1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Driver for the Conexant CX23885/7/8 PCIe bridge
4  *
5  *  CX23888 Integrated Consumer Infrared Controller
6  *
7  *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
8  */
9 
10 #include "cx23885.h"
11 #include "cx23888-ir.h"
12 
13 #include <linux/kfifo.h>
14 #include <linux/slab.h>
15 
16 #include <media/v4l2-device.h>
17 #include <media/rc-core.h>
18 
19 static unsigned int ir_888_debug;
20 module_param(ir_888_debug, int, 0644);
21 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
22 
23 #define CX23888_IR_REG_BASE	0x170000
24 /*
25  * These CX23888 register offsets have a straightforward one to one mapping
26  * to the CX23885 register offsets of 0x200 through 0x218
27  */
28 #define CX23888_IR_CNTRL_REG	0x170000
29 #define CNTRL_WIN_3_3	0x00000000
30 #define CNTRL_WIN_4_3	0x00000001
31 #define CNTRL_WIN_3_4	0x00000002
32 #define CNTRL_WIN_4_4	0x00000003
33 #define CNTRL_WIN	0x00000003
34 #define CNTRL_EDG_NONE	0x00000000
35 #define CNTRL_EDG_FALL	0x00000004
36 #define CNTRL_EDG_RISE	0x00000008
37 #define CNTRL_EDG_BOTH	0x0000000C
38 #define CNTRL_EDG	0x0000000C
39 #define CNTRL_DMD	0x00000010
40 #define CNTRL_MOD	0x00000020
41 #define CNTRL_RFE	0x00000040
42 #define CNTRL_TFE	0x00000080
43 #define CNTRL_RXE	0x00000100
44 #define CNTRL_TXE	0x00000200
45 #define CNTRL_RIC	0x00000400
46 #define CNTRL_TIC	0x00000800
47 #define CNTRL_CPL	0x00001000
48 #define CNTRL_LBM	0x00002000
49 #define CNTRL_R		0x00004000
50 /* CX23888 specific control flag */
51 #define CNTRL_IVO	0x00008000
52 
53 #define CX23888_IR_TXCLK_REG	0x170004
54 #define TXCLK_TCD	0x0000FFFF
55 
56 #define CX23888_IR_RXCLK_REG	0x170008
57 #define RXCLK_RCD	0x0000FFFF
58 
59 #define CX23888_IR_CDUTY_REG	0x17000C
60 #define CDUTY_CDC	0x0000000F
61 
62 #define CX23888_IR_STATS_REG	0x170010
63 #define STATS_RTO	0x00000001
64 #define STATS_ROR	0x00000002
65 #define STATS_RBY	0x00000004
66 #define STATS_TBY	0x00000008
67 #define STATS_RSR	0x00000010
68 #define STATS_TSR	0x00000020
69 
70 #define CX23888_IR_IRQEN_REG	0x170014
71 #define IRQEN_RTE	0x00000001
72 #define IRQEN_ROE	0x00000002
73 #define IRQEN_RSE	0x00000010
74 #define IRQEN_TSE	0x00000020
75 
76 #define CX23888_IR_FILTR_REG	0x170018
77 #define FILTR_LPF	0x0000FFFF
78 
79 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
80 #define CX23888_IR_FIFO_REG	0x170040
81 #define FIFO_RXTX	0x0000FFFF
82 #define FIFO_RXTX_LVL	0x00010000
83 #define FIFO_RXTX_RTO	0x0001FFFF
84 #define FIFO_RX_NDV	0x00020000
85 #define FIFO_RX_DEPTH	8
86 #define FIFO_TX_DEPTH	8
87 
88 /* CX23888 unique registers */
89 #define CX23888_IR_SEEDP_REG	0x17001C
90 #define CX23888_IR_TIMOL_REG	0x170020
91 #define CX23888_IR_WAKE0_REG	0x170024
92 #define CX23888_IR_WAKE1_REG	0x170028
93 #define CX23888_IR_WAKE2_REG	0x17002C
94 #define CX23888_IR_MASK0_REG	0x170030
95 #define CX23888_IR_MASK1_REG	0x170034
96 #define CX23888_IR_MAKS2_REG	0x170038
97 #define CX23888_IR_DPIPG_REG	0x17003C
98 #define CX23888_IR_LEARN_REG	0x170044
99 
100 #define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
101 #define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
102 
103 /*
104  * We use this union internally for convenience, but callers to tx_write
105  * and rx_read will be expecting records of type struct ir_raw_event.
