1 /*
2  *  Driver for the Conexant CX23885/7/8 PCIe bridge
3  *
4  *  CX23888 Integrated Consumer Infrared Controller
5  *
6  *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License
10  *  as published by the Free Software Foundation; either version 2
11  *  of the License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  *  02110-1301, USA.
22  */
23 
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
26 
27 #include <media/v4l2-device.h>
28 #include <media/rc-core.h>
29 
30 #include "cx23885.h"
31 #include "cx23888-ir.h"
32 
33 static unsigned int ir_888_debug;
34 module_param(ir_888_debug, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36 
37 #define CX23888_IR_REG_BASE 	0x170000
38 /*
39  * These CX23888 register offsets have a straightforward one to one mapping
40  * to the CX23885 register offsets of 0x200 through 0x218
41  */
42 #define CX23888_IR_CNTRL_REG	0x170000
43 #define CNTRL_WIN_3_3	0x00000000
44 #define CNTRL_WIN_4_3	0x00000001
45 #define CNTRL_WIN_3_4	0x00000002
46 #define CNTRL_WIN_4_4	0x00000003
47 #define CNTRL_WIN	0x00000003
48 #define CNTRL_EDG_NONE	0x00000000
49 #define CNTRL_EDG_FALL	0x00000004
50 #define CNTRL_EDG_RISE	0x00000008
51 #define CNTRL_EDG_BOTH	0x0000000C
52 #define CNTRL_EDG	0x0000000C
53 #define CNTRL_DMD	0x00000010
54 #define CNTRL_MOD	0x00000020
55 #define CNTRL_RFE	0x00000040
56 #define CNTRL_TFE	0x00000080
57 #define CNTRL_RXE	0x00000100
58 #define CNTRL_TXE	0x00000200
59 #define CNTRL_RIC	0x00000400
60 #define CNTRL_TIC	0x00000800
61 #define CNTRL_CPL	0x00001000
62 #define CNTRL_LBM	0x00002000
63 #define CNTRL_R		0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO	0x00008000
66 
67 #define CX23888_IR_TXCLK_REG	0x170004
68 #define TXCLK_TCD	0x0000FFFF
69 
70 #define CX23888_IR_RXCLK_REG	0x170008
71 #define RXCLK_RCD	0x0000FFFF
72 
73 #define CX23888_IR_CDUTY_REG	0x17000C
74 #define CDUTY_CDC	0x0000000F
75 
76 #define CX23888_IR_STATS_REG	0x170010
77 #define STATS_RTO	0x00000001
78 #define STATS_ROR	0x00000002
79 #define STATS_RBY	0x00000004
80 #define STATS_TBY	0x00000008
81 #define STATS_RSR	0x00000010
82 #define STATS_TSR	0x00000020
83 
84 #define CX23888_IR_IRQEN_REG	0x170014
85 #define IRQEN_RTE	0x00000001
86 #define IRQEN_ROE	0x00000002
87 #define IRQEN_RSE	0x00000010
88 #define IRQEN_TSE	0x00000020
89 
90 #define CX23888_IR_FILTR_REG	0x170018
91 #define FILTR_LPF	0x0000FFFF
92 
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG	0x170040
95 #define FIFO_RXTX	0x0000FFFF
96 #define FIFO_RXTX_LVL	0x00010000
97 #define FIFO_RXTX_RTO	0x0001FFFF
98 #define FIFO_RX_NDV	0x00020000
99 #define FIFO_RX_DEPTH	8
100 #define FIFO_TX_DEPTH	8
101 
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG	0x17001C
104 #define CX23888_IR_TIMOL_REG	0x170020
105 #define CX23888_IR_WAKE0_REG	0x170024
106 #define CX23888_IR_WAKE1_REG	0x170028
107 #define CX23888_IR_WAKE2_REG	0x17002C
108 #define CX23888_IR_MASK0_REG	0x170030
109 #define CX23888_IR_MASK1_REG	0x170034
110 #define CX23888_IR_MAKS2_REG	0x170038
111 #define CX23888_IR_DPIPG_REG	0x17003C
112 #define CX23888_IR_LEARN_REG	0x170044
113 
114 #define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
116 
117 /*
118  * We use this union internally for convenience, but callers to tx_write
119  * and rx_read will be expecting records of type struct ir_raw_event.
120  * Always ensure the size of this union is dictated by struct ir_raw_event.
