0x1c, 141 .format = VideoFormatPALBDGHI, 142 }, { 143 .name = "NTSC", 144 .id = V4L2_STD_NTSC, 145 NORM_525_60, 146 147 .sync_control = 0x59, 148 .luma_control = 0x40, 149 .chroma_ctrl1 = 0x89, 150 .chroma_gain = 0x2a, 151 .chroma_ctrl2 = 0x0e, 152 .vgate_misc = 0x18, 153 .format = VideoFormatNTSC, 154 }, { 155 .name = "SECAM", 156 .id = V4L2_STD_SECAM, 157 NORM_625_50, 158 159 .sync_control = 0x18, 160 .luma_control = 0x1b, 161 .chroma_ctrl1 = 0xd1, 162 .chroma_gain = 0x80, 163 .chroma_ctrl2 = 0x00, 164 .vgate_misc = 0x1c, 165 .format = VideoFormatSECAM, 166 }, { 167 .name = "PAL-M", 168 .id = V4L2_STD_PAL_M, 169 NORM_525_60, 170 171 .sync_control = 0x59, 172 .luma_control = 0x40, 173 .chroma_ctrl1 = 0xb9, 174 .chroma_gain = 0x2a, 175 .chroma_ctrl2 = 0x0e, 176 .vgate_misc = 0x18, 177 .format = VideoFormatPALM, 178 }, { 179 .name = "PAL-Nc", 180 .id = V4L2_STD_PAL_Nc, 181 NORM_625_50, 182 183 .sync_control = 0x18, 184 .luma_control = 0x40, 185 .chroma_ctrl1 = 0xa1, 186 .chroma_gain = 0x2a, 187 .chroma_ctrl2 = 0x06, 188 .vgate_misc = 0x1c, 189 .format = VideoFormatPALNC, 190 }, { 191 .name = "PAL-60", 192 .id = V4L2_STD_PAL_60, 193 .h_delay = 186, 194 .h_start = 0, 195 .h_stop = 719, 196 .v_delay = 26, 197 .video_v_start = 23, 198 .video_v_stop = 262, 199 .vbi_v_start_0 = 10, 200 .vbi_v_stop_0 = 21, 201 .vbi_v_start_1 = 273, 202 203 .sync_control = 0x18, 204 .luma_control = 0x40, 205 .chroma_ctrl1 = 0x81, 206 .chroma_gain = 0x2a, 207 .chroma_ctrl2 = 0x06, 208 .vgate_misc = 0x1c, 209 .format = VideoFormatPAL60, 210 } 211 }; 212 #define TVNORMS ARRAY_SIZE(tvnorms) 213 214 static const struct tw68_format *format_by_fourcc(unsigned int fourcc) 215 { 216 unsigned int i; 217 218 for (i = 0; i < FORMATS; i++) 219 if (formats[i].fourcc == fourcc) 220 return formats+i; 221 return NULL; 222 } 223 224 225 /* ------------------------------------------------------------------ */ 226 /* 227 * Note that the cropping rectangles are described in terms of a single 228 * frame, i.e. line positions are only 1/2 the interlaced equivalent 229 */ 230 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm) 231 { 232 if (norm != dev->tvnorm) { 233 dev->width = 720; 234 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576; 235 dev->tvnorm = norm; 236 tw68_set_tvnorm_hw(dev); 237 } 238 } 239 240 /* 241 * tw68_set_scale 242 * 243 * Scaling and Cropping for video decoding 244 * 245 * We are working with 3 values for horizontal and vertical - scale, 246 * delay and active. 247 * 248 * HACTIVE represent the actual number of pixels in the "usable" image, 249 * before scaling. HDELAY represents the number of pixels skipped 250 * between the start of the horizontal sync and the start of the image. 251 * HSCALE is calculated using the formula 252 * HSCALE = (HACTIVE / (#pixels desired)) * 256 253 * 254 * The vertical registers are similar, except based upon the total number 255 * of lines in the image, and the first line of the image (i.e. ignoring 256 * vertical sync and VBI). 257 * 258 * Note that the number of bytes reaching the FIFO (and hence needing 259 * to be processed by the DMAP program) is completely dependent upon 260 * these values, especially HSCALE. 