106  * Always ensure the size of this union is dictated by struct ir_raw_event.
107  */
108 union cx23888_ir_fifo_rec {
109 	u32 hw_fifo_data;
110 	struct ir_raw_event ir_core_data;
111 };
112 
113 #define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
114 #define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
115 
116 struct cx23888_ir_state {
117 	struct v4l2_subdev sd;
118 	struct cx23885_dev *dev;
119 
120 	struct v4l2_subdev_ir_parameters rx_params;
121 	struct mutex rx_params_lock;
122 	atomic_t rxclk_divider;
123 	atomic_t rx_invert;
124 
125 	struct kfifo rx_kfifo;
126 	spinlock_t rx_kfifo_lock;
127 
128 	struct v4l2_subdev_ir_parameters tx_params;
129 	struct mutex tx_params_lock;
130 	atomic_t txclk_divider;
131 };
132 
133 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
134 {
135 	return v4l2_get_subdevdata(sd);
136 }
137 
138 /*
139  * IR register block read and write functions
140  */
141 static
142 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
143 {
144 	cx_write(addr, value);
145 	return 0;
146 }
147 
148 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
149 {
150 	return cx_read(addr);
151 }
152 
153 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
154 				     u32 and_mask, u32 or_value)
155 {
156 	cx_andor(addr, ~and_mask, or_value);
157 	return 0;
158 }
159 
160 /*
161  * Rx and Tx Clock Divider register computations
162  *
163  * Note the largest clock divider value of 0xffff corresponds to:
164  *	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
165  * which fits in 21 bits, so we'll use unsigned int for time arguments.
166  */
167 static inline u16 count_to_clock_divider(unsigned int d)
168 {
169 	if (d > RXCLK_RCD + 1)
170 		d = RXCLK_RCD;
171 	else if (d < 2)
172 		d = 1;
173 	else
174 		d--;
175 	return (u16) d;
176 }
177 
178 static inline u16 ns_to_clock_divider(unsigned int ns)
179 {
180 	return count_to_clock_divider(
181 		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
182 }
183 
184 static inline unsigned int clock_divider_to_ns(unsigned int divider)
185 {
186 	/* Period of the Rx or Tx clock in ns */
187 	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
188 				 CX23888_IR_REFCLK_FREQ / 1000000);
189 }
190 
191 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
192 {
193 	return count_to_clock_divider(
194 			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
195 }
196 
197 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
198 {
199 	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
200 }
201 
202 static inline u16 freq_to_clock_divider(unsigned int freq,
203 					unsigned int rollovers)
204 {
205 	return count_to_clock_divider(
206 		   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
207 }
208 
209 static inline unsigned int clock_divider_to_freq(unsigned int divider,
210 						 unsigned int rollovers)
211 {
212 	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
213 				 (divider + 1) * rollovers);
214 }
215 
216 /*
217  * Low Pass Filter register calculations
218  *
219  * Note the largest count value of 0xffff corresponds to:
220  *	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
221  * which fits in 21 bits, so we'll use unsigned int for time arguments.
222  */
223 static inline u16 count_to_lpf_count(unsigned int d)
224 {
225 	if (d > FILTR_LPF)
226 		d = FILTR_LPF;
227 	else if (d < 4)
228 		d = 0;
229 	return (u16) d;
230 }
231 
232 static inline u16 ns_to_lpf_count(unsigned int ns)
233 {
234 	return count_to_lpf_count(
235 		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
236 }
237 
238 static inline unsigned int lpf_count_to_ns(unsigned int count)
239 {
240 	/* Duration of the Low Pass Filter rejection window in ns */
241 	return DIV_ROUND_CLOSEST(count * 1000,
242 				 CX23888_IR_REFCLK_FREQ / 1000000);
243 }
244 
245 static inline unsigned int lpf_count_to_us(unsigned int count)
246 {
247 	/* Duration of the Low Pass Filter rejection window in us */
248 	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
249 }
250 
251 /*
252  * FIFO register pulse width count computations
253  */
254 static u32 clock_divider_to_resolution(u16 divider)
255 {
256 	/*
257 	 * Resolution is the duration of 1 tick of the readable portion of
258 	 * of the pulse width counter as read from the FIFO.  The two lsb's are
259 	 * not readable, hence the << 2.  This function returns ns.
