xref: /openbmc/linux/drivers/media/pci/ivtv/ivtv-i2c.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2     I2C functions
3     Copyright (C) 2003-2004  Kevin Thayer <nufan_wfk at yahoo.com>
4     Copyright (C) 2005-2007  Hans Verkuil <hverkuil@xs4all.nl>
5 
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10 
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15 
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 
21 /*
22     This file includes an i2c implementation that was reverse engineered
23     from the Hauppauge windows driver.  Older ivtv versions used i2c-algo-bit,
24     which whilst fine under most circumstances, had trouble with the Zilog
25     CPU on the PVR-150 which handles IR functions (occasional inability to
26     communicate with the chip until it was reset) and also with the i2c
27     bus being completely unreachable when multiple PVR cards were present.
28 
29     The implementation is very similar to i2c-algo-bit, but there are enough
30     subtle differences that the two are hard to merge.  The general strategy
31     employed by i2c-algo-bit is to use udelay() to implement the timing
32     when putting out bits on the scl/sda lines.  The general strategy taken
33     here is to poll the lines for state changes (see ivtv_waitscl and
34     ivtv_waitsda).  In addition there are small delays at various locations
35     which poll the SCL line 5 times (ivtv_scldelay).  I would guess that
36     since this is memory mapped I/O that the length of those delays is tied
37     to the PCI bus clock.  There is some extra code to do with recovery
38     and retries.  Since it is not known what causes the actual i2c problems
39     in the first place, the only goal if one was to attempt to use
40     i2c-algo-bit would be to try to make it follow the same code path.
41     This would be a lot of work, and I'm also not convinced that it would
42     provide a generic benefit to i2c-algo-bit.  Therefore consider this
43     an engineering solution -- not pretty, but it works.
44 
45     Some more general comments about what we are doing:
46 
47     The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
48     lines.  To communicate on the bus (as a master, we don't act as a slave),
49     we first initiate a start condition (ivtv_start).  We then write the
50     address of the device that we want to communicate with, along with a flag
51     that indicates whether this is a read or a write.  The slave then issues
52     an ACK signal (ivtv_ack), which tells us that it is ready for reading /
53     writing.  We then proceed with reading or writing (ivtv_read/ivtv_write),
54     and finally issue a stop condition (ivtv_stop) to make the bus available
55     to other masters.
56 
57     There is an additional form of transaction where a write may be
58     immediately followed by a read.  In this case, there is no intervening
59     stop condition.  (Only the msp3400 chip uses this method of data transfer).
60  */
61 
62 #include "ivtv-driver.h"
63 #include "ivtv-cards.h"
64 #include "ivtv-gpio.h"
