xref: /openbmc/linux/drivers/media/i2c/tda1997x.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Gateworks Corporation
4  */
5 #include <linux/delay.h>
6 #include <linux/hdmi.h>
7 #include <linux/i2c.h>
8 #include <linux/init.h>
9 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of_graph.h>
13 #include <linux/platform_device.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/types.h>
16 #include <linux/v4l2-dv-timings.h>
17 #include <linux/videodev2.h>
18 
19 #include <media/v4l2-ctrls.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-dv-timings.h>
22 #include <media/v4l2-event.h>
23 #include <media/v4l2-fwnode.h>
24 #include <media/i2c/tda1997x.h>
25 
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 
31 #include <dt-bindings/media/tda1997x.h>
32 
33 #include "tda1997x_regs.h"
34 
35 #define TDA1997X_MBUS_CODES	5
36 
37 /* debug level */
38 static int debug;
39 module_param(debug, int, 0644);
40 MODULE_PARM_DESC(debug, "debug level (0-2)");
41 
42 /* Audio formats */
43 static const char * const audtype_names[] = {
44 	"PCM",			/* PCM Samples */
45 	"HBR",			/* High Bit Rate Audio */
46 	"OBA",			/* One-Bit Audio */
47 	"DST"			/* Direct Stream Transfer */
48 };
49 
50 /* Audio output port formats */
51 enum audfmt_types {
52 	AUDFMT_TYPE_DISABLED = 0,
53 	AUDFMT_TYPE_I2S,
54 	AUDFMT_TYPE_SPDIF,
55 };
56 static const char * const audfmt_names[] = {
57 	"Disabled",
58 	"I2S",
59 	"SPDIF",
60 };
61 
62 /* Video input formats */
63 static const char * const hdmi_colorspace_names[] = {
64 	"RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
65 };
66 static const char * const hdmi_colorimetry_names[] = {
67 	"", "ITU601", "ITU709", "Extended",
68 };
69 static const char * const v4l2_quantization_names[] = {
70 	"Default",
71 	"Full Range (0-255)",
72 	"Limited Range (16-235)",
73 };
74 
75 /* Video output port formats */
76 static const char * const vidfmt_names[] = {
77 	"RGB444/YUV444",	/* RGB/YUV444 16bit data bus, 8bpp */
78 	"YUV422 semi-planar",	/* YUV422 16bit data base, 8bpp */
79 	"YUV422 CCIR656",	/* BT656 (YUV 8bpp 2 clock per pixel) */
80 	"Invalid",
81 };
82 
83 /*
84  * Colorspace conversion matrices
85  */
86 struct color_matrix_coefs {
87 	const char *name;
88 	/* Input offsets */
89 	s16 offint1;
90 	s16 offint2;
91 	s16 offint3;
92 	/* Coeficients */
93 	s16 p11coef;
94 	s16 p12coef;
95 	s16 p13coef;
96 	s16 p21coef;
97 	s16 p22coef;
98 	s16 p23coef;
99 	s16 p31coef;
100 	s16 p32coef;
101 	s16 p33coef;
102 	/* Output offsets */
103 	s16 offout1;
104 	s16 offout2;
105 	s16 offout3;
106 };
107 
108 enum {
109 	ITU709_RGBFULL,
110 	ITU601_RGBFULL,
111 	RGBLIMITED_RGBFULL,
112 	RGBLIMITED_ITU601,
113 	RGBLIMITED_ITU709,
114 	RGBFULL_ITU601,
115 	RGBFULL_ITU709,
116 };
117 
118 /* NB: 4096 is 1.0 using fixed point numbers */
119 static const struct color_matrix_coefs conv_matrix[] = {
120 	{
121 		"YUV709 -> RGB full",
122 		 -256, -2048,  -2048,
123 		 4769, -2183,   -873,
124 		 4769,  7343,      0,
125 		 4769,     0,   8652,
126 		    0,     0,      0,
127 	},
128 	{
129 		"YUV601 -> RGB full",
130 		 -256, -2048,  -2048,
131 		 4769, -3330,  -1602,
132 		 4769,  6538,      0,
133 		 4769,     0,   8264,
134 		  256,   256,    256,
135 	},
136 	{
137 		"RGB limited -> RGB full",
138 		 -256,  -256,   -256,
139 		    0,  4769,      0,
140 		    0,     0,   4769,
141 		 4769,     0,      0,
142 		    0,     0,      0,
143 	},
144 	{
145 		"RGB limited -> ITU601",
146 		 -256,  -256,   -256,
147 		 2404,  1225,    467,
148 		-1754,  2095,   -341,
149 		-1388,  -707,   2095,
150 		  256,  2048,   2048,
151 	},
152 	{
153 		"RGB limited -> ITU709",
154 		 -256,  -256,   -256,
155 		 2918,   867,    295,
156 		-1894,  2087,   -190,
157 		-1607,  -477,   2087,
158 		  256,  2048,   2048,
159 	},
160 	{
161 		"RGB full -> ITU601",
162 		    0,     0,      0,
163 		 2065,  1052,    401,
164 		-1506,  1799,   -293,
165 		-1192,  -607,   1799,
166 		  256,  2048,   2048,
167 	},
168 	{
169 		"RGB full -> ITU709",
170 		    0,     0,      0,
171 		 2506,   745,    253,
172 		-1627,  1792,   -163,
173 		-1380,  -410,   1792,
174 		  256,  2048,   2048,
175 	},
176 };
177 
178 static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
179 	.type = V4L2_DV_BT_656_1120,
180 	/* keep this initialization for compatibility with GCC < 4.4.6 */
181 	.reserved = { 0 },
182 
183 	V4L2_INIT_BT_TIMINGS(
184 		640, 1920,			/* min/max width */
185 		350, 1200,			/* min/max height */
186 		13000000, 165000000,		/* min/max pixelclock */
187 		/* standards */
188 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
189 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
190 		/* capabilities */
191 		V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
192 			V4L2_DV_BT_CAP_REDUCED_BLANKING |
193 			V4L2_DV_BT_CAP_CUSTOM
194 	)
195 };
196 
197 /* regulator supplies */
198 static const char * const tda1997x_supply_name[] = {
199 	"DOVDD", /* Digital I/O supply */
200 	"DVDD",  /* Digital Core supply */
201 	"AVDD",  /* Analog supply */
202 };
203 
204 #define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
205 
206 enum tda1997x_type {
207 	TDA19971,
208 	TDA19973,
209 };
210 
211 enum tda1997x_hdmi_pads {
212 	TDA1997X_PAD_SOURCE,
213 	TDA1997X_NUM_PADS,
214 };
215 
216 struct tda1997x_chip_info {
217 	enum tda1997x_type type;
218 	const char *name;
219 };
220 
221 struct tda1997x_state {
222 	const struct tda1997x_chip_info *info;
223 	struct tda1997x_platform_data pdata;
224 	struct i2c_client *client;
225 	struct i2c_client *client_cec;
226 	struct v4l2_subdev sd;
227 	struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
228 	struct media_pad pads[TDA1997X_NUM_PADS];
229 	struct mutex lock;
230 	struct mutex page_lock;
231 	char page;
232 
233 	/* detected info from chip */
234 	int chip_revision;
235 	char port_30bit;
236 	char output_2p5;
237 	char tmdsb_clk;
238 	char tmdsb_soc;
239 
240 	/* status info */
241 	char hdmi_status;
242 	char mptrw_in_progress;
243 	char activity_status;
244 	char input_detect[2];
245 
246 	/* video */
247 	struct hdmi_avi_infoframe avi_infoframe;
248 	struct v4l2_hdmi_colorimetry colorimetry;
249 	u32 rgb_quantization_range;
250 	struct v4l2_dv_timings timings;
251 	int fps;
252 	const struct color_matrix_coefs *conv;
253 	u32 mbus_codes[TDA1997X_MBUS_CODES];	/* available modes */
254 	u32 mbus_code;		/* current mode */
255 	u8 vid_fmt;
256 
257 	/* controls */
258 	struct v4l2_ctrl_handler hdl;
259 	struct v4l2_ctrl *detect_tx_5v_ctrl;
260 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
261 
262 	/* audio */
263 	u8  audio_ch_alloc;
264 	int audio_samplerate;
265 	int audio_channels;
266 	int audio_samplesize;
267 	int audio_type;
268 	struct mutex audio_lock;
269 	struct snd_pcm_substream *audio_stream;
270 
271 	/* EDID */
272 	struct {
273 		u8 edid[256];
274 		u32 present;
275 		unsigned int blocks;
276 	} edid;
277 	struct delayed_work delayed_work_enable_hpd;
278 };
279 
280 static const struct v4l2_event tda1997x_ev_fmt = {
281 	.type = V4L2_EVENT_SOURCE_CHANGE,
282 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
283 };
284 
285 static const struct tda1997x_chip_info tda1997x_chip_info[] = {
286 	[TDA19971] = {
287 		.type = TDA19971,
288 		.name = "tda19971",
289 	},
290 	[TDA19973] = {
291 		.type = TDA19973,
292 		.name = "tda19973",
293 	},
294 };
295 
296 static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
297 {
298 	return container_of(sd, struct tda1997x_state, sd);
299 }
300 
301 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
302 {
303 	return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
304 }
305 
306 static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
307 {
308 	struct tda1997x_state *state = to_state(sd);
309 	int val;
310 
311 	val = i2c_smbus_read_byte_data(state->client_cec, reg);
312 	if (val < 0) {
313 		v4l_err(state->client, "read reg error: reg=%2x\n", reg);
314 		val = -1;
315 	}
316 
317 	return val;
318 }
319 
320 static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
321 {
322 	struct tda1997x_state *state = to_state(sd);
323 	int ret = 0;
324 
325 	ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
326 	if (ret < 0) {
327 		v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
328 			reg, val);
329 		ret = -1;
330 	}
331 
332 	return ret;
333 }
334 
335 /* -----------------------------------------------------------------------------
336  * I2C transfer
337  */
338 
339 static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
340 {
341 	struct tda1997x_state *state = to_state(sd);
342 	int ret;
343 
344 	if (state->page != page) {
345 		ret = i2c_smbus_write_byte_data(state->client,
346 			REG_CURPAGE_00H, page);
347 		if (ret < 0) {
348 			v4l_err(state->client,
349 				"write reg error:reg=%2x,val=%2x\n",
350 				REG_CURPAGE_00H, page);
351 			return ret;
352 		}
353 		state->page = page;
354 	}
355 	return 0;
356 }
357 
358 static inline int io_read(struct v4l2_subdev *sd, u16 reg)
359 {
360 	struct tda1997x_state *state = to_state(sd);
361 	int val;
362 
363 	mutex_lock(&state->page_lock);
364 	if (tda1997x_setpage(sd, reg >> 8)) {
365 		val = -1;
366 		goto out;
367 	}
368 
369 	val = i2c_smbus_read_byte_data(state->client, reg&0xff);
370 	if (val < 0) {
371 		v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
372 		val = -1;
373 		goto out;
374 	}
375 
376 out:
377 	mutex_unlock(&state->page_lock);
378 	return val;
379 }
380 
381 static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
382 {
383 	int val;
384 	long lval = 0;
385 
386 	val = io_read(sd, reg);
387 	if (val < 0)
388 		return val;
389 	lval |= (val << 8);
390 	val = io_read(sd, reg + 1);
391 	if (val < 0)
392 		return val;
393 	lval |= val;
394 
395 	return lval;
396 }
397 
398 static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
399 {
400 	int val;
401 	long lval = 0;
402 
403 	val = io_read(sd, reg);
404 	if (val < 0)
405 		return val;
406 	lval |= (val << 16);
407 	val = io_read(sd, reg + 1);
408 	if (val < 0)
409 		return val;
410 	lval |= (val << 8);
411 	val = io_read(sd, reg + 2);
412 	if (val < 0)
413 		return val;
414 	lval |= val;
415 
416 	return lval;
417 }
418 
419 static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
420 {
421 	int i;
422 	int sz = 0;
423 	int val;
424 
425 	for (i = 0; i < len; i++) {
426 		val = io_read(sd, reg + i);
427 		if (val < 0)
428 			break;
429 		data[i] = val;
430 		sz++;
431 	}
432 
433 	return sz;
434 }
435 
436 static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
437 {
438 	struct tda1997x_state *state = to_state(sd);
439 	s32 ret = 0;
440 
441 	mutex_lock(&state->page_lock);
442 	if (tda1997x_setpage(sd, reg >> 8)) {
443 		ret = -1;
444 		goto out;
445 	}
446 
447 	ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
448 	if (ret < 0) {
449 		v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
450 			reg&0xff, val);
451 		ret = -1;
452 		goto out;
453 	}
454 
455 out:
456 	mutex_unlock(&state->page_lock);
457 	return ret;
458 }
459 
460 static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
461 {
462 	int ret;
463 
464 	ret = io_write(sd, reg, (val >> 8) & 0xff);
465 	if (ret < 0)
466 		return ret;
467 	ret = io_write(sd, reg + 1, val & 0xff);
468 	if (ret < 0)
469 		return ret;
470 	return 0;
471 }
472 
473 static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
474 {
475 	int ret;
476 
477 	ret = io_write(sd, reg, (val >> 16) & 0xff);
478 	if (ret < 0)
479 		return ret;