260 	 */
261 	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
262 				 CX23888_IR_REFCLK_FREQ / 1000000);
263 }
264 
265 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
266 {
267 	u64 n;
268 	u32 rem;
269 
270 	/*
271 	 * The 2 lsb's of the pulse width timer count are not readable, hence
272 	 * the (count << 2) | 0x3
273 	 */
274 	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
275 	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
276 	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
277 		n++;
278 	return n;
279 }
280 
281 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
282 {
283 	u64 n;
284 	u32 rem;
285 
286 	/*
287 	 * The 2 lsb's of the pulse width timer count are not readable, hence
288 	 * the (count << 2) | 0x3
289 	 */
290 	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
291 	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
292 	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293 		n++;
294 	return (unsigned int) n;
295 }
296 
297 /*
298  * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
299  *
300  * The total pulse clock count is an 18 bit pulse width timer count as the most
301  * significant part and (up to) 16 bit clock divider count as a modulus.
302  * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
303  * width timer count's least significant bit.
304  */
305 static u64 ns_to_pulse_clocks(u32 ns)
306 {
307 	u64 clocks;
308 	u32 rem;
309 	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
310 	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
311 	if (rem >= 1000 / 2)
312 		clocks++;
313 	return clocks;
314 }
315 
316 static u16 pulse_clocks_to_clock_divider(u64 count)
317 {
318 	do_div(count, (FIFO_RXTX << 2) | 0x3);
319 
320 	/* net result needs to be rounded down and decremented by 1 */
321 	if (count > RXCLK_RCD + 1)
322 		count = RXCLK_RCD;
323 	else if (count < 2)
324 		count = 1;
325 	else
326 		count--;
327 	return (u16) count;
328 }
329 
330 /*
331  * IR Control Register helpers
332  */
333 enum tx_fifo_watermark {
334 	TX_FIFO_HALF_EMPTY = 0,
335 	TX_FIFO_EMPTY      = CNTRL_TIC,
336 };
337 
338 enum rx_fifo_watermark {
339 	RX_FIFO_HALF_FULL = 0,
340 	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
341 };
342 
343 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
344 					    enum tx_fifo_watermark level)
345 {
346 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
347 }
348 
349 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
350 					    enum rx_fifo_watermark level)
351 {
352 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
353 }
354 
355 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
356 {
357 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
358 			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
359 }
360 
361 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
362 {
363 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
364 			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
365 }
366 
367 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
368 						bool enable)
369 {
370 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
371 			   enable ? CNTRL_MOD : 0);
372 }
373 
374 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
375 						  bool enable)
376 {
377 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
378 			   enable ? CNTRL_DMD : 0);
379 }
380 
381 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
382 					       u32 edge_types)
383 {
384 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
385 			   edge_types & CNTRL_EDG_BOTH);
386 }
387 
388 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
389 					unsigned int carrier,
390 					unsigned int *carrier_range_low,
391 					unsigned int *carrier_range_high)
392 {
393 	u32 v;
394 	unsigned int c16 = carrier * 16;
395 
396 	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
397 		v = CNTRL_WIN_3_4;
398 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
399 	} else {
400 		v = CNTRL_WIN_3_3;
401 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
402 	}
403 
404 	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
405 		v |= CNTRL_WIN_4_3;
406 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
407 	} else {
408 		v |= CNTRL_WIN_3_3;
409 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
410 	}
411 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
412 }
413 
414 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
415 					      bool invert)
416 {
417 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
418 			   invert ? CNTRL_CPL : 0);
419 }
420 
421 static inline void control_tx_level_invert(struct cx23885_dev *dev,
422 					  bool invert)
423 {
424 	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
425 			   invert ? CNTRL_IVO : 0);
426 }
427 
428 /*
429  * IR Rx & Tx Clock Register helpers
430  */
431 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
432 				       unsigned int freq,
433 				       u16 *divider)
434 {
435 	*divider = carrier_freq_to_clock_divider(freq);
436 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
437 	return clock_divider_to_carrier_freq(*divider);
438 }
439 
440 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
