xref: /openbmc/linux/drivers/media/pci/ivtv/ivtv-i2c.c (revision 6d741bfe)
1 /*
2     I2C functions
3     Copyright (C) 2003-2004  Kevin Thayer <nufan_wfk at yahoo.com>
4     Copyright (C) 2005-2007  Hans Verkuil <hverkuil@xs4all.nl>
5 
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10 
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15 
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 /*
22     This file includes an i2c implementation that was reverse engineered
23     from the Hauppauge windows driver.  Older ivtv versions used i2c-algo-bit,
24     which whilst fine under most circumstances, had trouble with the Zilog
25     CPU on the PVR-150 which handles IR functions (occasional inability to
26     communicate with the chip until it was reset) and also with the i2c
27     bus being completely unreachable when multiple PVR cards were present.
28 
29     The implementation is very similar to i2c-algo-bit, but there are enough
30     subtle differences that the two are hard to merge.  The general strategy
31     employed by i2c-algo-bit is to use udelay() to implement the timing
32     when putting out bits on the scl/sda lines.  The general strategy taken
33     here is to poll the lines for state changes (see ivtv_waitscl and
34     ivtv_waitsda).  In addition there are small delays at various locations
35     which poll the SCL line 5 times (ivtv_scldelay).  I would guess that
36     since this is memory mapped I/O that the length of those delays is tied
37     to the PCI bus clock.  There is some extra code to do with recovery
38     and retries.  Since it is not known what causes the actual i2c problems
39     in the first place, the only goal if one was to attempt to use
40     i2c-algo-bit would be to try to make it follow the same code path.
41     This would be a lot of work, and I'm also not convinced that it would
42     provide a generic benefit to i2c-algo-bit.  Therefore consider this
43     an engineering solution -- not pretty, but it works.
44 
45     Some more general comments about what we are doing:
46 
47     The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
48     lines.  To communicate on the bus (as a master, we don't act as a slave),
49     we first initiate a start condition (ivtv_start).  We then write the
50     address of the device that we want to communicate with, along with a flag
51     that indicates whether this is a read or a write.  The slave then issues
52     an ACK signal (ivtv_ack), which tells us that it is ready for reading /
53     writing.  We then proceed with reading or writing (ivtv_read/ivtv_write),
54     and finally issue a stop condition (ivtv_stop) to make the bus available
55     to other masters.
56 
57     There is an additional form of transaction where a write may be
58     immediately followed by a read.  In this case, there is no intervening
59     stop condition.  (Only the msp3400 chip uses this method of data transfer).
60  */
61 
62 #include "ivtv-driver.h"
63 #include "ivtv-cards.h"
64 #include "ivtv-gpio.h"
65 #include "ivtv-i2c.h"
66 #include <media/drv-intf/cx25840.h>
67 
68 /* i2c implementation for cx23415/6 chip, ivtv project.
69  * Author: Kevin Thayer (nufan_wfk at yahoo.com)
70  */
71 /* i2c stuff */