480 	ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
481 	if (ret < 0)
482 		return ret;
483 	ret = io_write(sd, reg + 2, val & 0xff);
484 	if (ret < 0)
485 		return ret;
486 	return 0;
487 }
488 
489 /* -----------------------------------------------------------------------------
490  * Hotplug
491  */
492 
493 enum hpd_mode {
494 	HPD_LOW_BP,	/* HPD low and pulse of at least 100ms */
495 	HPD_LOW_OTHER,	/* HPD low and pulse of at least 100ms */
496 	HPD_HIGH_BP,	/* HIGH */
497 	HPD_HIGH_OTHER,
498 	HPD_PULSE,	/* HPD low pulse */
499 };
500 
501 /* manual HPD (Hot Plug Detect) control */
502 static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
503 {
504 	u8 hpd_auto, hpd_pwr, hpd_man;
505 
506 	hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
507 	hpd_pwr = io_read(sd, REG_HPD_POWER);
508 	hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
509 
510 	/* mask out unused bits */
511 	hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
512 		    HPD_MAN_CTRL_5VEN |
513 		    HPD_MAN_CTRL_HPD_B |
514 		    HPD_MAN_CTRL_HPD_A);
515 
516 	switch (mode) {
517 	/* HPD low and pulse of at least 100ms */
518 	case HPD_LOW_BP:
519 		/* hpd_bp=0 */
520 		hpd_pwr &= ~HPD_POWER_BP_MASK;
521 		/* disable HPD_A and HPD_B */
522 		hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
523 		io_write(sd, REG_HPD_POWER, hpd_pwr);
524 		io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
525 		break;
526 	/* HPD high */
527 	case HPD_HIGH_BP:
528 		/* hpd_bp=1 */
529 		hpd_pwr &= ~HPD_POWER_BP_MASK;
530 		hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
531 		io_write(sd, REG_HPD_POWER, hpd_pwr);
532 		break;
533 	/* HPD low and pulse of at least 100ms */
534 	case HPD_LOW_OTHER:
535 		/* disable HPD_A and HPD_B */
536 		hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
537 		/* hp_other=0 */
538 		hpd_auto &= ~HPD_AUTO_HP_OTHER;
539 		io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
540 		io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
541 		break;
542 	/* HPD high */
543 	case HPD_HIGH_OTHER:
544 		hpd_auto |= HPD_AUTO_HP_OTHER;
545 		io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
546 		break;
547 	/* HPD low pulse */
548 	case HPD_PULSE:
549 		/* disable HPD_A and HPD_B */
550 		hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
551 		io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
552 		break;
553 	}
554 
555 	return 0;
556 }
557 
558 static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
559 {
560 	struct delayed_work *dwork = to_delayed_work(work);
561 	struct tda1997x_state *state = container_of(dwork,
562 						    struct tda1997x_state,
563 						    delayed_work_enable_hpd);
564 	struct v4l2_subdev *sd = &state->sd;
565 
566 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
567 
568 	/* Set HPD high */
569 	tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
570 	tda1997x_manual_hpd(sd, HPD_HIGH_BP);
571 
572 	state->edid.present = 1;
573 }
574 
575 static void tda1997x_disable_edid(struct v4l2_subdev *sd)
576 {
577 	struct tda1997x_state *state = to_state(sd);
578 
579 	v4l2_dbg(1, debug, sd, "%s\n", __func__);
580 	cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
581 
582 	/* Set HPD low */
583 	tda1997x_manual_hpd(sd, HPD_LOW_BP);
584 }
585 
586 static void tda1997x_enable_edid(struct v4l2_subdev *sd)
587 {
588 	struct tda1997x_state *state = to_state(sd);
589 
590 	v4l2_dbg(1, debug, sd, "%s\n", __func__);
591 
592 	/* Enable hotplug after 100ms */
593 	schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
594 }
595 
596 /* -----------------------------------------------------------------------------
597  * Signal Control
598  */
599 
600 /*
601  * configure vid_fmt based on mbus_code
602  */
603 static int
604 tda1997x_setup_format(struct tda1997x_state *state, u32 code)
605 {
606 	v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
607 	switch (code) {
608 	case MEDIA_BUS_FMT_RGB121212_1X36:
609 	case MEDIA_BUS_FMT_RGB888_1X24:
610 	case MEDIA_BUS_FMT_YUV12_1X36:
611 	case MEDIA_BUS_FMT_YUV8_1X24:
612 		state->vid_fmt = OF_FMT_444;
613 		break;
614 	case MEDIA_BUS_FMT_UYVY12_1X24:
615 	case MEDIA_BUS_FMT_UYVY10_1X20:
616 	case MEDIA_BUS_FMT_UYVY8_1X16:
617 		state->vid_fmt = OF_FMT_422_SMPT;
618 		break;
619 	case MEDIA_BUS_FMT_UYVY12_2X12:
620 	case MEDIA_BUS_FMT_UYVY10_2X10:
621 	case MEDIA_BUS_FMT_UYVY8_2X8:
622 		state->vid_fmt = OF_FMT_422_CCIR;
623 		break;
624 	default:
625 		v4l_err(state->client, "incompatible format (0x%x)\n", code);
626 		return -EINVAL;
627 	}
628 	v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
629 		code, vidfmt_names[state->vid_fmt]);
630 	state->mbus_code = code;
631 
632 	return 0;
633 }
634 
635 /*
636  * The color conversion matrix will convert between the colorimetry of the
637  * HDMI input to the desired output format RGB|YUV. RGB output is to be
638  * full-range and YUV is to be limited range.
639  *
640  * RGB full-range uses values from 0 to 255 which is recommended on a monitor
641  * and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
642  * typically recommended on a TV.
643  */
644 static void
645 tda1997x_configure_csc(struct v4l2_subdev *sd)
646 {
647 	struct tda1997x_state *state = to_state(sd);
648 	struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
649 	struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
650 	/* Blanking code values depend on output colorspace (RGB or YUV) */
651 	struct blanking_codes {
652 		s16 code_gy;
653 		s16 code_bu;
654 		s16 code_rv;
655 	};
656 	static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
657 	static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
658 	const struct blanking_codes *blanking_codes = NULL;
659 	u8 reg;
660 
661 	v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
662 		hdmi_colorspace_names[avi->colorspace],
663 		v4l2_quantization_names[c->quantization],
664 		vidfmt_names[state->vid_fmt]);
665 	state->conv = NULL;
666 	switch (state->vid_fmt) {
667 	/* RGB output */
668 	case OF_FMT_444:
669 		blanking_codes = &rgb_blanking;
670 		if (c->colorspace == V4L2_COLORSPACE_SRGB) {
671 			if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
672 				state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
673 		} else {
674 			if (c->colorspace == V4L2_COLORSPACE_REC709)
675 				state->conv = &conv_matrix[ITU709_RGBFULL];
676 			else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
677 				state->conv = &conv_matrix[ITU601_RGBFULL];
678 		}
679 		break;
680 
681 	/* YUV output */
682 	case OF_FMT_422_SMPT: /* semi-planar */
683 	case OF_FMT_422_CCIR: /* CCIR656 */
684 		blanking_codes = &yuv_blanking;
685 		if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
686 		    (c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
687 			if (state->timings.bt.height <= 576)
688 				state->conv = &conv_matrix[RGBFULL_ITU601];
689 			else
690 				state->conv = &conv_matrix[RGBFULL_ITU709];
691 		} else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
692 			   (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
693 			if (state->timings.bt.height <= 576)
694 				state->conv = &conv_matrix[RGBLIMITED_ITU601];
695 			else
696 				state->conv = &conv_matrix[RGBLIMITED_ITU709];
697 		}
698 		break;
699 	}
700 
701 	if (state->conv) {
702 		v4l_dbg(1, debug, state->client, "%s\n",
703 			state->conv->name);
704 		/* enable matrix conversion */
705 		reg = io_read(sd, REG_VDP_CTRL);
706 		reg &= ~VDP_CTRL_MATRIX_BP;
707 		io_write(sd, REG_VDP_CTRL, reg);
708 		/* offset inputs */
709 		io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
710 		io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
711 		io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
712 		/* coefficients */
713 		io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
714 		io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
715 		io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
716 		io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
717 		io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
718 		io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
719 		io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
720 		io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
721 		io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
722 		/* offset outputs */
723 		io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
724 		io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
725 		io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
726 	} else {
727 		/* disable matrix conversion */
728 		reg = io_read(sd, REG_VDP_CTRL);
729 		reg |= VDP_CTRL_MATRIX_BP;
730 		io_write(sd, REG_VDP_CTRL, reg);
731 	}
732 
733 	/* SetBlankingCodes */
734 	if (blanking_codes) {
735 		io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
736 		io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
737 		io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
738 	}
739 }
740 
741 /* Configure frame detection window and VHREF timing generator */
742 static void
743 tda1997x_configure_vhref(struct v4l2_subdev *sd)
744 {
745 	struct tda1997x_state *state = to_state(sd);
746 	const struct v4l2_bt_timings *bt = &state->timings.bt;
747 	int width, lines;
748 	u16 href_start, href_end;
749 	u16 vref_f1_start, vref_f2_start;
750 	u8 vref_f1_width, vref_f2_width;
751 	u8 field_polarity;
752 	u16 fieldref_f1_start, fieldref_f2_start;
753 	u8 reg;
754 
755 	href_start = bt->hbackporch + bt->hsync + 1;
756 	href_end = href_start + bt->width;
757 	vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
758 			bt->il_vbackporch + bt->il_vsync +
759 			bt->il_vfrontporch;
760 	vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
761 	vref_f2_start = 0;
762 	vref_f2_width = 0;
763 	fieldref_f1_start = 0;
764 	fieldref_f2_start = 0;
765 	if (bt->interlaced) {
766 		vref_f2_start = (bt->height / 2) +
767 				(bt->il_vbackporch + bt->il_vsync - 1);
768 		vref_f2_width = bt->il_vbackporch + bt->il_vsync +
769 				bt->il_vfrontporch;
770 		fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
771 				    fieldref_f1_start;
772 	}
773 	field_polarity = 0;
774 
775 	width = V4L2_DV_BT_FRAME_WIDTH(bt);
776 	lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
777 
778 	/*
779 	 * Configure Frame Detection Window:
780 	 *  horiz area where the VHREF module consider a VSYNC a new frame
781 	 */
782 	io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
783 	io_write16(sd, REG_FDW_E, 0x141); /* end position */
784 
785 	/* Set Pixel And Line Counters */
786 	if (state->chip_revision == 0)
787 		io_write16(sd, REG_PXCNT_PR, 4);
788 	else
789 		io_write16(sd, REG_PXCNT_PR, 1);
790 	io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
791 	io_write16(sd, REG_LCNT_PR, 1);
792 	io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
793 
794 	/*
795 	 * Configure the VHRef timing generator responsible for rebuilding all
796 	 * horiz and vert synch and ref signals from its input allowing auto
797 	 * detection algorithms and forcing predefined modes (480i & 576i)
798 	 */
799 	reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
800 	io_write(sd, REG_VHREF_CTRL, reg);
801 
802 	/*
803 	 * Configure the VHRef timing values. In case the VHREF generator has
804 	 * been configured in manual mode, this will allow to manually set all
805 	 * horiz and vert ref values (non-active pixel areas) of the generator
806 	 * and allows setting the frame reference params.
