xref: /openbmc/linux/drivers/media/pci/pt1/pt1.c (revision 68198dca)
1 /*
2  * driver for Earthsoft PT1/PT2
3  *
4  * Copyright (C) 2009 HIRANO Takahito <hiranotaka@zng.info>
5  *
6  * based on pt1dvr - http://pt1dvr.sourceforge.jp/
7  * 	by Tomoaki Ishikawa <tomy@users.sourceforge.jp>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/sched/signal.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/pci.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/ratelimit.h>
29 
30 #include "dvbdev.h"
31 #include "dvb_demux.h"
32 #include "dmxdev.h"
33 #include "dvb_net.h"
34 #include "dvb_frontend.h"
35 
36 #include "va1j5jf8007t.h"
37 #include "va1j5jf8007s.h"
38 
39 #define DRIVER_NAME "earth-pt1"
40 
41 #define PT1_PAGE_SHIFT 12
42 #define PT1_PAGE_SIZE (1 << PT1_PAGE_SHIFT)
43 #define PT1_NR_UPACKETS 1024
44 #define PT1_NR_BUFS 511
45 
46 struct pt1_buffer_page {
47 	__le32 upackets[PT1_NR_UPACKETS];
48 };
49 
50 struct pt1_table_page {
51 	__le32 next_pfn;
52 	__le32 buf_pfns[PT1_NR_BUFS];
53 };
54 
55 struct pt1_buffer {
56 	struct pt1_buffer_page *page;
57 	dma_addr_t addr;
58 };
59 
60 struct pt1_table {
61 	struct pt1_table_page *page;
62 	dma_addr_t addr;
63 	struct pt1_buffer bufs[PT1_NR_BUFS];
64 };
65 
66 #define PT1_NR_ADAPS 4
67 
68 struct pt1_adapter;
69 
70 struct pt1 {
71 	struct pci_dev *pdev;
72 	void __iomem *regs;
73 	struct i2c_adapter i2c_adap;
74 	int i2c_running;
75 	struct pt1_adapter *adaps[PT1_NR_ADAPS];
76 	struct pt1_table *tables;
77 	struct task_struct *kthread;
78 	int table_index;
79 	int buf_index;
80 
81 	struct mutex lock;
82 	int power;
83 	int reset;
84 };
85 
86 struct pt1_adapter {
87 	struct pt1 *pt1;
88 	int index;
89 
90 	u8 *buf;
91 	int upacket_count;
92 	int packet_count;
93 	int st_count;
94 
95 	struct dvb_adapter adap;
96 	struct dvb_demux demux;
97 	int users;
98 	struct dmxdev dmxdev;
99 	struct dvb_frontend *fe;
100 	int (*orig_set_voltage)(struct dvb_frontend *fe,
101 				enum fe_sec_voltage voltage);
102 	int (*orig_sleep)(struct dvb_frontend *fe);
103 	int (*orig_init)(struct dvb_frontend *fe);
104 
105 	enum fe_sec_voltage voltage;
106 	int sleep;
107 };
108 
109 static void pt1_write_reg(struct pt1 *pt1, int reg, u32 data)
110 {
111 	writel(data, pt1->regs + reg * 4);
112 }
113 
114 static u32 pt1_read_reg(struct pt1 *pt1, int reg)
115 {
116 	return readl(pt1->regs + reg * 4);
117 }
118 
119 static int pt1_nr_tables = 8;
120 module_param_named(nr_tables, pt1_nr_tables, int, 0);
121 
122 static void pt1_increment_table_count(struct pt1 *pt1)
123 {
124 	pt1_write_reg(pt1, 0, 0x00000020);
125 }
126 
127 static void pt1_init_table_count(struct pt1 *pt1)
128 {
129 	pt1_write_reg(pt1, 0, 0x00000010);
130 }
131 
132 static void pt1_register_tables(struct pt1 *pt1, u32 first_pfn)
133 {
134 	pt1_write_reg(pt1, 5, first_pfn);
135 	pt1_write_reg(pt1, 0, 0x0c000040);
136 }
137 
138 static void pt1_unregister_tables(struct pt1 *pt1)
139 {
140 	pt1_write_reg(pt1, 0, 0x08080000);
141 }
142 
143 static int pt1_sync(struct pt1 *pt1)
144 {
145 	int i;
146 	for (i = 0; i < 57; i++) {
147 		if (pt1_read_reg(pt1, 0) & 0x20000000)
148 			return 0;
149 		pt1_write_reg(pt1, 0, 0x00000008);
150 	}
151 	dev_err(&pt1->pdev->dev, "could not sync\n");
152 	return -EIO;
153 }
154 
155 static u64 pt1_identify(struct pt1 *pt1)
156 {
157 	int i;
158 	u64 id;
159 	id = 0;
160 	for (i = 0; i < 57; i++) {
161 		id |= (u64)(pt1_read_reg(pt1, 0) >> 30 & 1) << i;
162 		pt1_write_reg(pt1, 0, 0x00000008);
163 	}
164 	return id;
165 }
166 
167 static int pt1_unlock(struct pt1 *pt1)
168 {
169 	int i;
170 	pt1_write_reg(pt1, 0, 0x00000008);
171 	for (i = 0; i < 3; i++) {
172 		if (pt1_read_reg(pt1, 0) & 0x80000000)
173 			return 0;