72 #define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
73 #define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
74 #define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
75 #define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
76 
77 #define IVTV_CS53L32A_I2C_ADDR		0x11
78 #define IVTV_M52790_I2C_ADDR		0x48
79 #define IVTV_CX25840_I2C_ADDR 		0x44
80 #define IVTV_SAA7115_I2C_ADDR 		0x21
81 #define IVTV_SAA7127_I2C_ADDR 		0x44
82 #define IVTV_SAA717x_I2C_ADDR 		0x21
83 #define IVTV_MSP3400_I2C_ADDR 		0x40
84 #define IVTV_HAUPPAUGE_I2C_ADDR 	0x50
85 #define IVTV_WM8739_I2C_ADDR 		0x1a
86 #define IVTV_WM8775_I2C_ADDR		0x1b
87 #define IVTV_TEA5767_I2C_ADDR		0x60
88 #define IVTV_UPD64031A_I2C_ADDR 	0x12
89 #define IVTV_UPD64083_I2C_ADDR 		0x5c
90 #define IVTV_VP27SMPX_I2C_ADDR      	0x5b
91 #define IVTV_M52790_I2C_ADDR      	0x48
92 #define IVTV_AVERMEDIA_IR_RX_I2C_ADDR	0x40
93 #define IVTV_HAUP_EXT_IR_RX_I2C_ADDR 	0x1a
94 #define IVTV_HAUP_INT_IR_RX_I2C_ADDR 	0x18
95 #define IVTV_Z8F0811_IR_TX_I2C_ADDR	0x70
96 #define IVTV_Z8F0811_IR_RX_I2C_ADDR	0x71
97 #define IVTV_ADAPTEC_IR_ADDR		0x6b
98 
99 /* This array should match the IVTV_HW_ defines */
100 static const u8 hw_addrs[] = {
101 	IVTV_CX25840_I2C_ADDR,
102 	IVTV_SAA7115_I2C_ADDR,
103 	IVTV_SAA7127_I2C_ADDR,
104 	IVTV_MSP3400_I2C_ADDR,
105 	0,
106 	IVTV_WM8775_I2C_ADDR,
107 	IVTV_CS53L32A_I2C_ADDR,
108 	0,
109 	IVTV_SAA7115_I2C_ADDR,
110 	IVTV_UPD64031A_I2C_ADDR,
111 	IVTV_UPD64083_I2C_ADDR,
112 	IVTV_SAA717x_I2C_ADDR,
113 	IVTV_WM8739_I2C_ADDR,
114 	IVTV_VP27SMPX_I2C_ADDR,
115 	IVTV_M52790_I2C_ADDR,
116 	0,				/* IVTV_HW_GPIO dummy driver ID */
117 	IVTV_AVERMEDIA_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_AVER */
118 	IVTV_HAUP_EXT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
119 	IVTV_HAUP_INT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_INT */
120 	IVTV_Z8F0811_IR_TX_I2C_ADDR,	/* IVTV_HW_Z8F0811_IR_TX_HAUP */
121 	IVTV_Z8F0811_IR_RX_I2C_ADDR,	/* IVTV_HW_Z8F0811_IR_RX_HAUP */
122 	IVTV_ADAPTEC_IR_ADDR,		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
123 };
124 
125 /* This array should match the IVTV_HW_ defines */
126 static const char * const hw_devicenames[] = {
127 	"cx25840",
128 	"saa7115",
129 	"saa7127_auto",	/* saa7127 or saa7129 */
130 	"msp3400",
131 	"tuner",
132 	"wm8775",
133 	"cs53l32a",
134 	"tveeprom",
135 	"saa7114",
136 	"upd64031a",
137 	"upd64083",
138 	"saa717x",
139 	"wm8739",
140 	"vp27smpx",
141 	"m52790",
142 	"gpio",
143 	"ir_video",		/* IVTV_HW_I2C_IR_RX_AVER */
144 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
145 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_INT */
146 	"ir_tx_z8f0811_haup",	/* IVTV_HW_Z8F0811_IR_TX_HAUP */
147 	"ir_rx_z8f0811_haup",	/* IVTV_HW_Z8F0811_IR_RX_HAUP */
148 	"ir_video",		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
149 };
150 
151 static int get_key_adaptec(struct IR_i2c *ir, enum rc_proto *protocol,
152 			   u32 *scancode, u8 *toggle)
153 {
154 	unsigned char keybuf[4];
155 
156 	keybuf[0] = 0x00;
157 	i2c_master_send(ir->c, keybuf, 1);
158 	/* poll IR chip */
159 	if (i2c_master_recv(ir->c, keybuf, sizeof(keybuf)) != sizeof(keybuf)) {
160 		return 0;
161 	}
162 
163 	/* key pressed ? */
164 	if (keybuf[2] == 0xff)
165 		return 0;