441 				       unsigned int freq,
442 				       u16 *divider)
443 {
444 	*divider = carrier_freq_to_clock_divider(freq);
445 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
446 	return clock_divider_to_carrier_freq(*divider);
447 }
448 
449 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
450 				      u16 *divider)
451 {
452 	u64 pulse_clocks;
453 
454 	if (ns > IR_MAX_DURATION)
455 		ns = IR_MAX_DURATION;
456 	pulse_clocks = ns_to_pulse_clocks(ns);
457 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
458 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
459 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
460 }
461 
462 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
463 				      u16 *divider)
464 {
465 	u64 pulse_clocks;
466 
467 	if (ns > IR_MAX_DURATION)
468 		ns = IR_MAX_DURATION;
469 	pulse_clocks = ns_to_pulse_clocks(ns);
470 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
471 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
472 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
473 }
474 
475 /*
476  * IR Tx Carrier Duty Cycle register helpers
477  */
478 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
479 					  unsigned int duty_cycle)
480 {
481 	u32 n;
482 	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
483 	if (n != 0)
484 		n--;
485 	if (n > 15)
486 		n = 15;
487 	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
488 	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
489 }
490 
491 /*
492  * IR Filter Register helpers
493  */
494 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
495 {
496 	u32 count = ns_to_lpf_count(min_width_ns);
497 	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
498 	return lpf_count_to_ns(count);
499 }
500 
501 /*
502  * IR IRQ Enable Register helpers
503  */
504 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
505 {
506 	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
507 	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
508 			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
509 }
510 
511 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
512 {
513 	mask &= IRQEN_TSE;
514 	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
515 }
516 
517 /*
518  * V4L2 Subdevice IR Ops
519  */
520 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
521 				  bool *handled)
522 {
523 	struct cx23888_ir_state *state = to_state(sd);
524 	struct cx23885_dev *dev = state->dev;
525 	unsigned long flags;
526 
527 	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
528 	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
529 	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
530 
531 	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
532 	unsigned int i, j, k;
533 	u32 events, v;
534 	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
535 
536 	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
537 	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
538 	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
539 	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
540 
541 	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
542 	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
543 	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
544 	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
545 
546 	*handled = false;
547 	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
548 		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
549 		 rto ? "rto" : "   ", ror ? "ror" : "   ",
550 		 stats & STATS_TBY ? "tby" : "   ",
551 		 stats & STATS_RBY ? "rby" : "   ");
552 
553 	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
554 		 tse ? "tse" : "   ", rse ? "rse" : "   ",
555 		 rte ? "rte" : "   ", roe ? "roe" : "   ");
556 
557 	/*
558 	 * Transmitter interrupt service
559 	 */
560 	if (tse && tsr) {
561 		/*
562 		 * TODO:
563 		 * Check the watermark threshold setting
564 		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
565 		 * Push the data to the hardware FIFO.
566 		 * If there was nothing more to send in the tx_kfifo, disable
567 		 *	the TSR IRQ and notify the v4l2_device.
568 		 * If there was something in the tx_kfifo, check the tx_kfifo
569 		 *      level and notify the v4l2_device, if it is low.
570 		 */
571 		/* For now, inhibit TSR interrupt until Tx is implemented */
572 		irqenable_tx(dev, 0);
573 		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
574 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
575 		*handled = true;
576 	}
577 
578 	/*
579 	 * Receiver interrupt service
580 	 */
581 	kror = 0;
582 	if ((rse && rsr) || (rte && rto)) {
583 		/*
584 		 * Receive data on RSR to clear the STATS_RSR.
585 		 * Receive data on RTO, since we may not have yet hit the RSR
586 		 * watermark when we receive the RTO.
587 		 */
588 		for (i = 0, v = FIFO_RX_NDV;
589 		     (v & FIFO_RX_NDV) && !kror; i = 0) {
590 			for (j = 0;
591 			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
592 				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
593 				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
594 				i++;
595 			}
596 			if (i == 0)
597 				break;
598 			j = i * sizeof(union cx23888_ir_fifo_rec);
