xref: /openbmc/linux/drivers/media/pci/pt1/pt1.c (revision cfbb9be8)
1 /*
2  * driver for Earthsoft PT1/PT2
3  *
4  * Copyright (C) 2009 HIRANO Takahito <hiranotaka@zng.info>
5  *
6  * based on pt1dvr - http://pt1dvr.sourceforge.jp/
7  *	by Tomoaki Ishikawa <tomy@users.sourceforge.jp>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/sched/signal.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/pci.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/ratelimit.h>
29 
30 #include <media/dvbdev.h>
31 #include <media/dvb_demux.h>
32 #include <media/dmxdev.h>
33 #include <media/dvb_net.h>
34 #include <media/dvb_frontend.h>
35 
36 #include "va1j5jf8007t.h"
37 #include "va1j5jf8007s.h"
38 
39 #define DRIVER_NAME "earth-pt1"
40 
41 #define PT1_PAGE_SHIFT 12
42 #define PT1_PAGE_SIZE (1 << PT1_PAGE_SHIFT)
43 #define PT1_NR_UPACKETS 1024
44 #define PT1_NR_BUFS 511
45 
46 struct pt1_buffer_page {
47 	__le32 upackets[PT1_NR_UPACKETS];
48 };
49 
50 struct pt1_table_page {
51 	__le32 next_pfn;
52 	__le32 buf_pfns[PT1_NR_BUFS];
53 };
54 
55 struct pt1_buffer {
56 	struct pt1_buffer_page *page;
57 	dma_addr_t addr;
58 };
59 
60 struct pt1_table {
61 	struct pt1_table_page *page;
62 	dma_addr_t addr;
63 	struct pt1_buffer bufs[PT1_NR_BUFS];
64 };
65 
66 #define PT1_NR_ADAPS 4
67 
68 struct pt1_adapter;
69 
70 struct pt1 {
71 	struct pci_dev *pdev;
72 	void __iomem *regs;
73 	struct i2c_adapter i2c_adap;
74 	int i2c_running;
75 	struct pt1_adapter *adaps[PT1_NR_ADAPS];
76 	struct pt1_table *tables;
77 	struct task_struct *kthread;
78 	int table_index;
79 	int buf_index;
80 
81 	struct mutex lock;
82 	int power;
83 	int reset;
84 };
85 
86 struct pt1_adapter {
87 	struct pt1 *pt1;
88 	int index;
89 
90 	u8 *buf;
91 	int upacket_count;
92 	int packet_count;
93 	int st_count;
94 
95 	struct dvb_adapter adap;
96 	struct dvb_demux demux;
97 	int users;
98 	struct dmxdev dmxdev;
99 	struct dvb_frontend *fe;
100 	int (*orig_set_voltage)(struct dvb_frontend *fe,
101 				enum fe_sec_voltage voltage);
102 	int (*orig_sleep)(struct dvb_frontend *fe);
103 	int (*orig_init)(struct dvb_frontend *fe);
104 
105 	enum fe_sec_voltage voltage;
106 	int sleep;
107 };
108 
109 static void pt1_write_reg(struct pt1 *pt1, int reg, u32 data)
110 {
111 	writel(data, pt1->regs + reg * 4);
112 }
113 
114 static u32 pt1_read_reg(struct pt1 *pt1, int reg)
115 {
116 	return readl(pt1->regs + reg * 4);
117 }
118 
119 static unsigned int pt1_nr_tables = 8;
120 module_param_named(nr_tables, pt1_nr_tables, uint, 0);
121 
122 static void pt1_increment_table_count(struct pt1 *pt1)
123 {
124 	pt1_write_reg(pt1, 0, 0x00000020);
125 }
126 
127 static void pt1_init_table_count(struct pt1 *pt1)
128 {
129 	pt1_write_reg(pt1, 0, 0x00000010);
130 }
131 
132 static void pt1_register_tables(struct pt1 *pt1, u32 first_pfn)
133 {
134 	pt1_write_reg(pt1, 5, first_pfn);
135 	pt1_write_reg(pt1, 0, 0x0c000040);
136 }
137 
138 static void pt1_unregister_tables(struct pt1 *pt1)
139 {
140 	pt1_write_reg(pt1, 0, 0x08080000);
141 }
142 
143 static int pt1_sync(struct pt1 *pt1)
144 {
145 	int i;
146 	for (i = 0; i < 57; i++) {
147 		if (pt1_read_reg(pt1, 0) & 0x20000000)
148 			return 0;
149 		pt1_write_reg(pt1, 0, 0x00000008);
150 	}
151 	dev_err(&pt1->pdev->dev, "could not sync\n");
152 	return -EIO;
153 }
154 
155 static u64 pt1_identify(struct pt1 *pt1)
156 {
157 	int i;
158 	u64 id;
159 	id = 0;
160 	for (i = 0; i < 57; i++) {
161 		id |= (u64)(pt1_read_reg(pt1, 0) >> 30 & 1) << i;
162 		pt1_write_reg(pt1, 0, 0x00000008);
163 	}
164 	return id;
165 }
166 
167 static int pt1_unlock(struct pt1 *pt1)
168 {
169 	int i;
170 	pt1_write_reg(pt1, 0, 0x00000008);
171 	for (i = 0; i < 3; i++) {
172 		if (pt1_read_reg(pt1, 0) & 0x80000000)
