xref: /openbmc/linux/drivers/media/pci/ivtv/ivtv-i2c.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2     I2C functions
3     Copyright (C) 2003-2004  Kevin Thayer <nufan_wfk at yahoo.com>
4     Copyright (C) 2005-2007  Hans Verkuil <hverkuil@xs4all.nl>
5 
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10 
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15 
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 /*
22     This file includes an i2c implementation that was reverse engineered
23     from the Hauppauge windows driver.  Older ivtv versions used i2c-algo-bit,
24     which whilst fine under most circumstances, had trouble with the Zilog
25     CPU on the PVR-150 which handles IR functions (occasional inability to
26     communicate with the chip until it was reset) and also with the i2c
27     bus being completely unreachable when multiple PVR cards were present.
28 
29     The implementation is very similar to i2c-algo-bit, but there are enough
30     subtle differences that the two are hard to merge.  The general strategy
31     employed by i2c-algo-bit is to use udelay() to implement the timing
32     when putting out bits on the scl/sda lines.  The general strategy taken
33     here is to poll the lines for state changes (see ivtv_waitscl and
34     ivtv_waitsda).  In addition there are small delays at various locations
35     which poll the SCL line 5 times (ivtv_scldelay).  I would guess that
36     since this is memory mapped I/O that the length of those delays is tied
37     to the PCI bus clock.  There is some extra code to do with recovery
38     and retries.  Since it is not known what causes the actual i2c problems
39     in the first place, the only goal if one was to attempt to use
40     i2c-algo-bit would be to try to make it follow the same code path.
41     This would be a lot of work, and I'm also not convinced that it would
42     provide a generic benefit to i2c-algo-bit.  Therefore consider this
43     an engineering solution -- not pretty, but it works.
44 
45     Some more general comments about what we are doing:
46 
47     The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
48     lines.  To communicate on the bus (as a master, we don't act as a slave),
49     we first initiate a start condition (ivtv_start).  We then write the
50     address of the device that we want to communicate with, along with a flag
51     that indicates whether this is a read or a write.  The slave then issues
52     an ACK signal (ivtv_ack), which tells us that it is ready for reading /
53     writing.  We then proceed with reading or writing (ivtv_read/ivtv_write),
54     and finally issue a stop condition (ivtv_stop) to make the bus available
55     to other masters.
56 
57     There is an additional form of transaction where a write may be
58     immediately followed by a read.  In this case, there is no intervening
59     stop condition.  (Only the msp3400 chip uses this method of data transfer).
60  */
61 
62 #include "ivtv-driver.h"
63 #include "ivtv-cards.h"
64 #include "ivtv-gpio.h"
65 #include "ivtv-i2c.h"