174 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
175 	}
176 	dev_err(&pt1->pdev->dev, "could not unlock\n");
177 	return -EIO;
178 }
179 
180 static int pt1_reset_pci(struct pt1 *pt1)
181 {
182 	int i;
183 	pt1_write_reg(pt1, 0, 0x01010000);
184 	pt1_write_reg(pt1, 0, 0x01000000);
185 	for (i = 0; i < 10; i++) {
186 		if (pt1_read_reg(pt1, 0) & 0x00000001)
187 			return 0;
188 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
189 	}
190 	dev_err(&pt1->pdev->dev, "could not reset PCI\n");
191 	return -EIO;
192 }
193 
194 static int pt1_reset_ram(struct pt1 *pt1)
195 {
196 	int i;
197 	pt1_write_reg(pt1, 0, 0x02020000);
198 	pt1_write_reg(pt1, 0, 0x02000000);
199 	for (i = 0; i < 10; i++) {
200 		if (pt1_read_reg(pt1, 0) & 0x00000002)
201 			return 0;
202 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
203 	}
204 	dev_err(&pt1->pdev->dev, "could not reset RAM\n");
205 	return -EIO;
206 }
207 
208 static int pt1_do_enable_ram(struct pt1 *pt1)
209 {
210 	int i, j;
211 	u32 status;
212 	status = pt1_read_reg(pt1, 0) & 0x00000004;
213 	pt1_write_reg(pt1, 0, 0x00000002);
214 	for (i = 0; i < 10; i++) {
215 		for (j = 0; j < 1024; j++) {
216 			if ((pt1_read_reg(pt1, 0) & 0x00000004) != status)
217 				return 0;
218 		}
219 		schedule_timeout_uninterruptible((HZ + 999) / 1000);
220 	}
221 	dev_err(&pt1->pdev->dev, "could not enable RAM\n");
222 	return -EIO;
223 }
224 
225 static int pt1_enable_ram(struct pt1 *pt1)
226 {
227 	int i, ret;
228 	int phase;
229 	schedule_timeout_uninterruptible((HZ + 999) / 1000);
230 	phase = pt1->pdev->device == 0x211a ? 128 : 166;
231 	for (i = 0; i < phase; i++) {
232 		ret = pt1_do_enable_ram(pt1);
233 		if (ret < 0)
234 			return ret;
235 	}
236 	return 0;
237 }
238 
239 static void pt1_disable_ram(struct pt1 *pt1)
240 {
241 	pt1_write_reg(pt1, 0, 0x0b0b0000);
242 }
243 
244 static void pt1_set_stream(struct pt1 *pt1, int index, int enabled)
245 {
246 	pt1_write_reg(pt1, 2, 1 << (index + 8) | enabled << index);
247 }
248 
249 static void pt1_init_streams(struct pt1 *pt1)
250 {
251 	int i;
252 	for (i = 0; i < PT1_NR_ADAPS; i++)
253 		pt1_set_stream(pt1, i, 0);
254 }
255 
256 static int pt1_filter(struct pt1 *pt1, struct pt1_buffer_page *page)
257 {
258 	u32 upacket;
259 	int i;
260 	int index;
261 	struct pt1_adapter *adap;
262 	int offset;
263 	u8 *buf;
264 	int sc;
265 
266 	if (!page->upackets[PT1_NR_UPACKETS - 1])
267 		return 0;
268 
269 	for (i = 0; i < PT1_NR_UPACKETS; i++) {
270 		upacket = le32_to_cpu(page->upackets[i]);
271 		index = (upacket >> 29) - 1;
272 		if (index < 0 || index >=  PT1_NR_ADAPS)
273 			continue;
274 
275 		adap = pt1->adaps[index];
276 		if (upacket >> 25 & 1)
277 			adap->upacket_count = 0;
278 		else if (!adap->upacket_count)
279 			continue;
280 
281 		if (upacket >> 24 & 1)
282 			printk_ratelimited(KERN_INFO "earth-pt1: device buffer overflowing. table[%d] buf[%d]\n",
283 				pt1->table_index, pt1->buf_index);
284 		sc = upacket >> 26 & 0x7;
285 		if (adap->st_count != -1 && sc != ((adap->st_count + 1) & 0x7))
286 			printk_ratelimited(KERN_INFO "earth-pt1: data loss in streamID(adapter)[%d]\n",
287 					   index);
288 		adap->st_count = sc;
289 
290 		buf = adap->buf;
291 		offset = adap->packet_count * 188 + adap->upacket_count * 3;
292 		buf[offset] = upacket >> 16;
293 		buf[offset + 1] = upacket >> 8;
294 		if (adap->upacket_count != 62)
295 			buf[offset + 2] = upacket;
296 
297 		if (++adap->upacket_count >= 63) {
298 			adap->upacket_count = 0;
299 			if (++adap->packet_count >= 21) {
300 				dvb_dmx_swfilter_packets(&adap->demux, buf, 21);
301 				adap->packet_count = 0;
302 			}
303 		}
304 	}
305 
306 	page->upackets[PT1_NR_UPACKETS - 1] = 0;
307 	return 1;
308 }
309 
