xref: /openbmc/linux/drivers/media/pci/cx88/cx88-dsp.c (revision ae108c48)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Stereo and SAP detection for cx88
4  *
5  *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
6  */
7 
8 #include "cx88.h"
9 #include "cx88-reg.h"
10 
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/jiffies.h>
15 #include <asm/div64.h>
16 
17 #define INT_PI			((s32)(3.141592653589 * 32768.0))
18 
19 #define compat_remainder(a, b) \
20 	 ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
21 
22 #define baseband_freq(carrier, srate, tone) ((s32)( \
23 	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
24 
25 /*
26  * We calculate the baseband frequencies of the carrier and the pilot tones
27  * based on the sampling rate of the audio rds fifo.
28  */
29 
30 #define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
31 #define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
32 #define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
33 
34 /*
35  * The frequencies below are from the reference driver. They probably need
36  * further adjustments, because they are not tested at all. You may even need
37  * to play a bit with the registers of the chip to select the proper signal
38  * for the input of the audio rds fifo, and measure it's sampling rate to
39  * calculate the proper baseband frequencies...
40  */
41 
42 #define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
43 #define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
44 #define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
45 
46 #define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
47 #define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
48 #define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
49 
50 #define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
51 #define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
52 
53 #define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
54 #define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
55 
56 /* The spectrum of the signal should be empty between these frequencies. */
57 #define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
58 #define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
59 
60 static unsigned int dsp_debug;
61 module_param(dsp_debug, int, 0644);
62 MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
63 
64 #define dprintk(level, fmt, arg...) do {				\
65 	if (dsp_debug >= level)						\
66 		printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt),		\
67 			__func__, ##arg);				\
68 } while (0)
69 
70 static s32 int_cos(u32 x)
71 {
72 	u32 t2, t4, t6, t8;
73 	s32 ret;
74 	u16 period = x / INT_PI;
75 
76 	if (period % 2)
77 		return -int_cos(x - INT_PI);
78 	x = x % INT_PI;
79 	if (x > INT_PI / 2)
80 		return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
81 	/*
82 	 * Now x is between 0 and INT_PI/2.
83 	 * To calculate cos(x) we use it's Taylor polinom.
84 	 */
85 	t2 = x * x / 32768 / 2;
86 	t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
87 	t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
88 	t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
89 	ret = 32768 - t2 + t4 - t6 + t8;
90 	return ret;
91 }
92 
93 static u32 int_goertzel(s16 x[], u32 N, u32 freq)
94 {
95 	/*
96 	 * We use the Goertzel algorithm to determine the power of the
97 	 * given frequency in the signal
98 	 */
99 	s32 s_prev = 0;
100 	s32 s_prev2 = 0;
101 	s32 coeff = 2 * int_cos(freq);
102 	u32 i;
103 
104 	u64 tmp;
105 	u32 divisor;
106 
107 	for (i = 0; i < N; i++) {
108 		s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
109 
110 		s_prev2 = s_prev;
111 		s_prev = s;
112 	}
113 
114 	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
115 		      (s64)coeff * s_prev2 * s_prev / 32768;
116 
117 	/*
118 	 * XXX: N must be low enough so that N*N fits in s32.
119 	 * Else we need two divisions.