121  */
122 union cx23888_ir_fifo_rec {
123 	u32 hw_fifo_data;
124 	struct ir_raw_event ir_core_data;
125 };
126 
127 #define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
129 
130 struct cx23888_ir_state {
131 	struct v4l2_subdev sd;
132 	struct cx23885_dev *dev;
133 
134 	struct v4l2_subdev_ir_parameters rx_params;
135 	struct mutex rx_params_lock;
136 	atomic_t rxclk_divider;
137 	atomic_t rx_invert;
138 
139 	struct kfifo rx_kfifo;
140 	spinlock_t rx_kfifo_lock;
141 
142 	struct v4l2_subdev_ir_parameters tx_params;
143 	struct mutex tx_params_lock;
144 	atomic_t txclk_divider;
145 };
146 
147 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
148 {
149 	return v4l2_get_subdevdata(sd);
150 }
151 
152 /*
153  * IR register block read and write functions
154  */
155 static
156 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
157 {
158 	cx_write(addr, value);
159 	return 0;
160 }
161 
162 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
163 {
164 	return cx_read(addr);
165 }
166 
167 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
168 				     u32 and_mask, u32 or_value)
169 {
170 	cx_andor(addr, ~and_mask, or_value);
171 	return 0;
172 }
173 
174 /*
175  * Rx and Tx Clock Divider register computations
176  *
177  * Note the largest clock divider value of 0xffff corresponds to:
178  * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
179  * which fits in 21 bits, so we'll use unsigned int for time arguments.
180  */
181 static inline u16 count_to_clock_divider(unsigned int d)
182 {
183 	if (d > RXCLK_RCD + 1)
184 		d = RXCLK_RCD;
185 	else if (d < 2)
186 		d = 1;
187 	else
188 		d--;
189 	return (u16) d;
190 }
191 
192 static inline u16 ns_to_clock_divider(unsigned int ns)
193 {
194 	return count_to_clock_divider(
195 		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
196 }
197 
198 static inline unsigned int clock_divider_to_ns(unsigned int divider)
199 {
200 	/* Period of the Rx or Tx clock in ns */
201 	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
202 				 CX23888_IR_REFCLK_FREQ / 1000000);
203 }
204 
205 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
206 {
207 	return count_to_clock_divider(
208 			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
209 }
210 
211 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
212 {
213 	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
214 }
215 
216 static inline u16 freq_to_clock_divider(unsigned int freq,
217 					unsigned int rollovers)
218 {
219 	return count_to_clock_divider(
220 		   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
221 }
222 
223 static inline unsigned int clock_divider_to_freq(unsigned int divider,
224 						 unsigned int rollovers)
225 {
226 	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
227 				 (divider + 1) * rollovers);
228 }
229 
230 /*
231  * Low Pass Filter register calculations
232  *
233  * Note the largest count value of 0xffff corresponds to:
234  * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
235  * which fits in 21 bits, so we'll use unsigned int for time arguments.
236  */
237 static inline u16 count_to_lpf_count(unsigned int d)
238 {
239 	if (d > FILTR_LPF)
240 		d = FILTR_LPF;
241 	else if (d < 4)
242 		d = 0;
243 	return (u16) d;
244 }
245 
246 static inline u16 ns_to_lpf_count(unsigned int ns)
247 {
248 	return count_to_lpf_count(
249 		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
250 }
251 
252 static inline unsigned int lpf_count_to_ns(unsigned int count)
253 {
254 	/* Duration of the Low Pass Filter rejection window in ns */
255 	return DIV_ROUND_CLOSEST(count * 1000,
256 				 CX23888_IR_REFCLK_FREQ / 1000000);
257 }
258 
259 static inline unsigned int lpf_count_to_us(unsigned int count)
260 {
261 	/* Duration of the Low Pass Filter rejection window in us */
262 	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
263 }
264 
265 /*
266  * FIFO register pulse width count compuations
267  */
268 static u32 clock_divider_to_resolution(u16 divider)
269 {
270 	/*
271 	 * Resolution is the duration of 1 tick of the readable portion of
272 	 * of the pulse width counter as read from the FIFO.  The two lsb's are
273 	 * not readable, hence the << 2.  This function returns ns.