807 	 */
808 	/* horizontal reference start/end */
809 	io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
810 	io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
811 	/* vertical reference f1 start/end */
812 	io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
813 	io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
814 	/* vertical reference f2 start/end */
815 	io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
816 	io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
817 
818 	/* F1/F2 FREF, field polarity */
819 	reg = fieldref_f1_start & MASK_VHREF;
820 	reg |= field_polarity << 8;
821 	io_write16(sd, REG_FREF_F1_S, reg);
822 	reg = fieldref_f2_start & MASK_VHREF;
823 	io_write16(sd, REG_FREF_F2_S, reg);
824 }
825 
826 /* Configure Video Output port signals */
827 static int
828 tda1997x_configure_vidout(struct tda1997x_state *state)
829 {
830 	struct v4l2_subdev *sd = &state->sd;
831 	struct tda1997x_platform_data *pdata = &state->pdata;
832 	u8 prefilter;
833 	u8 reg;
834 
835 	/* Configure pixel clock generator: delay, polarity, rate */
836 	reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
837 	       PCLK_SEL_X2 : PCLK_SEL_X1;
838 	reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
839 	reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
840 	io_write(sd, REG_PCLK, reg);
841 
842 	/* Configure pre-filter */
843 	prefilter = 0; /* filters off */
844 	/* YUV422 mode requires conversion */
845 	if ((state->vid_fmt == OF_FMT_422_SMPT) ||
846 	    (state->vid_fmt == OF_FMT_422_CCIR)) {
847 		/* 2/7 taps for Rv and Bu */
848 		prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
849 			    FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
850 	}
851 	io_write(sd, REG_FILTERS_CTRL, prefilter);
852 
853 	/* Configure video port */
854 	reg = state->vid_fmt & OF_FMT_MASK;
855 	if (state->vid_fmt == OF_FMT_422_CCIR)
856 		reg |= (OF_BLK | OF_TRC);
857 	reg |= OF_VP_ENABLE;
858 	io_write(sd, REG_OF, reg);
859 
860 	/* Configure formatter and conversions */
861 	reg = io_read(sd, REG_VDP_CTRL);
862 	/* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
863 	if (!prefilter)
864 		reg |= VDP_CTRL_PREFILTER_BP;
865 	else
866 		reg &= ~VDP_CTRL_PREFILTER_BP;
867 	/* formatter is needed for YUV422 and for trc/blc codes */
868 	if (state->vid_fmt == OF_FMT_444)
869 		reg |= VDP_CTRL_FORMATTER_BP;
870 	/* formatter and compdel needed for timing/blanking codes */
871 	else
872 		reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
873 	/* activate compdel for small sync delays */
874 	if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
875 		reg &= ~VDP_CTRL_COMPDEL_BP;
876 	io_write(sd, REG_VDP_CTRL, reg);
877 
878 	/* Configure DE output signal: delay, polarity, and source */
879 	reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
880 	      pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
881 	      pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
882 	io_write(sd, REG_DE_FREF, reg);
883 
884 	/* Configure HS/HREF output signal: delay, polarity, and source */
885 	if (state->vid_fmt != OF_FMT_422_CCIR) {
886 		reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
887 		      pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
888 		      pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
889 	} else
890 		reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
891 	io_write(sd, REG_HS_HREF, reg);
892 
893 	/* Configure VS/VREF output signal: delay, polarity, and source */
894 	if (state->vid_fmt != OF_FMT_422_CCIR) {
895 		reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
896 		      pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
897 		      pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
898 	} else
899 		reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
900 	io_write(sd, REG_VS_VREF, reg);
901 
902 	return 0;
903 }
904 
905 /* Configure Audio output port signals */
906 static int
907 tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
908 {
909 	struct tda1997x_state *state = to_state(sd);
910 	struct tda1997x_platform_data *pdata = &state->pdata;
911 	bool sp_used_by_fifo = true;
912 	u8 reg;
913 
914 	if (!pdata->audout_format)
915 		return 0;
916 
917 	/* channel assignment (CEA-861-D Table 20) */
918 	io_write(sd, REG_AUDIO_PATH, channel_assignment);
919 
920 	/* Audio output configuration */
921 	reg = 0;
922 	switch (pdata->audout_format) {
923 	case AUDFMT_TYPE_I2S:
924 		reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
925 		break;
926 	case AUDFMT_TYPE_SPDIF:
927 		reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
928 		break;
929 	}
930 	switch (state->audio_type) {
931 	case AUDCFG_TYPE_PCM:
932 		reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
933 		break;
934 	case AUDCFG_TYPE_OBA:
935 		reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
936 		break;
937 	case AUDCFG_TYPE_DST:
938 		reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
939 		sp_used_by_fifo = false;
940 		break;
941 	case AUDCFG_TYPE_HBR:
942 		reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
943 		if (pdata->audout_layout == 1) {
944 			/* demuxed via AP0:AP3 */
945 			reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
946 			if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
947 				sp_used_by_fifo = false;
948 		} else {
949 			/* straight via AP0 */
950 			reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
951 		}
952 		break;
953 	}
954 	if (pdata->audout_width == 32)
955 		reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
956 	else
957 		reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
958 
959 	/* automatic hardware mute */
960 	if (pdata->audio_auto_mute)
961 		reg |= AUDCFG_AUTO_MUTE_EN;
962 	/* clock polarity */
963 	if (pdata->audout_invert_clk)
964 		reg |= AUDCFG_CLK_INVERT;
965 	io_write(sd, REG_AUDCFG, reg);
966 
967 	/* audio layout */
968 	reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
969 	if (!pdata->audout_layoutauto)
970 		reg |= AUDIO_LAYOUT_MANUAL;
971 	if (sp_used_by_fifo)
972 		reg |= AUDIO_LAYOUT_SP_FLAG;
973 	io_write(sd, REG_AUDIO_LAYOUT, reg);
974 
975 	/* FIFO Latency value */
976 	io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
977 
978 	/* Audio output port config */
979 	if (sp_used_by_fifo) {
980 		reg = AUDIO_OUT_ENABLE_AP0;
981 		if (channel_assignment >= 0x01)
982 			reg |= AUDIO_OUT_ENABLE_AP1;
983 		if (channel_assignment >= 0x04)
984 			reg |= AUDIO_OUT_ENABLE_AP2;
985 		if (channel_assignment >= 0x0c)
986 			reg |= AUDIO_OUT_ENABLE_AP3;
987 		/* specific cases where AP1 is not used */
988 		if ((channel_assignment == 0x04)
989 		 || (channel_assignment == 0x08)
990 		 || (channel_assignment == 0x0c)
991 		 || (channel_assignment == 0x10)
992 		 || (channel_assignment == 0x14)
993 		 || (channel_assignment == 0x18)
994 		 || (channel_assignment == 0x1c))
995 			reg &= ~AUDIO_OUT_ENABLE_AP1;
996 		/* specific cases where AP2 is not used */
997 		if ((channel_assignment >= 0x14)
998 		 && (channel_assignment <= 0x17))
999 			reg &= ~AUDIO_OUT_ENABLE_AP2;
1000 	} else {
1001 		reg = AUDIO_OUT_ENABLE_AP3 |
1002 		      AUDIO_OUT_ENABLE_AP2 |
1003 		      AUDIO_OUT_ENABLE_AP1 |
1004 		      AUDIO_OUT_ENABLE_AP0;
1005 	}
1006 	if (pdata->audout_format == AUDFMT_TYPE_I2S)
1007 		reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
1008 	io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
1009 
1010 	/* reset test mode to normal audio freq auto selection */
1011 	io_write(sd, REG_TEST_MODE, 0x00);
1012 
1013 	return 0;
1014 }
1015 
1016 /* Soft Reset of specific hdmi info */
1017 static int
1018 tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
1019 {
1020 	u8 reg;
1021 
1022 	/* reset infoframe engine packets */
1023 	reg = io_read(sd, REG_HDMI_INFO_RST);
1024 	io_write(sd, REG_HDMI_INFO_RST, info_rst);
1025 
1026 	/* if infoframe engine has been reset clear INT_FLG_MODE */
1027 	if (reg & RESET_IF) {
1028 		reg = io_read(sd, REG_INT_FLG_CLR_MODE);
1029 		io_write(sd, REG_INT_FLG_CLR_MODE, reg);
1030 	}
1031 
1032 	/* Disable REFTIM to restart start-up-sequencer (SUS) */
1033 	reg = io_read(sd, REG_RATE_CTRL);
1034 	reg &= ~RATE_REFTIM_ENABLE;
1035 	if (!reset_sus)
1036 		reg |= RATE_REFTIM_ENABLE;
1037 	reg = io_write(sd, REG_RATE_CTRL, reg);
1038 
1039 	return 0;
1040 }
1041 
1042 static void
1043 tda1997x_power_mode(struct tda1997x_state *state, bool enable)
1044 {
1045 	struct v4l2_subdev *sd = &state->sd;
1046 	u8 reg;
1047 
1048 	if (enable) {
1049 		/* Automatic control of TMDS */
1050 		io_write(sd, REG_PON_OVR_EN, PON_DIS);
1051 		/* Enable current bias unit */
1052 		io_write(sd, REG_CFG1, PON_EN);
1053 		/* Enable deep color PLL */
1054 		io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
1055 		/* Output buffers active */
1056 		reg = io_read(sd, REG_OF);
1057 		reg &= ~OF_VP_ENABLE;
1058 		io_write(sd, REG_OF, reg);
1059 	} else {
1060 		/* Power down EDID mode sequence */
1061 		/* Output buffers in HiZ */
1062 		reg = io_read(sd, REG_OF);
1063 		reg |= OF_VP_ENABLE;
1064 		io_write(sd, REG_OF, reg);
1065 		/* Disable deep color PLL */
1066 		io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
1067 		/* Disable current bias unit */
1068 		io_write(sd, REG_CFG1, PON_DIS);
1069 		/* Manual control of TMDS */
1070 		io_write(sd, REG_PON_OVR_EN, PON_EN);
1071 	}
1072 }
1073 
1074 static bool
1075 tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
1076 {
1077 	u8 reg = io_read(sd, REG_DETECT_5V);
1078 
1079 	return ((reg & DETECT_5V_SEL) ? 1 : 0);
1080 }
1081 
1082 static bool
1083 tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