599 			k = kfifo_in_locked(&state->rx_kfifo,
600 				      (unsigned char *) rx_data, j,
601 				      &state->rx_kfifo_lock);
602 			if (k != j)
603 				kror++; /* rx_kfifo over run */
604 		}
605 		*handled = true;
606 	}
607 
608 	events = 0;
609 	v = 0;
610 	if (kror) {
611 		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
612 		v4l2_err(sd, "IR receiver software FIFO overrun\n");
613 	}
614 	if (roe && ror) {
615 		/*
616 		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
617 		 * the Rx FIFO Over Run status (STATS_ROR)
618 		 */
619 		v |= CNTRL_RFE;
620 		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
621 		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
622 	}
623 	if (rte && rto) {
624 		/*
625 		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
626 		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
627 		 */
628 		v |= CNTRL_RXE;
629 		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
630 	}
631 	if (v) {
632 		/* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
633 		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
634 		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
635 		*handled = true;
636 	}
637 
638 	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
639 	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
640 		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
641 	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
642 
643 	if (events)
644 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
645 	return 0;
646 }
647 
648 /* Receiver */
649 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
650 			      ssize_t *num)
651 {
652 	struct cx23888_ir_state *state = to_state(sd);
653 	bool invert = (bool) atomic_read(&state->rx_invert);
654 	u16 divider = (u16) atomic_read(&state->rxclk_divider);
655 
656 	unsigned int i, n;
657 	union cx23888_ir_fifo_rec *p;
658 	unsigned u, v, w;
659 
660 	n = count / sizeof(union cx23888_ir_fifo_rec)
661 		* sizeof(union cx23888_ir_fifo_rec);
662 	if (n == 0) {
663 		*num = 0;
664 		return 0;
665 	}
666 
667 	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
668 
669 	n /= sizeof(union cx23888_ir_fifo_rec);
670 	*num = n * sizeof(union cx23888_ir_fifo_rec);
671 
672 	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
673 
674 		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
675 			/* Assume RTO was because of no IR light input */
676 			u = 0;
677 			w = 1;
678 		} else {
679 			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
680 			if (invert)
681 				u = u ? 0 : 1;
682 			w = 0;
683 		}
684 
685 		v = (unsigned) pulse_width_count_to_ns(
686 				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
687 		if (v > IR_MAX_DURATION)
688 			v = IR_MAX_DURATION;
689 
690 		p->ir_core_data = (struct ir_raw_event)
691 			{ .pulse = u, .duration = v, .timeout = w };
692 
693 		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
694 			 v, u ? "mark" : "space", w ? "(timed out)" : "");
695 		if (w)
696 			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
697 	}
698 	return 0;
699 }
700 
701 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
702 				      struct v4l2_subdev_ir_parameters *p)
703 {
704 	struct cx23888_ir_state *state = to_state(sd);
705 	mutex_lock(&state->rx_params_lock);
706 	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
707 	mutex_unlock(&state->rx_params_lock);
708 	return 0;
709 }
710 
711 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
712 {
713 	struct cx23888_ir_state *state = to_state(sd);
714 	struct cx23885_dev *dev = state->dev;
715 
716 	mutex_lock(&state->rx_params_lock);
717 
718 	/* Disable or slow down all IR Rx circuits and counters */
719 	irqenable_rx(dev, 0);
720 	control_rx_enable(dev, false);
721 	control_rx_demodulation_enable(dev, false);
722 	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
723 	filter_rx_s_min_width(dev, 0);
724 	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
725 
726 	state->rx_params.shutdown = true;
727 
728 	mutex_unlock(&state->rx_params_lock);
729 	return 0;
730 }
731 
732 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
733 				      struct v4l2_subdev_ir_parameters *p)
734 {
735 	struct cx23888_ir_state *state = to_state(sd);
736 	struct cx23885_dev *dev = state->dev;
737 	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
738 	u16 rxclk_divider;
739 
740 	if (p->shutdown)
741 		return cx23888_ir_rx_shutdown(sd);
742 
743 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
744 		return -ENOSYS;
745 
746 	mutex_lock(&state->rx_params_lock);
747 
748 	o->shutdown = p->shutdown;
749 
750 	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
751 
752 	o->bytes_per_data_element = p->bytes_per_data_element
753 				  = sizeof(union cx23888_ir_fifo_rec);
754 
755 	/* Before we tweak the hardware, we have to disable the receiver */
756 	irqenable_rx(dev, 0);
757 	control_rx_enable(dev, false);
758 
759 	control_rx_demodulation_enable(dev, p->modulation);
760 	o->modulation = p->modulation;
761 
762 	if (p->modulation) {
763 		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
764 						     &rxclk_divider);
765 
766 		o->carrier_freq = p->carrier_freq;
767 