274 	 */
275 	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
276 				 CX23888_IR_REFCLK_FREQ / 1000000);
277 }
278 
279 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
280 {
281 	u64 n;
282 	u32 rem;
283 
284 	/*
285 	 * The 2 lsb's of the pulse width timer count are not readable, hence
286 	 * the (count << 2) | 0x3
287 	 */
288 	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
289 	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
290 	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
291 		n++;
292 	return n;
293 }
294 
295 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
296 {
297 	u64 n;
298 	u32 rem;
299 
300 	/*
301 	 * The 2 lsb's of the pulse width timer count are not readable, hence
302 	 * the (count << 2) | 0x3
303 	 */
304 	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
305 	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
306 	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
307 		n++;
308 	return (unsigned int) n;
309 }
310 
311 /*
312  * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
313  *
314  * The total pulse clock count is an 18 bit pulse width timer count as the most
315  * significant part and (up to) 16 bit clock divider count as a modulus.
316  * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
317  * width timer count's least significant bit.
318  */
319 static u64 ns_to_pulse_clocks(u32 ns)
320 {
321 	u64 clocks;
322 	u32 rem;
323 	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
324 	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
325 	if (rem >= 1000 / 2)
326 		clocks++;
327 	return clocks;
328 }
329 
330 static u16 pulse_clocks_to_clock_divider(u64 count)
331 {
332 	do_div(count, (FIFO_RXTX << 2) | 0x3);
333 
334 	/* net result needs to be rounded down and decremented by 1 */
335 	if (count > RXCLK_RCD + 1)
336 		count = RXCLK_RCD;
337 	else if (count < 2)
338 		count = 1;
339 	else
340 		count--;
341 	return (u16) count;
342 }
343 
344 /*
345  * IR Control Register helpers
346  */
347 enum tx_fifo_watermark {
348 	TX_FIFO_HALF_EMPTY = 0,
349 	TX_FIFO_EMPTY      = CNTRL_TIC,
350 };
351 
352 enum rx_fifo_watermark {
353 	RX_FIFO_HALF_FULL = 0,
354 	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
355 };
356 
357 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
358 					    enum tx_fifo_watermark level)
359 {
360 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
361 }
362 
363 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
364 					    enum rx_fifo_watermark level)
365 {
366 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
367 }
368 
369 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
370 {
371 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
372 			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
373 }
374 
375 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
376 {
377 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
378 			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
379 }
380 
381 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
382 						bool enable)
383 {
384 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
385 			   enable ? CNTRL_MOD : 0);
386 }
387 
388 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
389 						  bool enable)
390 {
391 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
392 			   enable ? CNTRL_DMD : 0);
393 }
394 
395 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
396 					       u32 edge_types)
397 {
398 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
399 			   edge_types & CNTRL_EDG_BOTH);
400 }
401 
402 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
403 					unsigned int carrier,
404 					unsigned int *carrier_range_low,
405 					unsigned int *carrier_range_high)
406 {
407 	u32 v;
408 	unsigned int c16 = carrier * 16;
409 
410 	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
411 		v = CNTRL_WIN_3_4;
412 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
413 	} else {
414 		v = CNTRL_WIN_3_3;
415 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
416 	}
417 
418 	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
419 		v |= CNTRL_WIN_4_3;
420 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
421 	} else {
422 		v |= CNTRL_WIN_3_3;
423 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
424 	}
425 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
426 }
427 
428 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
429 					      bool invert)
430 {
431 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
432 			   invert ? CNTRL_CPL : 0);
433 }
434 
435 static inline void control_tx_level_invert(struct cx23885_dev *dev,
436 					  bool invert)
437 {
438 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
439 			   invert ? CNTRL_IVO : 0);
440 }
441 
442 /*
443  * IR Rx & Tx Clock Register helpers
444  */
445 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
446 				       unsigned int freq,
447 				       u16 *divider)
448 {
449 	*divider = carrier_freq_to_clock_divider(freq);
450 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
451 	return clock_divider_to_carrier_freq(*divider);
452 }
453 
454 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