1084 {
1085 	u8 reg = io_read(sd, REG_DETECT_5V);
1086 
1087 	return ((reg & DETECT_HPD) ? 1 : 0);
1088 }
1089 
1090 static int
1091 tda1997x_detect_std(struct tda1997x_state *state,
1092 		    struct v4l2_dv_timings *timings)
1093 {
1094 	struct v4l2_subdev *sd = &state->sd;
1095 
1096 	/*
1097 	 * Read the FMT registers
1098 	 *   REG_V_PER: Period of a frame (or field) in MCLK (27MHz) cycles
1099 	 *   REG_H_PER: Period of a line in MCLK (27MHz) cycles
1100 	 *   REG_HS_WIDTH: Period of horiz sync pulse in MCLK (27MHz) cycles
1101 	 */
1102 	u32 vper, vsync_pos;
1103 	u16 hper, hsync_pos, hsper, interlaced;
1104 	u16 htot, hact, hfront, hsync, hback;
1105 	u16 vtot, vact, vfront1, vfront2, vsync, vback1, vback2;
1106 
1107 	if (!state->input_detect[0] && !state->input_detect[1])
1108 		return -ENOLINK;
1109 
1110 	vper = io_read24(sd, REG_V_PER);
1111 	hper = io_read16(sd, REG_H_PER);
1112 	hsper = io_read16(sd, REG_HS_WIDTH);
1113 	vsync_pos = vper & MASK_VPER_SYNC_POS;
1114 	hsync_pos = hper & MASK_HPER_SYNC_POS;
1115 	interlaced = hsper & MASK_HSWIDTH_INTERLACED;
1116 	vper &= MASK_VPER;
1117 	hper &= MASK_HPER;
1118 	hsper &= MASK_HSWIDTH;
1119 	v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
1120 
1121 	htot = io_read16(sd, REG_FMT_H_TOT);
1122 	hact = io_read16(sd, REG_FMT_H_ACT);
1123 	hfront = io_read16(sd, REG_FMT_H_FRONT);
1124 	hsync = io_read16(sd, REG_FMT_H_SYNC);
1125 	hback = io_read16(sd, REG_FMT_H_BACK);
1126 
1127 	vtot = io_read16(sd, REG_FMT_V_TOT);
1128 	vact = io_read16(sd, REG_FMT_V_ACT);
1129 	vfront1 = io_read(sd, REG_FMT_V_FRONT_F1);
1130 	vfront2 = io_read(sd, REG_FMT_V_FRONT_F2);
1131 	vsync = io_read(sd, REG_FMT_V_SYNC);
1132 	vback1 = io_read(sd, REG_FMT_V_BACK_F1);
1133 	vback2 = io_read(sd, REG_FMT_V_BACK_F2);
1134 
1135 	v4l2_dbg(1, debug, sd, "Geometry: H %u %u %u %u %u Sync%c  V %u %u %u %u %u %u %u Sync%c\n",
1136 		 htot, hact, hfront, hsync, hback, hsync_pos ? '+' : '-',
1137 		 vtot, vact, vfront1, vfront2, vsync, vback1, vback2, vsync_pos ? '+' : '-');
1138 
1139 	if (!timings)
1140 		return 0;
1141 
1142 	timings->type = V4L2_DV_BT_656_1120;
1143 	timings->bt.width = hact;
1144 	timings->bt.hfrontporch = hfront;
1145 	timings->bt.hsync = hsync;
1146 	timings->bt.hbackporch = hback;
1147 	timings->bt.height = vact;
1148 	timings->bt.vfrontporch = vfront1;
1149 	timings->bt.vsync = vsync;
1150 	timings->bt.vbackporch = vback1;
1151 	timings->bt.interlaced = interlaced ? V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1152 	timings->bt.polarities = vsync_pos ? V4L2_DV_VSYNC_POS_POL : 0;
1153 	timings->bt.polarities |= hsync_pos ? V4L2_DV_HSYNC_POS_POL : 0;
1154 
1155 	timings->bt.pixelclock = (u64)htot * vtot * 27000000;
1156 	if (interlaced) {
1157 		timings->bt.il_vfrontporch = vfront2;
1158 		timings->bt.il_vsync = timings->bt.vsync;
1159 		timings->bt.il_vbackporch = vback2;
1160 		do_div(timings->bt.pixelclock, vper * 2 /* full frame */);
1161 	} else {
1162 		timings->bt.il_vfrontporch = 0;
1163 		timings->bt.il_vsync = 0;
1164 		timings->bt.il_vbackporch = 0;
1165 		do_div(timings->bt.pixelclock, vper);
1166 	}
1167 	v4l2_find_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1168 				 (u32)timings->bt.pixelclock / 500, NULL, NULL);
1169 	v4l2_print_dv_timings(sd->name, "Detected format: ", timings, false);
1170 	return 0;
1171 }
1172 
1173 /* some sort of errata workaround for chip revision 0 (N1) */
1174 static void tda1997x_reset_n1(struct tda1997x_state *state)
1175 {
1176 	struct v4l2_subdev *sd = &state->sd;
1177 	u8 reg;
1178 
1179 	/* clear HDMI mode flag in BCAPS */
1180 	io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
1181 	io_write(sd, REG_PON_OVR_EN, PON_EN);
1182 	io_write(sd, REG_PON_CBIAS, PON_EN);
1183 	io_write(sd, REG_PON_PLL, PON_EN);
1184 
1185 	reg = io_read(sd, REG_MODE_REC_CFG1);
1186 	reg &= ~0x06;
1187 	reg |= 0x02;
1188 	io_write(sd, REG_MODE_REC_CFG1, reg);
1189 	io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
1190 	io_write(sd, REG_PON_OVR_EN, PON_DIS);
1191 	reg = io_read(sd, REG_MODE_REC_CFG1);
1192 	reg &= ~0x06;
1193 	io_write(sd, REG_MODE_REC_CFG1, reg);
1194 }
1195 
1196 /*
1197  * Activity detection must only be notified when stable_clk_x AND active_x
1198  * bits are set to 1. If only stable_clk_x bit is set to 1 but not
1199  * active_x, it means that the TMDS clock is not in the defined range
1200  * and activity detection must not be notified.
1201  */
1202 static u8
1203 tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
1204 {
1205 	u8 reg, status = 0;
1206 
1207 	/* Read CLK_A_STATUS register */
1208 	reg = io_read(sd, REG_CLK_A_STATUS);
1209 	/* ignore if not active */
1210 	if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1211 		reg &= ~MASK_CLK_STABLE;
1212 	status |= ((reg & MASK_CLK_STABLE) >> 2);
1213 
1214 	/* Read CLK_B_STATUS register */
1215 	reg = io_read(sd, REG_CLK_B_STATUS);
1216 	/* ignore if not active */
1217 	if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
1218 		reg &= ~MASK_CLK_STABLE;
1219 	status |= ((reg & MASK_CLK_STABLE) >> 1);
1220 
1221 	/* Read the SUS_STATUS register */
1222 	reg = io_read(sd, REG_SUS_STATUS);
1223 
1224 	/* If state = 5 => TMDS is locked */
1225 	if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
1226 		status |= MASK_SUS_STATE;
1227 	else
1228 		status &= ~MASK_SUS_STATE;
1229 
1230 	return status;
1231 }
1232 
1233 static void
1234 set_rgb_quantization_range(struct tda1997x_state *state)
1235 {
1236 	struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
1237 
1238 	state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
1239 						      NULL,
1240 						      state->timings.bt.height);
1241 	/* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
1242 	if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
1243 		switch (state->rgb_quantization_range) {
1244 		case V4L2_DV_RGB_RANGE_LIMITED:
1245 			c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1246 			break;
1247 		case V4L2_DV_RGB_RANGE_FULL:
1248 			c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
1249 			break;
1250 		}
1251 	}
1252 	v4l_dbg(1, debug, state->client,
1253 		"colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
1254 		state->avi_infoframe.colorspace, c->colorspace,
1255 		state->avi_infoframe.colorimetry,
1256 		v4l2_quantization_names[c->quantization],
1257 		state->avi_infoframe.content_type);
1258 }
1259 
1260 /* parse an infoframe and do some sanity checks on it */
1261 static unsigned int
1262 tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
1263 {
1264 	struct v4l2_subdev *sd = &state->sd;
1265 	union hdmi_infoframe frame;
1266 	u8 buffer[40] = { 0 };
1267 	u8 reg;
1268 	int len, err;
1269 
1270 	/* read data */
1271 	len = io_readn(sd, addr, sizeof(buffer), buffer);
1272 	err = hdmi_infoframe_unpack(&frame, buffer, len);
1273 	if (err) {
1274 		v4l_err(state->client,
1275 			"failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1276 			len, addr, buffer[0]);
1277 		return err;
1278 	}
1279 	hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1280 	switch (frame.any.type) {
1281 	/* Audio InfoFrame: see HDMI spec 8.2.2 */
1282 	case HDMI_INFOFRAME_TYPE_AUDIO:
1283 		/* sample rate */
1284 		switch (frame.audio.sample_frequency) {
1285 		case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
1286 			state->audio_samplerate = 32000;
1287 			break;
1288 		case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
1289 			state->audio_samplerate = 44100;
1290 			break;
1291 		case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
1292 			state->audio_samplerate = 48000;
1293 			break;
1294 		case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
1295 			state->audio_samplerate = 88200;
1296 			break;
1297 		case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
1298 			state->audio_samplerate = 96000;
1299 			break;
1300 		case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
1301 			state->audio_samplerate = 176400;
1302 			break;
1303 		case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
1304 			state->audio_samplerate = 192000;
1305 			break;
1306 		default:
1307 		case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
1308 			break;
1309 		}
1310 
1311 		/* sample size */
1312 		switch (frame.audio.sample_size) {
1313 		case HDMI_AUDIO_SAMPLE_SIZE_16:
1314 			state->audio_samplesize = 16;
1315 			break;
1316 		case HDMI_AUDIO_SAMPLE_SIZE_20:
1317 			state->audio_samplesize = 20;
1318 			break;
1319 		case HDMI_AUDIO_SAMPLE_SIZE_24:
1320 			state->audio_samplesize = 24;
1321 			break;
1322 		case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
1323 		default:
1324 			break;
1325 		}
1326 
1327 		/* Channel Count */
1328 		state->audio_channels = frame.audio.channels;
1329 		if (frame.audio.channel_allocation &&
1330 		    frame.audio.channel_allocation != state->audio_ch_alloc) {
1331 			/* use the channel assignment from the infoframe */
1332 			state->audio_ch_alloc = frame.audio.channel_allocation;
1333 			tda1997x_configure_audout(sd, state->audio_ch_alloc);
1334 			/* reset the audio FIFO */
1335 			tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
1336 		}
1337 		break;
1338 
1339 	/* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
1340 	case HDMI_INFOFRAME_TYPE_AVI:
1341 		state->avi_infoframe = frame.avi;
1342 		set_rgb_quantization_range(state);
1343 
1344 		/* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
1345 		reg = io_read(sd, REG_PIX_REPEAT);
1346 		reg &= ~PIX_REPEAT_MASK_UP_SEL;
1347 		if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
1348 			reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
