xref: /openbmc/linux/drivers/media/pci/cx18/cx18-av-audio.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  *  cx18 ADEC audio functions
3  *
4  *  Derived from cx25840-audio.c
5  *
6  *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
7  *  Copyright (C) 2008  Andy Walls <awalls@md.metrocast.net>
8  *
9  *  This program is free software; you can redistribute it and/or
10  *  modify it under the terms of the GNU General Public License
11  *  as published by the Free Software Foundation; either version 2
12  *  of the License, or (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  */
19 
20 #include "cx18-driver.h"
21 
22 static int set_audclk_freq(struct cx18 *cx, u32 freq)
23 {
24 	struct cx18_av_state *state = &cx->av_state;
25 
26 	if (freq != 32000 && freq != 44100 && freq != 48000)
27 		return -EINVAL;
28 
29 	/*
30 	 * The PLL parameters are based on the external crystal frequency that
31 	 * would ideally be:
32 	 *
33 	 * NTSC Color subcarrier freq * 8 =
34 	 *	4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
35 	 *
36 	 * The accidents of history and rationale that explain from where this
37 	 * combination of magic numbers originate can be found in:
38 	 *
39 	 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
40 	 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
41 	 *
42 	 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
43 	 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
44 	 *
45 	 * As Mike Bradley has rightly pointed out, it's not the exact crystal
46 	 * frequency that matters, only that all parts of the driver and
47 	 * firmware are using the same value (close to the ideal value).
48 	 *
49 	 * Since I have a strong suspicion that, if the firmware ever assumes a
50 	 * crystal value at all, it will assume 28.636360 MHz, the crystal
51 	 * freq used in calculations in this driver will be:
52 	 *
53 	 *	xtal_freq = 28.636360 MHz
54 	 *
55 	 * an error of less than 0.13 ppm which is way, way better than any off
56 	 * the shelf crystal will have for accuracy anyway.
57 	 *
58 	 * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
59 	 *
60 	 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
61 	 * investigation, experimentation, testing, and suggested solutions of
62 	 * of audio/video sync problems with SVideo and CVBS captures.
63 	 */
64 
65 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
66 		switch (freq) {
67 		case 32000:
68 			/*
69 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
70 			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
71 			 */
72 			cx18_av_write4(cx, 0x108, 0x200d040f);
73 
74 			/* VID_PLL Fraction = 0x2be2fe */
75 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
76 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
77 
78 			/* AUX_PLL Fraction = 0x176740c */
79 			/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
80 			cx18_av_write4(cx, 0x110, 0x0176740c);
81 
82 			/* src3/4/6_ctl */
83 			/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
84 			cx18_av_write4(cx, 0x900, 0x0801f77f);
85 			cx18_av_write4(cx, 0x904, 0x0801f77f);
86 			cx18_av_write4(cx, 0x90c, 0x0801f77f);
87 
88 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
89 			cx18_av_write(cx, 0x127, 0x60);
90 
91 			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
92 			cx18_av_write4(cx, 0x12c, 0x11202fff);
93 
94 			/*
95 			 * EN_AV_LOCK = 0
96 			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
97 			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
98 			 */
99 			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
100 			break;
101 
102 		case 44100:
103 			/*
104 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
105 			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
106 			 */
107 			cx18_av_write4(cx, 0x108, 0x180e040f);
108 
109 			/* VID_PLL Fraction = 0x2be2fe */
110 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
111 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
112 
113 			/* AUX_PLL Fraction = 0x062a1f2 */
114 			/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
115 			cx18_av_write4(cx, 0x110, 0x0062a1f2);
116 
117 			/* src3/4/6_ctl */
118 			/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
119 			cx18_av_write4(cx, 0x900, 0x08016d59);
120 			cx18_av_write4(cx, 0x904, 0x08016d59);
121 			cx18_av_write4(cx, 0x90c, 0x08016d59);
122 
123 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
124 			cx18_av_write(cx, 0x127, 0x58);
125 
126 			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
127 			cx18_av_write4(cx, 0x12c, 0x112092ff);
128 
129 			/*
130 			 * EN_AV_LOCK = 0
131 			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
132 			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
133 			 */
134 			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
135 			break;
136 
137 		case 48000:
138 			/*
139 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
140 			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
141 			 */
142 			cx18_av_write4(cx, 0x108, 0x160e040f);
143 
144 			/* VID_PLL Fraction = 0x2be2fe */
