xref: /openbmc/linux/drivers/media/pci/cx88/cx88-dsp.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *  Stereo and SAP detection for cx88
3  *
4  *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  */
16 
17 #include "cx88.h"
18 #include "cx88-reg.h"
19 
20 #include <linux/slab.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/jiffies.h>
24 #include <asm/div64.h>
25 
26 #define INT_PI			((s32)(3.141592653589 * 32768.0))
27 
28 #define compat_remainder(a, b) \
29 	 ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
30 
31 #define baseband_freq(carrier, srate, tone) ((s32)( \
32 	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
33 
34 /*
35  * We calculate the baseband frequencies of the carrier and the pilot tones
36  * based on the the sampling rate of the audio rds fifo.
37  */
38 
39 #define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
40 #define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
41 #define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
42 
43 /*
44  * The frequencies below are from the reference driver. They probably need
45  * further adjustments, because they are not tested at all. You may even need
46  * to play a bit with the registers of the chip to select the proper signal
47  * for the input of the audio rds fifo, and measure it's sampling rate to
48  * calculate the proper baseband frequencies...
49  */
50 
51 #define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
52 #define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
53 #define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
54 
55 #define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
56 #define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
57 #define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
58 
59 #define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
60 #define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
61 
62 #define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
63 #define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
64 
65 /* The spectrum of the signal should be empty between these frequencies. */
66 #define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
67 #define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
68 
69 static unsigned int dsp_debug;
70 module_param(dsp_debug, int, 0644);
71 MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
72 
73 #define dprintk(level, fmt, arg...) do {				\
74 	if (dsp_debug >= level)						\
75 		printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt),		\
76 			__func__, ##arg);				\
77 } while (0)
78 
79 static s32 int_cos(u32 x)
80 {
81 	u32 t2, t4, t6, t8;
82 	s32 ret;
83 	u16 period = x / INT_PI;
84 
85 	if (period % 2)
86 		return -int_cos(x - INT_PI);
87 	x = x % INT_PI;
88 	if (x > INT_PI / 2)
89 		return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
90 	/*
91 	 * Now x is between 0 and INT_PI/2.
92 	 * To calculate cos(x) we use it's Taylor polinom.
93 	 */
94 	t2 = x * x / 32768 / 2;
95 	t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
96 	t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
97 	t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
98 	ret = 32768 - t2 + t4 - t6 + t8;
99 	return ret;
100 }
101 
102 static u32 int_goertzel(s16 x[], u32 N, u32 freq)
103 {
104 	/*
105 	 * We use the Goertzel algorithm to determine the power of the
106 	 * given frequency in the signal
107 	 */
108 	s32 s_prev = 0;
109 	s32 s_prev2 = 0;
110 	s32 coeff = 2 * int_cos(freq);
111 	u32 i;
112 
113 	u64 tmp;
114 	u32 divisor;
115 
116 	for (i = 0; i < N; i++) {
117 		s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
118 
119 		s_prev2 = s_prev;
120 		s_prev = s;
121 	}
122 
123 	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
124 		      (s64)coeff * s_prev2 * s_prev / 32768;
125 
126 	/*
127 	 * XXX: N must be low enough so that N*N fits in s32.
128 	 * Else we need two divisions.