173 			return 0;
174 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
175 	}
176 	dev_err(&pt1->pdev->dev, "could not unlock\n");
177 	return -EIO;
178 }
179 
180 static int pt1_reset_pci(struct pt1 *pt1)
181 {
182 	int i;
183 	pt1_write_reg(pt1, 0, 0x01010000);
184 	pt1_write_reg(pt1, 0, 0x01000000);
185 	for (i = 0; i < 10; i++) {
186 		if (pt1_read_reg(pt1, 0) & 0x00000001)
187 			return 0;
188 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
189 	}
190 	dev_err(&pt1->pdev->dev, "could not reset PCI\n");
191 	return -EIO;
192 }
193 
194 static int pt1_reset_ram(struct pt1 *pt1)
195 {
196 	int i;
197 	pt1_write_reg(pt1, 0, 0x02020000);
198 	pt1_write_reg(pt1, 0, 0x02000000);
199 	for (i = 0; i < 10; i++) {
200 		if (pt1_read_reg(pt1, 0) & 0x00000002)
201 			return 0;
202 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
203 	}
204 	dev_err(&pt1->pdev->dev, "could not reset RAM\n");
205 	return -EIO;
206 }
207 
208 static int pt1_do_enable_ram(struct pt1 *pt1)
209 {
210 	int i, j;
211 	u32 status;
212 	status = pt1_read_reg(pt1, 0) & 0x00000004;
213 	pt1_write_reg(pt1, 0, 0x00000002);
214 	for (i = 0; i < 10; i++) {
215 		for (j = 0; j < 1024; j++) {
216 			if ((pt1_read_reg(pt1, 0) & 0x00000004) != status)
217 				return 0;
218 		}
219 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
220 	}
221 	dev_err(&pt1->pdev->dev, "could not enable RAM\n");
222 	return -EIO;
223 }
224 
225 static int pt1_enable_ram(struct pt1 *pt1)
226 {
227 	int i, ret;
228 	int phase;
229 	schedule_timeout_uninterruptible((HZ + 999) / 1000);
230 	phase = pt1->pdev->device == 0x211a ? 128 : 166;
231 	for (i = 0; i < phase; i++) {
232 		ret = pt1_do_enable_ram(pt1);
233 		if (ret < 0)
234 			return ret;
235 	}
236 	return 0;
237 }
238 
239 static void pt1_disable_ram(struct pt1 *pt1)
240 {
241 	pt1_write_reg(pt1, 0, 0x0b0b0000);
242 }
243 
244 static void pt1_set_stream(struct pt1 *pt1, int index, int enabled)
245 {
246 	pt1_write_reg(pt1, 2, 1 << (index + 8) | enabled << index);
247 }
248 
249 static void pt1_init_streams(struct pt1 *pt1)
250 {
251 	int i;
252 	for (i = 0; i < PT1_NR_ADAPS; i++)
253 		pt1_set_stream(pt1, i, 0);
254 }
255 
256 static int pt1_filter(struct pt1 *pt1, struct pt1_buffer_page *page)
257 {
258 	u32 upacket;
259 	int i;
260 	int index;
261 	struct pt1_adapter *adap;
262 	int offset;
263 	u8 *buf;
264 	int sc;
265 
266 	if (!page->upackets[PT1_NR_UPACKETS - 1])
267 		return 0;
268 
269 	for (i = 0; i < PT1_NR_UPACKETS; i++) {
270 		upacket = le32_to_cpu(page->upackets[i]);
271 		index = (upacket >> 29) - 1;
272 		if (index < 0 || index >=  PT1_NR_ADAPS)
273 			continue;
274 
275 		adap = pt1->adaps[index];
276 		if (upacket >> 25 & 1)
277 			adap->upacket_count = 0;
278 		else if (!adap->upacket_count)
279 			continue;
280 
281 		if (upacket >> 24 & 1)
282 			printk_ratelimited(KERN_INFO "earth-pt1: device buffer overflowing. table[%d] buf[%d]\n",
283 				pt1->table_index, pt1->buf_index);
284 		sc = upacket >> 26 & 0x7;
285 		if (adap->st_count != -1 && sc != ((adap->st_count + 1) & 0x7))
286 			printk_ratelimited(KERN_INFO "earth-pt1: data loss in streamID(adapter)[%d]\n",
287 					   index);
288 		adap->st_count = sc;
289 
290 		buf = adap->buf;
291 		offset = adap->packet_count * 188 + adap->upacket_count * 3;
292 		buf[offset] = upacket >> 16;
293 		buf[offset + 1] = upacket >> 8;
294 		if (adap->upacket_count != 62)
295 			buf[offset + 2] = upacket;
296 
297 		if (++adap->upacket_count >= 63) {
298 			adap->upacket_count = 0;
299 			if (++adap->packet_count >= 21) {
300 				dvb_dmx_swfilter_packets(&adap->demux, buf, 21);
301 				adap->packet_count = 0;
302 			}
303 		}
304 	}
305 
306 	page->upackets[PT1_NR_UPACKETS - 1] = 0;
307 	return 1;