768 		o->duty_cycle = p->duty_cycle = 50;
769 
770 		control_rx_s_carrier_window(dev, p->carrier_freq,
771 					    &p->carrier_range_lower,
772 					    &p->carrier_range_upper);
773 		o->carrier_range_lower = p->carrier_range_lower;
774 		o->carrier_range_upper = p->carrier_range_upper;
775 
776 		p->max_pulse_width =
777 			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
778 	} else {
779 		p->max_pulse_width =
780 			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
781 						       &rxclk_divider);
782 	}
783 	o->max_pulse_width = p->max_pulse_width;
784 	atomic_set(&state->rxclk_divider, rxclk_divider);
785 
786 	p->noise_filter_min_width =
787 			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
788 	o->noise_filter_min_width = p->noise_filter_min_width;
789 
790 	p->resolution = clock_divider_to_resolution(rxclk_divider);
791 	o->resolution = p->resolution;
792 
793 	/* FIXME - make this dependent on resolution for better performance */
794 	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
795 
796 	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
797 
798 	o->invert_level = p->invert_level;
799 	atomic_set(&state->rx_invert, p->invert_level);
800 
801 	o->interrupt_enable = p->interrupt_enable;
802 	o->enable = p->enable;
803 	if (p->enable) {
804 		unsigned long flags;
805 
806 		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
807 		kfifo_reset(&state->rx_kfifo);
808 		/* reset tx_fifo too if there is one... */
809 		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
810 		if (p->interrupt_enable)
811 			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
812 		control_rx_enable(dev, p->enable);
813 	}
814 
815 	mutex_unlock(&state->rx_params_lock);
816 	return 0;
817 }
818 
819 /* Transmitter */
820 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
821 			       ssize_t *num)
822 {
823 	struct cx23888_ir_state *state = to_state(sd);
824 	struct cx23885_dev *dev = state->dev;
825 	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
826 	irqenable_tx(dev, IRQEN_TSE);
827 	*num = count;
828 	return 0;
829 }
830 
831 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
832 				      struct v4l2_subdev_ir_parameters *p)
833 {
834 	struct cx23888_ir_state *state = to_state(sd);
835 	mutex_lock(&state->tx_params_lock);
836 	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
837 	mutex_unlock(&state->tx_params_lock);
838 	return 0;
839 }
840 
841 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
842 {
843 	struct cx23888_ir_state *state = to_state(sd);
844 	struct cx23885_dev *dev = state->dev;
845 
846 	mutex_lock(&state->tx_params_lock);
847 
848 	/* Disable or slow down all IR Tx circuits and counters */
849 	irqenable_tx(dev, 0);
850 	control_tx_enable(dev, false);
851 	control_tx_modulation_enable(dev, false);
852 	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
853 
854 	state->tx_params.shutdown = true;
855 
856 	mutex_unlock(&state->tx_params_lock);
857 	return 0;
858 }
859 
860 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
861 				      struct v4l2_subdev_ir_parameters *p)
862 {
863 	struct cx23888_ir_state *state = to_state(sd);
864 	struct cx23885_dev *dev = state->dev;
865 	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
866 	u16 txclk_divider;
867 
868 	if (p->shutdown)
869 		return cx23888_ir_tx_shutdown(sd);
870 
871 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
872 		return -ENOSYS;
873 
874 	mutex_lock(&state->tx_params_lock);
875 
876 	o->shutdown = p->shutdown;
877 
878 	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
879 
880 	o->bytes_per_data_element = p->bytes_per_data_element
881 				  = sizeof(union cx23888_ir_fifo_rec);
882 
883 	/* Before we tweak the hardware, we have to disable the transmitter */
884 	irqenable_tx(dev, 0);
885 	control_tx_enable(dev, false);
886 
887 	control_tx_modulation_enable(dev, p->modulation);
888 	o->modulation = p->modulation;
889 
890 	if (p->modulation) {
891 		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
892 						     &txclk_divider);
893 		o->carrier_freq = p->carrier_freq;
894 
895 		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
896 		o->duty_cycle = p->duty_cycle;
897 
898 		p->max_pulse_width =
899 			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
900 	} else {
901 		p->max_pulse_width =
902 			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
903 						       &txclk_divider);
904 	}
905 	o->max_pulse_width = p->max_pulse_width;
906 	atomic_set(&state->txclk_divider, txclk_divider);
907 
908 	p->resolution = clock_divider_to_resolution(txclk_divider);
909 	o->resolution = p->resolution;
910 
911 	/* FIXME - make this dependent on resolution for better performance */
912 	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
913 
914 	control_tx_polarity_invert(dev, p->invert_carrier_sense);
915 	o->invert_carrier_sense = p->invert_carrier_sense;
916 
917 	control_tx_level_invert(dev, p->invert_level);
918 	o->invert_level = p->invert_level;
919 
920 	o->interrupt_enable = p->interrupt_enable;
921 	o->enable = p->enable;
922 	if (p->enable) {
923 		if (p->interrupt_enable)
924 			irqenable_tx(dev, IRQEN_TSE);
925 		control_tx_enable(dev, p->enable);