261 * 262 * Parameters: 263 * @dev pointer to the device structure, needed for 264 * getting current norm (as well as debug print) 265 * @width actual image width (from user buffer) 266 * @height actual image height 267 * @field indicates Top, Bottom or Interlaced 268 */ 269 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width, 270 unsigned int height, enum v4l2_field field) 271 { 272 const struct tw68_tvnorm *norm = dev->tvnorm; 273 /* set individually for debugging clarity */ 274 int hactive, hdelay, hscale; 275 int vactive, vdelay, vscale; 276 int comb; 277 278 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */ 279 height /= 2; /* we must set for 1-frame */ 280 281 pr_debug("%s: width=%d, height=%d, both=%d\n" 282 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, " 283 "v_delay=%d, v_start=%d, v_stop=%d\n" , __func__, 284 width, height, V4L2_FIELD_HAS_BOTH(field), 285 norm->h_delay, norm->h_start, norm->h_stop, 286 norm->v_delay, norm->video_v_start, 287 norm->video_v_stop); 288 289 switch (dev->vdecoder) { 290 case TW6800: 291 hdelay = norm->h_delay0; 292 break; 293 default: 294 hdelay = norm->h_delay; 295 break; 296 } 297 298 hdelay += norm->h_start; 299 hactive = norm->h_stop - norm->h_start + 1; 300 301 hscale = (hactive * 256) / (width); 302 303 vdelay = norm->v_delay; 304 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start; 305 vscale = (vactive * 256) / height; 306 307 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__, 308 width, height, 309 V4L2_FIELD_HAS_TOP(field) ? "T" : "", 310 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", 311 v4l2_norm_to_name(dev->tvnorm->id)); 312 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; " 313 "vactive=%d, vdelay=%d, vscale=%d\n", __func__, 314 hactive, hdelay, hscale, vactive, vdelay, vscale); 315 316 comb = ((vdelay & 0x300) >> 2) | 317 ((vactive & 0x300) >> 4) | 318 ((hdelay & 0x300) >> 6) | 319 ((hactive & 0x300) >> 8); 320 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, " 321 "VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n", 322 __func__, comb, vdelay, vactive, hdelay, hactive); 323 tw_writeb(TW68_CROP_HI, comb); 324 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff); 325 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff); 326 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff); 327 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff); 328 329 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8); 330 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, " 331 "HSCALE_LO=%02x\n", __func__, comb, vscale, hscale); 332 tw_writeb(TW68_SCALE_HI, comb); 333 tw_writeb(TW68_VSCALE_LO, vscale); 334 tw_writeb(TW68_HSCALE_LO, hscale); 335 336 return 0; 337 } 338 339 /* ------------------------------------------------------------------ */ 340 341 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf) 342 { 343 /* Set cropping and scaling */ 344 tw68_set_scale(dev, dev->width, dev->height, dev->field); 345 /* 346 * Set start address for RISC program. Note that if the DMAP 347 * processor is currently running, it must be stopped before 348 * a new address can be set. 349 */ 350 tw_clearl(TW68_DMAC, TW68_DMAP_EN); 351 tw_writel(TW68_DMAP_SA, buf->dma); 352 /* Clear any pending interrupts */ 353 tw_writel(TW68_INTSTAT, dev->board_virqmask); 354 /* Enable the risc engine and the fifo */ 355 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat | 356 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN); 357 dev->pci_irqmask |= dev->board_virqmask; 358 tw_setl(TW68_INTMASK, dev->pci_irqmask); 359 return 0; 360 } 361 362 /* ------------------------------------------------------------------ */ 363 364 /* calc max # of buffers from size (must not exceed the 4MB virtual 365 * address