308 }
309 
310 static int pt1_thread(void *data)
311 {
312 	struct pt1 *pt1;
313 	struct pt1_buffer_page *page;
314 
315 	pt1 = data;
316 	set_freezable();
317 
318 	while (!kthread_should_stop()) {
319 		try_to_freeze();
320 
321 		page = pt1->tables[pt1->table_index].bufs[pt1->buf_index].page;
322 		if (!pt1_filter(pt1, page)) {
323 			schedule_timeout_interruptible((HZ + 999) / 1000);
324 			continue;
325 		}
326 
327 		if (++pt1->buf_index >= PT1_NR_BUFS) {
328 			pt1_increment_table_count(pt1);
329 			pt1->buf_index = 0;
330 			if (++pt1->table_index >= pt1_nr_tables)
331 				pt1->table_index = 0;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 static void pt1_free_page(struct pt1 *pt1, void *page, dma_addr_t addr)
339 {
340 	dma_free_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, page, addr);
341 }
342 
343 static void *pt1_alloc_page(struct pt1 *pt1, dma_addr_t *addrp, u32 *pfnp)
344 {
345 	void *page;
346 	dma_addr_t addr;
347 
348 	page = dma_alloc_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, &addr,
349 				  GFP_KERNEL);
350 	if (page == NULL)
351 		return NULL;
352 
353 	BUG_ON(addr & (PT1_PAGE_SIZE - 1));
354 	BUG_ON(addr >> PT1_PAGE_SHIFT >> 31 >> 1);
355 
356 	*addrp = addr;
357 	*pfnp = addr >> PT1_PAGE_SHIFT;
358 	return page;
359 }
360 
361 static void pt1_cleanup_buffer(struct pt1 *pt1, struct pt1_buffer *buf)
362 {
363 	pt1_free_page(pt1, buf->page, buf->addr);
364 }
365 
366 static int
367 pt1_init_buffer(struct pt1 *pt1, struct pt1_buffer *buf,  u32 *pfnp)
368 {
369 	struct pt1_buffer_page *page;
370 	dma_addr_t addr;
371 
372 	page = pt1_alloc_page(pt1, &addr, pfnp);
373 	if (page == NULL)
374 		return -ENOMEM;
375 
376 	page->upackets[PT1_NR_UPACKETS - 1] = 0;
377 
378 	buf->page = page;
379 	buf->addr = addr;
380 	return 0;
381 }
382 
383 static void pt1_cleanup_table(struct pt1 *pt1, struct pt1_table *table)
384 {
385 	int i;
386 
387 	for (i = 0; i < PT1_NR_BUFS; i++)
388 		pt1_cleanup_buffer(pt1, &table->bufs[i]);
389 
390 	pt1_free_page(pt1, table->page, table->addr);
391 }
392 
393 static int
394 pt1_init_table(struct pt1 *pt1, struct pt1_table *table, u32 *pfnp)
395 {
396 	struct pt1_table_page *page;
397 	dma_addr_t addr;
398 	int i, ret;
399 	u32 buf_pfn;
400 
401 	page = pt1_alloc_page(pt1, &addr, pfnp);
402 	if (page == NULL)
403 		return -ENOMEM;
404 
405 	for (i = 0; i < PT1_NR_BUFS; i++) {
406 		ret = pt1_init_buffer(pt1, &table->bufs[i], &buf_pfn);
407 		if (ret < 0)
408 			goto err;
409 
410 		page->buf_pfns[i] = cpu_to_le32(buf_pfn);
411 	}
412 
413 	pt1_increment_table_count(pt1);
414 	table->page = page;
415 	table->addr = addr;
416 	return 0;
417 
418 err:
419 	while (i--)
420 		pt1_cleanup_buffer(pt1, &table->bufs[i]);
421 
422 	pt1_free_page(pt1, page, addr);
423 	return ret;
424 }
425 
426 static void pt1_cleanup_tables(struct pt1 *pt1)
427 {
428 	struct pt1_table *tables;
429 	int i;
430 
431 	tables = pt1->tables;
432 	pt1_unregister_tables(pt1);
433 
434 	for (i = 0; i < pt1_nr_tables; i++)
435 		pt1_cleanup_table(pt1, &tables[i]);
436 
437 	vfree(tables);
438 }
439 
440 static int pt1_init_tables(struct pt1 *pt1)
441 {
442 	struct pt1_table *tables;
443 	int i, ret;
444 	u32 first_pfn, pfn;
445 
446 	if (!pt1_nr_tables)
447 		return 0;
448 
449 	tables = vmalloc(sizeof(struct pt1_table) * pt1_nr_tables);
450 	if (tables == NULL)
451 		return -ENOMEM;
452 
453 	pt1_init_table_count(pt1);
454 
455 	i = 0;
456 	ret = pt1_init_table(pt1, &tables[0], &first_pfn);
457 	if (ret)
458 		goto err;
459 	i++;
460 
461 	while (i < pt1_nr_tables) {
462 		ret = pt1_init_table(pt1, &tables[i], &pfn);
463 		if (ret)
464 			goto err;
465 		tables[i - 1].page->next_pfn = cpu_to_le32(pfn);
466 		i++;
467 	}
468 