455 				       unsigned int freq,
456 				       u16 *divider)
457 {
458 	*divider = carrier_freq_to_clock_divider(freq);
459 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
460 	return clock_divider_to_carrier_freq(*divider);
461 }
462 
463 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
464 				      u16 *divider)
465 {
466 	u64 pulse_clocks;
467 
468 	if (ns > IR_MAX_DURATION)
469 		ns = IR_MAX_DURATION;
470 	pulse_clocks = ns_to_pulse_clocks(ns);
471 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
472 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
473 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
474 }
475 
476 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
477 				      u16 *divider)
478 {
479 	u64 pulse_clocks;
480 
481 	if (ns > IR_MAX_DURATION)
482 		ns = IR_MAX_DURATION;
483 	pulse_clocks = ns_to_pulse_clocks(ns);
484 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
485 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
486 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
487 }
488 
489 /*
490  * IR Tx Carrier Duty Cycle register helpers
491  */
492 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
493 					  unsigned int duty_cycle)
494 {
495 	u32 n;
496 	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
497 	if (n != 0)
498 		n--;
499 	if (n > 15)
500 		n = 15;
501 	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
502 	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
503 }
504 
505 /*
506  * IR Filter Register helpers
507  */
508 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
509 {
510 	u32 count = ns_to_lpf_count(min_width_ns);
511 	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
512 	return lpf_count_to_ns(count);
513 }
514 
515 /*
516  * IR IRQ Enable Register helpers
517  */
518 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
519 {
520 	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
521 	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
522 			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
523 }
524 
525 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
526 {
527 	mask &= IRQEN_TSE;
528 	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
529 }
530 
531 /*
532  * V4L2 Subdevice IR Ops
533  */
534 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
535 				  bool *handled)
536 {
537 	struct cx23888_ir_state *state = to_state(sd);
538 	struct cx23885_dev *dev = state->dev;
539 	unsigned long flags;
540 
541 	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
542 	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
543 	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
544 
545 	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
546 	unsigned int i, j, k;
547 	u32 events, v;
548 	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
549 
550 	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
551 	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
552 	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
553 	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
554 
555 	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
556 	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
557 	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
558 	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
559 
560 	*handled = false;
561 	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
562 		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
563 		 rto ? "rto" : "   ", ror ? "ror" : "   ",
564 		 stats & STATS_TBY ? "tby" : "   ",
565 		 stats & STATS_RBY ? "rby" : "   ");
566 
567 	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
568 		 tse ? "tse" : "   ", rse ? "rse" : "   ",
569 		 rte ? "rte" : "   ", roe ? "roe" : "   ");
570 
571 	/*
572 	 * Transmitter interrupt service
573 	 */
574 	if (tse && tsr) {
575 		/*
576 		 * TODO:
577 		 * Check the watermark threshold setting
578 		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
579 		 * Push the data to the hardware FIFO.
580 		 * If there was nothing more to send in the tx_kfifo, disable
581 		 *	the TSR IRQ and notify the v4l2_device.
582 		 * If there was something in the tx_kfifo, check the tx_kfifo
583 		 *      level and notify the v4l2_device, if it is low.
584 		 */
585 		/* For now, inhibit TSR interrupt until Tx is implemented */
586 		irqenable_tx(dev, 0);
587 		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
588 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
589 		*handled = true;
590 	}
591 
592 	/*
593 	 * Receiver interrupt service
594 	 */
595 	kror = 0;
596 	if ((rse && rsr) || (rte && rto)) {
597 		/*
598 		 * Receive data on RSR to clear the STATS_RSR.
599 		 * Receive data on RTO, since we may not have yet hit the RSR
600 		 * watermark when we receive the RTO.
601 		 */
602 		for (i = 0, v = FIFO_RX_NDV;
603 		     (v & FIFO_RX_NDV) && !kror; i = 0) {
604 			for (j = 0;
605 			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
606 				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
607 				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
608 				i++;
609 			}
610 			if (i == 0)
611 				break;
612 			j = i * sizeof(union cx23888_ir_fifo_rec);