310 static int pt1_thread(void *data)
311 {
312 	struct pt1 *pt1;
313 	struct pt1_buffer_page *page;
314 
315 	pt1 = data;
316 	set_freezable();
317 
318 	while (!kthread_should_stop()) {
319 		try_to_freeze();
320 
321 		page = pt1->tables[pt1->table_index].bufs[pt1->buf_index].page;
322 		if (!pt1_filter(pt1, page)) {
323 			schedule_timeout_interruptible((HZ + 999) / 1000);
324 			continue;
325 		}
326 
327 		if (++pt1->buf_index >= PT1_NR_BUFS) {
328 			pt1_increment_table_count(pt1);
329 			pt1->buf_index = 0;
330 			if (++pt1->table_index >= pt1_nr_tables)
331 				pt1->table_index = 0;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 static void pt1_free_page(struct pt1 *pt1, void *page, dma_addr_t addr)
339 {
340 	dma_free_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, page, addr);
341 }
342 
343 static void *pt1_alloc_page(struct pt1 *pt1, dma_addr_t *addrp, u32 *pfnp)
344 {
345 	void *page;
346 	dma_addr_t addr;
347 
348 	page = dma_alloc_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, &addr,
349 				  GFP_KERNEL);
350 	if (page == NULL)
351 		return NULL;
352 
353 	BUG_ON(addr & (PT1_PAGE_SIZE - 1));
354 	BUG_ON(addr >> PT1_PAGE_SHIFT >> 31 >> 1);
355 
356 	*addrp = addr;
357 	*pfnp = addr >> PT1_PAGE_SHIFT;
358 	return page;
359 }
360 
361 static void pt1_cleanup_buffer(struct pt1 *pt1, struct pt1_buffer *buf)
362 {
363 	pt1_free_page(pt1, buf->page, buf->addr);
364 }
365 
366 static int
367 pt1_init_buffer(struct pt1 *pt1, struct pt1_buffer *buf,  u32 *pfnp)
368 {
369 	struct pt1_buffer_page *page;
370 	dma_addr_t addr;
371 
372 	page = pt1_alloc_page(pt1, &addr, pfnp);
373 	if (page == NULL)
374 		return -ENOMEM;
375 
376 	page->upackets[PT1_NR_UPACKETS - 1] = 0;
377 
378 	buf->page = page;
379 	buf->addr = addr;
380 	return 0;
381 }
382 
383 static void pt1_cleanup_table(struct pt1 *pt1, struct pt1_table *table)
384 {
385 	int i;
386 
387 	for (i = 0; i < PT1_NR_BUFS; i++)
388 		pt1_cleanup_buffer(pt1, &table->bufs[i]);
389 
390 	pt1_free_page(pt1, table->page, table->addr);
391 }
392 
393 static int
394 pt1_init_table(struct pt1 *pt1, struct pt1_table *table, u32 *pfnp)
395 {
396 	struct pt1_table_page *page;
397 	dma_addr_t addr;
398 	int i, ret;
399 	u32 buf_pfn;
400 
401 	page = pt1_alloc_page(pt1, &addr, pfnp);
402 	if (page == NULL)
403 		return -ENOMEM;
404 
405 	for (i = 0; i < PT1_NR_BUFS; i++) {
406 		ret = pt1_init_buffer(pt1, &table->bufs[i], &buf_pfn);
407 		if (ret < 0)
408 			goto err;
409 
410 		page->buf_pfns[i] = cpu_to_le32(buf_pfn);
411 	}
412 
413 	pt1_increment_table_count(pt1);
414 	table->page = page;
415 	table->addr = addr;
416 	return 0;
417 
418 err:
419 	while (i--)
420 		pt1_cleanup_buffer(pt1, &table->bufs[i]);
421 
422 	pt1_free_page(pt1, page, addr);
423 	return ret;
424 }
425 
426 static void pt1_cleanup_tables(struct pt1 *pt1)
427 {
428 	struct pt1_table *tables;
429 	int i;
430 
431 	tables = pt1->tables;
432 	pt1_unregister_tables(pt1);
433 
434 	for (i = 0; i < pt1_nr_tables; i++)
435 		pt1_cleanup_table(pt1, &tables[i]);
436 
437 	vfree(tables);
438 }
439 
440 static int pt1_init_tables(struct pt1 *pt1)
441 {
442 	struct pt1_table *tables;
443 	int i, ret;
444 	u32 first_pfn, pfn;
445 
446 	tables = vmalloc(sizeof(struct pt1_table) * pt1_nr_tables);
447 	if (tables == NULL)
448 		return -ENOMEM;
449 
450 	pt1_init_table_count(pt1);
451 
452 	i = 0;
453 	if (pt1_nr_tables) {
454 		ret = pt1_init_table(pt1, &tables[0], &first_pfn);
455 		if (ret)
456 			goto err;
457 		i++;
458 	}
459 
460 	while (i < pt1_nr_tables) {
461 		ret = pt1_init_table(pt1, &tables[i], &pfn);
462 		if (ret)
463 			goto err;
464 		tables[i - 1].page->next_pfn = cpu_to_le32(pfn);
465 		i++;
466 	}
467 