469 	tables[pt1_nr_tables - 1].page->next_pfn = cpu_to_le32(first_pfn);
470 
471 	pt1_register_tables(pt1, first_pfn);
472 	pt1->tables = tables;
473 	return 0;
474 
475 err:
476 	while (i--)
477 		pt1_cleanup_table(pt1, &tables[i]);
478 
479 	vfree(tables);
480 	return ret;
481 }
482 
483 static int pt1_start_polling(struct pt1 *pt1)
484 {
485 	int ret = 0;
486 
487 	mutex_lock(&pt1->lock);
488 	if (!pt1->kthread) {
489 		pt1->kthread = kthread_run(pt1_thread, pt1, "earth-pt1");
490 		if (IS_ERR(pt1->kthread)) {
491 			ret = PTR_ERR(pt1->kthread);
492 			pt1->kthread = NULL;
493 		}
494 	}
495 	mutex_unlock(&pt1->lock);
496 	return ret;
497 }
498 
499 static int pt1_start_feed(struct dvb_demux_feed *feed)
500 {
501 	struct pt1_adapter *adap;
502 	adap = container_of(feed->demux, struct pt1_adapter, demux);
503 	if (!adap->users++) {
504 		int ret;
505 
506 		ret = pt1_start_polling(adap->pt1);
507 		if (ret)
508 			return ret;
509 		pt1_set_stream(adap->pt1, adap->index, 1);
510 	}
511 	return 0;
512 }
513 
514 static void pt1_stop_polling(struct pt1 *pt1)
515 {
516 	int i, count;
517 
518 	mutex_lock(&pt1->lock);
519 	for (i = 0, count = 0; i < PT1_NR_ADAPS; i++)
520 		count += pt1->adaps[i]->users;
521 
522 	if (count == 0 && pt1->kthread) {
523 		kthread_stop(pt1->kthread);
524 		pt1->kthread = NULL;
525 	}
526 	mutex_unlock(&pt1->lock);
527 }
528 
529 static int pt1_stop_feed(struct dvb_demux_feed *feed)
530 {
531 	struct pt1_adapter *adap;
532 	adap = container_of(feed->demux, struct pt1_adapter, demux);
533 	if (!--adap->users) {
534 		pt1_set_stream(adap->pt1, adap->index, 0);
535 		pt1_stop_polling(adap->pt1);
536 	}
537 	return 0;
538 }
539 
540 static void
541 pt1_update_power(struct pt1 *pt1)
542 {
543 	int bits;
544 	int i;
545 	struct pt1_adapter *adap;
546 	static const int sleep_bits[] = {
547 		1 << 4,
548 		1 << 6 | 1 << 7,
549 		1 << 5,
550 		1 << 6 | 1 << 8,
551 	};
552 
553 	bits = pt1->power | !pt1->reset << 3;
554 	mutex_lock(&pt1->lock);
555 	for (i = 0; i < PT1_NR_ADAPS; i++) {
556 		adap = pt1->adaps[i];
557 		switch (adap->voltage) {
558 		case SEC_VOLTAGE_13: /* actually 11V */
559 			bits |= 1 << 1;
560 			break;
561 		case SEC_VOLTAGE_18: /* actually 15V */
562 			bits |= 1 << 1 | 1 << 2;
563 			break;
564 		default:
565 			break;
566 		}
567 
568 		/* XXX: The bits should be changed depending on adap->sleep. */
569 		bits |= sleep_bits[i];
570 	}
571 	pt1_write_reg(pt1, 1, bits);
572 	mutex_unlock(&pt1->lock);
573 }
574 
575 static int pt1_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage)
576 {
577 	struct pt1_adapter *adap;
578 
579 	adap = container_of(fe->dvb, struct pt1_adapter, adap);
580 	adap->voltage = voltage;
581 	pt1_update_power(adap->pt1);
582 
583 	if (adap->orig_set_voltage)
584 		return adap->orig_set_voltage(fe, voltage);
585 	else
586 		return 0;
587 }
588 
589 static int pt1_sleep(struct dvb_frontend *fe)
590 {
591 	struct pt1_adapter *adap;
592 
593 	adap = container_of(fe->dvb, struct pt1_adapter, adap);
594 	adap->sleep = 1;
595 	pt1_update_power(adap->pt1);
596 
597 	if (adap->orig_sleep)
598 		return adap->orig_sleep(fe);
599 	else
600 		return 0;
601 }
602 
603 static int pt1_wakeup(struct dvb_frontend *fe)
604 {
605 	struct pt1_adapter *adap;
606 
607 	adap = container_of(fe->dvb, struct pt1_adapter, adap);
608 	adap->sleep = 0;
609 	pt1_update_power(adap->pt1);
610 	schedule_timeout_uninterruptible((HZ + 999) / 1000);
611 
612 	if (adap->orig_init)
613 		return adap->orig_init(fe);
614 	else
615 		return 0;
616 }
617 
618 static void pt1_free_adapter(struct pt1_adapter *adap)
619 {
620 	adap->demux.dmx.close(&adap->demux.dmx);
621 	dvb_dmxdev_release(&adap->dmxdev);
622 	dvb_dmx_release(&adap->demux);