129 	 */
130 	divisor = N * N;
131 	do_div(tmp, divisor);
132 
133 	return (u32)tmp;
134 }
135 
136 static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
137 {
138 	u32 sum = int_goertzel(x, N, freq);
139 
140 	return (u32)int_sqrt(sum);
141 }
142 
143 static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
144 {
145 	int i;
146 	u32 sum = 0;
147 	u32 freq_step;
148 	int samples = 5;
149 
150 	if (N > 192) {
151 		/* The last 192 samples are enough for noise detection */
152 		x += (N - 192);
153 		N = 192;
154 	}
155 
156 	freq_step = (freq_end - freq_start) / (samples - 1);
157 
158 	for (i = 0; i < samples; i++) {
159 		sum += int_goertzel(x, N, freq_start);
160 		freq_start += freq_step;
161 	}
162 
163 	return (u32)int_sqrt(sum / samples);
164 }
165 
166 static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
167 {
168 	s32 carrier, stereo, dual, noise;
169 	s32 carrier_freq, stereo_freq, dual_freq;
170 	s32 ret;
171 
172 	switch (core->tvaudio) {
173 	case WW_BG:
174 	case WW_DK:
175 		carrier_freq = FREQ_A2_CARRIER;
176 		stereo_freq = FREQ_A2_STEREO;
177 		dual_freq = FREQ_A2_DUAL;
178 		break;
179 	case WW_M:
180 		carrier_freq = FREQ_A2M_CARRIER;
181 		stereo_freq = FREQ_A2M_STEREO;
182 		dual_freq = FREQ_A2M_DUAL;
183 		break;
184 	case WW_EIAJ:
185 		carrier_freq = FREQ_EIAJ_CARRIER;
186 		stereo_freq = FREQ_EIAJ_STEREO;
187 		dual_freq = FREQ_EIAJ_DUAL;
188 		break;
189 	default:
190 		pr_warn("unsupported audio mode %d for %s\n",
191 			core->tvaudio, __func__);
192 		return UNSET;
193 	}
194 
195 	carrier = freq_magnitude(x, N, carrier_freq);
196 	stereo  = freq_magnitude(x, N, stereo_freq);
197 	dual    = freq_magnitude(x, N, dual_freq);
198 	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
199 
200 	dprintk(1,
201 		"detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
202 		carrier, stereo, dual, noise);
203 
204 	if (stereo > dual)
205 		ret = V4L2_TUNER_SUB_STEREO;
206 	else
207 		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
208 
209 	if (core->tvaudio == WW_EIAJ) {
210 		/* EIAJ checks may need adjustments */
211 		if ((carrier > max(stereo, dual) * 2) &&
212 		    (carrier < max(stereo, dual) * 6) &&
213 		    (carrier > 20 && carrier < 200) &&
214 		    (max(stereo, dual) > min(stereo, dual))) {
215 			/*
216 			 * For EIAJ the carrier is always present,
217 			 * so we probably don't need noise detection
218 			 */
219 			return ret;
220 		}
221 	} else {
222 		if ((carrier > max(stereo, dual) * 2) &&
223 		    (carrier < max(stereo, dual) * 8) &&
224 		    (carrier > 20 && carrier < 200) &&
225 		    (noise < 10) &&
226 		    (max(stereo, dual) > min(stereo, dual) * 2)) {
227 			return ret;
228 		}
229 	}
230 	return V4L2_TUNER_SUB_MONO;
231 }
232 
233 static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
234 {
235 	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
236 	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
237 	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
238 	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
239 
240 	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
241 		dual_ref, dual, sap_ref, sap);
242 	/* FIXME: Currently not supported */
243 	return UNSET;
244 }
245 
246 static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
247 {
248 	const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
249 	s16 *samples;
250 
251 	unsigned int i;
252 	unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
253 	unsigned int spl = bpl / 4;
254 	unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
255 
256 	u32 current_address = cx_read(srch->ptr1_reg);
257 	u32 offset = (current_address - srch->fifo_start + bpl);
258 
259 	dprintk(1,
260 		"read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
261 		current_address,
262 		current_address - srch->fifo_start, sample_count,
263 		cx_read(MO_AUD_INTSTAT));
264 	samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
265 	if (!samples)
266 		return NULL;
267 
268 	*N = sample_count;
269 
270 	for (i = 0; i < sample_count; i++)  {
271 		offset = offset % (AUD_RDS_LINES * bpl);
272 		samples[i] = cx_read(srch->fifo_start + offset);
273 		offset += 4;
274 	}
275 
276 	dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
277 
278 	return samples;
279 }
280 
281 s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
282 {
283 	s16 *samples;
284 	u32 N = 0;
285 	s32 ret = UNSET;
286 
287 	/* If audio RDS fifo is disabled, we can't read the samples */
288 	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
289 		return ret;
290 	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
291 		return ret;
292 
293 	/* Wait at least 500 ms after an audio standard change */
294 	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
295 		return ret;
296 
297 	samples = read_rds_samples(core, &N);
298 
299 	if (!samples)
300 		return ret;
301 
302 	switch (core->tvaudio) {
303 	case WW_BG:
304 	case WW_DK:
305 	case WW_EIAJ:
306 	case WW_M:
307 		ret = detect_a2_a2m_eiaj(core, samples, N);
308 		break;
309 	case WW_BTSC:
310 		ret = detect_btsc(core, samples, N);
311 		break;
312 	case WW_NONE:
313 	case WW_I:
314 	case WW_L:
315 	case WW_I2SPT:
316 	case WW_FM:
317 	case WW_I2SADC:
318 		break;
319 	}
320 
321 	kfree(samples);
322 
323 	if (ret != UNSET)
324 		dprintk(1, "stereo/sap detection result:%s%s%s\n",
325 			(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
326 			(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
327 			(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
332 
333