space per DMA channel) */ 366 static int tw68_buffer_count(unsigned int size, unsigned int count) 367 { 368 unsigned int maxcount; 369 370 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE); 371 if (count > maxcount) 372 count = maxcount; 373 return count; 374 } 375 376 /* ------------------------------------------------------------- */ 377 /* vb2 queue operations */ 378 379 static int tw68_queue_setup(struct vb2_queue *q, 380 unsigned int *num_buffers, unsigned int *num_planes, 381 unsigned int sizes[], void *alloc_ctxs[]) 382 { 383 struct tw68_dev *dev = vb2_get_drv_priv(q); 384 unsigned tot_bufs = q->num_buffers + *num_buffers; 385 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3; 386 387 if (tot_bufs < 2) 388 tot_bufs = 2; 389 tot_bufs = tw68_buffer_count(size, tot_bufs); 390 *num_buffers = tot_bufs - q->num_buffers; 391 alloc_ctxs[0] = dev->alloc_ctx; 392 /* 393 * We allow create_bufs, but only if the sizeimage is >= as the 394 * current sizeimage. The tw68_buffer_count calculation becomes quite 395 * difficult otherwise. 396 */ 397 if (*num_planes) 398 return sizes[0] < size ? -EINVAL : 0; 399 *num_planes = 1; 400 sizes[0] = size; 401 402 return 0; 403 } 404 405 /* 406 * The risc program for each buffers works as follows: it starts with a simple 407 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the 408 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping 409 * the initial JUMP). 410 * 411 * This is the program of the first buffer to be queued if the active list is 412 * empty and it just keeps DMAing this buffer without generating any interrupts. 413 * 414 * If a new buffer is added then the initial JUMP in the program generates an 415 * interrupt as well which signals that the previous buffer has been DMAed 416 * successfully and that it can be returned to userspace. 417 * 418 * It also sets the final jump of the previous buffer to the start of the new 419 * buffer, thus chaining the new buffer into the DMA chain. This is a single 420 * atomic u32 write, so there is no race condition. 421 * 422 * The end-result of all this that you only get an interrupt when a buffer 423 * is ready, so the control flow is very easy. 424 */ 425 static void tw68_buf_queue(struct vb2_buffer *vb) 426 { 427 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 428 struct vb2_queue *vq = vb->vb2_queue; 429 struct tw68_dev *dev = vb2_get_drv_priv(vq); 430 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 431 struct tw68_buf *prev; 432 unsigned long flags; 433 434 spin_lock_irqsave(&dev->slock, flags); 435 436 /* append a 'JUMP to start of buffer' to the buffer risc program */ 437 buf->jmp[0] = cpu_to_le32(RISC_JUMP); 438 buf->jmp[1] = cpu_to_le32(buf->dma + 8); 439 440 if (!list_empty(&dev->active)) { 441 prev = list_entry(dev->active.prev, struct tw68_buf, list); 442 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT); 443 prev->jmp[1] = cpu_to_le32(buf->dma); 444 } 445 list_add_tail(&buf->list, &dev->active); 446 spin_unlock_irqrestore(&dev->slock, flags); 447 } 448 449 /* 450 * buffer_prepare 451 * 452 * Set the ancilliary information into the buffer structure. This 453 * includes generating the necessary risc program if it hasn't already 454 * been done for the current buffer format. 455 * The structure fh contains the details of the format requested by the 456 * user - type, width, height and #fields. This is compared with the 457 * last format set for the current buffer. If they differ, the risc 458 * code (which controls the filling of the buffer) is (re-)generated. 