468 	tables[pt1_nr_tables - 1].page->next_pfn = cpu_to_le32(first_pfn);
469 
470 	pt1_register_tables(pt1, first_pfn);
471 	pt1->tables = tables;
472 	return 0;
473 
474 err:
475 	while (i--)
476 		pt1_cleanup_table(pt1, &tables[i]);
477 
478 	vfree(tables);
479 	return ret;
480 }
481 
482 static int pt1_start_polling(struct pt1 *pt1)
483 {
484 	int ret = 0;
485 
486 	mutex_lock(&pt1->lock);
487 	if (!pt1->kthread) {
488 		pt1->kthread = kthread_run(pt1_thread, pt1, "earth-pt1");
489 		if (IS_ERR(pt1->kthread)) {
490 			ret = PTR_ERR(pt1->kthread);
491 			pt1->kthread = NULL;
492 		}
493 	}
494 	mutex_unlock(&pt1->lock);
495 	return ret;
496 }
497 
498 static int pt1_start_feed(struct dvb_demux_feed *feed)
499 {
500 	struct pt1_adapter *adap;
501 	adap = container_of(feed->demux, struct pt1_adapter, demux);
502 	if (!adap->users++) {
503 		int ret;
504 
505 		ret = pt1_start_polling(adap->pt1);
506 		if (ret)
507 			return ret;
508 		pt1_set_stream(adap->pt1, adap->index, 1);
509 	}
510 	return 0;
511 }
512 
513 static void pt1_stop_polling(struct pt1 *pt1)
514 {
515 	int i, count;
516 
517 	mutex_lock(&pt1->lock);
518 	for (i = 0, count = 0; i < PT1_NR_ADAPS; i++)
519 		count += pt1->adaps[i]->users;
520 
521 	if (count == 0 && pt1->kthread) {
522 		kthread_stop(pt1->kthread);
523 		pt1->kthread = NULL;
524 	}
525 	mutex_unlock(&pt1->lock);
526 }
527 
528 static int pt1_stop_feed(struct dvb_demux_feed *feed)
529 {
530 	struct pt1_adapter *adap;
531 	adap = container_of(feed->demux, struct pt1_adapter, demux);
532 	if (!--adap->users) {
533 		pt1_set_stream(adap->pt1, adap->index, 0);
534 		pt1_stop_polling(adap->pt1);
535 	}
536 	return 0;
537 }
538 
539 static void
540 pt1_update_power(struct pt1 *pt1)
541 {
542 	int bits;
543 	int i;
544 	struct pt1_adapter *adap;
545 	static const int sleep_bits[] = {
546 		1 << 4,
547 		1 << 6 | 1 << 7,
548 		1 << 5,
549 		1 << 6 | 1 << 8,
550 	};
551 
552 	bits = pt1->power | !pt1->reset << 3;
553 	mutex_lock(&pt1->lock);
554 	for (i = 0; i < PT1_NR_ADAPS; i++) {
555 		adap = pt1->adaps[i];
556 		switch (adap->voltage) {
557 		case SEC_VOLTAGE_13: /* actually 11V */
558 			bits |= 1 << 1;
559 			break;
560 		case SEC_VOLTAGE_18: /* actually 15V */
561 			bits |= 1 << 1 | 1 << 2;
562 			break;
563 		default:
564 			break;
565 		}
566 
567 		/* XXX: The bits should be changed depending on adap->sleep. */
568 		bits |= sleep_bits[i];
569 	}
570 	pt1_write_reg(pt1, 1, bits);
571 	mutex_unlock(&pt1->lock);
572 }
573 
574 static int pt1_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage)
575 {
576 	struct pt1_adapter *adap;
577 
578 	adap = container_of(fe->dvb, struct pt1_adapter, adap);
579 	adap->voltage = voltage;
580 	pt1_update_power(adap->pt1);
581 
582 	if (adap->orig_set_voltage)
583 		return adap->orig_set_voltage(fe, voltage);
584 	else
585 		return 0;
586 }
587 
588 static int pt1_sleep(struct dvb_frontend *fe)
589 {
590 	struct pt1_adapter *adap;
591 
592 	adap = container_of(fe->dvb, struct pt1_adapter, adap);
593 	adap->sleep = 1;
594 	pt1_update_power(adap->pt1);
595 
596 	if (adap->orig_sleep)
597 		return adap->orig_sleep(fe);
598 	else
599 		return 0;
600 }
601 
602 static int pt1_wakeup(struct dvb_frontend *fe)
603 {
604 	struct pt1_adapter *adap;
605 
606 	adap = container_of(fe->dvb, struct pt1_adapter, adap);
607 	adap->sleep = 0;
608 	pt1_update_power(adap->pt1);
609 	schedule_timeout_uninterruptible((HZ + 999) / 1000);
610 
611 	if (adap->orig_init)
612 		return adap->orig_init(fe);
613 	else
614 		return 0;
615 }
616 
617 static void pt1_free_adapter(struct pt1_adapter *adap)
618 {
619 	adap->demux.dmx.close(&adap->demux.dmx);
620 	dvb_dmxdev_release(&adap->dmxdev);
621 	dvb_dmx_release(&adap->demux);
622 	dvb_unregister_adapter(&adap->adap);