613 			k = kfifo_in_locked(&state->rx_kfifo,
614 				      (unsigned char *) rx_data, j,
615 				      &state->rx_kfifo_lock);
616 			if (k != j)
617 				kror++; /* rx_kfifo over run */
618 		}
619 		*handled = true;
620 	}
621 
622 	events = 0;
623 	v = 0;
624 	if (kror) {
625 		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
626 		v4l2_err(sd, "IR receiver software FIFO overrun\n");
627 	}
628 	if (roe && ror) {
629 		/*
630 		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
631 		 * the Rx FIFO Over Run status (STATS_ROR)
632 		 */
633 		v |= CNTRL_RFE;
634 		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
635 		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
636 	}
637 	if (rte && rto) {
638 		/*
639 		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
640 		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
641 		 */
642 		v |= CNTRL_RXE;
643 		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
644 	}
645 	if (v) {
646 		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
647 		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
648 		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
649 		*handled = true;
650 	}
651 
652 	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
653 	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
654 		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
655 	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
656 
657 	if (events)
658 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
659 	return 0;
660 }
661 
662 /* Receiver */
663 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
664 			      ssize_t *num)
665 {
666 	struct cx23888_ir_state *state = to_state(sd);
667 	bool invert = (bool) atomic_read(&state->rx_invert);
668 	u16 divider = (u16) atomic_read(&state->rxclk_divider);
669 
670 	unsigned int i, n;
671 	union cx23888_ir_fifo_rec *p;
672 	unsigned u, v, w;
673 
674 	n = count / sizeof(union cx23888_ir_fifo_rec)
675 		* sizeof(union cx23888_ir_fifo_rec);
676 	if (n == 0) {
677 		*num = 0;
678 		return 0;
679 	}
680 
681 	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
682 
683 	n /= sizeof(union cx23888_ir_fifo_rec);
684 	*num = n * sizeof(union cx23888_ir_fifo_rec);
685 
686 	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
687 
688 		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
689 			/* Assume RTO was because of no IR light input */
690 			u = 0;
691 			w = 1;
692 		} else {
693 			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
694 			if (invert)
695 				u = u ? 0 : 1;
696 			w = 0;
697 		}
698 
699 		v = (unsigned) pulse_width_count_to_ns(
700 				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
701 		if (v > IR_MAX_DURATION)
702 			v = IR_MAX_DURATION;
703 
704 		init_ir_raw_event(&p->ir_core_data);
705 		p->ir_core_data.pulse = u;
706 		p->ir_core_data.duration = v;
707 		p->ir_core_data.timeout = w;
708 
709 		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
710 			 v, u ? "mark" : "space", w ? "(timed out)" : "");
711 		if (w)
712 			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
713 	}
714 	return 0;
715 }
716 
717 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
718 				      struct v4l2_subdev_ir_parameters *p)
719 {
720 	struct cx23888_ir_state *state = to_state(sd);
721 	mutex_lock(&state->rx_params_lock);
722 	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
723 	mutex_unlock(&state->rx_params_lock);
724 	return 0;
725 }
726 
727 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
728 {
729 	struct cx23888_ir_state *state = to_state(sd);
730 	struct cx23885_dev *dev = state->dev;
731 
732 	mutex_lock(&state->rx_params_lock);
733 
734 	/* Disable or slow down all IR Rx circuits and counters */
735 	irqenable_rx(dev, 0);
736 	control_rx_enable(dev, false);
737 	control_rx_demodulation_enable(dev, false);
738 	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
739 	filter_rx_s_min_width(dev, 0);
740 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
741 
742 	state->rx_params.shutdown = true;
743 
744 	mutex_unlock(&state->rx_params_lock);
745 	return 0;
746 }
747 
748 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
749 				      struct v4l2_subdev_ir_parameters *p)
750 {
751 	struct cx23888_ir_state *state = to_state(sd);
752 	struct cx23885_dev *dev = state->dev;
753 	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
754 	u16 rxclk_divider;
755 
756 	if (p->shutdown)
757 		return cx23888_ir_rx_shutdown(sd);
758 
759 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
760 		return -ENOSYS;
761 
762 	mutex_lock(&state->rx_params_lock);
763 
764 	o->shutdown = p->shutdown;
765 
766 	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
767 
768 	o->bytes_per_data_element = p->bytes_per_data_element
769 				  = sizeof(union cx23888_ir_fifo_rec);
770 
771 	/* Before we tweak the hardware, we have to disable the receiver */
772 	irqenable_rx(dev, 0);
773 	control_rx_enable(dev, false);
774 
775 	control_rx_demodulation_enable(dev, p->modulation);
776 	o->modulation = p->modulation;
777 
778 	if (p->modulation) {
779 		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
780 						     &rxclk_divider);
781 
782 		o->carrier_freq = p->carrier_freq;