1349 		io_write(sd, REG_PIX_REPEAT, reg);
1350 
1351 		/* ConfigurePixelRepeater: repeat n-times each pixel */
1352 		reg = io_read(sd, REG_PIX_REPEAT);
1353 		reg &= ~PIX_REPEAT_MASK_REP;
1354 		reg |= frame.avi.pixel_repeat;
1355 		io_write(sd, REG_PIX_REPEAT, reg);
1356 
1357 		/* configure the receiver with the new colorspace */
1358 		tda1997x_configure_csc(sd);
1359 		break;
1360 	default:
1361 		break;
1362 	}
1363 	return 0;
1364 }
1365 
1366 static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
1367 {
1368 	struct v4l2_subdev *sd = &state->sd;
1369 	u8 reg, source;
1370 
1371 	source = io_read(sd, REG_INT_FLG_CLR_SUS);
1372 	io_write(sd, REG_INT_FLG_CLR_SUS, source);
1373 
1374 	if (source & MASK_MPT) {
1375 		/* reset MTP in use flag if set */
1376 		if (state->mptrw_in_progress)
1377 			state->mptrw_in_progress = 0;
1378 	}
1379 
1380 	if (source & MASK_SUS_END) {
1381 		/* reset audio FIFO */
1382 		reg = io_read(sd, REG_HDMI_INFO_RST);
1383 		reg |= MASK_SR_FIFO_FIFO_CTRL;
1384 		io_write(sd, REG_HDMI_INFO_RST, reg);
1385 		reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1386 		io_write(sd, REG_HDMI_INFO_RST, reg);
1387 
1388 		/* reset HDMI flags */
1389 		state->hdmi_status = 0;
1390 	}
1391 
1392 	/* filter FMT interrupt based on SUS state */
1393 	reg = io_read(sd, REG_SUS_STATUS);
1394 	if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
1395 	   || (source & MASK_MPT)) {
1396 		source &= ~MASK_FMT;
1397 	}
1398 
1399 	if (source & (MASK_FMT | MASK_SUS_END)) {
1400 		reg = io_read(sd, REG_SUS_STATUS);
1401 		if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
1402 			v4l_err(state->client, "BAD SUS STATUS\n");
1403 			return;
1404 		}
1405 		if (debug)
1406 			tda1997x_detect_std(state, NULL);
1407 		/* notify user of change in resolution */
1408 		v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
1409 	}
1410 }
1411 
1412 static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
1413 {
1414 	struct v4l2_subdev *sd = &state->sd;
1415 	u8 source;
1416 
1417 	source = io_read(sd, REG_INT_FLG_CLR_DDC);
1418 	io_write(sd, REG_INT_FLG_CLR_DDC, source);
1419 	if (source & MASK_EDID_MTP) {
1420 		/* reset MTP in use flag if set */
1421 		if (state->mptrw_in_progress)
1422 			state->mptrw_in_progress = 0;
1423 	}
1424 
1425 	/* Detection of +5V */
1426 	if (source & MASK_DET_5V) {
1427 		v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
1428 				 tda1997x_detect_tx_5v(sd));
1429 	}
1430 }
1431 
1432 static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
1433 {
1434 	struct v4l2_subdev *sd = &state->sd;
1435 	u8 reg, source;
1436 
1437 	u8 irq_status;
1438 
1439 	source = io_read(sd, REG_INT_FLG_CLR_RATE);
1440 	io_write(sd, REG_INT_FLG_CLR_RATE, source);
1441 
1442 	/* read status regs */
1443 	irq_status = tda1997x_read_activity_status_regs(sd);
1444 
1445 	/*
1446 	 * read clock status reg until INT_FLG_CLR_RATE is still 0
1447 	 * after the read to make sure its the last one
1448 	 */
1449 	reg = source;
1450 	while (reg != 0) {
1451 		irq_status = tda1997x_read_activity_status_regs(sd);
1452 		reg = io_read(sd, REG_INT_FLG_CLR_RATE);
1453 		io_write(sd, REG_INT_FLG_CLR_RATE, reg);
1454 		source |= reg;
1455 	}
1456 
1457 	/* we only pay attention to stability change events */
1458 	if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
1459 		int input = (source & MASK_RATE_A_ST)?0:1;
1460 		u8 mask = 1<<input;
1461 
1462 		/* state change */
1463 		if ((irq_status & mask) != (state->activity_status & mask)) {
1464 			/* activity lost */
1465 			if ((irq_status & mask) == 0) {
1466 				v4l_info(state->client,
1467 					 "HDMI-%c: Digital Activity Lost\n",
1468 					 input+'A');
1469 
1470 				/* bypass up/down sampler and pixel repeater */
1471 				reg = io_read(sd, REG_PIX_REPEAT);
1472 				reg &= ~PIX_REPEAT_MASK_UP_SEL;
1473 				reg &= ~PIX_REPEAT_MASK_REP;
1474 				io_write(sd, REG_PIX_REPEAT, reg);
1475 
1476 				if (state->chip_revision == 0)
1477 					tda1997x_reset_n1(state);
1478 
1479 				state->input_detect[input] = 0;
1480 				v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
1481 			}
1482 
1483 			/* activity detected */
1484 			else {
1485 				v4l_info(state->client,
1486 					 "HDMI-%c: Digital Activity Detected\n",
1487 					 input+'A');
1488 				state->input_detect[input] = 1;
1489 			}
1490 
1491 			/* hold onto current state */
1492 			state->activity_status = (irq_status & mask);
1493 		}
1494 	}
1495 }
1496 
1497 static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
1498 {
1499 	struct v4l2_subdev *sd = &state->sd;
1500 	u8 source;
1501 
1502 	source = io_read(sd, REG_INT_FLG_CLR_INFO);
1503 	io_write(sd, REG_INT_FLG_CLR_INFO, source);
1504 
1505 	/* Audio infoframe */
1506 	if (source & MASK_AUD_IF) {
1507 		tda1997x_parse_infoframe(state, AUD_IF);
1508 		source &= ~MASK_AUD_IF;
1509 	}
1510 
1511 	/* Source Product Descriptor infoframe change */
1512 	if (source & MASK_SPD_IF) {
1513 		tda1997x_parse_infoframe(state, SPD_IF);
1514 		source &= ~MASK_SPD_IF;
1515 	}
1516 
1517 	/* Auxiliary Video Information infoframe */
1518 	if (source & MASK_AVI_IF) {
1519 		tda1997x_parse_infoframe(state, AVI_IF);
1520 		source &= ~MASK_AVI_IF;
1521 	}
1522 }
1523 
1524 static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
1525 {
1526 	struct v4l2_subdev *sd = &state->sd;
1527 	u8 reg, source;
1528 
1529 	source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
1530 	io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
1531 
1532 	/* reset audio FIFO on FIFO pointer error or audio mute */
1533 	if (source & MASK_ERROR_FIFO_PT ||
1534 	    source & MASK_MUTE_FLG) {
1535 		/* audio reset audio FIFO */
1536 		reg = io_read(sd, REG_SUS_STATUS);
1537 		if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
1538 			reg = io_read(sd, REG_HDMI_INFO_RST);
1539 			reg |= MASK_SR_FIFO_FIFO_CTRL;
1540 			io_write(sd, REG_HDMI_INFO_RST, reg);
1541 			reg &= ~MASK_SR_FIFO_FIFO_CTRL;
1542 			io_write(sd, REG_HDMI_INFO_RST, reg);
1543 			/* reset channel status IT if present */
1544 			source &= ~(MASK_CH_STATE);
1545 		}
1546 	}
1547 	if (source & MASK_AUDIO_FREQ_FLG) {
1548 		static const int freq[] = {
1549 			0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
1550 		};
1551 
1552 		reg = io_read(sd, REG_AUDIO_FREQ);
1553 		state->audio_samplerate = freq[reg & 7];
1554 		v4l_info(state->client, "Audio Frequency Change: %dHz\n",
1555 			 state->audio_samplerate);
1556 	}
1557 	if (source & MASK_AUDIO_FLG) {
1558 		reg = io_read(sd, REG_AUDIO_FLAGS);
1559 		if (reg & BIT(AUDCFG_TYPE_DST))
1560 			state->audio_type = AUDCFG_TYPE_DST;
1561 		if (reg & BIT(AUDCFG_TYPE_OBA))
1562 			state->audio_type = AUDCFG_TYPE_OBA;
1563 		if (reg & BIT(AUDCFG_TYPE_HBR))
1564 			state->audio_type = AUDCFG_TYPE_HBR;
1565 		if (reg & BIT(AUDCFG_TYPE_PCM))
1566 			state->audio_type = AUDCFG_TYPE_PCM;
1567 		v4l_info(state->client, "Audio Type: %s\n",
1568 			 audtype_names[state->audio_type]);
1569 	}
1570 }
1571 
1572 static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
1573 {
1574 	struct v4l2_subdev *sd = &state->sd;
1575 	u8 reg, source;
1576 
1577 	source = io_read(sd, REG_INT_FLG_CLR_HDCP);
1578 	io_write(sd, REG_INT_FLG_CLR_HDCP, source);
1579 
1580 	/* reset MTP in use flag if set */
1581 	if (source & MASK_HDCP_MTP)
1582 		state->mptrw_in_progress = 0;
1583 	if (source & MASK_STATE_C5) {
1584 		/* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
1585 		reg = io_read(sd, REG_INT_MASK_TOP);
1586 		reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
1587 		io_write(sd, REG_INT_MASK_TOP, reg);
1588 		*flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
1589 	}
1590 }
1591 
1592 static irqreturn_t tda1997x_isr_thread(int irq, void *d)
1593 {
1594 	struct tda1997x_state *state = d;
1595 	struct v4l2_subdev *sd = &state->sd;
1596 	u8 flags;
1597 
1598 	mutex_lock(&state->lock);
1599 	do {
1600 		/* read interrupt flags */
1601 		flags = io_read(sd, REG_INT_FLG_CLR_TOP);
1602 		if (flags == 0)
1603 			break;
1604 
1605 		/* SUS interrupt source (Input activity events) */
1606 		if (flags & INTERRUPT_SUS)
1607 			tda1997x_irq_sus(state, &flags);
1608 		/* DDC interrupt source (Display Data Channel) */
1609 		else if (flags & INTERRUPT_DDC)
1610 			tda1997x_irq_ddc(state, &flags);
1611 		/* RATE interrupt source (Digital Input activity) */
1612 		else if (flags & INTERRUPT_RATE)
1613 			tda1997x_irq_rate(state, &flags);
1614 		/* Infoframe change interrupt */
1615 		else if (flags & INTERRUPT_INFO)
1616 			tda1997x_irq_info(state, &flags);
1617 		/* Audio interrupt source:
1618 		 *   freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
1619 		 */
1620 		else if (flags & INTERRUPT_AUDIO)
1621 			tda1997x_irq_audio(state, &flags);
1622 		/* HDCP interrupt source (content protection) */
1623 		if (flags & INTERRUPT_HDCP)
1624 			tda1997x_irq_hdcp(state, &flags);
1625 	} while (flags != 0);
1626 	mutex_unlock(&state->lock);
1627 
1628 	return IRQ_HANDLED;
1629 }
1630 
1631 /* -----------------------------------------------------------------------------
1632  * v4l2_subdev_video_ops
1633  */
1634 
1635 static int
1636 tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
1637 {
1638 	struct tda1997x_state *state = to_state(sd);
1639 	u32 vper;
1640 	u16 hper;
1641 	u16 hsper;
1642 
1643 	mutex_lock(&state->lock);
1644 	vper = io_read24(sd, REG_V_PER) & MASK_VPER;
1645 	hper = io_read16(sd, REG_H_PER) & MASK_HPER;
1646 	hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
1647 	/*
1648 	 * The tda1997x supports A/B inputs but only a single output.