623 	free_page((unsigned long)adap->buf);
624 	kfree(adap);
625 }
626 
627 DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
628 
629 static struct pt1_adapter *
630 pt1_alloc_adapter(struct pt1 *pt1)
631 {
632 	struct pt1_adapter *adap;
633 	void *buf;
634 	struct dvb_adapter *dvb_adap;
635 	struct dvb_demux *demux;
636 	struct dmxdev *dmxdev;
637 	int ret;
638 
639 	adap = kzalloc(sizeof(struct pt1_adapter), GFP_KERNEL);
640 	if (!adap) {
641 		ret = -ENOMEM;
642 		goto err;
643 	}
644 
645 	adap->pt1 = pt1;
646 
647 	adap->voltage = SEC_VOLTAGE_OFF;
648 	adap->sleep = 1;
649 
650 	buf = (u8 *)__get_free_page(GFP_KERNEL);
651 	if (!buf) {
652 		ret = -ENOMEM;
653 		goto err_kfree;
654 	}
655 
656 	adap->buf = buf;
657 	adap->upacket_count = 0;
658 	adap->packet_count = 0;
659 	adap->st_count = -1;
660 
661 	dvb_adap = &adap->adap;
662 	dvb_adap->priv = adap;
663 	ret = dvb_register_adapter(dvb_adap, DRIVER_NAME, THIS_MODULE,
664 				   &pt1->pdev->dev, adapter_nr);
665 	if (ret < 0)
666 		goto err_free_page;
667 
668 	demux = &adap->demux;
669 	demux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING;
670 	demux->priv = adap;
671 	demux->feednum = 256;
672 	demux->filternum = 256;
673 	demux->start_feed = pt1_start_feed;
674 	demux->stop_feed = pt1_stop_feed;
675 	demux->write_to_decoder = NULL;
676 	ret = dvb_dmx_init(demux);
677 	if (ret < 0)
678 		goto err_unregister_adapter;
679 
680 	dmxdev = &adap->dmxdev;
681 	dmxdev->filternum = 256;
682 	dmxdev->demux = &demux->dmx;
683 	dmxdev->capabilities = 0;
684 	ret = dvb_dmxdev_init(dmxdev, dvb_adap);
685 	if (ret < 0)
686 		goto err_dmx_release;
687 
688 	return adap;
689 
690 err_dmx_release:
691 	dvb_dmx_release(demux);
692 err_unregister_adapter:
693 	dvb_unregister_adapter(dvb_adap);
694 err_free_page:
695 	free_page((unsigned long)buf);
696 err_kfree:
697 	kfree(adap);
698 err:
699 	return ERR_PTR(ret);
700 }
701 
702 static void pt1_cleanup_adapters(struct pt1 *pt1)
703 {
704 	int i;
705 	for (i = 0; i < PT1_NR_ADAPS; i++)
706 		pt1_free_adapter(pt1->adaps[i]);
707 }
708 
709 static int pt1_init_adapters(struct pt1 *pt1)
710 {
711 	int i;
712 	struct pt1_adapter *adap;
713 	int ret;
714 
715 	for (i = 0; i < PT1_NR_ADAPS; i++) {
716 		adap = pt1_alloc_adapter(pt1);
717 		if (IS_ERR(adap)) {
718 			ret = PTR_ERR(adap);
719 			goto err;
720 		}
721 
722 		adap->index = i;
723 		pt1->adaps[i] = adap;
724 	}
725 	return 0;
726 
727 err:
728 	while (i--)
729 		pt1_free_adapter(pt1->adaps[i]);
730 
731 	return ret;
732 }
733 
734 static void pt1_cleanup_frontend(struct pt1_adapter *adap)
735 {
736 	dvb_unregister_frontend(adap->fe);
737 }
738 
739 static int pt1_init_frontend(struct pt1_adapter *adap, struct dvb_frontend *fe)
740 {
741 	int ret;
742 
743 	adap->orig_set_voltage = fe->ops.set_voltage;
744 	adap->orig_sleep = fe->ops.sleep;
745 	adap->orig_init = fe->ops.init;
746 	fe->ops.set_voltage = pt1_set_voltage;
747 	fe->ops.sleep = pt1_sleep;
748 	fe->ops.init = pt1_wakeup;
749 
750 	ret = dvb_register_frontend(&adap->adap, fe);
751 	if (ret < 0)
752 		return ret;
753 
754 	adap->fe = fe;
755 	return 0;
756 }
757 
758 static void pt1_cleanup_frontends(struct pt1 *pt1)
759 {
760 	int i;
761 	for (i = 0; i < PT1_NR_ADAPS; i++)
762 		pt1_cleanup_frontend(pt1->adaps[i]);
763 }
764 
765 struct pt1_config {
766 	struct va1j5jf8007s_config va1j5jf8007s_config;
767 	struct va1j5jf8007t_config va1j5jf8007t_config;
768 };
769 
770 static const struct pt1_config pt1_configs[2] = {
771 	{
772 		{
773 			.demod_address = 0x1b,
774 			.frequency = VA1J5JF8007S_20MHZ,
775 		},
776 		{
777 			.demod_address = 0x1a,
778 			.frequency = VA1J5JF8007T_20MHZ,
779 		},
780 	}, {
781 		{