166 
167 	/* remove repeat bit */
168 	keybuf[2] &= 0x7f;
169 	keybuf[3] |= 0x80;
170 
171 	*protocol = RC_PROTO_UNKNOWN;
172 	*scancode = keybuf[3] | keybuf[2] << 8 | keybuf[1] << 16 |keybuf[0] << 24;
173 	*toggle = 0;
174 	return 1;
175 }
176 
177 static int ivtv_i2c_new_ir(struct ivtv *itv, u32 hw, const char *type, u8 addr)
178 {
179 	struct i2c_board_info info;
180 	struct i2c_adapter *adap = &itv->i2c_adap;
181 	struct IR_i2c_init_data *init_data = &itv->ir_i2c_init_data;
182 	unsigned short addr_list[2] = { addr, I2C_CLIENT_END };
183 
184 	/* Only allow one IR transmitter to be registered per board */
185 	if (hw & IVTV_HW_IR_TX_ANY) {
186 		if (itv->hw_flags & IVTV_HW_IR_TX_ANY)
187 			return -1;
188 		memset(&info, 0, sizeof(struct i2c_board_info));
189 		strlcpy(info.type, type, I2C_NAME_SIZE);
190 		return i2c_new_probed_device(adap, &info, addr_list, NULL)
191 							   == NULL ? -1 : 0;
192 	}
193 
194 	/* Only allow one IR receiver to be registered per board */
195 	if (itv->hw_flags & IVTV_HW_IR_RX_ANY)
196 		return -1;
197 
198 	/* Our default information for ir-kbd-i2c.c to use */
199 	switch (hw) {
200 	case IVTV_HW_I2C_IR_RX_AVER:
201 		init_data->ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
202 		init_data->internal_get_key_func =
203 					IR_KBD_GET_KEY_AVERMEDIA_CARDBUS;
204 		init_data->type = RC_PROTO_BIT_OTHER;
205 		init_data->name = "AVerMedia AVerTV card";
206 		break;
207 	case IVTV_HW_I2C_IR_RX_HAUP_EXT:
208 	case IVTV_HW_I2C_IR_RX_HAUP_INT:
209 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
210 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
211 		init_data->type = RC_PROTO_BIT_RC5;
212 		init_data->name = itv->card_name;
213 		break;
214 	case IVTV_HW_Z8F0811_IR_RX_HAUP:
215 		/* Default to grey remote */
216 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
217 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
218 		init_data->type = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
219 							RC_PROTO_BIT_RC6_6A_32;
220 		init_data->name = itv->card_name;
221 		break;
222 	case IVTV_HW_I2C_IR_RX_ADAPTEC:
223 		init_data->get_key = get_key_adaptec;
224 		init_data->name = itv->card_name;
225 		/* FIXME: The protocol and RC_MAP needs to be corrected */
226 		init_data->ir_codes = RC_MAP_EMPTY;
227 		init_data->type = RC_PROTO_BIT_UNKNOWN;
228 		break;
229 	}
230 
231 	memset(&info, 0, sizeof(struct i2c_board_info));
232 	info.platform_data = init_data;
233 	strlcpy(info.type, type, I2C_NAME_SIZE);
234 
235 	return i2c_new_probed_device(adap, &info, addr_list, NULL) == NULL ?
236 	       -1 : 0;
237 }
238 
239 /* Instantiate the IR receiver device using probing -- undesirable */
240 struct i2c_client *ivtv_i2c_new_ir_legacy(struct ivtv *itv)
241 {
242 	struct i2c_board_info info;
243 	/*
244 	 * The external IR receiver is at i2c address 0x34.
245 	 * The internal IR receiver is at i2c address 0x30.
246 	 *
247 	 * In theory, both can be fitted, and Hauppauge suggests an external
248 	 * overrides an internal.  That's why we probe 0x1a (~0x34) first. CB
249 	 *
250 	 * Some of these addresses we probe may collide with other i2c address
251 	 * allocations, so this function must be called after all other i2c
252 	 * devices we care about are registered.