65 #include "ivtv-i2c.h"
66 #include <media/drv-intf/cx25840.h>
67 
68 /* i2c implementation for cx23415/6 chip, ivtv project.
69  * Author: Kevin Thayer (nufan_wfk at yahoo.com)
70  */
71 /* i2c stuff */
72 #define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
73 #define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
74 #define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
75 #define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
76 
77 #define IVTV_CS53L32A_I2C_ADDR		0x11
78 #define IVTV_M52790_I2C_ADDR		0x48
79 #define IVTV_CX25840_I2C_ADDR		0x44
80 #define IVTV_SAA7115_I2C_ADDR		0x21
81 #define IVTV_SAA7127_I2C_ADDR		0x44
82 #define IVTV_SAA717x_I2C_ADDR		0x21
83 #define IVTV_MSP3400_I2C_ADDR		0x40
84 #define IVTV_HAUPPAUGE_I2C_ADDR		0x50
85 #define IVTV_WM8739_I2C_ADDR		0x1a
86 #define IVTV_WM8775_I2C_ADDR		0x1b
87 #define IVTV_TEA5767_I2C_ADDR		0x60
88 #define IVTV_UPD64031A_I2C_ADDR		0x12
89 #define IVTV_UPD64083_I2C_ADDR		0x5c
90 #define IVTV_VP27SMPX_I2C_ADDR		0x5b
91 #define IVTV_M52790_I2C_ADDR		0x48
92 #define IVTV_AVERMEDIA_IR_RX_I2C_ADDR	0x40
93 #define IVTV_HAUP_EXT_IR_RX_I2C_ADDR	0x1a
94 #define IVTV_HAUP_INT_IR_RX_I2C_ADDR	0x18
95 #define IVTV_Z8F0811_IR_TX_I2C_ADDR	0x70
96 #define IVTV_Z8F0811_IR_RX_I2C_ADDR	0x71
97 #define IVTV_ADAPTEC_IR_ADDR		0x6b
98 
99 /* This array should match the IVTV_HW_ defines */
100 static const u8 hw_addrs[] = {
101 	IVTV_CX25840_I2C_ADDR,
102 	IVTV_SAA7115_I2C_ADDR,
103 	IVTV_SAA7127_I2C_ADDR,
104 	IVTV_MSP3400_I2C_ADDR,
105 	0,
106 	IVTV_WM8775_I2C_ADDR,
107 	IVTV_CS53L32A_I2C_ADDR,
108 	0,
109 	IVTV_SAA7115_I2C_ADDR,
110 	IVTV_UPD64031A_I2C_ADDR,
111 	IVTV_UPD64083_I2C_ADDR,
112 	IVTV_SAA717x_I2C_ADDR,
113 	IVTV_WM8739_I2C_ADDR,
114 	IVTV_VP27SMPX_I2C_ADDR,
115 	IVTV_M52790_I2C_ADDR,
116 	0,				/* IVTV_HW_GPIO dummy driver ID */
117 	IVTV_AVERMEDIA_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_AVER */
118 	IVTV_HAUP_EXT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
119 	IVTV_HAUP_INT_IR_RX_I2C_ADDR,	/* IVTV_HW_I2C_IR_RX_HAUP_INT */
120 	IVTV_Z8F0811_IR_RX_I2C_ADDR,	/* IVTV_HW_Z8F0811_IR_HAUP */
121 	IVTV_ADAPTEC_IR_ADDR,		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
122 };
123 
124 /* This array should match the IVTV_HW_ defines */
125 static const char * const hw_devicenames[] = {
126 	"cx25840",
127 	"saa7115",
128 	"saa7127_auto",	/* saa7127 or saa7129 */
129 	"msp3400",
130 	"tuner",
131 	"wm8775",
132 	"cs53l32a",
133 	"tveeprom",
134 	"saa7114",
135 	"upd64031a",
136 	"upd64083",
137 	"saa717x",
138 	"wm8739",
139 	"vp27smpx",
140 	"m52790",
141 	"gpio",
142 	"ir_video",		/* IVTV_HW_I2C_IR_RX_AVER */
143 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_EXT */
144 	"ir_video",		/* IVTV_HW_I2C_IR_RX_HAUP_INT */
145 	"ir_z8f0811_haup",	/* IVTV_HW_Z8F0811_IR_HAUP */
146 	"ir_video",		/* IVTV_HW_I2C_IR_RX_ADAPTEC */
147 };
148 
149 static int get_key_adaptec(struct IR_i2c *ir, enum rc_proto *protocol,
150 			   u32 *scancode, u8 *toggle)
151 {
152 	unsigned char keybuf[4];
153 
154 	keybuf[0] = 0x00;
155 	i2c_master_send(ir->c, keybuf, 1);