1649 	 * The irq handler monitors for timing changes on both inputs and
1650 	 * sets the input_detect array to 0|1 depending on signal presence.
1651 	 * I believe selection of A vs B is automatic.
1652 	 *
1653 	 * The vper/hper/hsper registers provide the frame period, line period
1654 	 * and horiz sync period (units of MCLK clock cycles (27MHz)) and
1655 	 * testing shows these values to be random if no signal is present
1656 	 * or locked.
1657 	 */
1658 	v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
1659 		 state->input_detect[0], state->input_detect[1],
1660 		 vper, hper, hsper);
1661 	if (!state->input_detect[0] && !state->input_detect[1])
1662 		*status = V4L2_IN_ST_NO_SIGNAL;
1663 	else if (!vper || !hper || !hsper)
1664 		*status = V4L2_IN_ST_NO_SYNC;
1665 	else
1666 		*status = 0;
1667 	mutex_unlock(&state->lock);
1668 
1669 	return 0;
1670 };
1671 
1672 static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
1673 				struct v4l2_dv_timings *timings)
1674 {
1675 	struct tda1997x_state *state = to_state(sd);
1676 
1677 	v4l_dbg(1, debug, state->client, "%s\n", __func__);
1678 
1679 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
1680 		return 0; /* no changes */
1681 
1682 	if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
1683 				   NULL, NULL))
1684 		return -ERANGE;
1685 
1686 	mutex_lock(&state->lock);
1687 	state->timings = *timings;
1688 	/* setup frame detection window and VHREF timing generator */
1689 	tda1997x_configure_vhref(sd);
1690 	/* configure colorspace conversion */
1691 	tda1997x_configure_csc(sd);
1692 	mutex_unlock(&state->lock);
1693 
1694 	return 0;
1695 }
1696 
1697 static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
1698 				 struct v4l2_dv_timings *timings)
1699 {
1700 	struct tda1997x_state *state = to_state(sd);
1701 
1702 	v4l_dbg(1, debug, state->client, "%s\n", __func__);
1703 	mutex_lock(&state->lock);
1704 	*timings = state->timings;
1705 	mutex_unlock(&state->lock);
1706 
1707 	return 0;
1708 }
1709 
1710 static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
1711 				     struct v4l2_dv_timings *timings)
1712 {
1713 	struct tda1997x_state *state = to_state(sd);
1714 	int ret;
1715 
1716 	v4l_dbg(1, debug, state->client, "%s\n", __func__);
1717 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1718 	mutex_lock(&state->lock);
1719 	ret = tda1997x_detect_std(state, timings);
1720 	mutex_unlock(&state->lock);
1721 
1722 	return ret;
1723 }
1724 
1725 static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
1726 	.g_input_status = tda1997x_g_input_status,
1727 	.s_dv_timings = tda1997x_s_dv_timings,
1728 	.g_dv_timings = tda1997x_g_dv_timings,
1729 	.query_dv_timings = tda1997x_query_dv_timings,
1730 };
1731 
1732 
1733 /* -----------------------------------------------------------------------------
1734  * v4l2_subdev_pad_ops
1735  */
1736 
1737 static int tda1997x_init_cfg(struct v4l2_subdev *sd,
1738 			     struct v4l2_subdev_state *sd_state)
1739 {
1740 	struct tda1997x_state *state = to_state(sd);
1741 	struct v4l2_mbus_framefmt *mf;
1742 
1743 	mf = v4l2_subdev_get_try_format(sd, sd_state, 0);
1744 	mf->code = state->mbus_codes[0];
1745 
1746 	return 0;
1747 }
1748 
1749 static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
1750 				  struct v4l2_subdev_state *sd_state,
1751 				  struct v4l2_subdev_mbus_code_enum *code)
1752 {
1753 	struct tda1997x_state *state = to_state(sd);
1754 
1755 	v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
1756 	if (code->index >= ARRAY_SIZE(state->mbus_codes))
1757 		return -EINVAL;
1758 
1759 	if (!state->mbus_codes[code->index])
1760 		return -EINVAL;
1761 
1762 	code->code = state->mbus_codes[code->index];
1763 
1764 	return 0;
1765 }
1766 
1767 static void tda1997x_fill_format(struct tda1997x_state *state,
1768 				 struct v4l2_mbus_framefmt *format)
1769 {
1770 	const struct v4l2_bt_timings *bt;
1771 
1772 	memset(format, 0, sizeof(*format));
1773 	bt = &state->timings.bt;
1774 	format->width = bt->width;
1775 	format->height = bt->height;
1776 	format->colorspace = state->colorimetry.colorspace;
1777 	format->field = (bt->interlaced) ?
1778 		V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
1779 }
1780 
1781 static int tda1997x_get_format(struct v4l2_subdev *sd,
1782 			       struct v4l2_subdev_state *sd_state,
1783 			       struct v4l2_subdev_format *format)
1784 {
1785 	struct tda1997x_state *state = to_state(sd);
1786 
1787 	v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
1788 		__func__, format->pad, format->which);
1789 
1790 	tda1997x_fill_format(state, &format->format);
1791 
1792 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1793 		struct v4l2_mbus_framefmt *fmt;
1794 
1795 		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1796 		format->format.code = fmt->code;
1797 	} else
1798 		format->format.code = state->mbus_code;
1799 
1800 	return 0;
1801 }
1802 
1803 static int tda1997x_set_format(struct v4l2_subdev *sd,
1804 			       struct v4l2_subdev_state *sd_state,
1805 			       struct v4l2_subdev_format *format)
1806 {
1807 	struct tda1997x_state *state = to_state(sd);
1808 	u32 code = 0;
1809 	int i;
1810 
1811 	v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
1812 		__func__, format->pad, format->which, format->format.code);
1813 
1814 	for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
1815 		if (format->format.code == state->mbus_codes[i]) {
1816 			code = state->mbus_codes[i];
1817 			break;
1818 		}
1819 	}
1820 	if (!code)
1821 		code = state->mbus_codes[0];
1822 
1823 	tda1997x_fill_format(state, &format->format);
1824 	format->format.code = code;
1825 
1826 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1827 		struct v4l2_mbus_framefmt *fmt;
1828 
1829 		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1830 		*fmt = format->format;
1831 	} else {
1832 		int ret = tda1997x_setup_format(state, format->format.code);
1833 
1834 		if (ret)
1835 			return ret;
1836 		/* mbus_code has changed - re-configure csc/vidout */
1837 		tda1997x_configure_csc(sd);
1838 		tda1997x_configure_vidout(state);
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1845 {
1846 	struct tda1997x_state *state = to_state(sd);
1847 
1848 	v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1849 	memset(edid->reserved, 0, sizeof(edid->reserved));
1850 
1851 	if (edid->start_block == 0 && edid->blocks == 0) {
1852 		edid->blocks = state->edid.blocks;
1853 		return 0;
1854 	}
1855 
1856 	if (!state->edid.present)
1857 		return -ENODATA;
1858 
1859 	if (edid->start_block >= state->edid.blocks)
1860 		return -EINVAL;
1861 
1862 	if (edid->start_block + edid->blocks > state->edid.blocks)
1863 		edid->blocks = state->edid.blocks - edid->start_block;
1864 
1865 	memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
1866 	       edid->blocks * 128);
1867 
1868 	return 0;
1869 }
1870 
1871 static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1872 {
1873 	struct tda1997x_state *state = to_state(sd);
1874 	int i;
1875 
1876 	v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
1877 	memset(edid->reserved, 0, sizeof(edid->reserved));
1878 
1879 	if (edid->start_block != 0)
1880 		return -EINVAL;
1881 
1882 	if (edid->blocks == 0) {
1883 		state->edid.blocks = 0;
1884 		state->edid.present = 0;
1885 		tda1997x_disable_edid(sd);
1886 		return 0;
1887 	}
1888 
1889 	if (edid->blocks > 2) {
1890 		edid->blocks = 2;
1891 		return -E2BIG;
1892 	}
1893 
1894 	tda1997x_disable_edid(sd);
1895 
1896 	/* write base EDID */
1897 	for (i = 0; i < 128; i++)
1898 		io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
1899 
1900 	/* write CEA Extension */
1901 	for (i = 0; i < 128; i++)
1902 		io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
1903 
1904 	/* store state */
1905 	memcpy(state->edid.edid, edid->edid, 256);
1906 	state->edid.blocks = edid->blocks;
1907 
1908 	tda1997x_enable_edid(sd);
1909 
1910 	return 0;
1911 }
1912 
1913 static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
1914 				       struct v4l2_dv_timings_cap *cap)
1915 {
1916 	*cap = tda1997x_dv_timings_cap;
1917 	return 0;
1918 }
1919 
1920 static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
1921 				    struct v4l2_enum_dv_timings *timings)
1922 {
1923 	return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
1924 					NULL, NULL);
1925 }
1926 
1927 static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
1928 	.init_cfg = tda1997x_init_cfg,
1929 	.enum_mbus_code = tda1997x_enum_mbus_code,
1930 	.get_fmt = tda1997x_get_format,
1931 	.set_fmt = tda1997x_set_format,
1932 	.get_edid = tda1997x_get_edid,
1933 	.set_edid = tda1997x_set_edid,
1934 	.dv_timings_cap = tda1997x_get_dv_timings_cap,
1935 	.enum_dv_timings = tda1997x_enum_dv_timings,
1936 };
1937 
1938 /* -----------------------------------------------------------------------------
1939  * v4l2_subdev_core_ops
1940  */
1941 
1942 static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
1943 {
1944 	struct tda1997x_state *state = to_state(sd);
1945 	union hdmi_infoframe frame;
1946 	u8 buffer[40] = { 0 };
1947 	int len, err;
1948 
1949 	/* read data */
1950 	len = io_readn(sd, addr, sizeof(buffer), buffer);
1951 	v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
1952 	err = hdmi_infoframe_unpack(&frame, buffer, len);
1953 	if (err) {
1954 		v4l_err(state->client,
1955 			"failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
1956 			len, addr, buffer[0]);
1957 		return err;
1958 	}
1959 	hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
1960 
1961 	return 0;
1962 }
1963 
1964 static int tda1997x_log_status(struct v4l2_subdev *sd)
1965 {
1966 	struct tda1997x_state *state = to_state(sd);
1967 	struct v4l2_dv_timings timings;
1968 	struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
1969 
1970 	v4l2_info(sd, "-----Chip status-----\n");
1971 	v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
1972 		  state->chip_revision + 1);
1973 	v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
1974 
1975 	v4l2_info(sd, "-----Signal status-----\n");
1976 	v4l2_info(sd, "Cable detected (+5V power): %s\n",
1977 		  tda1997x_detect_tx_5v(sd) ? "yes" : "no");
1978 	v4l2_info(sd, "HPD detected: %s\n",
1979 		  tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
1980 
1981 	v4l2_info(sd, "-----Video Timings-----\n");
1982 	switch (tda1997x_detect_std(state, &timings)) {
1983 	case -ENOLINK:
1984 		v4l2_info(sd, "No video detected\n");
1985 		break;
1986 	case -ERANGE:
1987 		v4l2_info(sd, "Invalid signal detected\n");
1988 		break;
1989 	}
1990 	v4l2_print_dv_timings(sd->name, "Configured format: ",
1991 			      &state->timings, true);
1992 
1993 	v4l2_info(sd, "-----Color space-----\n");
1994 	v4l2_info(sd, "Input color space: %s %s %s",
1995 		  hdmi_colorspace_names[avi->colorspace],
1996 		  (avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
1997 			hdmi_colorimetry_names[avi->colorimetry],
1998 		  v4l2_quantization_names[state->colorimetry.quantization]);
1999 	v4l2_info(sd, "Output color space: %s",
2000 		  vidfmt_names[state->vid_fmt]);
2001 	v4l2_info(sd, "Color space conversion: %s", state->conv ?