623 	dvb_unregister_adapter(&adap->adap);
624 	free_page((unsigned long)adap->buf);
625 	kfree(adap);
626 }
627 
628 DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
629 
630 static struct pt1_adapter *
631 pt1_alloc_adapter(struct pt1 *pt1)
632 {
633 	struct pt1_adapter *adap;
634 	void *buf;
635 	struct dvb_adapter *dvb_adap;
636 	struct dvb_demux *demux;
637 	struct dmxdev *dmxdev;
638 	int ret;
639 
640 	adap = kzalloc(sizeof(struct pt1_adapter), GFP_KERNEL);
641 	if (!adap) {
642 		ret = -ENOMEM;
643 		goto err;
644 	}
645 
646 	adap->pt1 = pt1;
647 
648 	adap->voltage = SEC_VOLTAGE_OFF;
649 	adap->sleep = 1;
650 
651 	buf = (u8 *)__get_free_page(GFP_KERNEL);
652 	if (!buf) {
653 		ret = -ENOMEM;
654 		goto err_kfree;
655 	}
656 
657 	adap->buf = buf;
658 	adap->upacket_count = 0;
659 	adap->packet_count = 0;
660 	adap->st_count = -1;
661 
662 	dvb_adap = &adap->adap;
663 	dvb_adap->priv = adap;
664 	ret = dvb_register_adapter(dvb_adap, DRIVER_NAME, THIS_MODULE,
665 				   &pt1->pdev->dev, adapter_nr);
666 	if (ret < 0)
667 		goto err_free_page;
668 
669 	demux = &adap->demux;
670 	demux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING;
671 	demux->priv = adap;
672 	demux->feednum = 256;
673 	demux->filternum = 256;
674 	demux->start_feed = pt1_start_feed;
675 	demux->stop_feed = pt1_stop_feed;
676 	demux->write_to_decoder = NULL;
677 	ret = dvb_dmx_init(demux);
678 	if (ret < 0)
679 		goto err_unregister_adapter;
680 
681 	dmxdev = &adap->dmxdev;
682 	dmxdev->filternum = 256;
683 	dmxdev->demux = &demux->dmx;
684 	dmxdev->capabilities = 0;
685 	ret = dvb_dmxdev_init(dmxdev, dvb_adap);
686 	if (ret < 0)
687 		goto err_dmx_release;
688 
689 	return adap;
690 
691 err_dmx_release:
692 	dvb_dmx_release(demux);
693 err_unregister_adapter:
694 	dvb_unregister_adapter(dvb_adap);
695 err_free_page:
696 	free_page((unsigned long)buf);
697 err_kfree:
698 	kfree(adap);
699 err:
700 	return ERR_PTR(ret);
701 }
702 
703 static void pt1_cleanup_adapters(struct pt1 *pt1)
704 {
705 	int i;
706 	for (i = 0; i < PT1_NR_ADAPS; i++)
707 		pt1_free_adapter(pt1->adaps[i]);
708 }
709 
710 static int pt1_init_adapters(struct pt1 *pt1)
711 {
712 	int i;
713 	struct pt1_adapter *adap;
714 	int ret;
715 
716 	for (i = 0; i < PT1_NR_ADAPS; i++) {
717 		adap = pt1_alloc_adapter(pt1);
718 		if (IS_ERR(adap)) {
719 			ret = PTR_ERR(adap);
720 			goto err;
721 		}
722 
723 		adap->index = i;
724 		pt1->adaps[i] = adap;
725 	}
726 	return 0;
727 
728 err:
729 	while (i--)
730 		pt1_free_adapter(pt1->adaps[i]);
731 
732 	return ret;
733 }
734 
735 static void pt1_cleanup_frontend(struct pt1_adapter *adap)
736 {
737 	dvb_unregister_frontend(adap->fe);
738 }
739 
740 static int pt1_init_frontend(struct pt1_adapter *adap, struct dvb_frontend *fe)
741 {
742 	int ret;
743 
744 	adap->orig_set_voltage = fe->ops.set_voltage;
745 	adap->orig_sleep = fe->ops.sleep;
746 	adap->orig_init = fe->ops.init;
747 	fe->ops.set_voltage = pt1_set_voltage;
748 	fe->ops.sleep = pt1_sleep;
749 	fe->ops.init = pt1_wakeup;
750 
751 	ret = dvb_register_frontend(&adap->adap, fe);
752 	if (ret < 0)
753 		return ret;
754 
755 	adap->fe = fe;
756 	return 0;
757 }
758 
759 static void pt1_cleanup_frontends(struct pt1 *pt1)
760 {
761 	int i;
762 	for (i = 0; i < PT1_NR_ADAPS; i++)
763 		pt1_cleanup_frontend(pt1->adaps[i]);
764 }
765 
766 struct pt1_config {
767 	struct va1j5jf8007s_config va1j5jf8007s_config;
768 	struct va1j5jf8007t_config va1j5jf8007t_config;
769 };
770 
771 static const struct pt1_config pt1_configs[2] = {
772 	{
773 		{
774 			.demod_address = 0x1b,
775 			.frequency = VA1J5JF8007S_20MHZ,
776 		},
777 		{
778 			.demod_address = 0x1a,
779 			.frequency = VA1J5JF8007T_20MHZ,
780 		},
781 	}, {