459 */ 460 static int tw68_buf_prepare(struct vb2_buffer *vb) 461 { 462 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 463 struct vb2_queue *vq = vb->vb2_queue; 464 struct tw68_dev *dev = vb2_get_drv_priv(vq); 465 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 466 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0); 467 unsigned size, bpl; 468 469 size = (dev->width * dev->height * dev->fmt->depth) >> 3; 470 if (vb2_plane_size(vb, 0) < size) 471 return -EINVAL; 472 vb2_set_plane_payload(vb, 0, size); 473 474 bpl = (dev->width * dev->fmt->depth) >> 3; 475 switch (dev->field) { 476 case V4L2_FIELD_TOP: 477 tw68_risc_buffer(dev->pci, buf, dma->sgl, 478 0, UNSET, bpl, 0, dev->height); 479 break; 480 case V4L2_FIELD_BOTTOM: 481 tw68_risc_buffer(dev->pci, buf, dma->sgl, 482 UNSET, 0, bpl, 0, dev->height); 483 break; 484 case V4L2_FIELD_SEQ_TB: 485 tw68_risc_buffer(dev->pci, buf, dma->sgl, 486 0, bpl * (dev->height >> 1), 487 bpl, 0, dev->height >> 1); 488 break; 489 case V4L2_FIELD_SEQ_BT: 490 tw68_risc_buffer(dev->pci, buf, dma->sgl, 491 bpl * (dev->height >> 1), 0, 492 bpl, 0, dev->height >> 1); 493 break; 494 case V4L2_FIELD_INTERLACED: 495 default: 496 tw68_risc_buffer(dev->pci, buf, dma->sgl, 497 0, bpl, bpl, bpl, dev->height >> 1); 498 break; 499 } 500 return 0; 501 } 502 503 static void tw68_buf_finish(struct vb2_buffer *vb) 504 { 505 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 506 struct vb2_queue *vq = vb->vb2_queue; 507 struct tw68_dev *dev = vb2_get_drv_priv(vq); 508 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb); 509 510 pci_free_consistent(dev->pci, buf->size, buf->cpu, buf->dma); 511 } 512 513 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count) 514 { 515 struct tw68_dev *dev = vb2_get_drv_priv(q); 516 struct tw68_buf *buf = 517 container_of(dev->active.next, struct tw68_buf, list); 518 519 dev->seqnr = 0; 520 tw68_video_start_dma(dev, buf); 521 return 0; 522 } 523 524 static void tw68_stop_streaming(struct vb2_queue *q) 525 { 526 struct tw68_dev *dev = vb2_get_drv_priv(q); 527 528 /* Stop risc & fifo */ 529 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN); 530 while (!list_empty(&dev->active)) { 531 struct tw68_buf *buf = 532 container_of(dev->active.next, struct tw68_buf, list); 533 534 list_del(&buf->list); 535 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); 536 } 537 } 538 539 static struct vb2_ops tw68_video_qops = { 540 .queue_setup = tw68_queue_setup, 541 .buf_queue = tw68_buf_queue, 542 .buf_prepare = tw68_buf_prepare, 543 .buf_finish = tw68_buf_finish, 544 .start_streaming = tw68_start_streaming, 545 .stop_streaming = tw68_stop_streaming, 546 .wait_prepare = vb2_ops_wait_prepare, 547 .wait_finish = vb2_ops_wait_finish, 548 }; 549 550 /* ------------------------------------------------------------------ */ 551 552 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl) 553 { 554 struct tw68_dev *dev = 555 container_of(ctrl->handler, struct tw68_dev, hdl); 556 557 switch (ctrl->id) { 558 case V4L2_CID_BRIGHTNESS: 559 tw_writeb(TW68_BRIGHT, ctrl->val); 560 break; 561 case V4L2_CID_HUE: 562 tw_writeb(TW68_HUE, ctrl->val); 563 break; 564 case V4L2_CID_CONTRAST: 565 tw_writeb(TW68_CONTRAST, ctrl->val); 566 break; 567 case V4L2_CID_SATURATION: 568 tw_writeb(TW68_SAT_U, ctrl->val); 569 tw_writeb(TW68_SAT_V, ctrl->val); 570 break; 571 case V4L2_CID_COLOR_KILLER: 572 if (ctrl->val) 573 tw_andorb(TW68_MISC2, 0xe0, 0xe0); 574 else 575 tw_andorb(TW68_MISC2, 0xe0, 0x00); 576 break; 577 case V4L2_CID_CHROMA_AGC: 578 if (ctrl->val) 579 tw_andorb(TW68_LOOP, 0x30, 0x20); 580 else 581 tw_andorb(TW68_LOOP, 0x30, 0x00); 582 break; 583 } 584 return 0; 585 } 586 587 /* ------------------------------------------------------------------ */ 588 589 /* 590 * Note that this routine returns what is stored in the fh structure, and 591 * does not interrogate any of the device registers. 