66 #include <media/drv-intf/cx25840.h>
67 
68 /* i2c implementation for cx23415/6 chip, ivtv project.
69  * Author: Kevin Thayer (nufan_wfk at yahoo.com)
70  */
71 /* i2c stuff */
72 #define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
73 #define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
74 #define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
75 #define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
76 
77 #define IVTV_CS53L32A_I2C_ADDR		0x11
78 #define IVTV_M52790_I2C_ADDR		0x48
79 #define IVTV_CX25840_I2C_ADDR		0x44
80 #define IVTV_SAA7115_I2C_ADDR		0x21
81 #define IVTV_SAA7127_I2C_ADDR		0x44
82 #define IVTV_SAA717x_I2C_ADDR		0x21
83 #define IVTV_MSP3400_I2C_ADDR		0x40
84 #define IVTV_HAUPPAUGE_I2C_ADDR		0x50
85 #define IVTV_WM8739_I2C_ADDR		0x1a
86 #define IVTV_WM8775_I2C_ADDR		0x1b
87 #define IVTV_TEA5767_I2C_ADDR		0x60
88 #define IVTV_UPD64031A_I2C_ADDR		0x12
89 #define IVTV_UPD64083_I2C_ADDR		0x5c
90 #define IVTV_VP27SMPX_I2C_ADDR		0x5b
91 #define IVTV_M52790_I2C_ADDR		0x48
92 #define IVTV_AVERMEDIA_IR_RX_I2C_ADDR	0x40
93 #define IVTV_HAUP_EXT_IR_RX_I2C_ADDR	0x1a
94 #define IVTV_HAUP_INT_IR_RX_I2C_ADDR	0x18
95 #define IVTV_Z8F0811_IR_TX_I2C_ADDR	0x70
96 #define IVTV_Z8F0811_IR_RX_I2C_ADDR	0x71
97 #define IVTV_ADAPTEC_IR_ADDR		0x6b
98 
99 /* This array should match the IVTV_HW_ defines */
100 static const u8 hw_addrs[] = {
101 	IVTV_CX25840_I2C_ADDR,
102 	IVTV_SAA7115_I2C_ADDR,
103 	IVTV_SAA7127_I2C_ADDR,
104 	IVTV_MSP3400_I2C_ADDR,
105 	0,
106 	IVTV_WM8775_I2C_ADDR,
107 	IVTV_CS53L32A_I2C_ADDR,
108 	0,
109 	IVTV_SAA7115_I2C_ADDR,
110 	IVTV_UPD64031A_I2C_ADDR,
111 	IVTV_UPD64083_I2C_ADDR,
112 	IVTV_SAA717x_I2C_ADDR,
113 	IVTV_WM8739_I2C_ADDR,
114 	IVTV_VP27SMPX_I2C_ADDR,
115 	IVTV_M52790_I2C_ADDR,
116 	0,				/* IVTV_HW_GPIO dummy driver ID */
117 	IVTV_AVERMEDIA_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_AVER */
118 	IVTV_HAUP_EXT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
119 	IVTV_HAUP_INT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_INT */
120 	IVTV_Z8F0811_IR_RX_I2C_ADDR,	/* IVTV_HW_Z8F0811_IR_HAUP */
121 	IVTV_ADAPTEC_IR_ADDR,		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
122 };
123 
124 /* This array should match the IVTV_HW_ defines */
125 static const char * const hw_devicenames[] = {
126 	"cx25840",
127 	"saa7115",
128 	"saa7127_auto",	/* saa7127 or saa7129 */
129 	"msp3400",
130 	"tuner",
131 	"wm8775",
132 	"cs53l32a",
133 	"tveeprom",
134 	"saa7114",
135 	"upd64031a",
136 	"upd64083",
137 	"saa717x",
138 	"wm8739",
139 	"vp27smpx",
140 	"m52790",
141 	"gpio",
142 	"ir_video",		/* IVTV_HW_I2C_IR_RX_AVER */
143 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
144 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_INT */
145 	"ir_z8f0811_haup",	/* IVTV_HW_Z8F0811_IR_HAUP */
146 	"ir_video",		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
147 };
148 
149 static int get_key_adaptec(struct IR_i2c *ir, enum rc_proto *protocol,
150 			   u32 *scancode, u8 *toggle)
151 {
152 	unsigned char keybuf[4];
153 
154 	keybuf[0] = 0x00;
155 	i2c_master_send(ir->c, keybuf, 1);