782 		{
783 			.demod_address = 0x19,
784 			.frequency = VA1J5JF8007S_20MHZ,
785 		},
786 		{
787 			.demod_address = 0x18,
788 			.frequency = VA1J5JF8007T_20MHZ,
789 		},
790 	},
791 };
792 
793 static const struct pt1_config pt2_configs[2] = {
794 	{
795 		{
796 			.demod_address = 0x1b,
797 			.frequency = VA1J5JF8007S_25MHZ,
798 		},
799 		{
800 			.demod_address = 0x1a,
801 			.frequency = VA1J5JF8007T_25MHZ,
802 		},
803 	}, {
804 		{
805 			.demod_address = 0x19,
806 			.frequency = VA1J5JF8007S_25MHZ,
807 		},
808 		{
809 			.demod_address = 0x18,
810 			.frequency = VA1J5JF8007T_25MHZ,
811 		},
812 	},
813 };
814 
815 static int pt1_init_frontends(struct pt1 *pt1)
816 {
817 	int i, j;
818 	struct i2c_adapter *i2c_adap;
819 	const struct pt1_config *configs, *config;
820 	struct dvb_frontend *fe[4];
821 	int ret;
822 
823 	i = 0;
824 	j = 0;
825 
826 	i2c_adap = &pt1->i2c_adap;
827 	configs = pt1->pdev->device == 0x211a ? pt1_configs : pt2_configs;
828 	do {
829 		config = &configs[i / 2];
830 
831 		fe[i] = va1j5jf8007s_attach(&config->va1j5jf8007s_config,
832 					    i2c_adap);
833 		if (!fe[i]) {
834 			ret = -ENODEV; /* This does not sound nice... */
835 			goto err;
836 		}
837 		i++;
838 
839 		fe[i] = va1j5jf8007t_attach(&config->va1j5jf8007t_config,
840 					    i2c_adap);
841 		if (!fe[i]) {
842 			ret = -ENODEV;
843 			goto err;
844 		}
845 		i++;
846 
847 		ret = va1j5jf8007s_prepare(fe[i - 2]);
848 		if (ret < 0)
849 			goto err;
850 
851 		ret = va1j5jf8007t_prepare(fe[i - 1]);
852 		if (ret < 0)
853 			goto err;
854 
855 	} while (i < 4);
856 
857 	do {
858 		ret = pt1_init_frontend(pt1->adaps[j], fe[j]);
859 		if (ret < 0)
860 			goto err;
861 	} while (++j < 4);
862 
863 	return 0;
864 
865 err:
866 	while (i-- > j)
867 		fe[i]->ops.release(fe[i]);
868 
869 	while (j--)
870 		dvb_unregister_frontend(fe[j]);
871 
872 	return ret;
873 }
874 
875 static void pt1_i2c_emit(struct pt1 *pt1, int addr, int busy, int read_enable,
876 			 int clock, int data, int next_addr)
877 {
878 	pt1_write_reg(pt1, 4, addr << 18 | busy << 13 | read_enable << 12 |
879 		      !clock << 11 | !data << 10 | next_addr);
880 }
881 
882 static void pt1_i2c_write_bit(struct pt1 *pt1, int addr, int *addrp, int data)
883 {
884 	pt1_i2c_emit(pt1, addr,     1, 0, 0, data, addr + 1);
885 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, data, addr + 2);
886 	pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, data, addr + 3);
887 	*addrp = addr + 3;
888 }
889 
890 static void pt1_i2c_read_bit(struct pt1 *pt1, int addr, int *addrp)
891 {
892 	pt1_i2c_emit(pt1, addr,     1, 0, 0, 1, addr + 1);
893 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 1, addr + 2);
894 	pt1_i2c_emit(pt1, addr + 2, 1, 1, 1, 1, addr + 3);
895 	pt1_i2c_emit(pt1, addr + 3, 1, 0, 0, 1, addr + 4);
896 	*addrp = addr + 4;
897 }
898 
899 static void pt1_i2c_write_byte(struct pt1 *pt1, int addr, int *addrp, int data)
900 {
901 	int i;
902 	for (i = 0; i < 8; i++)
903 		pt1_i2c_write_bit(pt1, addr, &addr, data >> (7 - i) & 1);
904 	pt1_i2c_write_bit(pt1, addr, &addr, 1);
905 	*addrp = addr;
906 }
907 
908 static void pt1_i2c_read_byte(struct pt1 *pt1, int addr, int *addrp, int last)
909 {
910 	int i;
911 	for (i = 0; i < 8; i++)
912 		pt1_i2c_read_bit(pt1, addr, &addr);
913 	pt1_i2c_write_bit(pt1, addr, &addr, last);
914 	*addrp = addr;
915 }
916 
917 static void pt1_i2c_prepare(struct pt1 *pt1, int addr, int *addrp)
918 {
919 	pt1_i2c_emit(pt1, addr,     1, 0, 1, 1, addr + 1);
920 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
921 	pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, 0, addr + 3);
922 	*addrp = addr + 3;
923 }
924 
925 static void