156 	/* poll IR chip */
157 	if (i2c_master_recv(ir->c, keybuf, sizeof(keybuf)) != sizeof(keybuf)) {
158 		return 0;
159 	}
160 
161 	/* key pressed ? */
162 	if (keybuf[2] == 0xff)
163 		return 0;
164 
165 	/* remove repeat bit */
166 	keybuf[2] &= 0x7f;
167 	keybuf[3] |= 0x80;
168 
169 	*protocol = RC_PROTO_UNKNOWN;
170 	*scancode = keybuf[3] | keybuf[2] << 8 | keybuf[1] << 16 |keybuf[0] << 24;
171 	*toggle = 0;
172 	return 1;
173 }
174 
175 static int ivtv_i2c_new_ir(struct ivtv *itv, u32 hw, const char *type, u8 addr)
176 {
177 	struct i2c_board_info info;
178 	struct i2c_adapter *adap = &itv->i2c_adap;
179 	struct IR_i2c_init_data *init_data = &itv->ir_i2c_init_data;
180 	unsigned short addr_list[2] = { addr, I2C_CLIENT_END };
181 
182 	/* Only allow one IR receiver to be registered per board */
183 	if (itv->hw_flags & IVTV_HW_IR_ANY)
184 		return -1;
185 
186 	/* Our default information for ir-kbd-i2c.c to use */
187 	switch (hw) {
188 	case IVTV_HW_I2C_IR_RX_AVER:
189 		init_data->ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
190 		init_data->internal_get_key_func =
191 					IR_KBD_GET_KEY_AVERMEDIA_CARDBUS;
192 		init_data->type = RC_PROTO_BIT_OTHER;
193 		init_data->name = "AVerMedia AVerTV card";
194 		break;
195 	case IVTV_HW_I2C_IR_RX_HAUP_EXT:
196 	case IVTV_HW_I2C_IR_RX_HAUP_INT:
197 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
198 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
199 		init_data->type = RC_PROTO_BIT_RC5;
200 		init_data->name = itv->card_name;
201 		break;
202 	case IVTV_HW_Z8F0811_IR_HAUP:
203 		/* Default to grey remote */
204 		init_data->ir_codes = RC_MAP_HAUPPAUGE;
205 		init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
206 		init_data->type = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
207 							RC_PROTO_BIT_RC6_6A_32;
208 		init_data->name = itv->card_name;
209 		break;
210 	case IVTV_HW_I2C_IR_RX_ADAPTEC:
211 		init_data->get_key = get_key_adaptec;
212 		init_data->name = itv->card_name;
213 		/* FIXME: The protocol and RC_MAP needs to be corrected */
214 		init_data->ir_codes = RC_MAP_EMPTY;
215 		init_data->type = RC_PROTO_BIT_UNKNOWN;
216 		break;
217 	}
218 
219 	memset(&info, 0, sizeof(struct i2c_board_info));
220 	info.platform_data = init_data;
221 	strlcpy(info.type, type, I2C_NAME_SIZE);
222 
223 	return i2c_new_probed_device(adap, &info, addr_list, NULL) == NULL ?
224 	       -1 : 0;
225 }
226 
227 /* Instantiate the IR receiver device using probing -- undesirable */
228 struct i2c_client *ivtv_i2c_new_ir_legacy(struct ivtv *itv)
229 {
230 	struct i2c_board_info info;
231 	/*
232 	 * The external IR receiver is at i2c address 0x34.
233 	 * The internal IR receiver is at i2c address 0x30.
234 	 *
235 	 * In theory, both can be fitted, and Hauppauge suggests an external
236 	 * overrides an internal.  That's why we probe 0x1a (~0x34) first. CB
237 	 *
238 	 * Some of these addresses we probe may collide with other i2c address
239 	 * allocations, so this function must be called after all other i2c
240 	 * devices we care about are registered.