782 			.demod_address = 0x19,
783 			.frequency = VA1J5JF8007S_20MHZ,
784 		},
785 		{
786 			.demod_address = 0x18,
787 			.frequency = VA1J5JF8007T_20MHZ,
788 		},
789 	},
790 };
791 
792 static const struct pt1_config pt2_configs[2] = {
793 	{
794 		{
795 			.demod_address = 0x1b,
796 			.frequency = VA1J5JF8007S_25MHZ,
797 		},
798 		{
799 			.demod_address = 0x1a,
800 			.frequency = VA1J5JF8007T_25MHZ,
801 		},
802 	}, {
803 		{
804 			.demod_address = 0x19,
805 			.frequency = VA1J5JF8007S_25MHZ,
806 		},
807 		{
808 			.demod_address = 0x18,
809 			.frequency = VA1J5JF8007T_25MHZ,
810 		},
811 	},
812 };
813 
814 static int pt1_init_frontends(struct pt1 *pt1)
815 {
816 	int i, j;
817 	struct i2c_adapter *i2c_adap;
818 	const struct pt1_config *configs, *config;
819 	struct dvb_frontend *fe[4];
820 	int ret;
821 
822 	i = 0;
823 	j = 0;
824 
825 	i2c_adap = &pt1->i2c_adap;
826 	configs = pt1->pdev->device == 0x211a ? pt1_configs : pt2_configs;
827 	do {
828 		config = &configs[i / 2];
829 
830 		fe[i] = va1j5jf8007s_attach(&config->va1j5jf8007s_config,
831 					    i2c_adap);
832 		if (!fe[i]) {
833 			ret = -ENODEV; /* This does not sound nice... */
834 			goto err;
835 		}
836 		i++;
837 
838 		fe[i] = va1j5jf8007t_attach(&config->va1j5jf8007t_config,
839 					    i2c_adap);
840 		if (!fe[i]) {
841 			ret = -ENODEV;
842 			goto err;
843 		}
844 		i++;
845 
846 		ret = va1j5jf8007s_prepare(fe[i - 2]);
847 		if (ret < 0)
848 			goto err;
849 
850 		ret = va1j5jf8007t_prepare(fe[i - 1]);
851 		if (ret < 0)
852 			goto err;
853 
854 	} while (i < 4);
855 
856 	do {
857 		ret = pt1_init_frontend(pt1->adaps[j], fe[j]);
858 		if (ret < 0)
859 			goto err;
860 	} while (++j < 4);
861 
862 	return 0;
863 
864 err:
865 	while (i-- > j)
866 		fe[i]->ops.release(fe[i]);
867 
868 	while (j--)
869 		dvb_unregister_frontend(fe[j]);
870 
871 	return ret;
872 }
873 
874 static void pt1_i2c_emit(struct pt1 *pt1, int addr, int busy, int read_enable,
875 			 int clock, int data, int next_addr)
876 {
877 	pt1_write_reg(pt1, 4, addr << 18 | busy << 13 | read_enable << 12 |
878 		      !clock << 11 | !data << 10 | next_addr);
879 }
880 
881 static void pt1_i2c_write_bit(struct pt1 *pt1, int addr, int *addrp, int data)
882 {
883 	pt1_i2c_emit(pt1, addr,     1, 0, 0, data, addr + 1);
884 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, data, addr + 2);
885 	pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, data, addr + 3);
886 	*addrp = addr + 3;
887 }
888 
889 static void pt1_i2c_read_bit(struct pt1 *pt1, int addr, int *addrp)
890 {
891 	pt1_i2c_emit(pt1, addr,     1, 0, 0, 1, addr + 1);
892 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 1, addr + 2);
893 	pt1_i2c_emit(pt1, addr + 2, 1, 1, 1, 1, addr + 3);
894 	pt1_i2c_emit(pt1, addr + 3, 1, 0, 0, 1, addr + 4);
895 	*addrp = addr + 4;
896 }
897 
898 static void pt1_i2c_write_byte(struct pt1 *pt1, int addr, int *addrp, int data)
899 {
900 	int i;
901 	for (i = 0; i < 8; i++)
902 		pt1_i2c_write_bit(pt1, addr, &addr, data >> (7 - i) & 1);
903 	pt1_i2c_write_bit(pt1, addr, &addr, 1);
904 	*addrp = addr;
905 }
906 
907 static void pt1_i2c_read_byte(struct pt1 *pt1, int addr, int *addrp, int last)
908 {
909 	int i;
910 	for (i = 0; i < 8; i++)
911 		pt1_i2c_read_bit(pt1, addr, &addr);
912 	pt1_i2c_write_bit(pt1, addr, &addr, last);
913 	*addrp = addr;
914 }
915 
916 static void pt1_i2c_prepare(struct pt1 *pt1, int addr, int *addrp)
917 {
918 	pt1_i2c_emit(pt1, addr,     1, 0, 1, 1, addr + 1);
919 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
920 	pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, 0, addr + 3);
921 	*addrp = addr + 3;
922 }
923 
924 static void
925 pt1_i2c_write_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