592 */ 593 static int tw68_g_fmt_vid_cap(struct file *file, void *priv, 594 struct v4l2_format *f) 595 { 596 struct tw68_dev *dev = video_drvdata(file); 597 598 f->fmt.pix.width = dev->width; 599 f->fmt.pix.height = dev->height; 600 f->fmt.pix.field = dev->field; 601 f->fmt.pix.pixelformat = dev->fmt->fourcc; 602 f->fmt.pix.bytesperline = 603 (f->fmt.pix.width * (dev->fmt->depth)) >> 3; 604 f->fmt.pix.sizeimage = 605 f->fmt.pix.height * f->fmt.pix.bytesperline; 606 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 607 f->fmt.pix.priv = 0; 608 return 0; 609 } 610 611 static int tw68_try_fmt_vid_cap(struct file *file, void *priv, 612 struct v4l2_format *f) 613 { 614 struct tw68_dev *dev = video_drvdata(file); 615 const struct tw68_format *fmt; 616 enum v4l2_field field; 617 unsigned int maxh; 618 619 fmt = format_by_fourcc(f->fmt.pix.pixelformat); 620 if (NULL == fmt) 621 return -EINVAL; 622 623 field = f->fmt.pix.field; 624 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576; 625 626 switch (field) { 627 case V4L2_FIELD_TOP: 628 case V4L2_FIELD_BOTTOM: 629 break; 630 case V4L2_FIELD_INTERLACED: 631 case V4L2_FIELD_SEQ_BT: 632 case V4L2_FIELD_SEQ_TB: 633 maxh = maxh * 2; 634 break; 635 default: 636 field = (f->fmt.pix.height > maxh / 2) 637 ? V4L2_FIELD_INTERLACED 638 : V4L2_FIELD_BOTTOM; 639 break; 640 } 641 642 f->fmt.pix.field = field; 643 if (f->fmt.pix.width < 48) 644 f->fmt.pix.width = 48; 645 if (f->fmt.pix.height < 32) 646 f->fmt.pix.height = 32; 647 if (f->fmt.pix.width > 720) 648 f->fmt.pix.width = 720; 649 if (f->fmt.pix.height > maxh) 650 f->fmt.pix.height = maxh; 651 f->fmt.pix.width &= ~0x03; 652 f->fmt.pix.bytesperline = 653 (f->fmt.pix.width * (fmt->depth)) >> 3; 654 f->fmt.pix.sizeimage = 655 f->fmt.pix.height * f->fmt.pix.bytesperline; 656 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M; 657 return 0; 658 } 659 660 /* 661 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure, 662 * and it will be used for all future new buffers. However, there could be 663 * some number of buffers on the "active" chain which will be filled before 664 * the change takes place. 665 */ 666 static int tw68_s_fmt_vid_cap(struct file *file, void *priv, 667 struct v4l2_format *f) 668 { 669 struct tw68_dev *dev = video_drvdata(file); 670 int err; 671 672 err = tw68_try_fmt_vid_cap(file, priv, f); 673 if (0 != err) 674 return err; 675 676 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat); 677 dev->width = f->fmt.pix.width; 678 dev->height = f->fmt.pix.height; 679 dev->field = f->fmt.pix.field; 680 return 0; 681 } 682 683 static int tw68_enum_input(struct file *file, void *priv, 684 struct v4l2_input *i) 685 { 686 struct tw68_dev *dev = video_drvdata(file); 687 unsigned int n; 688 689 n = i->index; 690 if (n >= TW68_INPUT_MAX) 691 return -EINVAL; 692 i->index = n; 693 i->type = V4L2_INPUT_TYPE_CAMERA; 694 snprintf(i->name, sizeof(i->name), "Composite %d", n); 695 696 /* If the query is for the current input, get live