926 pt1_i2c_write_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
927 {
928 	int i;
929 	pt1_i2c_prepare(pt1, addr, &addr);
930 	pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1);
931 	for (i = 0; i < msg->len; i++)
932 		pt1_i2c_write_byte(pt1, addr, &addr, msg->buf[i]);
933 	*addrp = addr;
934 }
935 
936 static void
937 pt1_i2c_read_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
938 {
939 	int i;
940 	pt1_i2c_prepare(pt1, addr, &addr);
941 	pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1 | 1);
942 	for (i = 0; i < msg->len; i++)
943 		pt1_i2c_read_byte(pt1, addr, &addr, i == msg->len - 1);
944 	*addrp = addr;
945 }
946 
947 static int pt1_i2c_end(struct pt1 *pt1, int addr)
948 {
949 	pt1_i2c_emit(pt1, addr,     1, 0, 0, 0, addr + 1);
950 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
951 	pt1_i2c_emit(pt1, addr + 2, 1, 0, 1, 1, 0);
952 
953 	pt1_write_reg(pt1, 0, 0x00000004);
954 	do {
955 		if (signal_pending(current))
956 			return -EINTR;
957 		schedule_timeout_interruptible((HZ + 999) / 1000);
958 	} while (pt1_read_reg(pt1, 0) & 0x00000080);
959 	return 0;
960 }
961 
962 static void pt1_i2c_begin(struct pt1 *pt1, int *addrp)
963 {
964 	int addr;
965 	addr = 0;
966 
967 	pt1_i2c_emit(pt1, addr,     0, 0, 1, 1, addr /* itself */);
968 	addr = addr + 1;
969 
970 	if (!pt1->i2c_running) {
971 		pt1_i2c_emit(pt1, addr,     1, 0, 1, 1, addr + 1);
972 		pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
973 		addr = addr + 2;
974 		pt1->i2c_running = 1;
975 	}
976 	*addrp = addr;
977 }
978 
979 static int pt1_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
980 {
981 	struct pt1 *pt1;
982 	int i;
983 	struct i2c_msg *msg, *next_msg;
984 	int addr, ret;
985 	u16 len;
986 	u32 word;
987 
988 	pt1 = i2c_get_adapdata(adap);
989 
990 	for (i = 0; i < num; i++) {
991 		msg = &msgs[i];
992 		if (msg->flags & I2C_M_RD)
993 			return -ENOTSUPP;
994 
995 		if (i + 1 < num)
996 			next_msg = &msgs[i + 1];
997 		else
998 			next_msg = NULL;
999 
1000 		if (next_msg && next_msg->flags & I2C_M_RD) {
1001 			i++;
1002 
1003 			len = next_msg->len;
1004 			if (len > 4)
1005 				return -ENOTSUPP;
1006 
1007 			pt1_i2c_begin(pt1, &addr);
1008 			pt1_i2c_write_msg(pt1, addr, &addr, msg);
1009 			pt1_i2c_read_msg(pt1, addr, &addr, next_msg);
1010 			ret = pt1_i2c_end(pt1, addr);
1011 			if (ret < 0)
1012 				return ret;
1013 
1014 			word = pt1_read_reg(pt1, 2);
1015 			while (len--) {
1016 				next_msg->buf[len] = word;
1017 				word >>= 8;
1018 			}
1019 		} else {
1020 			pt1_i2c_begin(pt1, &addr);
1021 			pt1_i2c_write_msg(pt1, addr, &addr, msg);
1022 			ret = pt1_i2c_end(pt1, addr);
1023 			if (ret < 0)
1024 				return ret;
1025 		}
1026 	}
1027 
1028 	return num;
1029 }
1030 
1031 static u32 pt1_i2c_func(struct i2c_adapter *adap)
1032 {
1033 	return I2C_FUNC_I2C;
1034 }
1035 
1036 static const struct i2c_algorithm pt1_i2c_algo = {
1037 	.master_xfer = pt1_i2c_xfer,
1038 	.functionality = pt1_i2c_func,
1039 };
1040 
1041 static void pt1_i2c_wait(struct pt1 *pt1)
1042 {
1043 	int i;
1044 	for (i = 0; i < 128; i++)
1045 		pt1_i2c_emit(pt1, 0, 0, 0, 1, 1, 0);
1046 }
1047 
1048 static void pt1_i2c_init(struct pt1 *pt1)
1049 {
1050 	int i;
1051 	for (i = 0; i < 1024; i++)
1052 		pt1_i2c_emit(pt1, i, 0, 0, 1, 1, 0);
1053 }
1054 
1055 static void pt1_remove(struct pci_dev *pdev)
1056 {
1057 	struct pt1 *pt1;
1058 	void __iomem *regs;
1059 
1060 	pt1 = pci_get_drvdata(pdev);
1061 	regs = pt1->regs;
1062 
1063 	if (pt1->kthread)
1064 		kthread_stop(pt1->kthread);
1065 	pt1_cleanup_tables(pt1);
1066 	pt1_cleanup_frontends(pt1);
1067 	pt1_disable_ram(pt1);
1068 	pt1->power = 0;
1069 	pt1->reset = 1;
1070 	pt1_update_power(pt1);
1071 	pt1_cleanup_adapters(pt1);
1072 	i2c_del_adapter(&pt1->i2c_adap);