241 	 */
242 	const unsigned short addr_list[] = {
243 		0x1a,	/* Hauppauge IR external - collides with WM8739 */
244 		0x18,	/* Hauppauge IR internal */
245 		I2C_CLIENT_END
246 	};
247 
248 	memset(&info, 0, sizeof(struct i2c_board_info));
249 	strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
250 	return i2c_new_probed_device(&itv->i2c_adap, &info, addr_list, NULL);
251 }
252 
253 int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
254 {
255 	struct v4l2_subdev *sd;
256 	struct i2c_adapter *adap = &itv->i2c_adap;
257 	const char *type = hw_devicenames[idx];
258 	u32 hw = 1 << idx;
259 
260 	if (hw == IVTV_HW_TUNER) {
261 		/* special tuner handling */
262 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
263 				itv->card_i2c->radio);
264 		if (sd)
265 			sd->grp_id = 1 << idx;
266 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
267 				itv->card_i2c->demod);
268 		if (sd)
269 			sd->grp_id = 1 << idx;
270 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
271 				itv->card_i2c->tv);
272 		if (sd)
273 			sd->grp_id = 1 << idx;
274 		return sd ? 0 : -1;
275 	}
276 
277 	if (hw & IVTV_HW_IR_ANY)
278 		return ivtv_i2c_new_ir(itv, hw, type, hw_addrs[idx]);
279 
280 	/* Is it not an I2C device or one we do not wish to register? */
281 	if (!hw_addrs[idx])
282 		return -1;
283 
284 	/* It's an I2C device other than an analog tuner or IR chip */
285 	if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
286 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
287 				adap, type, 0, I2C_ADDRS(hw_addrs[idx]));
288 	} else if (hw == IVTV_HW_CX25840) {
289 		struct cx25840_platform_data pdata;
290 		struct i2c_board_info cx25840_info = {
291 			.type = "cx25840",
292 			.addr = hw_addrs[idx],
293 			.platform_data = &pdata,
294 		};
295 
296 		memset(&pdata, 0, sizeof(pdata));
297 		pdata.pvr150_workaround = itv->pvr150_workaround;
298 		sd = v4l2_i2c_new_subdev_board(&itv->v4l2_dev, adap,
299 				&cx25840_info, NULL);
300 	} else {
301 		sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
302 				adap, type, hw_addrs[idx], NULL);
303 	}
304 	if (sd)
305 		sd->grp_id = 1 << idx;
306 	return sd ? 0 : -1;
307 }
308 
309 struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
310 {
311 	struct v4l2_subdev *result = NULL;
312 	struct v4l2_subdev *sd;
313 
314 	spin_lock(&itv->v4l2_dev.lock);
315 	v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
316 		if (sd->grp_id == hw) {
317 			result = sd;
318 			break;
319 		}
320 	}
321 	spin_unlock(&itv->v4l2_dev.lock);
322 	return result;
323 }
324 
325 /* Set the serial clock line to the desired state */
326 static void ivtv_setscl(struct ivtv *itv, int state)
327 {
328 	/* write them out */
329 	/* write bits are inverted */
330 	write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
331 }
332 
333 /* Set the serial data line to the desired state */
334 static void ivtv_setsda(struct ivtv *itv, int state)
335 {
336 	/* write them out */
337 	/* write bits are inverted */
338 	write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
339 }
340 
341 /* Read the serial clock line */
342 static int ivtv_getscl(struct ivtv *itv)
343 {
344 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
345 }
346 
347 /* Read the serial data line */
348 static int ivtv_getsda(struct ivtv *itv)
349 {
350 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
351 }
352 
353 /* Implement a short delay by polling the serial clock line */
354 static void ivtv_scldelay(struct ivtv *itv)
355 {
356 	int i;
357 
358 	for (i = 0; i < 5; ++i)
359 		ivtv_getscl(itv);