926 	}
927 
928 	mutex_unlock(&state->tx_params_lock);
929 	return 0;
930 }
931 
932 
933 /*
934  * V4L2 Subdevice Core Ops
935  */
936 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
937 {
938 	struct cx23888_ir_state *state = to_state(sd);
939 	struct cx23885_dev *dev = state->dev;
940 	char *s;
941 	int i, j;
942 
943 	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
944 	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
945 	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
946 	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
947 	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
948 	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
949 	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
950 
951 	v4l2_info(sd, "IR Receiver:\n");
952 	v4l2_info(sd, "\tEnabled:                           %s\n",
953 		  cntrl & CNTRL_RXE ? "yes" : "no");
954 	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
955 		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
956 	v4l2_info(sd, "\tFIFO:                              %s\n",
957 		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
958 	switch (cntrl & CNTRL_EDG) {
959 	case CNTRL_EDG_NONE:
960 		s = "disabled";
961 		break;
962 	case CNTRL_EDG_FALL:
963 		s = "falling edge";
964 		break;
965 	case CNTRL_EDG_RISE:
966 		s = "rising edge";
967 		break;
968 	case CNTRL_EDG_BOTH:
969 		s = "rising & falling edges";
970 		break;
971 	default:
972 		s = "??? edge";
973 		break;
974 	}
975 	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
976 	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
977 		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
978 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
979 		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
980 	v4l2_info(sd, "\tLoopback mode:                     %s\n",
981 		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
982 	if (cntrl & CNTRL_DMD) {
983 		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
984 			  clock_divider_to_carrier_freq(rxclk));
985 		switch (cntrl & CNTRL_WIN) {
986 		case CNTRL_WIN_3_3:
987 			i = 3;
988 			j = 3;
989 			break;
990 		case CNTRL_WIN_4_3:
991 			i = 4;
992 			j = 3;
993 			break;
994 		case CNTRL_WIN_3_4:
995 			i = 3;
996 			j = 4;
997 			break;
998 		case CNTRL_WIN_4_4:
999 			i = 4;
1000 			j = 4;
1001 			break;
1002 		default:
1003 			i = 0;
1004 			j = 0;
1005 			break;
1006 		}
1007 		v4l2_info(sd, "\tNext carrier edge window:	    16 clocks -%1d/+%1d, %u to %u Hz\n",
1008 			  i, j,
1009 			  clock_divider_to_freq(rxclk, 16 + j),
1010 			  clock_divider_to_freq(rxclk, 16 - i));
1011 	}
1012 	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1013 		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1014 		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1015 	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1016 		  filtr ? "enabled" : "disabled");
1017 	if (filtr)
1018 		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
1019 			  lpf_count_to_us(filtr),
1020 			  lpf_count_to_ns(filtr));
1021 	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1022 		  stats & STATS_RTO ? "yes" : "no");
1023 	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1024 		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1025 	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1026 		  stats & STATS_ROR ? "yes" : "no");
1027 	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1028 		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1029 	v4l2_info(sd, "\tBusy:                              %s\n",
1030 		  stats & STATS_RBY ? "yes" : "no");
1031 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1032 		  stats & STATS_RSR ? "yes" : "no");
1033 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1034 		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1035 
1036 	v4l2_info(sd, "IR Transmitter:\n");
1037 	v4l2_info(sd, "\tEnabled:                           %s\n",
1038 		  cntrl & CNTRL_TXE ? "yes" : "no");
1039 	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1040 		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1041 	v4l2_info(sd, "\tFIFO:                              %s\n",
1042 		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1043 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1044 		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1045 	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1046 		  cntrl & CNTRL_IVO ? "yes" : "no");
1047 	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1048 		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1049 				    : "space:noburst mark:burst");
1050 	if (cntrl & CNTRL_MOD) {
1051 		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1052 			  clock_divider_to_carrier_freq(txclk));
1053 		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1054 			  cduty + 1);
1055 	}
1056 	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1057 		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1058 		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1059 	v4l2_info(sd, "\tBusy:                              %s\n",
1060 		  stats & STATS_TBY ? "yes" : "no");
1061 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1062 		  stats & STATS_TSR ? "yes" : "no");