783 
784 		o->duty_cycle = p->duty_cycle = 50;
785 
786 		control_rx_s_carrier_window(dev, p->carrier_freq,
787 					    &p->carrier_range_lower,
788 					    &p->carrier_range_upper);
789 		o->carrier_range_lower = p->carrier_range_lower;
790 		o->carrier_range_upper = p->carrier_range_upper;
791 
792 		p->max_pulse_width =
793 			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
794 	} else {
795 		p->max_pulse_width =
796 			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
797 						       &rxclk_divider);
798 	}
799 	o->max_pulse_width = p->max_pulse_width;
800 	atomic_set(&state->rxclk_divider, rxclk_divider);
801 
802 	p->noise_filter_min_width =
803 			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
804 	o->noise_filter_min_width = p->noise_filter_min_width;
805 
806 	p->resolution = clock_divider_to_resolution(rxclk_divider);
807 	o->resolution = p->resolution;
808 
809 	/* FIXME - make this dependent on resolution for better performance */
810 	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
811 
812 	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
813 
814 	o->invert_level = p->invert_level;
815 	atomic_set(&state->rx_invert, p->invert_level);
816 
817 	o->interrupt_enable = p->interrupt_enable;
818 	o->enable = p->enable;
819 	if (p->enable) {
820 		unsigned long flags;
821 
822 		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
823 		kfifo_reset(&state->rx_kfifo);
824 		/* reset tx_fifo too if there is one... */
825 		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
826 		if (p->interrupt_enable)
827 			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
828 		control_rx_enable(dev, p->enable);
829 	}
830 
831 	mutex_unlock(&state->rx_params_lock);
832 	return 0;
833 }
834 
835 /* Transmitter */
836 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
837 			       ssize_t *num)
838 {
839 	struct cx23888_ir_state *state = to_state(sd);
840 	struct cx23885_dev *dev = state->dev;
841 	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
842 	irqenable_tx(dev, IRQEN_TSE);
843 	*num = count;
844 	return 0;
845 }
846 
847 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
848 				      struct v4l2_subdev_ir_parameters *p)
849 {
850 	struct cx23888_ir_state *state = to_state(sd);
851 	mutex_lock(&state->tx_params_lock);
852 	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
853 	mutex_unlock(&state->tx_params_lock);
854 	return 0;
855 }
856 
857 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
858 {
859 	struct cx23888_ir_state *state = to_state(sd);
860 	struct cx23885_dev *dev = state->dev;
861 
862 	mutex_lock(&state->tx_params_lock);
863 
864 	/* Disable or slow down all IR Tx circuits and counters */
865 	irqenable_tx(dev, 0);
866 	control_tx_enable(dev, false);
867 	control_tx_modulation_enable(dev, false);
868 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
869 
870 	state->tx_params.shutdown = true;
871 
872 	mutex_unlock(&state->tx_params_lock);
873 	return 0;
874 }
875 
876 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
877 				      struct v4l2_subdev_ir_parameters *p)
878 {
879 	struct cx23888_ir_state *state = to_state(sd);
880 	struct cx23885_dev *dev = state->dev;
881 	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
882 	u16 txclk_divider;
883 
884 	if (p->shutdown)
885 		return cx23888_ir_tx_shutdown(sd);
886 
887 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
888 		return -ENOSYS;
889 
890 	mutex_lock(&state->tx_params_lock);
891 
892 	o->shutdown = p->shutdown;
893 
894 	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
895 
896 	o->bytes_per_data_element = p->bytes_per_data_element
897 				  = sizeof(union cx23888_ir_fifo_rec);
898 
899 	/* Before we tweak the hardware, we have to disable the transmitter */
900 	irqenable_tx(dev, 0);
901 	control_tx_enable(dev, false);
902 
903 	control_tx_modulation_enable(dev, p->modulation);
904 	o->modulation = p->modulation;
905 
906 	if (p->modulation) {
907 		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
908 						     &txclk_divider);
909 		o->carrier_freq = p->carrier_freq;
910 
911 		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
912 		o->duty_cycle = p->duty_cycle;
913 
914 		p->max_pulse_width =
915 			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
916 	} else {
917 		p->max_pulse_width =
918 			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
919 						       &txclk_divider);
920 	}
921 	o->max_pulse_width = p->max_pulse_width;
922 	atomic_set(&state->txclk_divider, txclk_divider);
923 
924 	p->resolution = clock_divider_to_resolution(txclk_divider);
925 	o->resolution = p->resolution;
926 
927 	/* FIXME - make this dependent on resolution for better performance */
928 	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
929 
930 	control_tx_polarity_invert(dev, p->invert_carrier_sense);
931 	o->invert_carrier_sense = p->invert_carrier_sense;
932 
933 	control_tx_level_invert(dev, p->invert_level);
934 	o->invert_level = p->invert_level;
935 
936 	o->interrupt_enable = p->interrupt_enable;
937 	o->enable = p->enable;
938 	if (p->enable) {
939 		if (p->interrupt_enable)
940 			irqenable_tx(dev, IRQEN_TSE);