156 	/* poll IR chip */
157 	if (i2c_master_recv(ir->c, keybuf, sizeof(keybuf)) != sizeof(keybuf)) {
158 		return 0;
159 	}
160 
161 	/* key pressed ? */
162 	if (keybuf[2] == 0xff)
163 		return 0;
164 
165 	/* remove repeat bit */
166 	keybuf[2] &= 0x7f;
167 	keybuf[3] |= 0x80;
168 
169 	*protocol = RC_PROTO_UNKNOWN;
170 	*scancode = keybuf[3] | keybuf[2] << 8 | keybuf[1] << 16 |keybuf[0] << 24;
171 	*toggle = 0;
172 	return 1;
173 }
174 
175 static int ivtv_i2c_new_ir(struct ivtv *itv, u32 hw, const char *type, u8 addr)
176 {
177 	struct i2c_board_info info;
178 	struct i2c_adapter *adap = &itv->i2c_adap;
179 	struct IR_i2c_init_data *init_data = &itv->ir_i2c_init_data;
180 	unsigned short addr_list[2] = { addr, I2C_CLIENT_END };
181 
182 	/* Only allow one IR receiver to be registered per board */
183 	if (itv->hw_flags & IVTV_HW_IR_ANY)
184 		return -1;
185 
186 	/* Our default information for ir-kbd-i2c.c to use */
187 	switch (hw) {
188 	case IVTV_HW_I2C_IR_RX_AVER:
189 		init_data->ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
190 		init_data->internal_get_key_func =
191 					IR_KBD_GET_KEY_AVERMEDIA_CARDBUS;
192 		init_data->type = RC_PROTO_BIT_OTHER;
193 		init_data->name = "AVerMedia AVerTV card";
194 		break;
195 	case IVTV_HW_I2C_IR_RX_HAUP_EXT:
196 	case IVTV_HW_I2C_IR_RX_HAUP_INT:
197 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
198 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
199 		init_data->type = RC_PROTO_BIT_RC5;
200 		init_data->name = itv->card_name;
201 		break;
202 	case IVTV_HW_Z8F0811_IR_HAUP:
203 		/* Default to grey remote */
204 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
205 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
206 		init_data->type = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
207 							RC_PROTO_BIT_RC6_6A_32;
208 		init_data->name = itv->card_name;
209 		break;
210 	case IVTV_HW_I2C_IR_RX_ADAPTEC:
211 		init_data->get_key = get_key_adaptec;
212 		init_data->name = itv->card_name;
213 		/* FIXME: The protocol and RC_MAP needs to be corrected */
214 		init_data->ir_codes = RC_MAP_EMPTY;
215 		init_data->type = RC_PROTO_BIT_UNKNOWN;
216 		break;
217 	}
218 
219 	memset(&info, 0, sizeof(struct i2c_board_info));
220 	info.platform_data = init_data;
221 	strlcpy(info.type, type, I2C_NAME_SIZE);
222 
223 	return i2c_new_probed_device(adap, &info, addr_list, NULL) == NULL ?
224 	       -1 : 0;
225 }
226 
227 /* Instantiate the IR receiver device using probing -- undesirable */
228 struct i2c_client *ivtv_i2c_new_ir_legacy(struct ivtv *itv)
229 {
230 	struct i2c_board_info info;
231 	/*
232 	 * The external IR receiver is at i2c address 0x34.
233 	 * The internal IR receiver is at i2c address 0x30.
234 	 *
235 	 * In theory, both can be fitted, and Hauppauge suggests an external
236 	 * overrides an internal.  That's why we probe 0x1a (~0x34) first. CB
237 	 *
238 	 * Some of these addresses we probe may collide with other i2c address
239 	 * allocations, so this function must be called after all other i2c
240 	 * devices we care about are registered.