360 }
361 
362 /* Wait for the serial clock line to become set to a specific value */
363 static int ivtv_waitscl(struct ivtv *itv, int val)
364 {
365 	int i;
366 
367 	ivtv_scldelay(itv);
368 	for (i = 0; i < 1000; ++i) {
369 		if (ivtv_getscl(itv) == val)
370 			return 1;
371 	}
372 	return 0;
373 }
374 
375 /* Wait for the serial data line to become set to a specific value */
376 static int ivtv_waitsda(struct ivtv *itv, int val)
377 {
378 	int i;
379 
380 	ivtv_scldelay(itv);
381 	for (i = 0; i < 1000; ++i) {
382 		if (ivtv_getsda(itv) == val)
383 			return 1;
384 	}
385 	return 0;
386 }
387 
388 /* Wait for the slave to issue an ACK */
389 static int ivtv_ack(struct ivtv *itv)
390 {
391 	int ret = 0;
392 
393 	if (ivtv_getscl(itv) == 1) {
394 		IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
395 		ivtv_setscl(itv, 0);
396 		if (!ivtv_waitscl(itv, 0)) {
397 			IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
398 			return -EREMOTEIO;
399 		}
400 	}
401 	ivtv_setsda(itv, 1);
402 	ivtv_scldelay(itv);
403 	ivtv_setscl(itv, 1);
404 	if (!ivtv_waitsda(itv, 0)) {
405 		IVTV_DEBUG_I2C("Slave did not ack\n");
406 		ret = -EREMOTEIO;
407 	}
408 	ivtv_setscl(itv, 0);
409 	if (!ivtv_waitscl(itv, 0)) {
410 		IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
411 		ret = -EREMOTEIO;
412 	}
413 	return ret;
414 }
415 
416 /* Write a single byte to the i2c bus and wait for the slave to ACK */
417 static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
418 {
419 	int i, bit;
420 
421 	IVTV_DEBUG_HI_I2C("write %x\n",byte);
422 	for (i = 0; i < 8; ++i, byte<<=1) {
423 		ivtv_setscl(itv, 0);
424 		if (!ivtv_waitscl(itv, 0)) {
425 			IVTV_DEBUG_I2C("Error setting SCL low\n");
426 			return -EREMOTEIO;
427 		}
428 		bit = (byte>>7)&1;
429 		ivtv_setsda(itv, bit);
430 		if (!ivtv_waitsda(itv, bit)) {
431 			IVTV_DEBUG_I2C("Error setting SDA\n");
432 			return -EREMOTEIO;
433 		}
434 		ivtv_setscl(itv, 1);
435 		if (!ivtv_waitscl(itv, 1)) {
436 			IVTV_DEBUG_I2C("Slave not ready for bit\n");
437 			return -EREMOTEIO;
438 		}
439 	}
440 	ivtv_setscl(itv, 0);
441 	if (!ivtv_waitscl(itv, 0)) {
442 		IVTV_DEBUG_I2C("Error setting SCL low\n");
443 		return -EREMOTEIO;
444 	}
445 	return ivtv_ack(itv);
446 }
447 
448 /* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
449    final byte) */
450 static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
451 {
452 	int i;
453 
454 	*byte = 0;
455 
456 	ivtv_setsda(itv, 1);
457 	ivtv_scldelay(itv);
458 	for (i = 0; i < 8; ++i) {
459 		ivtv_setscl(itv, 0);
460 		ivtv_scldelay(itv);
461 		ivtv_setscl(itv, 1);
462 		if (!ivtv_waitscl(itv, 1)) {
463 			IVTV_DEBUG_I2C("Error setting SCL high\n");
464 			return -EREMOTEIO;
465 		}
466 		*byte = ((*byte)<<1)|ivtv_getsda(itv);
467 	}
468 	ivtv_setscl(itv, 0);
469 	ivtv_scldelay(itv);
470 	ivtv_setsda(itv, nack);
471 	ivtv_scldelay(itv);
472 	ivtv_setscl(itv, 1);
473 	ivtv_scldelay(itv);
474 	ivtv_setscl(itv, 0);
475 	ivtv_scldelay(itv);
476 	IVTV_DEBUG_HI_I2C("read %x\n",*byte);
477 	return 0;
478 }
479 
480 /* Issue a start condition on the i2c bus to alert slaves to prepare for
481    an address write */
482 static int ivtv_start(struct ivtv *itv)
483 {
484 	int sda;
485 
486 	sda = ivtv_getsda(itv);
487 	if (sda != 1) {
488 		IVTV_DEBUG_HI_I2C("SDA was low at start\n");
489 		ivtv_setsda(itv, 1);
490 		if (!ivtv_waitsda(itv, 1)) {
491 			IVTV_DEBUG_I2C("SDA stuck low\n");
492 			return -EREMOTEIO;
493 		}
494 	}
495 	if (ivtv_getscl(itv) != 1) {
496 		ivtv_setscl(itv, 1);
497 		if (!ivtv_waitscl(itv, 1)) {