data */ 697 if (n == dev->input) { 698 int v1 = tw_readb(TW68_STATUS1); 699 int v2 = tw_readb(TW68_MVSN); 700 701 if (0 != (v1 & (1 << 7))) 702 i->status |= V4L2_IN_ST_NO_SYNC; 703 if (0 != (v1 & (1 << 6))) 704 i->status |= V4L2_IN_ST_NO_H_LOCK; 705 if (0 != (v1 & (1 << 2))) 706 i->status |= V4L2_IN_ST_NO_SIGNAL; 707 if (0 != (v1 & 1 << 1)) 708 i->status |= V4L2_IN_ST_NO_COLOR; 709 if (0 != (v2 & (1 << 2))) 710 i->status |= V4L2_IN_ST_MACROVISION; 711 } 712 i->std = video_devdata(file)->tvnorms; 713 return 0; 714 } 715 716 static int tw68_g_input(struct file *file, void *priv, unsigned int *i) 717 { 718 struct tw68_dev *dev = video_drvdata(file); 719 720 *i = dev->input; 721 return 0; 722 } 723 724 static int tw68_s_input(struct file *file, void *priv, unsigned int i) 725 { 726 struct tw68_dev *dev = video_drvdata(file); 727 728 if (i >= TW68_INPUT_MAX) 729 return -EINVAL; 730 dev->input = i; 731 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2); 732 return 0; 733 } 734 735 static int tw68_querycap(struct file *file, void *priv, 736 struct v4l2_capability *cap) 737 { 738 struct tw68_dev *dev = video_drvdata(file); 739 740 strcpy(cap->driver, "tw68"); 741 strlcpy(cap->card, "Techwell Capture Card", 742 sizeof(cap->card)); 743 sprintf(cap->bus_info, "PCI:%s", pci_name(dev->pci)); 744 cap->device_caps = 745 V4L2_CAP_VIDEO_CAPTURE | 746 V4L2_CAP_READWRITE | 747 V4L2_CAP_STREAMING; 748 749 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; 750 return 0; 751 } 752 753 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id) 754 { 755 struct tw68_dev *dev = video_drvdata(file); 756 unsigned int i; 757 758 if (vb2_is_busy(&dev->vidq)) 759 return -EBUSY; 760 761 /* Look for match on complete norm id (may have mult bits) */ 762 for (i = 0; i < TVNORMS; i++) { 763 if (id == tvnorms[i].id) 764 break; 765 } 766 767 /* If no exact match, look for norm which contains this one */ 768 if (i == TVNORMS) { 769 for (i = 0; i < TVNORMS; i++) 770 if (id & tvnorms[i].id) 771 break; 772 } 773 /* If still not matched, give up */ 774 if (i == TVNORMS) 775 return -EINVAL; 776 777 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */ 778 return 0; 779 } 780 781 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id) 782 { 783 struct tw68_dev *dev = video_drvdata(file); 784 785 *id = dev->tvnorm->id; 786 return 0; 787 } 788 789 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv, 790 struct v4l2_fmtdesc *f) 791 { 792 if (f->index >= FORMATS) 793 return -EINVAL; 794 795 strlcpy(f->description, formats[f->index].name, 796 sizeof(f->description)); 797 798 f->pixelformat = formats[f->index].fourcc; 799 800 return 0; 801 } 802 803 /* 804 * Used strictly for internal development and debugging, this routine 805 * prints out the current register contents for the tw68xx device. 806 */ 807 static void tw68_dump_regs(struct tw68_dev *dev) 808 { 809 unsigned char line[80]; 810 int i, j, k; 811 unsigned char *cptr; 812 813 pr_info("Full dump of TW68 registers:\n"); 814 /* First we do the PCI regs, 8 4-byte regs per line */ 815 for (i = 0; i < 0x100; i += 32) { 816 cptr = line; 817 cptr += sprintf(cptr, "%03x ", i); 818 /* j steps through the next 4 words */ 819 for (j = i; j < i + 16; j += 4) 820 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 821 *cptr++ = ' '; 822 for (; j < i + 32; j += 4) 823 cptr += sprintf(cptr, "%08x ", tw_readl(j)); 824 *cptr++ = '\n'; 825 *cptr = 0; 826 pr_info("%s", line); 827 } 828 /* Next the control regs, which