120 	 */
121 	divisor = N * N;
122 	do_div(tmp, divisor);
123 
124 	return (u32)tmp;
125 }
126 
127 static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
128 {
129 	u32 sum = int_goertzel(x, N, freq);
130 
131 	return (u32)int_sqrt(sum);
132 }
133 
134 static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
135 {
136 	int i;
137 	u32 sum = 0;
138 	u32 freq_step;
139 	int samples = 5;
140 
141 	if (N > 192) {
142 		/* The last 192 samples are enough for noise detection */
143 		x += (N - 192);
144 		N = 192;
145 	}
146 
147 	freq_step = (freq_end - freq_start) / (samples - 1);
148 
149 	for (i = 0; i < samples; i++) {
150 		sum += int_goertzel(x, N, freq_start);
151 		freq_start += freq_step;
152 	}
153 
154 	return (u32)int_sqrt(sum / samples);
155 }
156 
157 static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
158 {
159 	s32 carrier, stereo, dual, noise;
160 	s32 carrier_freq, stereo_freq, dual_freq;
161 	s32 ret;
162 
163 	switch (core->tvaudio) {
164 	case WW_BG:
165 	case WW_DK:
166 		carrier_freq = FREQ_A2_CARRIER;
167 		stereo_freq = FREQ_A2_STEREO;
168 		dual_freq = FREQ_A2_DUAL;
169 		break;
170 	case WW_M:
171 		carrier_freq = FREQ_A2M_CARRIER;
172 		stereo_freq = FREQ_A2M_STEREO;
173 		dual_freq = FREQ_A2M_DUAL;
174 		break;
175 	case WW_EIAJ:
176 		carrier_freq = FREQ_EIAJ_CARRIER;
177 		stereo_freq = FREQ_EIAJ_STEREO;
178 		dual_freq = FREQ_EIAJ_DUAL;
179 		break;
180 	default:
181 		pr_warn("unsupported audio mode %d for %s\n",
182 			core->tvaudio, __func__);
183 		return UNSET;
184 	}
185 
186 	carrier = freq_magnitude(x, N, carrier_freq);
187 	stereo  = freq_magnitude(x, N, stereo_freq);
188 	dual    = freq_magnitude(x, N, dual_freq);
189 	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
190 
191 	dprintk(1,
192 		"detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
193 		carrier, stereo, dual, noise);
194 
195 	if (stereo > dual)
196 		ret = V4L2_TUNER_SUB_STEREO;
197 	else
198 		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
199 
200 	if (core->tvaudio == WW_EIAJ) {
201 		/* EIAJ checks may need adjustments */
202 		if ((carrier > max(stereo, dual) * 2) &&
203 		    (carrier < max(stereo, dual) * 6) &&
204 		    (carrier > 20 && carrier < 200) &&
205 		    (max(stereo, dual) > min(stereo, dual))) {
206 			/*
207 			 * For EIAJ the carrier is always present,
208 			 * so we probably don't need noise detection
209 			 */
210 			return ret;
211 		}
212 	} else {
213 		if ((carrier > max(stereo, dual) * 2) &&
214 		    (carrier < max(stereo, dual) * 8) &&
215 		    (carrier > 20 && carrier < 200) &&
216 		    (noise < 10) &&
217 		    (max(stereo, dual) > min(stereo, dual) * 2)) {
218 			return ret;
219 		}
220 	}
221 	return V4L2_TUNER_SUB_MONO;
222 }
223 
224 static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
225 {
226 	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
227 	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
228 	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
229 	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
230 
231 	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
232 		dual_ref, dual, sap_ref, sap);
233 	/* FIXME: Currently not supported */
234 	return UNSET;
235 }
236 
237 static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
238 {
239 	const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
240 	s16 *samples;
241 
242 	unsigned int i;
243 	unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
244 	unsigned int spl = bpl / 4;
245 	unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
246 
247 	u32 current_address = cx_read(srch->ptr1_reg);
248 	u32 offset = (current_address - srch->fifo_start + bpl);
249 
250 	dprintk(1,
251 		"read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
252 		current_address,
253 		current_address - srch->fifo_start, sample_count,
254 		cx_read(MO_AUD_INTSTAT));
255 	samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
256 	if (!samples)
257 		return NULL;
258 
259 	*N = sample_count;
260 
261 	for (i = 0; i < sample_count; i++)  {
262 		offset = offset % (AUD_RDS_LINES * bpl);
263 		samples[i] = cx_read(srch->fifo_start + offset);
264 		offset += 4;
265 	}
266 
267 	dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
268 
269 	return samples;
270 }
271 
272 s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
273 {
274 	s16 *samples;
275 	u32 N = 0;
276 	s32 ret = UNSET;
277 
278 	/* If audio RDS fifo is disabled, we can't read the samples */
279 	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
280 		return ret;
281 	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
282 		return ret;
283 
284 	/* Wait at least 500 ms after an audio standard change */
285 	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
286 		return ret;
287 
288 	samples = read_rds_samples(core, &N);
289 
290 	if (!samples)
291 		return ret;
292 
293 	switch (core->tvaudio) {
294 	case WW_BG:
295 	case WW_DK:
296 	case WW_EIAJ:
297 	case WW_M:
298 		ret = detect_a2_a2m_eiaj(core, samples, N);
299 		break;
300 	case WW_BTSC:
301 		ret = detect_btsc(core, samples, N);
302 		break;
303 	case WW_NONE:
304 	case WW_I:
305 	case WW_L:
306 	case WW_I2SPT:
307 	case WW_FM:
308 	case WW_I2SADC:
309 		break;
310 	}
311 
312 	kfree(samples);
313 
314 	if (ret != UNSET)
315 		dprintk(1, "stereo/sap detection result:%s%s%s\n",
316 			(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
317 			(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
318 			(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
319 
320 	return ret;
321 }
322 EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
323 
324