241 	 */
242 	const unsigned short addr_list[] = {
243 		0x1a,	/* Hauppauge IR external - collides with WM8739 */
244 		0x18,	/* Hauppauge IR internal */
245 		I2C_CLIENT_END
246 	};
247 
248 	memset(&info, 0, sizeof(struct i2c_board_info));
249 	strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
250 	return i2c_new_probed_device(&itv->i2c_adap, &info, addr_list, NULL);
251 }
252 
253 int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
254 {
255 	struct v4l2_subdev *sd;
256 	struct i2c_adapter *adap = &itv->i2c_adap;
257 	const char *type = hw_devicenames[idx];
258 	u32 hw = 1 << idx;
259 
260 	if (hw == IVTV_HW_TUNER) {
261 		/* special tuner handling */
262 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
263 				itv->card_i2c->radio);
264 		if (sd)
265 			sd->grp_id = 1 << idx;
266 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
267 				itv->card_i2c->demod);
268 		if (sd)
269 			sd->grp_id = 1 << idx;
270 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
271 				itv->card_i2c->tv);
272 		if (sd)
273 			sd->grp_id = 1 << idx;
274 		return sd ? 0 : -1;
275 	}
276 
277 	if (hw & IVTV_HW_IR_ANY)
278 		return ivtv_i2c_new_ir(itv, hw, type, hw_addrs[idx]);
279 
280 	/* Is it not an I2C device or one we do not wish to register? */
281 	if (!hw_addrs[idx])
282 		return -1;
283 
284 	/* It's an I2C device other than an analog tuner or IR chip */
285 	if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
286 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
287 				adap, type, 0, I2C_ADDRS(hw_addrs[idx]));
288 	} else if (hw == IVTV_HW_CX25840) {
289 		struct cx25840_platform_data pdata;
290 		struct i2c_board_info cx25840_info = {
291 			.type = "cx25840",
292 			.addr = hw_addrs[idx],
293 			.platform_data = &pdata,
294 		};
295 
296 		pdata.pvr150_workaround = itv->pvr150_workaround;
297 		sd = v4l2_i2c_new_subdev_board(&itv->v4l2_dev, adap,
298 				&cx25840_info, NULL);
299 	} else {
300 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
301 				adap, type, hw_addrs[idx], NULL);
302 	}
303 	if (sd)
304 		sd->grp_id = 1 << idx;
305 	return sd ? 0 : -1;
306 }
307 
308 struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
309 {
310 	struct v4l2_subdev *result = NULL;
311 	struct v4l2_subdev *sd;
312 
313 	spin_lock(&itv->v4l2_dev.lock);
314 	v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
315 		if (sd->grp_id == hw) {
316 			result = sd;
317 			break;
318 		}
319 	}
320 	spin_unlock(&itv->v4l2_dev.lock);
321 	return result;
322 }
323 
324 /* Set the serial clock line to the desired state */
325 static void ivtv_setscl(struct ivtv *itv, int state)
326 {
327 	/* write them out */
328 	/* write bits are inverted */
329 	write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
330 }
331 
332 /* Set the serial data line to the desired state */
333 static void ivtv_setsda(struct ivtv *itv, int state)
334 {
335 	/* write them out */
336 	/* write bits are inverted */
337 	write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
338 }
339 
340 /* Read the serial clock line */
341 static int ivtv_getscl(struct ivtv *itv)
342 {
343 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
344 }
345 
346 /* Read the serial data line */
347 static int ivtv_getsda(struct ivtv *itv)
348 {
349 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
350 }
351 
352 /* Implement a short delay by polling the serial clock line */
353 static void ivtv_scldelay(struct ivtv *itv)
354 {
355 	int i;
356 
357 	for (i = 0; i < 5; ++i)
358 		ivtv_getscl(itv);
359 }
360 