2002 		  state->conv->name : "None");
2003 
2004 	v4l2_info(sd, "-----Audio-----\n");
2005 	if (state->audio_channels) {
2006 		v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
2007 			  state->audio_samplerate);
2008 	} else {
2009 		v4l2_info(sd, "audio: none\n");
2010 	}
2011 
2012 	v4l2_info(sd, "-----Infoframes-----\n");
2013 	tda1997x_log_infoframe(sd, AUD_IF);
2014 	tda1997x_log_infoframe(sd, SPD_IF);
2015 	tda1997x_log_infoframe(sd, AVI_IF);
2016 
2017 	return 0;
2018 }
2019 
2020 static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
2021 				    struct v4l2_fh *fh,
2022 				    struct v4l2_event_subscription *sub)
2023 {
2024 	switch (sub->type) {
2025 	case V4L2_EVENT_SOURCE_CHANGE:
2026 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2027 	case V4L2_EVENT_CTRL:
2028 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2029 	default:
2030 		return -EINVAL;
2031 	}
2032 }
2033 
2034 static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
2035 	.log_status = tda1997x_log_status,
2036 	.subscribe_event = tda1997x_subscribe_event,
2037 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2038 };
2039 
2040 /* -----------------------------------------------------------------------------
2041  * v4l2_subdev_ops
2042  */
2043 
2044 static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
2045 	.core = &tda1997x_core_ops,
2046 	.video = &tda1997x_video_ops,
2047 	.pad = &tda1997x_pad_ops,
2048 };
2049 
2050 /* -----------------------------------------------------------------------------
2051  * v4l2_controls
2052  */
2053 
2054 static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
2055 {
2056 	struct v4l2_subdev *sd = to_sd(ctrl);
2057 	struct tda1997x_state *state = to_state(sd);
2058 
2059 	switch (ctrl->id) {
2060 	/* allow overriding the default RGB quantization range */
2061 	case V4L2_CID_DV_RX_RGB_RANGE:
2062 		state->rgb_quantization_range = ctrl->val;
2063 		set_rgb_quantization_range(state);
2064 		tda1997x_configure_csc(sd);
2065 		return 0;
2066 	}
2067 
2068 	return -EINVAL;
2069 };
2070 
2071 static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2072 {
2073 	struct v4l2_subdev *sd = to_sd(ctrl);
2074 	struct tda1997x_state *state = to_state(sd);
2075 
2076 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
2077 		ctrl->val = state->avi_infoframe.content_type;
2078 		return 0;
2079 	}
2080 	return -EINVAL;
2081 };
2082 
2083 static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
2084 	.s_ctrl = tda1997x_s_ctrl,
2085 	.g_volatile_ctrl = tda1997x_g_volatile_ctrl,
2086 };
2087 
2088 static int tda1997x_core_init(struct v4l2_subdev *sd)
2089 {
2090 	struct tda1997x_state *state = to_state(sd);
2091 	struct tda1997x_platform_data *pdata = &state->pdata;
2092 	u8 reg;
2093 	int i;
2094 
2095 	/* disable HPD */
2096 	io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
2097 	if (state->chip_revision == 0) {
2098 		io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
2099 		io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2100 	}
2101 
2102 	/* reset infoframe at end of start-up-sequencer */
2103 	io_write(sd, REG_SUS_SET_RGB2, 0x06);
2104 	io_write(sd, REG_SUS_SET_RGB3, 0x06);
2105 
2106 	/* Enable TMDS pull-ups */
2107 	io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
2108 		 RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
2109 
2110 	/* enable sync measurement timing */
2111 	tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
2112 	/* adjust CEC clock divider */
2113 	tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
2114 	tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
2115 	io_write(sd, REG_TIMER_D, 0x54);
2116 	/* enable power switch */
2117 	reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
2118 	reg |= 0x20;
2119 	tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
2120 	mdelay(50);
2121 
2122 	/* read the chip version */
2123 	reg = io_read(sd, REG_VERSION);
2124 	/* get the chip configuration */
2125 	reg = io_read(sd, REG_CMTP_REG10);
2126 
2127 	/* enable interrupts we care about */
2128 	io_write(sd, REG_INT_MASK_TOP,
2129 		 INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
2130 		 INTERRUPT_RATE | INTERRUPT_SUS);
2131 	/* config_mtp,fmt,sus_end,sus_st */
2132 	io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
2133 	/* rate stability change for inputs A/B */
2134 	io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
2135 	/* aud,spd,avi*/
2136 	io_write(sd, REG_INT_MASK_INFO,
2137 		 MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
2138 	/* audio_freq,audio_flg,mute_flg,fifo_err */
2139 	io_write(sd, REG_INT_MASK_AUDIO,
2140 		 MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
2141 		 MASK_ERROR_FIFO_PT);
2142 	/* HDCP C5 state reached */
2143 	io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
2144 	/* 5V detect and HDP pulse end */
2145 	io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
2146 	/* don't care about AFE/MODE */
2147 	io_write(sd, REG_INT_MASK_AFE, 0);
2148 	io_write(sd, REG_INT_MASK_MODE, 0);
2149 
2150 	/* clear all interrupts */
2151 	io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
2152 	io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
2153 	io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
2154 	io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
2155 	io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
2156 	io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
2157 	io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
2158 	io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
2159 	io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
2160 
2161 	/* init TMDS equalizer */
2162 	if (state->chip_revision == 0)
2163 		io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
2164 	io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
2165 	io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
2166 	if (state->chip_revision == 0)
2167 		io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
2168 	/* DC filter */
2169 	io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
2170 	/* disable test pattern */
2171 	io_write(sd, REG_SVC_MODE, 0x00);
2172 	/* update HDMI INFO CTRL */
2173 	io_write(sd, REG_INFO_CTRL, 0xff);
2174 	/* write HDMI INFO EXCEED value */
2175 	io_write(sd, REG_INFO_EXCEED, 3);
2176 
2177 	if (state->chip_revision == 0)
2178 		tda1997x_reset_n1(state);
2179 
2180 	/*
2181 	 * No HDCP acknowledge when HDCP is disabled
2182 	 * and reset SUS to force format detection
2183 	 */
2184 	tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
2185 
2186 	/* Set HPD low */
2187 	tda1997x_manual_hpd(sd, HPD_LOW_BP);
2188 
2189 	/* Configure receiver capabilities */
2190 	io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
2191 
2192 	/* Configure HDMI: Auto HDCP mode, packet controlled mute */
2193 	reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
2194 	reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
2195 	io_write(sd, REG_HDMI_CTRL, reg);
2196 
2197 	/* reset start-up-sequencer to force format detection */
2198 	tda1997x_hdmi_info_reset(sd, 0, true);
2199 
2200 	/* disable matrix conversion */
2201 	reg = io_read(sd, REG_VDP_CTRL);
2202 	reg |= VDP_CTRL_MATRIX_BP;
2203 	io_write(sd, REG_VDP_CTRL, reg);
2204 
2205 	/* set video output mode */
2206 	tda1997x_configure_vidout(state);
2207 
2208 	/* configure video output port */
2209 	for (i = 0; i < 9; i++) {
2210 		v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
2211 			pdata->vidout_port_cfg[i]);
2212 		io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
2213 	}
2214 
2215 	/* configure audio output port */
2216 	tda1997x_configure_audout(sd, 0);
2217 
2218 	/* configure audio clock freq */
2219 	switch (pdata->audout_mclk_fs) {
2220 	case 512:
2221 		reg = AUDIO_CLOCK_SEL_512FS;
2222 		break;
2223 	case 256:
2224 		reg = AUDIO_CLOCK_SEL_256FS;
2225 		break;
2226 	case 128:
2227 		reg = AUDIO_CLOCK_SEL_128FS;
2228 		break;
2229 	case 64:
2230 		reg = AUDIO_CLOCK_SEL_64FS;
2231 		break;
2232 	case 32:
2233 		reg = AUDIO_CLOCK_SEL_32FS;
2234 		break;
2235 	default:
2236 		reg = AUDIO_CLOCK_SEL_16FS;
2237 		break;
2238 	}
2239 	io_write(sd, REG_AUDIO_CLOCK, reg);
2240 
2241 	/* reset advanced infoframes (ISRC1/ISRC2/ACP) */
2242 	tda1997x_hdmi_info_reset(sd, RESET_AI, false);
2243 	/* reset infoframe */
2244 	tda1997x_hdmi_info_reset(sd, RESET_IF, false);
2245 	/* reset audio infoframes */
2246 	tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
2247 	/* reset gamut */
2248 	tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
2249 
2250 	/* get initial HDMI status */
2251 	state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
2252 
2253 	io_write(sd, REG_EDID_ENABLE, EDID_ENABLE_A_EN | EDID_ENABLE_B_EN);
2254 	return 0;
2255 }
2256 
2257 static int tda1997x_set_power(struct tda1997x_state *state, bool on)
2258 {
2259 	int ret = 0;
2260 
2261 	if (on) {
2262 		ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
2263 					     state->supplies);
2264 		msleep(300);
2265 	} else {
2266 		ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
2267 					     state->supplies);
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 static const struct i2c_device_id tda1997x_i2c_id[] = {
2274 	{"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
2275 	{"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
2276 	{ },
2277 };
2278 MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
2279 
2280 static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
2281 	{ .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
2282 	{ .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
2283 	{ },
2284 };
2285 MODULE_DEVICE_TABLE(of, tda1997x_of_id);
2286 
2287 static int tda1997x_parse_dt(struct tda1997x_state *state)
2288 {
2289 	struct tda1997x_platform_data *pdata = &state->pdata;
2290 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2291 	struct device_node *ep;
2292 	struct device_node *np;
2293 	unsigned int flags;
2294 	const char *str;
2295 	int ret;
2296 	u32 v;
2297 
2298 	/*
2299 	 * setup default values:
2300 	 * - HREF: active high from start to end of row
2301 	 * - VS: Vertical Sync active high at beginning of frame
2302 	 * - DE: Active high when data valid
2303 	 * - A_CLK: 128*Fs
2304 	 */
2305 	pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
2306 	pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
2307 	pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
2308 
2309 	np = state->client->dev.of_node;
2310 	ep = of_graph_get_next_endpoint(np, NULL);
2311 	if (!ep)
2312 		return -EINVAL;
2313 
2314 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
2315 	if (ret) {
2316 		of_node_put(ep);