941 		control_tx_enable(dev, p->enable);
942 	}
943 
944 	mutex_unlock(&state->tx_params_lock);
945 	return 0;
946 }
947 
948 
949 /*
950  * V4L2 Subdevice Core Ops
951  */
952 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
953 {
954 	struct cx23888_ir_state *state = to_state(sd);
955 	struct cx23885_dev *dev = state->dev;
956 	char *s;
957 	int i, j;
958 
959 	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
960 	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
961 	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
962 	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
963 	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
964 	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
965 	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
966 
967 	v4l2_info(sd, "IR Receiver:\n");
968 	v4l2_info(sd, "\tEnabled:                           %s\n",
969 		  cntrl & CNTRL_RXE ? "yes" : "no");
970 	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
971 		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
972 	v4l2_info(sd, "\tFIFO:                              %s\n",
973 		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
974 	switch (cntrl & CNTRL_EDG) {
975 	case CNTRL_EDG_NONE:
976 		s = "disabled";
977 		break;
978 	case CNTRL_EDG_FALL:
979 		s = "falling edge";
980 		break;
981 	case CNTRL_EDG_RISE:
982 		s = "rising edge";
983 		break;
984 	case CNTRL_EDG_BOTH:
985 		s = "rising & falling edges";
986 		break;
987 	default:
988 		s = "??? edge";
989 		break;
990 	}
991 	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
992 	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
993 		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
994 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
995 		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
996 	v4l2_info(sd, "\tLoopback mode:                     %s\n",
997 		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
998 	if (cntrl & CNTRL_DMD) {
999 		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1000 			  clock_divider_to_carrier_freq(rxclk));
1001 		switch (cntrl & CNTRL_WIN) {
1002 		case CNTRL_WIN_3_3:
1003 			i = 3;
1004 			j = 3;
1005 			break;
1006 		case CNTRL_WIN_4_3:
1007 			i = 4;
1008 			j = 3;
1009 			break;
1010 		case CNTRL_WIN_3_4:
1011 			i = 3;
1012 			j = 4;
1013 			break;
1014 		case CNTRL_WIN_4_4:
1015 			i = 4;
1016 			j = 4;
1017 			break;
1018 		default:
1019 			i = 0;
1020 			j = 0;
1021 			break;
1022 		}
1023 		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1024 			  "-%1d/+%1d, %u to %u Hz\n", i, j,
1025 			  clock_divider_to_freq(rxclk, 16 + j),
1026 			  clock_divider_to_freq(rxclk, 16 - i));
1027 	}
1028 	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1029 		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1030 		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1031 	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1032 		  filtr ? "enabled" : "disabled");
1033 	if (filtr)
1034 		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1035 			  "%u ns\n",
1036 			  lpf_count_to_us(filtr),
1037 			  lpf_count_to_ns(filtr));
1038 	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1039 		  stats & STATS_RTO ? "yes" : "no");
1040 	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1041 		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1042 	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1043 		  stats & STATS_ROR ? "yes" : "no");
1044 	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1045 		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1046 	v4l2_info(sd, "\tBusy:                              %s\n",
1047 		  stats & STATS_RBY ? "yes" : "no");
1048 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1049 		  stats & STATS_RSR ? "yes" : "no");
1050 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1051 		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1052 
1053 	v4l2_info(sd, "IR Transmitter:\n");
1054 	v4l2_info(sd, "\tEnabled:                           %s\n",
1055 		  cntrl & CNTRL_TXE ? "yes" : "no");
1056 	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1057 		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1058 	v4l2_info(sd, "\tFIFO:                              %s\n",
1059 		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1060 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1061 		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1062 	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1063 		  cntrl & CNTRL_IVO ? "yes" : "no");
1064 	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1065 		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1066 				    : "space:noburst mark:burst");
1067 	if (cntrl & CNTRL_MOD) {
1068 		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1069 			  clock_divider_to_carrier_freq(txclk));
1070 		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1071 			  cduty + 1);
1072 	}
1073 	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1074 		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1075 		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1076 	v4l2_info(sd, "\tBusy:                              %s\n",
1077 		  stats & STATS_TBY ? "yes" : "no");