1073 	kfree(pt1);
1074 	pci_iounmap(pdev, regs);
1075 	pci_release_regions(pdev);
1076 	pci_disable_device(pdev);
1077 }
1078 
1079 static int pt1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1080 {
1081 	int ret;
1082 	void __iomem *regs;
1083 	struct pt1 *pt1;
1084 	struct i2c_adapter *i2c_adap;
1085 
1086 	ret = pci_enable_device(pdev);
1087 	if (ret < 0)
1088 		goto err;
1089 
1090 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1091 	if (ret < 0)
1092 		goto err_pci_disable_device;
1093 
1094 	pci_set_master(pdev);
1095 
1096 	ret = pci_request_regions(pdev, DRIVER_NAME);
1097 	if (ret < 0)
1098 		goto err_pci_disable_device;
1099 
1100 	regs = pci_iomap(pdev, 0, 0);
1101 	if (!regs) {
1102 		ret = -EIO;
1103 		goto err_pci_release_regions;
1104 	}
1105 
1106 	pt1 = kzalloc(sizeof(struct pt1), GFP_KERNEL);
1107 	if (!pt1) {
1108 		ret = -ENOMEM;
1109 		goto err_pci_iounmap;
1110 	}
1111 
1112 	mutex_init(&pt1->lock);
1113 	pt1->pdev = pdev;
1114 	pt1->regs = regs;
1115 	pci_set_drvdata(pdev, pt1);
1116 
1117 	ret = pt1_init_adapters(pt1);
1118 	if (ret < 0)
1119 		goto err_kfree;
1120 
1121 	mutex_init(&pt1->lock);
1122 
1123 	pt1->power = 0;
1124 	pt1->reset = 1;
1125 	pt1_update_power(pt1);
1126 
1127 	i2c_adap = &pt1->i2c_adap;
1128 	i2c_adap->algo = &pt1_i2c_algo;
1129 	i2c_adap->algo_data = NULL;
1130 	i2c_adap->dev.parent = &pdev->dev;
1131 	strcpy(i2c_adap->name, DRIVER_NAME);
1132 	i2c_set_adapdata(i2c_adap, pt1);
1133 	ret = i2c_add_adapter(i2c_adap);
1134 	if (ret < 0)
1135 		goto err_pt1_cleanup_adapters;
1136 
1137 	pt1_i2c_init(pt1);
1138 	pt1_i2c_wait(pt1);
1139 
1140 	ret = pt1_sync(pt1);
1141 	if (ret < 0)
1142 		goto err_i2c_del_adapter;
1143 
1144 	pt1_identify(pt1);
1145 
1146 	ret = pt1_unlock(pt1);
1147 	if (ret < 0)
1148 		goto err_i2c_del_adapter;
1149 
1150 	ret = pt1_reset_pci(pt1);
1151 	if (ret < 0)
1152 		goto err_i2c_del_adapter;
1153 
1154 	ret = pt1_reset_ram(pt1);
1155 	if (ret < 0)
1156 		goto err_i2c_del_adapter;
1157 
1158 	ret = pt1_enable_ram(pt1);
1159 	if (ret < 0)
1160 		goto err_i2c_del_adapter;
1161 
1162 	pt1_init_streams(pt1);
1163 
1164 	pt1->power = 1;
1165 	pt1_update_power(pt1);
1166 	schedule_timeout_uninterruptible((HZ + 49) / 50);
1167 
1168 	pt1->reset = 0;
1169 	pt1_update_power(pt1);
1170 	schedule_timeout_uninterruptible((HZ + 999) / 1000);
1171 
1172 	ret = pt1_init_frontends(pt1);
1173 	if (ret < 0)
1174 		goto err_pt1_disable_ram;
1175 
1176 	ret = pt1_init_tables(pt1);
1177 	if (ret < 0)
1178 		goto err_pt1_cleanup_frontends;
1179 
1180 	return 0;
1181 
1182 err_pt1_cleanup_frontends:
1183 	pt1_cleanup_frontends(pt1);
1184 err_pt1_disable_ram:
1185 	pt1_disable_ram(pt1);
1186 	pt1->power = 0;
1187 	pt1->reset = 1;
1188 	pt1_update_power(pt1);
1189 err_i2c_del_adapter:
1190 	i2c_del_adapter(i2c_adap);
1191 err_pt1_cleanup_adapters:
1192 	pt1_cleanup_adapters(pt1);
1193 err_kfree:
1194 	kfree(pt1);
1195 err_pci_iounmap:
1196 	pci_iounmap(pdev, regs);
1197 err_pci_release_regions:
1198 	pci_release_regions(pdev);
1199 err_pci_disable_device:
1200 	pci_disable_device(pdev);
1201 err:
1202 	return ret;
1203 
1204 }
1205 
1206 static const struct pci_device_id pt1_id_table[] = {
1207 	{ PCI_DEVICE(0x10ee, 0x211a) },
1208 	{ PCI_DEVICE(0x10ee, 0x222a) },
1209 	{ },
1210 };
1211 MODULE_DEVICE_TABLE(pci, pt1_id_table);
1212 
1213 static struct pci_driver pt1_driver = {
1214 	.name		= DRIVER_NAME,
1215 	.probe		= pt1_probe,
1216 	.remove		= pt1_remove,
1217 	.id_table	= pt1_id_table,
1218 };
1219 
1220 module_pci_driver(pt1_driver);
1221 
1222 MODULE_AUTHOR("Takahito HIRANO <hiranotaka@zng.info>");
1223 MODULE_DESCRIPTION("Earthsoft PT1/PT2 Driver");
1224 MODULE_LICENSE("GPL");
1225