are single-byte, address mod 4 */ 829 while (i < 0x400) { 830 cptr = line; 831 cptr += sprintf(cptr, "%03x ", i); 832 /* Print out 4 groups of 4 bytes */ 833 for (j = 0; j < 4; j++) { 834 for (k = 0; k < 4; k++) { 835 cptr += sprintf(cptr, "%02x ", 836 tw_readb(i)); 837 i += 4; 838 } 839 *cptr++ = ' '; 840 } 841 *cptr++ = '\n'; 842 *cptr = 0; 843 pr_info("%s", line); 844 } 845 } 846 847 static int vidioc_log_status(struct file *file, void *priv) 848 { 849 struct tw68_dev *dev = video_drvdata(file); 850 851 tw68_dump_regs(dev); 852 return v4l2_ctrl_log_status(file, priv); 853 } 854 855 #ifdef CONFIG_VIDEO_ADV_DEBUG 856 static int vidioc_g_register(struct file *file, void *priv, 857 struct v4l2_dbg_register *reg) 858 { 859 struct tw68_dev *dev = video_drvdata(file); 860 861 if (reg->size == 1) 862 reg->val = tw_readb(reg->reg); 863 else 864 reg->val = tw_readl(reg->reg); 865 return 0; 866 } 867 868 static int vidioc_s_register(struct file *file, void *priv, 869 const struct v4l2_dbg_register *reg) 870 { 871 struct tw68_dev *dev = video_drvdata(file); 872 873 if (reg->size == 1) 874 tw_writeb(reg->reg, reg->val); 875 else 876 tw_writel(reg->reg & 0xffff, reg->val); 877 return 0; 878 } 879 #endif 880 881 static const struct v4l2_ctrl_ops tw68_ctrl_ops = { 882 .s_ctrl = tw68_s_ctrl, 883 }; 884 885 static const struct v4l2_file_operations video_fops = { 886 .owner = THIS_MODULE, 887 .open = v4l2_fh_open, 888 .release = vb2_fop_release, 889 .read = vb2_fop_read, 890 .poll = vb2_fop_poll, 891 .mmap = vb2_fop_mmap, 892 .unlocked_ioctl = video_ioctl2, 893 }; 894 895 static const struct v4l2_ioctl_ops video_ioctl_ops = { 896 .vidioc_querycap = tw68_querycap, 897 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap, 898 .vidioc_reqbufs = vb2_ioctl_reqbufs, 899 .vidioc_create_bufs = vb2_ioctl_create_bufs, 900 .vidioc_querybuf = vb2_ioctl_querybuf, 901 .vidioc_qbuf = vb2_ioctl_qbuf, 902 .vidioc_dqbuf = vb2_ioctl_dqbuf, 903 .vidioc_s_std = tw68_s_std, 904 .vidioc_g_std = tw68_g_std, 905 .vidioc_enum_input = tw68_enum_input, 906 .vidioc_g_input = tw68_g_input, 907 .vidioc_s_input = tw68_s_input, 908 .vidioc_streamon = vb2_ioctl_streamon, 909 .vidioc_streamoff = vb2_ioctl_streamoff, 910 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap, 911 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap, 912 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap, 913 .vidioc_log_status = vidioc_log_status, 914 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, 915 .vidioc_unsubscribe_event = v4l2_event_unsubscribe, 916 #ifdef CONFIG_VIDEO_ADV_DEBUG 917 .vidioc_g_register = vidioc_g_register, 918 .vidioc_s_register = vidioc_s_register, 919 #endif 920 }; 921 922 static struct video_device tw68_video_template = { 923 .name = "tw68_video", 924 .fops = &video_fops, 925 .ioctl_ops = &video_ioctl_ops, 926 .release = video_device_release_empty, 927 .tvnorms = TW68_NORMS, 928 }; 929 930 /* ------------------------------------------------------------------ */ 931 /* exported stuff */ 932 void tw68_set_tvnorm_hw(struct tw68_dev *dev) 933 { 934 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format); 935 } 936 937 int tw68_video_init1(struct tw68_dev *dev) 938 { 939 struct v4l2_ctrl_handler *hdl = &dev->hdl; 940 941 v4l2_ctrl_handler_init(hdl, 6); 942 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 943 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20); 944 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 945 