361 /* Wait for the serial clock line to become set to a specific value */
362 static int ivtv_waitscl(struct ivtv *itv, int val)
363 {
364 	int i;
365 
366 	ivtv_scldelay(itv);
367 	for (i = 0; i < 1000; ++i) {
368 		if (ivtv_getscl(itv) == val)
369 			return 1;
370 	}
371 	return 0;
372 }
373 
374 /* Wait for the serial data line to become set to a specific value */
375 static int ivtv_waitsda(struct ivtv *itv, int val)
376 {
377 	int i;
378 
379 	ivtv_scldelay(itv);
380 	for (i = 0; i < 1000; ++i) {
381 		if (ivtv_getsda(itv) == val)
382 			return 1;
383 	}
384 	return 0;
385 }
386 
387 /* Wait for the slave to issue an ACK */
388 static int ivtv_ack(struct ivtv *itv)
389 {
390 	int ret = 0;
391 
392 	if (ivtv_getscl(itv) == 1) {
393 		IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
394 		ivtv_setscl(itv, 0);
395 		if (!ivtv_waitscl(itv, 0)) {
396 			IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
397 			return -EREMOTEIO;
398 		}
399 	}
400 	ivtv_setsda(itv, 1);
401 	ivtv_scldelay(itv);
402 	ivtv_setscl(itv, 1);
403 	if (!ivtv_waitsda(itv, 0)) {
404 		IVTV_DEBUG_I2C("Slave did not ack\n");
405 		ret = -EREMOTEIO;
406 	}
407 	ivtv_setscl(itv, 0);
408 	if (!ivtv_waitscl(itv, 0)) {
409 		IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
410 		ret = -EREMOTEIO;
411 	}
412 	return ret;
413 }
414 
415 /* Write a single byte to the i2c bus and wait for the slave to ACK */
416 static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
417 {
418 	int i, bit;
419 
420 	IVTV_DEBUG_HI_I2C("write %x\n",byte);
421 	for (i = 0; i < 8; ++i, byte<<=1) {
422 		ivtv_setscl(itv, 0);
423 		if (!ivtv_waitscl(itv, 0)) {
424 			IVTV_DEBUG_I2C("Error setting SCL low\n");
425 			return -EREMOTEIO;
426 		}
427 		bit = (byte>>7)&1;
428 		ivtv_setsda(itv, bit);
429 		if (!ivtv_waitsda(itv, bit)) {
430 			IVTV_DEBUG_I2C("Error setting SDA\n");
431 			return -EREMOTEIO;
432 		}
433 		ivtv_setscl(itv, 1);
434 		if (!ivtv_waitscl(itv, 1)) {
435 			IVTV_DEBUG_I2C("Slave not ready for bit\n");
436 			return -EREMOTEIO;
437 		}
438 	}
439 	ivtv_setscl(itv, 0);
440 	if (!ivtv_waitscl(itv, 0)) {
441 		IVTV_DEBUG_I2C("Error setting SCL low\n");
442 		return -EREMOTEIO;
443 	}
444 	return ivtv_ack(itv);
445 }
446 
447 /* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
448    final byte) */
449 static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
450 {
451 	int i;
452 
453 	*byte = 0;
454 
455 	ivtv_setsda(itv, 1);
456 	ivtv_scldelay(itv);
457 	for (i = 0; i < 8; ++i) {
458 		ivtv_setscl(itv, 0);
459 		ivtv_scldelay(itv);
460 		ivtv_setscl(itv, 1);
461 		if (!ivtv_waitscl(itv, 1)) {
462 			IVTV_DEBUG_I2C("Error setting SCL high\n");
463 			return -EREMOTEIO;
464 		}
465 		*byte = ((*byte)<<1)|ivtv_getsda(itv);
466 	}
467 	ivtv_setscl(itv, 0);
468 	ivtv_scldelay(itv);
469 	ivtv_setsda(itv, nack);
470 	ivtv_scldelay(itv);
471 	ivtv_setscl(itv, 1);
472 	ivtv_scldelay(itv);
473 	ivtv_setscl(itv, 0);
474 	ivtv_scldelay(itv);
475 	IVTV_DEBUG_HI_I2C("read %x\n",*byte);
476 	return 0;
477 }
478 
479 /* Issue a start condition on the i2c bus to alert slaves to prepare for
480    an address write */
481 static int ivtv_start(struct ivtv *itv)
482 {
483 	int sda;
484 
485 	sda = ivtv_getsda(itv);
486 	if (sda != 1) {
487 		IVTV_DEBUG_HI_I2C("SDA was low at start\n");
488 		ivtv_setsda(itv, 1);
489 		if (!ivtv_waitsda(itv, 1)) {
490 			IVTV_DEBUG_I2C("SDA stuck low\n");
491 			return -EREMOTEIO;
492 		}
493 	}
494 	if (ivtv_getscl(itv) != 1) {
495 		ivtv_setscl(itv, 1);
496 		if (!ivtv_waitscl(itv, 1)) {