926 {
927 	int i;
928 	pt1_i2c_prepare(pt1, addr, &addr);
929 	pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1);
930 	for (i = 0; i < msg->len; i++)
931 		pt1_i2c_write_byte(pt1, addr, &addr, msg->buf[i]);
932 	*addrp = addr;
933 }
934 
935 static void
936 pt1_i2c_read_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
937 {
938 	int i;
939 	pt1_i2c_prepare(pt1, addr, &addr);
940 	pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1 | 1);
941 	for (i = 0; i < msg->len; i++)
942 		pt1_i2c_read_byte(pt1, addr, &addr, i == msg->len - 1);
943 	*addrp = addr;
944 }
945 
946 static int pt1_i2c_end(struct pt1 *pt1, int addr)
947 {
948 	pt1_i2c_emit(pt1, addr,     1, 0, 0, 0, addr + 1);
949 	pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
950 	pt1_i2c_emit(pt1, addr + 2, 1, 0, 1, 1, 0);
951 
952 	pt1_write_reg(pt1, 0, 0x00000004);
953 	do {
954 		if (signal_pending(current))
955 			return -EINTR;
956 		schedule_timeout_interruptible((HZ + 999) / 1000);
957 	} while (pt1_read_reg(pt1, 0) & 0x00000080);
958 	return 0;
959 }
960 
961 static void pt1_i2c_begin(struct pt1 *pt1, int *addrp)
962 {
963 	int addr;
964 	addr = 0;
965 
966 	pt1_i2c_emit(pt1, addr,     0, 0, 1, 1, addr /* itself */);
967 	addr = addr + 1;
968 
969 	if (!pt1->i2c_running) {
970 		pt1_i2c_emit(pt1, addr,     1, 0, 1, 1, addr + 1);
971 		pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
972 		addr = addr + 2;
973 		pt1->i2c_running = 1;
974 	}
975 	*addrp = addr;
976 }
977 
978 static int pt1_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
979 {
980 	struct pt1 *pt1;
981 	int i;
982 	struct i2c_msg *msg, *next_msg;
983 	int addr, ret;
984 	u16 len;
985 	u32 word;
986 
987 	pt1 = i2c_get_adapdata(adap);
988 
989 	for (i = 0; i < num; i++) {
990 		msg = &msgs[i];
991 		if (msg->flags & I2C_M_RD)
992 			return -ENOTSUPP;
993 
994 		if (i + 1 < num)
995 			next_msg = &msgs[i + 1];
996 		else
997 			next_msg = NULL;
998 
999 		if (next_msg && next_msg->flags & I2C_M_RD) {
1000 			i++;
1001 
1002 			len = next_msg->len;
1003 			if (len > 4)
1004 				return -ENOTSUPP;
1005 
1006 			pt1_i2c_begin(pt1, &addr);
1007 			pt1_i2c_write_msg(pt1, addr, &addr, msg);
1008 			pt1_i2c_read_msg(pt1, addr, &addr, next_msg);
1009 			ret = pt1_i2c_end(pt1, addr);
1010 			if (ret < 0)
1011 				return ret;
1012 
1013 			word = pt1_read_reg(pt1, 2);
1014 			while (len--) {
1015 				next_msg->buf[len] = word;
1016 				word >>= 8;
1017 			}
1018 		} else {
1019 			pt1_i2c_begin(pt1, &addr);
1020 			pt1_i2c_write_msg(pt1, addr, &addr, msg);
1021 			ret = pt1_i2c_end(pt1, addr);
1022 			if (ret < 0)
1023 				return ret;
1024 		}
1025 	}
1026 
1027 	return num;
1028 }
1029 
1030 static u32 pt1_i2c_func(struct i2c_adapter *adap)
1031 {
1032 	return I2C_FUNC_I2C;
1033 }
1034 
1035 static const struct i2c_algorithm pt1_i2c_algo = {
1036 	.master_xfer = pt1_i2c_xfer,
1037 	.functionality = pt1_i2c_func,
1038 };
1039 
1040 static void pt1_i2c_wait(struct pt1 *pt1)
1041 {
1042 	int i;
1043 	for (i = 0; i < 128; i++)
1044 		pt1_i2c_emit(pt1, 0, 0, 0, 1, 1, 0);
1045 }
1046 
1047 static void pt1_i2c_init(struct pt1 *pt1)
1048 {
1049 	int i;
1050 	for (i = 0; i < 1024; i++)
1051 		pt1_i2c_emit(pt1, i, 0, 0, 1, 1, 0);
1052 }
1053 
1054 static void pt1_remove(struct pci_dev *pdev)
1055 {
1056 	struct pt1 *pt1;
1057 	void __iomem *regs;
1058 
1059 	pt1 = pci_get_drvdata(pdev);
1060 	regs = pt1->regs;
1061 
1062 	if (pt1->kthread)
1063 		kthread_stop(pt1->kthread);
1064 	pt1_cleanup_tables(pt1);
1065 	pt1_cleanup_frontends(pt1);
1066 	pt1_disable_ram(pt1);
1067 	pt1->power = 0;
1068 	pt1->reset = 1;
1069 	pt1_update_power(pt1);
1070 	pt1_cleanup_adapters(pt1);
1071 	i2c_del_adapter(&pt1->i2c_adap);