V4L2_CID_CONTRAST, 0, 255, 1, 100); 946 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 947 V4L2_CID_SATURATION, 0, 255, 1, 128); 948 /* NTSC only */ 949 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 950 V4L2_CID_HUE, -128, 127, 1, 0); 951 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 952 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); 953 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops, 954 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1); 955 if (hdl->error) { 956 v4l2_ctrl_handler_free(hdl); 957 return hdl->error; 958 } 959 dev->v4l2_dev.ctrl_handler = hdl; 960 v4l2_ctrl_handler_setup(hdl); 961 return 0; 962 } 963 964 int tw68_video_init2(struct tw68_dev *dev, int video_nr) 965 { 966 int ret; 967 968 set_tvnorm(dev, &tvnorms[0]); 969 970 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24); 971 dev->width = 720; 972 dev->height = 576; 973 dev->field = V4L2_FIELD_INTERLACED; 974 975 INIT_LIST_HEAD(&dev->active); 976 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; 977 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; 978 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF; 979 dev->vidq.ops = &tw68_video_qops; 980 dev->vidq.mem_ops = &vb2_dma_sg_memops; 981 dev->vidq.drv_priv = dev; 982 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM; 983 dev->vidq.buf_struct_size = sizeof(struct tw68_buf); 984 dev->vidq.lock = &dev->lock; 985 dev->vidq.min_buffers_needed = 2; 986 ret = vb2_queue_init(&dev->vidq); 987 if (ret) 988 return ret; 989 dev->vdev = tw68_video_template; 990 dev->vdev.v4l2_dev = &dev->v4l2_dev; 991 dev->vdev.lock = &dev->lock; 992 dev->vdev.queue = &dev->vidq; 993 video_set_drvdata(&dev->vdev, dev); 994 return video_register_device(&dev->vdev, VFL_TYPE_GRABBER, video_nr); 995 } 996 997 /* 998 * tw68_irq_video_done 999 */ 1000 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status) 1001 { 1002 __u32 reg; 1003 1004 /* reset interrupts handled by this routine */ 1005 tw_writel(TW68_INTSTAT, status); 1006 /* 1007 * Check most likely first 1008 * 1009 * DMAPI shows we have reached the end of the risc code 1010 * for the current buffer. 1011 */ 1012 if (status & TW68_DMAPI) { 1013 struct tw68_buf *buf; 1014 1015 spin_lock(&dev->slock); 1016 buf = list_entry(dev->active.next, struct tw68_buf, list); 1017 list_del(&buf->list); 1018 spin_unlock(&dev->slock); 1019 buf->vb.vb2_buf.timestamp = ktime_get_ns(); 1020 buf->vb.field = dev->field; 1021 buf->vb.sequence = dev->seqnr++; 1022 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); 1023 status &= ~(TW68_DMAPI); 1024 if (0 == status) 1025 return; 1026 } 1027 if (status & (TW68_VLOCK | TW68_HLOCK)) 1028 dev_dbg(&dev->pci->dev, "Lost sync\n"); 1029 if (status & TW68_PABORT) 1030 dev_err(&dev->pci->dev, "PABORT interrupt\n"); 1031 if (status & TW68_DMAPERR) 1032 dev_err(&dev->pci->dev, "DMAPERR interrupt\n"); 1033 /* 1034 * On TW6800, FDMIS is apparently generated if video input is switched 1035 * during operation. Therefore, it is not enabled for that chip. 1036 */ 1037 if (status & TW68_FDMIS) 1038 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n"); 1039 if (status & TW68_FFOF) { 1040 /* probably a logic error */ 1041 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN; 1042 tw_clearl(TW68_DMAC, TW68_FIFO_EN); 1043 dev_dbg(&dev->pci->dev, "FFOF interrupt\n"); 1044 tw_setl(TW68_DMAC, reg); 1045 } 1046 if (status & TW68_FFERR) 1047 dev_dbg(&dev->pci->dev, "FFERR interrupt\n"); 1048 } 1049