1078 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1079 		  stats & STATS_TSR ? "yes" : "no");
1080 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1081 		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1082 
1083 	return 0;
1084 }
1085 
1086 #ifdef CONFIG_VIDEO_ADV_DEBUG
1087 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1088 				 struct v4l2_dbg_register *reg)
1089 {
1090 	struct cx23888_ir_state *state = to_state(sd);
1091 	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1092 
1093 	if ((addr & 0x3) != 0)
1094 		return -EINVAL;
1095 	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1096 		return -EINVAL;
1097 	reg->size = 4;
1098 	reg->val = cx23888_ir_read4(state->dev, addr);
1099 	return 0;
1100 }
1101 
1102 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1103 				 const struct v4l2_dbg_register *reg)
1104 {
1105 	struct cx23888_ir_state *state = to_state(sd);
1106 	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1107 
1108 	if ((addr & 0x3) != 0)
1109 		return -EINVAL;
1110 	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1111 		return -EINVAL;
1112 	cx23888_ir_write4(state->dev, addr, reg->val);
1113 	return 0;
1114 }
1115 #endif
1116 
1117 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1118 	.log_status = cx23888_ir_log_status,
1119 #ifdef CONFIG_VIDEO_ADV_DEBUG
1120 	.g_register = cx23888_ir_g_register,
1121 	.s_register = cx23888_ir_s_register,
1122 #endif
1123 	.interrupt_service_routine = cx23888_ir_irq_handler,
1124 };
1125 
1126 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1127 	.rx_read = cx23888_ir_rx_read,
1128 	.rx_g_parameters = cx23888_ir_rx_g_parameters,
1129 	.rx_s_parameters = cx23888_ir_rx_s_parameters,
1130 
1131 	.tx_write = cx23888_ir_tx_write,
1132 	.tx_g_parameters = cx23888_ir_tx_g_parameters,
1133 	.tx_s_parameters = cx23888_ir_tx_s_parameters,
1134 };
1135 
1136 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1137 	.core = &cx23888_ir_core_ops,
1138 	.ir = &cx23888_ir_ir_ops,
1139 };
1140 
1141 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1142 	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1143 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1144 
1145 	.enable = false,
1146 	.interrupt_enable = false,
1147 	.shutdown = true,
1148 
1149 	.modulation = true,
1150 	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1151 
1152 	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1153 	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1154 	.noise_filter_min_width = 333333, /* ns */
1155 	.carrier_range_lower = 35000,
1156 	.carrier_range_upper = 37000,
1157 	.invert_level = false,
1158 };
1159 
1160 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1161 	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1162 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1163 
1164 	.enable = false,
1165 	.interrupt_enable = false,
1166 	.shutdown = true,
1167 
1168 	.modulation = true,
1169 	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1170 	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1171 	.invert_level = false,
1172 	.invert_carrier_sense = false,
1173 };
1174 
1175 int cx23888_ir_probe(struct cx23885_dev *dev)
1176 {
1177 	struct cx23888_ir_state *state;
1178 	struct v4l2_subdev *sd;
1179 	struct v4l2_subdev_ir_parameters default_params;
1180 	int ret;
1181 
1182 	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1183 	if (state == NULL)
1184 		return -ENOMEM;
1185 
1186 	spin_lock_init(&state->rx_kfifo_lock);
1187 	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1188 		return -ENOMEM;
1189 
1190 	state->dev = dev;
1191 	sd = &state->sd;
1192 
1193 	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1194 	v4l2_set_subdevdata(sd, state);
1195 	/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1196 	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1197 	sd->grp_id = CX23885_HW_888_IR;
1198 
1199 	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1200 	if (ret == 0) {
1201 		/*
1202 		 * Ensure no interrupts arrive from '888 specific conditions,
1203 		 * since we ignore them in this driver to have commonality with
1204 		 * similar IR controller cores.
1205 		 */
1206 		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1207 
1208 		mutex_init(&state->rx_params_lock);
1209 		default_params = default_rx_params;
1210 		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1211 
1212 		mutex_init(&state->tx_params_lock);
1213 		default_params = default_tx_params;
1214 		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1215 	} else {
1216 		kfifo_free(&state->rx_kfifo);
1217 	}
1218 	return ret;
1219 }
1220 
1221 int cx23888_ir_remove(struct cx23885_dev *dev)
1222 {
1223 	struct v4l2_subdev *sd;
1224 	struct cx23888_ir_state *state;
1225 
1226 	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1227 	if (sd == NULL)
1228 		return -ENODEV;
1229 
1230 	cx23888_ir_rx_shutdown(sd);
1231 	cx23888_ir_tx_shutdown(sd);
1232 
1233 	state = to_state(sd);
1234 	v4l2_device_unregister_subdev(sd);
1235 	kfifo_free(&state->rx_kfifo);
1236 	kfree(state);
1237 	/* Nothing more to free() as state held the actual v4l2_subdev object */
1238 	return 0;
1239 }
1240