253 	 */
254 	const unsigned short addr_list[] = {
255 		0x1a,	/* Hauppauge IR external - collides with WM8739 */
256 		0x18,	/* Hauppauge IR internal */
257 		I2C_CLIENT_END
258 	};
259 
260 	memset(&info, 0, sizeof(struct i2c_board_info));
261 	strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
262 	return i2c_new_probed_device(&itv->i2c_adap, &info, addr_list, NULL);
263 }
264 
265 int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
266 {
267 	struct v4l2_subdev *sd;
268 	struct i2c_adapter *adap = &itv->i2c_adap;
269 	const char *type = hw_devicenames[idx];
270 	u32 hw = 1 << idx;
271 
272 	if (hw == IVTV_HW_TUNER) {
273 		/* special tuner handling */
274 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
275 				itv->card_i2c->radio);
276 		if (sd)
277 			sd->grp_id = 1 << idx;
278 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
279 				itv->card_i2c->demod);
280 		if (sd)
281 			sd->grp_id = 1 << idx;
282 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
283 				itv->card_i2c->tv);
284 		if (sd)
285 			sd->grp_id = 1 << idx;
286 		return sd ? 0 : -1;
287 	}
288 
289 	if (hw & IVTV_HW_IR_ANY)
290 		return ivtv_i2c_new_ir(itv, hw, type, hw_addrs[idx]);
291 
292 	/* Is it not an I2C device or one we do not wish to register? */
293 	if (!hw_addrs[idx])
294 		return -1;
295 
296 	/* It's an I2C device other than an analog tuner or IR chip */
297 	if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
298 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
299 				adap, type, 0, I2C_ADDRS(hw_addrs[idx]));
300 	} else if (hw == IVTV_HW_CX25840) {
301 		struct cx25840_platform_data pdata;
302 		struct i2c_board_info cx25840_info = {
303 			.type = "cx25840",
304 			.addr = hw_addrs[idx],
305 			.platform_data = &pdata,
306 		};
307 
308 		pdata.pvr150_workaround = itv->pvr150_workaround;
309 		sd = v4l2_i2c_new_subdev_board(&itv->v4l2_dev, adap,
310 				&cx25840_info, NULL);
311 	} else {
312 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
313 				adap, type, hw_addrs[idx], NULL);
314 	}
315 	if (sd)
316 		sd->grp_id = 1 << idx;
317 	return sd ? 0 : -1;
318 }
319 
320 struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
321 {
322 	struct v4l2_subdev *result = NULL;
323 	struct v4l2_subdev *sd;
324 
325 	spin_lock(&itv->v4l2_dev.lock);
326 	v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
327 		if (sd->grp_id == hw) {
328 			result = sd;
329 			break;
330 		}
331 	}
332 	spin_unlock(&itv->v4l2_dev.lock);
333 	return result;
334 }
335 
336 /* Set the serial clock line to the desired state */
337 static void ivtv_setscl(struct ivtv *itv, int state)
338 {
339 	/* write them out */
340 	/* write bits are inverted */
341 	write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
342 }
343 
344 /* Set the serial data line to the desired state */
345 static void ivtv_setsda(struct ivtv *itv, int state)
346 {
347 	/* write them out */
348 	/* write bits are inverted */
349 	write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
350 }
351 
352 /* Read the serial clock line */
353 static int ivtv_getscl(struct ivtv *itv)
354 {
355 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
356 }
357 
358 /* Read the serial data line */
359 static int ivtv_getsda(struct ivtv *itv)
360 {
361 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
362 }
363 
364 /* Implement a short delay by polling the serial clock line */
365 static void ivtv_scldelay(struct ivtv *itv)
366 {
367 	int i;
368 
369 	for (i = 0; i < 5; ++i)
370 		ivtv_getscl(itv);
371 }
372 