145 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
146 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
147 
148 			/* AUX_PLL Fraction = 0x05227ad */
149 			/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
150 			cx18_av_write4(cx, 0x110, 0x005227ad);
151 
152 			/* src3/4/6_ctl */
153 			/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
154 			cx18_av_write4(cx, 0x900, 0x08014faa);
155 			cx18_av_write4(cx, 0x904, 0x08014faa);
156 			cx18_av_write4(cx, 0x90c, 0x08014faa);
157 
158 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
159 			cx18_av_write(cx, 0x127, 0x56);
160 
161 			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
162 			cx18_av_write4(cx, 0x12c, 0x11205fff);
163 
164 			/*
165 			 * EN_AV_LOCK = 0
166 			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
167 			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
168 			 */
169 			cx18_av_write4(cx, 0x128, 0xa01193f8);
170 			break;
171 		}
172 	} else {
173 		switch (freq) {
174 		case 32000:
175 			/*
176 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
177 			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
178 			 */
179 			cx18_av_write4(cx, 0x108, 0x300d040f);
180 
181 			/* VID_PLL Fraction = 0x2be2fe */
182 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
183 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
184 
185 			/* AUX_PLL Fraction = 0x176740c */
186 			/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
187 			cx18_av_write4(cx, 0x110, 0x0176740c);
188 
189 			/* src1_ctl */
190 			/* 0x1.0000 = 32000/32000 */
191 			cx18_av_write4(cx, 0x8f8, 0x08010000);
192 
193 			/* src3/4/6_ctl */
194 			/* 0x2.0000 = 2 * (32000/32000) */
195 			cx18_av_write4(cx, 0x900, 0x08020000);
196 			cx18_av_write4(cx, 0x904, 0x08020000);
197 			cx18_av_write4(cx, 0x90c, 0x08020000);
198 
199 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
200 			cx18_av_write(cx, 0x127, 0x70);
201 
202 			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
203 			cx18_av_write4(cx, 0x12c, 0x11201fff);
204 
205 			/*
206 			 * EN_AV_LOCK = 0
207 			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
208 			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
209 			 */
210 			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
211 			break;
212 
213 		case 44100:
214 			/*
215 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
216 			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
217 			 */
218 			cx18_av_write4(cx, 0x108, 0x240e040f);
219 
220 			/* VID_PLL Fraction = 0x2be2fe */
221 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
222 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
223 
224 			/* AUX_PLL Fraction = 0x062a1f2 */
225 			/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
226 			cx18_av_write4(cx, 0x110, 0x0062a1f2);
227 
228 			/* src1_ctl */
229 			/* 0x1.60cd = 44100/32000 */
230 			cx18_av_write4(cx, 0x8f8, 0x080160cd);
231 
232 			/* src3/4/6_ctl */
233 			/* 0x1.7385 = 2 * (32000/44100) */
234 			cx18_av_write4(cx, 0x900, 0x08017385);
235 			cx18_av_write4(cx, 0x904, 0x08017385);
236 			cx18_av_write4(cx, 0x90c, 0x08017385);
237 
238 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
239 			cx18_av_write(cx, 0x127, 0x64);
240 
241 			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
242 			cx18_av_write4(cx, 0x12c, 0x112061ff);
243 
244 			/*
245 			 * EN_AV_LOCK = 0
246 			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
247 			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
248 			 */
249 			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
250 			break;
251 
252 		case 48000:
253 			/*
254 			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
255 			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
256 			 */
257 			cx18_av_write4(cx, 0x108, 0x200d040f);
258 
259 			/* VID_PLL Fraction = 0x2be2fe */
260 			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
261 			cx18_av_write4(cx, 0x10c, 0x002be2fe);
262 
263 			/* AUX_PLL Fraction = 0x176740c */
264 			/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
265 			cx18_av_write4(cx, 0x110, 0x0176740c);
266 
267 			/* src1_ctl */
268 			/* 0x1.8000 = 48000/32000 */
269 			cx18_av_write4(cx, 0x8f8, 0x08018000);
270 
271 			/* src3/4/6_ctl */
272 			/* 0x1.5555 = 2 * (32000/48000) */
273 			cx18_av_write4(cx, 0x900, 0x08015555);
274 			cx18_av_write4(cx, 0x904, 0x08015555);
275 			cx18_av_write4(cx, 0x90c, 0x08015555);
276 
277 			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
278 			cx18_av_write(cx, 0x127, 0x60);
279 
280 			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
281 			cx18_av_write4(cx, 0x12c, 0x11203fff);
282 
283 			/*
284 			 * EN_AV_LOCK = 0
285 			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
286 			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
287 			 */
288 			cx18_av_write4(cx, 0x128, 0xa01193f8);
289 			break;
290 		}
291 	}
292 
293 	state->audclk_freq = freq;
294 
295 	return 0;
296 }
297 
298 void cx18_av_audio_set_path(struct cx18 *cx)
299 {