497 			IVTV_DEBUG_I2C("SCL stuck low at start\n");
498 			return -EREMOTEIO;
499 		}
500 	}
501 	ivtv_setsda(itv, 0);
502 	ivtv_scldelay(itv);
503 	return 0;
504 }
505 
506 /* Issue a stop condition on the i2c bus to release it */
507 static int ivtv_stop(struct ivtv *itv)
508 {
509 	int i;
510 
511 	if (ivtv_getscl(itv) != 0) {
512 		IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
513 		ivtv_setscl(itv, 0);
514 		if (!ivtv_waitscl(itv, 0)) {
515 			IVTV_DEBUG_I2C("SCL could not be set low\n");
516 		}
517 	}
518 	ivtv_setsda(itv, 0);
519 	ivtv_scldelay(itv);
520 	ivtv_setscl(itv, 1);
521 	if (!ivtv_waitscl(itv, 1)) {
522 		IVTV_DEBUG_I2C("SCL could not be set high\n");
523 		return -EREMOTEIO;
524 	}
525 	ivtv_scldelay(itv);
526 	ivtv_setsda(itv, 1);
527 	if (!ivtv_waitsda(itv, 1)) {
528 		IVTV_DEBUG_I2C("resetting I2C\n");
529 		for (i = 0; i < 16; ++i) {
530 			ivtv_setscl(itv, 0);
531 			ivtv_scldelay(itv);
532 			ivtv_setscl(itv, 1);
533 			ivtv_scldelay(itv);
534 			ivtv_setsda(itv, 1);
535 		}
536 		ivtv_waitsda(itv, 1);
537 		return -EREMOTEIO;
538 	}
539 	return 0;
540 }
541 
542 /* Write a message to the given i2c slave.  do_stop may be 0 to prevent
543    issuing the i2c stop condition (when following with a read) */
544 static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
545 {
546 	int retry, ret = -EREMOTEIO;
547 	u32 i;
548 
549 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
550 		ret = ivtv_start(itv);
551 
552 		if (ret == 0) {
553 			ret = ivtv_sendbyte(itv, addr<<1);
554 			for (i = 0; ret == 0 && i < len; ++i)
555 				ret = ivtv_sendbyte(itv, data[i]);
556 		}
557 		if (ret != 0 || do_stop) {
558 			ivtv_stop(itv);
559 		}
560 	}
561 	if (ret)
562 		IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
563 	return ret;
564 }
565 
566 /* Read data from the given i2c slave.  A stop condition is always issued. */
567 static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
568 {
569 	int retry, ret = -EREMOTEIO;
570 	u32 i;
571 
572 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
573 		ret = ivtv_start(itv);
574 		if (ret == 0)
575 			ret = ivtv_sendbyte(itv, (addr << 1) | 1);
576 		for (i = 0; ret == 0 && i < len; ++i) {
577 			ret = ivtv_readbyte(itv, &data[i], i == len - 1);
578 		}
579 		ivtv_stop(itv);
580 	}
581 	if (ret)
582 		IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
583 	return ret;
584 }
585 
586 /* Kernel i2c transfer implementation.  Takes a number of messages to be read
587    or written.  If a read follows a write, this will occur without an
588    intervening stop condition */
589 static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
590 {
591 	struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
592 	struct ivtv *itv = to_ivtv(v4l2_dev);
593 	int retval;
594 	int i;
595 
596 	mutex_lock(&itv->i2c_bus_lock);
597 	for (i = retval = 0; retval == 0 && i < num; i++) {
598 		if (msgs[i].flags & I2C_M_RD)
599 			retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
600 		else {
601 			/* if followed by a read, don't stop */
602 			int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
603 
604 			retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
605 		}
606 	}
607 	mutex_unlock(&itv->i2c_bus_lock);
608 	return retval ? retval : num;
609 }
610 
611 /* Kernel i2c capabilities */
612 static u32 ivtv_functionality(struct i2c_adapter *adap)
613 {
614 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
615 }
616 
617 static const struct i2c_algorithm ivtv_algo = {
618 	.master_xfer   = ivtv_xfer,