1072 	kfree(pt1);
1073 	pci_iounmap(pdev, regs);
1074 	pci_release_regions(pdev);
1075 	pci_disable_device(pdev);
1076 }
1077 
1078 static int pt1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1079 {
1080 	int ret;
1081 	void __iomem *regs;
1082 	struct pt1 *pt1;
1083 	struct i2c_adapter *i2c_adap;
1084 
1085 	ret = pci_enable_device(pdev);
1086 	if (ret < 0)
1087 		goto err;
1088 
1089 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1090 	if (ret < 0)
1091 		goto err_pci_disable_device;
1092 
1093 	pci_set_master(pdev);
1094 
1095 	ret = pci_request_regions(pdev, DRIVER_NAME);
1096 	if (ret < 0)
1097 		goto err_pci_disable_device;
1098 
1099 	regs = pci_iomap(pdev, 0, 0);
1100 	if (!regs) {
1101 		ret = -EIO;
1102 		goto err_pci_release_regions;
1103 	}
1104 
1105 	pt1 = kzalloc(sizeof(struct pt1), GFP_KERNEL);
1106 	if (!pt1) {
1107 		ret = -ENOMEM;
1108 		goto err_pci_iounmap;
1109 	}
1110 
1111 	mutex_init(&pt1->lock);
1112 	pt1->pdev = pdev;
1113 	pt1->regs = regs;
1114 	pci_set_drvdata(pdev, pt1);
1115 
1116 	ret = pt1_init_adapters(pt1);
1117 	if (ret < 0)
1118 		goto err_kfree;
1119 
1120 	mutex_init(&pt1->lock);
1121 
1122 	pt1->power = 0;
1123 	pt1->reset = 1;
1124 	pt1_update_power(pt1);
1125 
1126 	i2c_adap = &pt1->i2c_adap;
1127 	i2c_adap->algo = &pt1_i2c_algo;
1128 	i2c_adap->algo_data = NULL;
1129 	i2c_adap->dev.parent = &pdev->dev;
1130 	strcpy(i2c_adap->name, DRIVER_NAME);
1131 	i2c_set_adapdata(i2c_adap, pt1);
1132 	ret = i2c_add_adapter(i2c_adap);
1133 	if (ret < 0)
1134 		goto err_pt1_cleanup_adapters;
1135 
1136 	pt1_i2c_init(pt1);
1137 	pt1_i2c_wait(pt1);
1138 
1139 	ret = pt1_sync(pt1);
1140 	if (ret < 0)
1141 		goto err_i2c_del_adapter;
1142 
1143 	pt1_identify(pt1);
1144 
1145 	ret = pt1_unlock(pt1);
1146 	if (ret < 0)
1147 		goto err_i2c_del_adapter;
1148 
1149 	ret = pt1_reset_pci(pt1);
1150 	if (ret < 0)
1151 		goto err_i2c_del_adapter;
1152 
1153 	ret = pt1_reset_ram(pt1);
1154 	if (ret < 0)
1155 		goto err_i2c_del_adapter;
1156 
1157 	ret = pt1_enable_ram(pt1);
1158 	if (ret < 0)
1159 		goto err_i2c_del_adapter;
1160 
1161 	pt1_init_streams(pt1);
1162 
1163 	pt1->power = 1;
1164 	pt1_update_power(pt1);
1165 	schedule_timeout_uninterruptible((HZ + 49) / 50);
1166 
1167 	pt1->reset = 0;
1168 	pt1_update_power(pt1);
1169 	schedule_timeout_uninterruptible((HZ + 999) / 1000);
1170 
1171 	ret = pt1_init_frontends(pt1);
1172 	if (ret < 0)
1173 		goto err_pt1_disable_ram;
1174 
1175 	ret = pt1_init_tables(pt1);
1176 	if (ret < 0)
1177 		goto err_pt1_cleanup_frontends;
1178 
1179 	return 0;
1180 
1181 err_pt1_cleanup_frontends:
1182 	pt1_cleanup_frontends(pt1);
1183 err_pt1_disable_ram:
1184 	pt1_disable_ram(pt1);
1185 	pt1->power = 0;
1186 	pt1->reset = 1;
1187 	pt1_update_power(pt1);
1188 err_i2c_del_adapter:
1189 	i2c_del_adapter(i2c_adap);
1190 err_pt1_cleanup_adapters:
1191 	pt1_cleanup_adapters(pt1);
1192 err_kfree:
1193 	kfree(pt1);
1194 err_pci_iounmap:
1195 	pci_iounmap(pdev, regs);
1196 err_pci_release_regions:
1197 	pci_release_regions(pdev);
1198 err_pci_disable_device:
1199 	pci_disable_device(pdev);
1200 err:
1201 	return ret;
1202 
1203 }
1204 
1205 static const struct pci_device_id pt1_id_table[] = {
1206 	{ PCI_DEVICE(0x10ee, 0x211a) },
1207 	{ PCI_DEVICE(0x10ee, 0x222a) },
1208 	{ },
1209 };
1210 MODULE_DEVICE_TABLE(pci, pt1_id_table);
1211 
1212 static struct pci_driver pt1_driver = {
1213 	.name		= DRIVER_NAME,
1214 	.probe		= pt1_probe,
1215 	.remove		= pt1_remove,
1216 	.id_table	= pt1_id_table,
1217 };
1218 
1219 module_pci_driver(pt1_driver);
1220 
1221 MODULE_AUTHOR("Takahito HIRANO <hiranotaka@zng.info>");
1222 MODULE_DESCRIPTION("Earthsoft PT1/PT2 Driver");
1223 MODULE_LICENSE("GPL");
1224