498 			IVTV_DEBUG_I2C("SCL stuck low at start\n");
499 			return -EREMOTEIO;
500 		}
501 	}
502 	ivtv_setsda(itv, 0);
503 	ivtv_scldelay(itv);
504 	return 0;
505 }
506 
507 /* Issue a stop condition on the i2c bus to release it */
508 static int ivtv_stop(struct ivtv *itv)
509 {
510 	int i;
511 
512 	if (ivtv_getscl(itv) != 0) {
513 		IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
514 		ivtv_setscl(itv, 0);
515 		if (!ivtv_waitscl(itv, 0)) {
516 			IVTV_DEBUG_I2C("SCL could not be set low\n");
517 		}
518 	}
519 	ivtv_setsda(itv, 0);
520 	ivtv_scldelay(itv);
521 	ivtv_setscl(itv, 1);
522 	if (!ivtv_waitscl(itv, 1)) {
523 		IVTV_DEBUG_I2C("SCL could not be set high\n");
524 		return -EREMOTEIO;
525 	}
526 	ivtv_scldelay(itv);
527 	ivtv_setsda(itv, 1);
528 	if (!ivtv_waitsda(itv, 1)) {
529 		IVTV_DEBUG_I2C("resetting I2C\n");
530 		for (i = 0; i < 16; ++i) {
531 			ivtv_setscl(itv, 0);
532 			ivtv_scldelay(itv);
533 			ivtv_setscl(itv, 1);
534 			ivtv_scldelay(itv);
535 			ivtv_setsda(itv, 1);
536 		}
537 		ivtv_waitsda(itv, 1);
538 		return -EREMOTEIO;
539 	}
540 	return 0;
541 }
542 
543 /* Write a message to the given i2c slave.  do_stop may be 0 to prevent
544    issuing the i2c stop condition (when following with a read) */
545 static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
546 {
547 	int retry, ret = -EREMOTEIO;
548 	u32 i;
549 
550 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
551 		ret = ivtv_start(itv);
552 
553 		if (ret == 0) {
554 			ret = ivtv_sendbyte(itv, addr<<1);
555 			for (i = 0; ret == 0 && i < len; ++i)
556 				ret = ivtv_sendbyte(itv, data[i]);
557 		}
558 		if (ret != 0 || do_stop) {
559 			ivtv_stop(itv);
560 		}
561 	}
562 	if (ret)
563 		IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
564 	return ret;
565 }
566 
567 /* Read data from the given i2c slave.  A stop condition is always issued. */
568 static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
569 {
570 	int retry, ret = -EREMOTEIO;
571 	u32 i;
572 
573 	for (retry = 0; ret != 0 && retry < 8; ++retry) {
574 		ret = ivtv_start(itv);
575 		if (ret == 0)
576 			ret = ivtv_sendbyte(itv, (addr << 1) | 1);
577 		for (i = 0; ret == 0 && i < len; ++i) {
578 			ret = ivtv_readbyte(itv, &data[i], i == len - 1);
579 		}
580 		ivtv_stop(itv);
581 	}
582 	if (ret)
583 		IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
584 	return ret;
585 }
586 
587 /* Kernel i2c transfer implementation.  Takes a number of messages to be read
588    or written.  If a read follows a write, this will occur without an
589    intervening stop condition */
590 static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
591 {
592 	struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
593 	struct ivtv *itv = to_ivtv(v4l2_dev);
594 	int retval;
595 	int i;
596 
597 	mutex_lock(&itv->i2c_bus_lock);
598 	for (i = retval = 0; retval == 0 && i < num; i++) {
599 		if (msgs[i].flags & I2C_M_RD)
600 			retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
601 		else {
602 			/* if followed by a read, don't stop */
603 			int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
604 
605 			retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
606 		}
607 	}
608 	mutex_unlock(&itv->i2c_bus_lock);
609 	return retval ? retval : num;
610 }
611 
612 /* Kernel i2c capabilities */
613 static u32 ivtv_functionality(struct i2c_adapter *adap)
614 {
615 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
616 }
617 
618 static const struct i2c_algorithm ivtv_algo = {
619 	.master_xfer   = ivtv_xfer,