373 /* Wait for the serial clock line to become set to a specific value */
374 static int ivtv_waitscl(struct ivtv *itv, int val)
375 {
376 	int i;
377 
378 	ivtv_scldelay(itv);
379 	for (i = 0; i < 1000; ++i) {
380 		if (ivtv_getscl(itv) == val)
381 			return 1;
382 	}
383 	return 0;
384 }
385 
386 /* Wait for the serial data line to become set to a specific value */
387 static int ivtv_waitsda(struct ivtv *itv, int val)
388 {
389 	int i;
390 
391 	ivtv_scldelay(itv);
392 	for (i = 0; i < 1000; ++i) {
393 		if (ivtv_getsda(itv) == val)
394 			return 1;
395 	}
396 	return 0;
397 }
398 
399 /* Wait for the slave to issue an ACK */
400 static int ivtv_ack(struct ivtv *itv)
401 {
402 	int ret = 0;
403 
404 	if (ivtv_getscl(itv) == 1) {
405 		IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
406 		ivtv_setscl(itv, 0);
407 		if (!ivtv_waitscl(itv, 0)) {
408 			IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
409 			return -EREMOTEIO;
410 		}
411 	}
412 	ivtv_setsda(itv, 1);
413 	ivtv_scldelay(itv);
414 	ivtv_setscl(itv, 1);
415 	if (!ivtv_waitsda(itv, 0)) {
416 		IVTV_DEBUG_I2C("Slave did not ack\n");
417 		ret = -EREMOTEIO;
418 	}
419 	ivtv_setscl(itv, 0);
420 	if (!ivtv_waitscl(itv, 0)) {
421 		IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
422 		ret = -EREMOTEIO;
423 	}
424 	return ret;
425 }
426 
427 /* Write a single byte to the i2c bus and wait for the slave to ACK */
428 static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
429 {
430 	int i, bit;
431 
432 	IVTV_DEBUG_HI_I2C("write %x\n",byte);
433 	for (i = 0; i < 8; ++i, byte<<=1) {
434 		ivtv_setscl(itv, 0);
435 		if (!ivtv_waitscl(itv, 0)) {
436 			IVTV_DEBUG_I2C("Error setting SCL low\n");
437 			return -EREMOTEIO;
438 		}
439 		bit = (byte>>7)&1;
440 		ivtv_setsda(itv, bit);
441 		if (!ivtv_waitsda(itv, bit)) {
442 			IVTV_DEBUG_I2C("Error setting SDA\n");
443 			return -EREMOTEIO;
444 		}
445 		ivtv_setscl(itv, 1);
446 		if (!ivtv_waitscl(itv, 1)) {
447 			IVTV_DEBUG_I2C("Slave not ready for bit\n");
448 			return -EREMOTEIO;
449 		}
450 	}
451 	ivtv_setscl(itv, 0);
452 	if (!ivtv_waitscl(itv, 0)) {
453 		IVTV_DEBUG_I2C("Error setting SCL low\n");
454 		return -EREMOTEIO;
455 	}
456 	return ivtv_ack(itv);
457 }
458 
459 /* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
460    final byte) */
461 static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
462 {
463 	int i;
464 
465 	*byte = 0;
466 
467 	ivtv_setsda(itv, 1);
468 	ivtv_scldelay(itv);
469 	for (i = 0; i < 8; ++i) {
470 		ivtv_setscl(itv, 0);
471 		ivtv_scldelay(itv);
472 		ivtv_setscl(itv, 1);
473 		if (!ivtv_waitscl(itv, 1)) {
474 			IVTV_DEBUG_I2C("Error setting SCL high\n");
475 			return -EREMOTEIO;
476 		}
477 		*byte = ((*byte)<<1)|ivtv_getsda(itv);
478 	}
479 	ivtv_setscl(itv, 0);
480 	ivtv_scldelay(itv);
481 	ivtv_setsda(itv, nack);
482 	ivtv_scldelay(itv);
483 	ivtv_setscl(itv, 1);
484 	ivtv_scldelay(itv);
485 	ivtv_setscl(itv, 0);
486 	ivtv_scldelay(itv);
487 	IVTV_DEBUG_HI_I2C("read %x\n",*byte);
488 	return 0;
489 }
490 
491 /* Issue a start condition on the i2c bus to alert slaves to prepare for
492    an address write */
493 static int ivtv_start(struct ivtv *itv)
494 {
495 	int sda;
496 
497 	sda = ivtv_getsda(itv);
498 	if (sda != 1) {
499 		IVTV_DEBUG_HI_I2C("SDA was low at start\n");
500 		ivtv_setsda(itv, 1);
501 		if (!ivtv_waitsda(itv, 1)) {
502 			IVTV_DEBUG_I2C("SDA stuck low\n");
503 			return -EREMOTEIO;
504 		}
505 	}
506 	if (ivtv_getscl(itv) != 1) {
507 		ivtv_setscl(itv, 1);
508 		if (!ivtv_waitscl(itv, 1)) {