619 	.functionality = ivtv_functionality,
620 };
621 
622 /* template for our-bit banger */
623 static const struct i2c_adapter ivtv_i2c_adap_hw_template = {
624 	.name = "ivtv i2c driver",
625 	.algo = &ivtv_algo,
626 	.algo_data = NULL,			/* filled from template */
627 	.owner = THIS_MODULE,
628 };
629 
630 static void ivtv_setscl_old(void *data, int state)
631 {
632 	struct ivtv *itv = (struct ivtv *)data;
633 
634 	if (state)
635 		itv->i2c_state |= 0x01;
636 	else
637 		itv->i2c_state &= ~0x01;
638 
639 	/* write them out */
640 	/* write bits are inverted */
641 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
642 }
643 
644 static void ivtv_setsda_old(void *data, int state)
645 {
646 	struct ivtv *itv = (struct ivtv *)data;
647 
648 	if (state)
649 		itv->i2c_state |= 0x01;
650 	else
651 		itv->i2c_state &= ~0x01;
652 
653 	/* write them out */
654 	/* write bits are inverted */
655 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
656 }
657 
658 static int ivtv_getscl_old(void *data)
659 {
660 	struct ivtv *itv = (struct ivtv *)data;
661 
662 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
663 }
664 
665 static int ivtv_getsda_old(void *data)
666 {
667 	struct ivtv *itv = (struct ivtv *)data;
668 
669 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
670 }
671 
672 /* template for i2c-bit-algo */
673 static const struct i2c_adapter ivtv_i2c_adap_template = {
674 	.name = "ivtv i2c driver",
675 	.algo = NULL,                   /* set by i2c-algo-bit */
676 	.algo_data = NULL,              /* filled from template */
677 	.owner = THIS_MODULE,
678 };
679 
680 #define IVTV_ALGO_BIT_TIMEOUT	(2)	/* seconds */
681 
682 static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
683 	.setsda		= ivtv_setsda_old,
684 	.setscl		= ivtv_setscl_old,
685 	.getsda		= ivtv_getsda_old,
686 	.getscl		= ivtv_getscl_old,
687 	.udelay		= IVTV_DEFAULT_I2C_CLOCK_PERIOD / 2,  /* microseconds */
688 	.timeout	= IVTV_ALGO_BIT_TIMEOUT * HZ,         /* jiffies */
689 };
690 
691 static const struct i2c_client ivtv_i2c_client_template = {
692 	.name = "ivtv internal",
693 };
694 
695 /* init + register i2c adapter */
696 int init_ivtv_i2c(struct ivtv *itv)
697 {
698 	int retval;
699 
700 	IVTV_DEBUG_I2C("i2c init\n");
701 
702 	/* Sanity checks for the I2C hardware arrays. They must be the
703 	 * same size.
704 	 */
705 	if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs)) {
706 		IVTV_ERR("Mismatched I2C hardware arrays\n");
707 		return -ENODEV;
708 	}
709 	if (itv->options.newi2c > 0) {
710 		itv->i2c_adap = ivtv_i2c_adap_hw_template;
711 	} else {
712 		itv->i2c_adap = ivtv_i2c_adap_template;
713 		itv->i2c_algo = ivtv_i2c_algo_template;
714 	}
715 	itv->i2c_algo.udelay = itv->options.i2c_clock_period / 2;
716 	itv->i2c_algo.data = itv;
717 	itv->i2c_adap.algo_data = &itv->i2c_algo;
718 
719 	sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
720 		itv->instance);
721 	i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
722 
723 	itv->i2c_client = ivtv_i2c_client_template;
724 	itv->i2c_client.adapter = &itv->i2c_adap;
725 	itv->i2c_adap.dev.parent = &itv->pdev->dev;
726 
727 	IVTV_DEBUG_I2C("setting scl and sda to 1\n");
728 	ivtv_setscl(itv, 1);
729 	ivtv_setsda(itv, 1);
730 
731 	if (itv->options.newi2c > 0)
732 		retval = i2c_add_adapter(&itv->i2c_adap);
733 	else
734 		retval = i2c_bit_add_bus(&itv->i2c_adap);
735 
736 	return retval;
737 }
738 
739 void exit_ivtv_i2c(struct ivtv *itv)
740 {
741 	IVTV_DEBUG_I2C("i2c exit\n");
742 
743 	i2c_del_adapter(&itv->i2c_adap);
744 }
745