620 	.functionality = ivtv_functionality,
621 };
622 
623 /* template for our-bit banger */
624 static const struct i2c_adapter ivtv_i2c_adap_hw_template = {
625 	.name = "ivtv i2c driver",
626 	.algo = &ivtv_algo,
627 	.algo_data = NULL,			/* filled from template */
628 	.owner = THIS_MODULE,
629 };
630 
631 static void ivtv_setscl_old(void *data, int state)
632 {
633 	struct ivtv *itv = (struct ivtv *)data;
634 
635 	if (state)
636 		itv->i2c_state |= 0x01;
637 	else
638 		itv->i2c_state &= ~0x01;
639 
640 	/* write them out */
641 	/* write bits are inverted */
642 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
643 }
644 
645 static void ivtv_setsda_old(void *data, int state)
646 {
647 	struct ivtv *itv = (struct ivtv *)data;
648 
649 	if (state)
650 		itv->i2c_state |= 0x01;
651 	else
652 		itv->i2c_state &= ~0x01;
653 
654 	/* write them out */
655 	/* write bits are inverted */
656 	write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
657 }
658 
659 static int ivtv_getscl_old(void *data)
660 {
661 	struct ivtv *itv = (struct ivtv *)data;
662 
663 	return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
664 }
665 
666 static int ivtv_getsda_old(void *data)
667 {
668 	struct ivtv *itv = (struct ivtv *)data;
669 
670 	return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
671 }
672 
673 /* template for i2c-bit-algo */
674 static const struct i2c_adapter ivtv_i2c_adap_template = {
675 	.name = "ivtv i2c driver",
676 	.algo = NULL,                   /* set by i2c-algo-bit */
677 	.algo_data = NULL,              /* filled from template */
678 	.owner = THIS_MODULE,
679 };
680 
681 #define IVTV_ALGO_BIT_TIMEOUT	(2)	/* seconds */
682 
683 static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
684 	.setsda		= ivtv_setsda_old,
685 	.setscl		= ivtv_setscl_old,
686 	.getsda		= ivtv_getsda_old,
687 	.getscl		= ivtv_getscl_old,
688 	.udelay		= IVTV_DEFAULT_I2C_CLOCK_PERIOD / 2,  /* microseconds */
689 	.timeout	= IVTV_ALGO_BIT_TIMEOUT * HZ,         /* jiffies */
690 };
691 
692 static const struct i2c_client ivtv_i2c_client_template = {
693 	.name = "ivtv internal",
694 };
695 
696 /* init + register i2c adapter */
697 int init_ivtv_i2c(struct ivtv *itv)
698 {
699 	int retval;
700 
701 	IVTV_DEBUG_I2C("i2c init\n");
702 
703 	/* Sanity checks for the I2C hardware arrays. They must be the
704 	 * same size.
705 	 */
706 	if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs)) {
707 		IVTV_ERR("Mismatched I2C hardware arrays\n");
708 		return -ENODEV;
709 	}
710 	if (itv->options.newi2c > 0) {
711 		itv->i2c_adap = ivtv_i2c_adap_hw_template;
712 	} else {
713 		itv->i2c_adap = ivtv_i2c_adap_template;
714 		itv->i2c_algo = ivtv_i2c_algo_template;
715 	}
716 	itv->i2c_algo.udelay = itv->options.i2c_clock_period / 2;
717 	itv->i2c_algo.data = itv;
718 	itv->i2c_adap.algo_data = &itv->i2c_algo;
719 
720 	sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
721 		itv->instance);
722 	i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
723 
724 	itv->i2c_client = ivtv_i2c_client_template;
725 	itv->i2c_client.adapter = &itv->i2c_adap;
726 	itv->i2c_adap.dev.parent = &itv->pdev->dev;
727 
728 	IVTV_DEBUG_I2C("setting scl and sda to 1\n");
729 	ivtv_setscl(itv, 1);
730 	ivtv_setsda(itv, 1);
731 
732 	if (itv->options.newi2c > 0)
733 		retval = i2c_add_adapter(&itv->i2c_adap);
734 	else
735 		retval = i2c_bit_add_bus(&itv->i2c_adap);
736 
737 	return retval;
738 }
739 
740 void exit_ivtv_i2c(struct ivtv *itv)
741 {
742 	IVTV_DEBUG_I2C("i2c exit\n");
743 
744 	i2c_del_adapter(&itv->i2c_adap);
745 }
746