1063 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1064 		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1065 
1066 	return 0;
1067 }
1068 
1069 #ifdef CONFIG_VIDEO_ADV_DEBUG
1070 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1071 				 struct v4l2_dbg_register *reg)
1072 {
1073 	struct cx23888_ir_state *state = to_state(sd);
1074 	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1075 
1076 	if ((addr & 0x3) != 0)
1077 		return -EINVAL;
1078 	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1079 		return -EINVAL;
1080 	reg->size = 4;
1081 	reg->val = cx23888_ir_read4(state->dev, addr);
1082 	return 0;
1083 }
1084 
1085 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1086 				 const struct v4l2_dbg_register *reg)
1087 {
1088 	struct cx23888_ir_state *state = to_state(sd);
1089 	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1090 
1091 	if ((addr & 0x3) != 0)
1092 		return -EINVAL;
1093 	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1094 		return -EINVAL;
1095 	cx23888_ir_write4(state->dev, addr, reg->val);
1096 	return 0;
1097 }
1098 #endif
1099 
1100 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1101 	.log_status = cx23888_ir_log_status,
1102 #ifdef CONFIG_VIDEO_ADV_DEBUG
1103 	.g_register = cx23888_ir_g_register,
1104 	.s_register = cx23888_ir_s_register,
1105 #endif
1106 	.interrupt_service_routine = cx23888_ir_irq_handler,
1107 };
1108 
1109 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1110 	.rx_read = cx23888_ir_rx_read,
1111 	.rx_g_parameters = cx23888_ir_rx_g_parameters,
1112 	.rx_s_parameters = cx23888_ir_rx_s_parameters,
1113 
1114 	.tx_write = cx23888_ir_tx_write,
1115 	.tx_g_parameters = cx23888_ir_tx_g_parameters,
1116 	.tx_s_parameters = cx23888_ir_tx_s_parameters,
1117 };
1118 
1119 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1120 	.core = &cx23888_ir_core_ops,
1121 	.ir = &cx23888_ir_ir_ops,
1122 };
1123 
1124 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1125 	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1126 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1127 
1128 	.enable = false,
1129 	.interrupt_enable = false,
1130 	.shutdown = true,
1131 
1132 	.modulation = true,
1133 	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1134 
1135 	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1136 	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1137 	.noise_filter_min_width = 333333, /* ns */
1138 	.carrier_range_lower = 35000,
1139 	.carrier_range_upper = 37000,
1140 	.invert_level = false,
1141 };
1142 
1143 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1144 	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1145 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1146 
1147 	.enable = false,
1148 	.interrupt_enable = false,
1149 	.shutdown = true,
1150 
1151 	.modulation = true,
1152 	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1153 	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1154 	.invert_level = false,
1155 	.invert_carrier_sense = false,
1156 };
1157 
1158 int cx23888_ir_probe(struct cx23885_dev *dev)
1159 {
1160 	struct cx23888_ir_state *state;
1161 	struct v4l2_subdev *sd;
1162 	struct v4l2_subdev_ir_parameters default_params;
1163 	int ret;
1164 
1165 	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1166 	if (state == NULL)
1167 		return -ENOMEM;
1168 
1169 	spin_lock_init(&state->rx_kfifo_lock);
1170 	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE,
1171 			GFP_KERNEL)) {
1172 		kfree(state);
1173 		return -ENOMEM;
1174 	}
1175 
1176 	state->dev = dev;
1177 	sd = &state->sd;
1178 
1179 	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1180 	v4l2_set_subdevdata(sd, state);
1181 	/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1182 	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1183 	sd->grp_id = CX23885_HW_888_IR;
1184 
1185 	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1186 	if (ret == 0) {
1187 		/*
1188 		 * Ensure no interrupts arrive from '888 specific conditions,
1189 		 * since we ignore them in this driver to have commonality with
1190 		 * similar IR controller cores.
1191 		 */
1192 		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1193 
1194 		mutex_init(&state->rx_params_lock);
1195 		default_params = default_rx_params;
1196 		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1197 
1198 		mutex_init(&state->tx_params_lock);
1199 		default_params = default_tx_params;
1200 		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1201 	} else {
1202 		kfifo_free(&state->rx_kfifo);
1203 	}
1204 	return ret;
1205 }
1206 
1207 int cx23888_ir_remove(struct cx23885_dev *dev)
1208 {
1209 	struct v4l2_subdev *sd;
1210 	struct cx23888_ir_state *state;
1211 
1212 	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1213 	if (sd == NULL)
1214 		return -ENODEV;
1215 
1216 	cx23888_ir_rx_shutdown(sd);
1217 	cx23888_ir_tx_shutdown(sd);
1218 
1219 	state = to_state(sd);
1220 	v4l2_device_unregister_subdev(sd);
1221 	kfifo_free(&state->rx_kfifo);
1222 	kfree(state);
1223 	/* Nothing more to free() as state held the actual v4l2_subdev object */
1224 	return 0;
1225 }
1226