300 	struct cx18_av_state *state = &cx->av_state;
301 	u8 v;
302 
303 	/* stop microcontroller */
304 	v = cx18_av_read(cx, 0x803) & ~0x10;
305 	cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
306 
307 	/* assert soft reset */
308 	v = cx18_av_read(cx, 0x810) | 0x01;
309 	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
310 
311 	/* Mute everything to prevent the PFFT! */
312 	cx18_av_write(cx, 0x8d3, 0x1f);
313 
314 	if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
315 		/* Set Path1 to Serial Audio Input */
316 		cx18_av_write4(cx, 0x8d0, 0x01011012);
317 
318 		/* The microcontroller should not be started for the
319 		 * non-tuner inputs: autodetection is specific for
320 		 * TV audio. */
321 	} else {
322 		/* Set Path1 to Analog Demod Main Channel */
323 		cx18_av_write4(cx, 0x8d0, 0x1f063870);
324 	}
325 
326 	set_audclk_freq(cx, state->audclk_freq);
327 
328 	/* deassert soft reset */
329 	v = cx18_av_read(cx, 0x810) & ~0x01;
330 	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
331 
332 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
333 		/* When the microcontroller detects the
334 		 * audio format, it will unmute the lines */
335 		v = cx18_av_read(cx, 0x803) | 0x10;
336 		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
337 	}
338 }
339 
340 static void set_volume(struct cx18 *cx, int volume)
341 {
342 	/* First convert the volume to msp3400 values (0-127) */
343 	int vol = volume >> 9;
344 	/* now scale it up to cx18_av values
345 	 * -114dB to -96dB maps to 0
346 	 * this should be 19, but in my testing that was 4dB too loud */
347 	if (vol <= 23)
348 		vol = 0;
349 	else
350 		vol -= 23;
351 
352 	/* PATH1_VOLUME */
353 	cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
354 }
355 
356 static void set_bass(struct cx18 *cx, int bass)
357 {
358 	/* PATH1_EQ_BASS_VOL */
359 	cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
360 }
361 
362 static void set_treble(struct cx18 *cx, int treble)
363 {
364 	/* PATH1_EQ_TREBLE_VOL */
365 	cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
366 }
367 
368 static void set_balance(struct cx18 *cx, int balance)
369 {
370 	int bal = balance >> 8;
371 	if (bal > 0x80) {
372 		/* PATH1_BAL_LEFT */
373 		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
374 		/* PATH1_BAL_LEVEL */
375 		cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
376 	} else {
377 		/* PATH1_BAL_LEFT */
378 		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
379 		/* PATH1_BAL_LEVEL */
380 		cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
381 	}
382 }
383 
384 static void set_mute(struct cx18 *cx, int mute)
385 {
386 	struct cx18_av_state *state = &cx->av_state;
387 	u8 v;
388 
389 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
390 		/* Must turn off microcontroller in order to mute sound.
391 		 * Not sure if this is the best method, but it does work.
392 		 * If the microcontroller is running, then it will undo any
393 		 * changes to the mute register. */
394 		v = cx18_av_read(cx, 0x803);
395 		if (mute) {
396 			/* disable microcontroller */
397 			v &= ~0x10;
398 			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
399 			cx18_av_write(cx, 0x8d3, 0x1f);
400 		} else {
401 			/* enable microcontroller */
402 			v |= 0x10;
403 			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
404 		}
405 	} else {
406 		/* SRC1_MUTE_EN */
407 		cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
408 	}
409 }
410 
411 int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
412 {
413 	struct cx18 *cx = v4l2_get_subdevdata(sd);
414 	struct cx18_av_state *state = &cx->av_state;
415 	int retval;
416 	u8 v;
417 
418 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
419 		v = cx18_av_read(cx, 0x803) & ~0x10;
420 		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
421 		cx18_av_write(cx, 0x8d3, 0x1f);
422 	}
423 	v = cx18_av_read(cx, 0x810) | 0x1;
424 	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
425 
426 	retval = set_audclk_freq(cx, freq);
427 
428 	v = cx18_av_read(cx, 0x810) & ~0x1;
429 	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
430 	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
431 		v = cx18_av_read(cx, 0x803) | 0x10;
432 		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
433 	}
434 	return retval;
435 }
436 
437 static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl)
438 {
439 	struct v4l2_subdev *sd = to_sd(ctrl);
440 	struct cx18 *cx = v4l2_get_subdevdata(sd);
441 
442 	switch (ctrl->id) {
443 	case V4L2_CID_AUDIO_VOLUME:
444 		set_volume(cx, ctrl->val);
445 		break;
446 	case V4L2_CID_AUDIO_BASS:
447 		set_bass(cx, ctrl->val);
448 		break;
449 	case V4L2_CID_AUDIO_TREBLE:
450 		set_treble(cx, ctrl->val);
451 		break;
452 	case V4L2_CID_AUDIO_BALANCE:
453 		set_balance(cx, ctrl->val);
454 		break;
455 	case V4L2_CID_AUDIO_MUTE:
456 		set_mute(cx, ctrl->val);
457 		break;
458 	default:
459 		return -EINVAL;
460 	}
461 	return 0;
462 }
463 
464 const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = {
465 	.s_ctrl = cx18_av_audio_s_ctrl,
466 };
467