509 			IVTV_DEBUG_I2C("SCL stuck low at start\n");
510 			return -EREMOTEIO;
511 		}
512 	}
513 	ivtv_setsda(itv, 0);
514 	ivtv_scldelay(itv);
515 	return 0;
516 }
517 
518 /* Issue a stop condition on the i2c bus to release it */
519 static int ivtv_stop(struct ivtv *itv)
520 {
521 	int i;
522 
523 	if (ivtv_getscl(itv) != 0) {
524 		IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
525 		ivtv_setscl(itv, 0);
526 		if (!ivtv_waitscl(itv, 0)) {
527 			IVTV_DEBUG_I2C("SCL could not be set low\n");
528 		}
529 	}
530 	ivtv_setsda(itv, 0);
531 	ivtv_scldelay(itv);
532 	ivtv_setscl(itv, 1);
533 	if (!ivtv_waitscl(itv, 1)) {
534 		IVTV_DEBUG_I2C("SCL could not be set high\n");
535 		return -EREMOTEIO;
536 	}
537 	ivtv_scldelay(itv);
538 	ivtv_setsda(itv, 1);
539 	if (!ivtv_waitsda(itv, 1)) {
540 		IVTV_DEBUG_I2C("resetting I2C\n");
541 		for (i = 0; i < 16; ++i) {
542 			ivtv_setscl(itv, 0);
543 			ivtv_scldelay(itv);
544 			ivtv_setscl(itv, 1);
545 			ivtv_scldelay(itv);
546 			ivtv_setsda(itv, 1);
547 		}
548 		ivtv_waitsda(itv, 1);
549 		return -EREMOTEIO;
550 	}
551 	return 0;
552 }
553 
554 /* Write a message to the given i2c slave.  do_stop may be 0 to prevent
555    issuing the i2c stop condition (when following with a read) */
556 static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
557 {
558 	int retry, ret = -EREMOTEIO;
559 	u32 i;
560 
561 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
562 		ret = ivtv_start(itv);
563 
564 		if (ret == 0) {
565 			ret = ivtv_sendbyte(itv, addr<<1);
566 			for (i = 0; ret == 0 && i < len; ++i)
567 				ret = ivtv_sendbyte(itv, data[i]);
568 		}
569 		if (ret != 0 || do_stop) {
570 			ivtv_stop(itv);
571 		}
572 	}
573 	if (ret)
574 		IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
575 	return ret;
576 }
577 
578 /* Read data from the given i2c slave.  A stop condition is always issued. */
579 static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
580 {
581 	int retry, ret = -EREMOTEIO;
582 	u32 i;
583 
584 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
585 		ret = ivtv_start(itv);
586 		if (ret == 0)
587 			ret = ivtv_sendbyte(itv, (addr << 1) | 1);
588 		for (i = 0; ret == 0 && i < len; ++i) {
589 			ret = ivtv_readbyte(itv, &data[i], i == len - 1);
590 		}
591 		ivtv_stop(itv);
592 	}
593 	if (ret)
594 		IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
595 	return ret;
596 }
597 
598 /* Kernel i2c transfer implementation.  Takes a number of messages to be read
599    or written.  If a read follows a write, this will occur without an
600    intervening stop condition */
601 static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
602 {
603 	struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
604 	struct ivtv *itv = to_ivtv(v4l2_dev);
605 	int retval;
606 	int i;
607 
608 	mutex_lock(&itv->i2c_bus_lock);
609 	for (i = retval = 0; retval == 0 && i < num; i++) {
610 		if (msgs[i].flags & I2C_M_RD)
611 			retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
612 		else {
613 			/* if followed by a read, don't stop */
614 			int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
615 
616 			retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
617 		}
618 	}
619 	mutex_unlock(&itv->i2c_bus_lock);
620 	return retval ? retval : num;
621 }
622 
623 /* Kernel i2c capabilities */
624 static u32 ivtv_functionality(struct i2c_adapter *adap)
625 {
626 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
627 }
628 
629 static const struct i2c_algorithm ivtv_algo = {
630 	.master_xfer   = ivtv_xfer,
631 	.functionality = ivtv_functionality,
632 };
633 
634 /* template for our-bit banger */
635 static struct i2c_adapter ivtv_i2c_adap_hw_template = {
636 	.name = "ivtv i2c driver",
637 	.algo = &ivtv_algo,
638 	.algo_data = NULL,			/* filled from template */
639 	.owner = THIS_MODULE,
640 };
641 
642 static void ivtv_setscl_old(void *data, int state)
643 {
644 	struct ivtv *itv = (struct ivtv *)data;
645 
646 	if (state)
647 		itv->i2c_state |= 0x01;
648 	else
649 		itv->i2c_state &= ~0x01;
650 
651 	/* write them out */
652 	/* write bits are inverted */
653 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
654 }
655 
656 static void ivtv_setsda_old(void *data, int state)
657 {
658 	struct ivtv *itv = (struct ivtv *)data;
659 
660 	if (state)
661 		itv->i2c_state |= 0x01;
662 	else
663 		itv->i2c_state &= ~0x01;
664 
665 	/* write them out */
666 	/* write bits are inverted */
667 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
668 }
669 
670 static int ivtv_getscl_old(void *data)
671 {
672 	struct ivtv *itv = (struct ivtv *)data;
673 
674 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
675 }
676 
677 static int ivtv_getsda_old(void *data)
678 {
679 	struct ivtv *itv = (struct ivtv *)data;
680 
681 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
682 }
683 
684 /* template for i2c-bit-algo */
685 static struct i2c_adapter ivtv_i2c_adap_template = {
686 	.name = "ivtv i2c driver",
687 	.algo = NULL,                   /* set by i2c-algo-bit */
688 	.algo_data = NULL,              /* filled from template */
689 	.owner = THIS_MODULE,
690 };
691 
692 #define IVTV_ALGO_BIT_TIMEOUT	(2)	/* seconds */
693 
694 static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
695 	.setsda		= ivtv_setsda_old,
696 	.setscl		= ivtv_setscl_old,
697 	.getsda		= ivtv_getsda_old,
698 	.getscl		= ivtv_getscl_old,
699 	.udelay		= IVTV_DEFAULT_I2C_CLOCK_PERIOD / 2,  /* microseconds */
700 	.timeout	= IVTV_ALGO_BIT_TIMEOUT * HZ,         /* jiffies */
701 };
702 
703 static struct i2c_client ivtv_i2c_client_template = {
704 	.name = "ivtv internal",
705 };
706 
707 /* init + register i2c adapter */
708 int init_ivtv_i2c(struct ivtv *itv)
709 {
710 	int retval;
711 
712 	IVTV_DEBUG_I2C("i2c init\n");
713 
714 	/* Sanity checks for the I2C hardware arrays. They must be the
715 	 * same size.
716 	 */
717 	if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs)) {
718 		IVTV_ERR("Mismatched I2C hardware arrays\n");
719 		return -ENODEV;
720 	}
721 	if (itv->options.newi2c > 0) {
722 		itv->i2c_adap = ivtv_i2c_adap_hw_template;
723 	} else {
724 		itv->i2c_adap = ivtv_i2c_adap_template;
725 		itv->i2c_algo = ivtv_i2c_algo_template;
726 	}
727 	itv->i2c_algo.udelay = itv->options.i2c_clock_period / 2;
728 	itv->i2c_algo.data = itv;
729 	itv->i2c_adap.algo_data = &itv->i2c_algo;
730 
731 	sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
732 		itv->instance);
733 	i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
734 
735 	itv->i2c_client = ivtv_i2c_client_template;
736 	itv->i2c_client.adapter = &itv->i2c_adap;
737 	itv->i2c_adap.dev.parent = &itv->pdev->dev;
738 
739 	IVTV_DEBUG_I2C("setting scl and sda to 1\n");
740 	ivtv_setscl(itv, 1);
741 	ivtv_setsda(itv, 1);
742 
743 	if (itv->options.newi2c > 0)
744 		retval = i2c_add_adapter(&itv->i2c_adap);
745 	else
746 		retval = i2c_bit_add_bus(&itv->i2c_adap);
747 
748 	return retval;
749 }
750 
751 void exit_ivtv_i2c(struct ivtv *itv)
752 {
753 	IVTV_DEBUG_I2C("i2c exit\n");
754 
755 	i2c_del_adapter(&itv->i2c_adap);
756 }
757