2317 		return ret;
2318 	}
2319 	of_node_put(ep);
2320 	pdata->vidout_bus_type = bus_cfg.bus_type;
2321 
2322 	/* polarity of HS/VS/DE */
2323 	flags = bus_cfg.bus.parallel.flags;
2324 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
2325 		pdata->vidout_inv_hs = 1;
2326 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2327 		pdata->vidout_inv_vs = 1;
2328 	if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
2329 		pdata->vidout_inv_de = 1;
2330 	pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
2331 
2332 	/* video output port config */
2333 	ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
2334 	if (ret > 0) {
2335 		u32 reg, val, i;
2336 
2337 		for (i = 0; i < ret / 2 && i < 9; i++) {
2338 			of_property_read_u32_index(np, "nxp,vidout-portcfg",
2339 						   i * 2, &reg);
2340 			of_property_read_u32_index(np, "nxp,vidout-portcfg",
2341 						   i * 2 + 1, &val);
2342 			if (reg < 9)
2343 				pdata->vidout_port_cfg[reg] = val;
2344 		}
2345 	} else {
2346 		v4l_err(state->client, "nxp,vidout-portcfg missing\n");
2347 		return -EINVAL;
2348 	}
2349 
2350 	/* default to channel layout dictated by packet header */
2351 	pdata->audout_layoutauto = true;
2352 
2353 	pdata->audout_format = AUDFMT_TYPE_DISABLED;
2354 	if (!of_property_read_string(np, "nxp,audout-format", &str)) {
2355 		if (strcmp(str, "i2s") == 0)
2356 			pdata->audout_format = AUDFMT_TYPE_I2S;
2357 		else if (strcmp(str, "spdif") == 0)
2358 			pdata->audout_format = AUDFMT_TYPE_SPDIF;
2359 		else {
2360 			v4l_err(state->client, "nxp,audout-format invalid\n");
2361 			return -EINVAL;
2362 		}
2363 		if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
2364 			switch (v) {
2365 			case 0:
2366 			case 1:
2367 				break;
2368 			default:
2369 				v4l_err(state->client,
2370 					"nxp,audout-layout invalid\n");
2371 				return -EINVAL;
2372 			}
2373 			pdata->audout_layout = v;
2374 		}
2375 		if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
2376 			switch (v) {
2377 			case 16:
2378 			case 32:
2379 				break;
2380 			default:
2381 				v4l_err(state->client,
2382 					"nxp,audout-width invalid\n");
2383 				return -EINVAL;
2384 			}
2385 			pdata->audout_width = v;
2386 		}
2387 		if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
2388 			switch (v) {
2389 			case 512:
2390 			case 256:
2391 			case 128:
2392 			case 64:
2393 			case 32:
2394 			case 16:
2395 				break;
2396 			default:
2397 				v4l_err(state->client,
2398 					"nxp,audout-mclk-fs invalid\n");
2399 				return -EINVAL;
2400 			}
2401 			pdata->audout_mclk_fs = v;
2402 		}
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 static int tda1997x_get_regulators(struct tda1997x_state *state)
2409 {
2410 	int i;
2411 
2412 	for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
2413 		state->supplies[i].supply = tda1997x_supply_name[i];
2414 
2415 	return devm_regulator_bulk_get(&state->client->dev,
2416 				       TDA1997X_NUM_SUPPLIES,
2417 				       state->supplies);
2418 }
2419 
2420 static int tda1997x_identify_module(struct tda1997x_state *state)
2421 {
2422 	struct v4l2_subdev *sd = &state->sd;
2423 	enum tda1997x_type type;
2424 	u8 reg;
2425 
2426 	/* Read chip configuration*/
2427 	reg = io_read(sd, REG_CMTP_REG10);
2428 	state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
2429 	state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
2430 	state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
2431 	state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
2432 	switch ((reg >> 4) & 0x03) {
2433 	case 0x00:
2434 		type = TDA19971;
2435 		break;
2436 	case 0x02:
2437 	case 0x03:
2438 		type = TDA19973;
2439 		break;
2440 	default:
2441 		dev_err(&state->client->dev, "unsupported chip ID\n");
2442 		return -EIO;
2443 	}
2444 	if (state->info->type != type) {
2445 		dev_err(&state->client->dev, "chip id mismatch\n");
2446 		return -EIO;
2447 	}
2448 
2449 	/* read chip revision */
2450 	state->chip_revision = io_read(sd, REG_CMTP_REG11);
2451 
2452 	return 0;
2453 }
2454 
2455 static const struct media_entity_operations tda1997x_media_ops = {
2456 	.link_validate = v4l2_subdev_link_validate,
2457 };
2458 
2459 
2460 /* -----------------------------------------------------------------------------
2461  * HDMI Audio Codec
2462  */
2463 
2464 /* refine sample-rate based on HDMI source */
2465 static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
2466 				struct snd_soc_dai *dai)
2467 {
2468 	struct v4l2_subdev *sd = snd_soc_dai_get_drvdata(dai);
2469 	struct tda1997x_state *state = to_state(sd);
2470 	struct snd_soc_component *component = dai->component;
2471 	struct snd_pcm_runtime *rtd = substream->runtime;
2472 	int rate, err;
2473 
2474 	rate = state->audio_samplerate;
2475 	err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
2476 					   rate, rate);
2477 	if (err < 0) {
2478 		dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
2479 			rate);
2480 		return err;
2481 	}
2482 	dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
2483 
2484 	return 0;
2485 }
2486 
2487 static const struct snd_soc_dai_ops tda1997x_dai_ops = {
2488 	.startup = tda1997x_pcm_startup,
2489 };
2490 
2491 static struct snd_soc_dai_driver tda1997x_audio_dai = {
2492 	.name = "tda1997x",
2493 	.capture = {
2494 		.stream_name = "Capture",
2495 		.channels_min = 2,
2496 		.channels_max = 8,
2497 		.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
2498 			 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
2499 			 SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
2500 			 SNDRV_PCM_RATE_192000,
2501 	},
2502 	.ops = &tda1997x_dai_ops,
2503 };
2504 
2505 static int tda1997x_codec_probe(struct snd_soc_component *component)
2506 {
2507 	return 0;
2508 }
2509 
2510 static void tda1997x_codec_remove(struct snd_soc_component *component)
2511 {
2512 }
2513 
2514 static struct snd_soc_component_driver tda1997x_codec_driver = {
2515 	.probe			= tda1997x_codec_probe,
2516 	.remove			= tda1997x_codec_remove,
2517 	.idle_bias_on		= 1,
2518 	.use_pmdown_time	= 1,
2519 	.endianness		= 1,
2520 	.non_legacy_dai_naming	= 1,
2521 };
2522 
2523 static int tda1997x_probe(struct i2c_client *client,
2524 			 const struct i2c_device_id *id)
2525 {
2526 	struct tda1997x_state *state;
2527 	struct tda1997x_platform_data *pdata;
2528 	struct v4l2_subdev *sd;
2529 	struct v4l2_ctrl_handler *hdl;
2530 	struct v4l2_ctrl *ctrl;
2531 	static const struct v4l2_dv_timings cea1920x1080 =
2532 		V4L2_DV_BT_CEA_1920X1080P60;
2533 	u32 *mbus_codes;
2534 	int i, ret;
2535 
2536 	/* Check if the adapter supports the needed features */
2537 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2538 		return -EIO;
2539 
2540 	state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
2541 	if (!state)
2542 		return -ENOMEM;
2543 
2544 	state->client = client;
2545 	pdata = &state->pdata;
2546 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2547 		const struct of_device_id *oid;
2548 
2549 		oid = of_match_node(tda1997x_of_id, client->dev.of_node);
2550 		state->info = oid->data;
2551 
2552 		ret = tda1997x_parse_dt(state);
2553 		if (ret < 0) {
2554 			v4l_err(client, "DT parsing error\n");
2555 			goto err_free_state;
2556 		}
2557 	} else if (client->dev.platform_data) {
2558 		struct tda1997x_platform_data *pdata =
2559 			client->dev.platform_data;
2560 		state->info =
2561 			(const struct tda1997x_chip_info *)id->driver_data;
2562 		state->pdata = *pdata;
2563 	} else {
2564 		v4l_err(client, "No platform data\n");
2565 		ret = -ENODEV;
2566 		goto err_free_state;
2567 	}
2568 
2569 	ret = tda1997x_get_regulators(state);
2570 	if (ret)
2571 		goto err_free_state;
2572 
2573 	ret = tda1997x_set_power(state, 1);
2574 	if (ret)
2575 		goto err_free_state;
2576 
2577 	mutex_init(&state->page_lock);
2578 	mutex_init(&state->lock);
2579 	state->page = 0xff;
2580 
2581 	INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
2582 			  tda1997x_delayed_work_enable_hpd);
2583 
2584 	/* set video format based on chip and bus width */
2585 	ret = tda1997x_identify_module(state);
2586 	if (ret)
2587 		goto err_free_mutex;
2588 
2589 	/* initialize subdev */
2590 	sd = &state->sd;
2591 	v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
2592 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2593 		 id->name, i2c_adapter_id(client->adapter),
2594 		 client->addr);
2595 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
2596 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
2597 	sd->entity.ops = &tda1997x_media_ops;
2598 
2599 	/* set allowed mbus modes based on chip, bus-type, and bus-width */
2600 	i = 0;
2601 	mbus_codes = state->mbus_codes;
2602 	switch (state->info->type) {
2603 	case TDA19973:
2604 		switch (pdata->vidout_bus_type) {
2605 		case V4L2_MBUS_PARALLEL:
2606 			switch (pdata->vidout_bus_width) {
2607 			case 36:
2608 				mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
2609 				mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
2610 				fallthrough;
2611 			case 24:
2612 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2613 				break;
2614 			}
2615 			break;
2616 		case V4L2_MBUS_BT656:
2617 			switch (pdata->vidout_bus_width) {
2618 			case 36:
2619 			case 24:
2620 			case 12:
2621 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2622 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2623 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2624 				break;
2625 			}
2626 			break;
2627 		default:
2628 			break;
2629 		}
2630 		break;
2631 	case TDA19971:
2632 		switch (pdata->vidout_bus_type) {
2633 		case V4L2_MBUS_PARALLEL:
2634 			switch (pdata->vidout_bus_width) {
2635 			case 24:
2636 				mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
2637 				mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
2638 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
2639 				fallthrough;
2640 			case 20:
2641 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
2642 				fallthrough;
2643 			case 16:
2644 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
2645 				break;
2646 			}
2647 			break;
2648 		case V4L2_MBUS_BT656:
2649 			switch (pdata->vidout_bus_width) {
2650 			case 24:
2651 			case 20:
2652 			case 16:
2653 			case 12:
2654 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
2655 				fallthrough;
2656 			case 10:
2657 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
2658 				fallthrough;
2659 			case 8:
2660 				mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
2661 				break;
2662 			}
2663 			break;
2664 		default:
2665 			break;
2666 		}
2667 		break;
2668 	}
2669 	if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
2670 		ret = -EINVAL;
2671 		goto err_free_mutex;
2672 	}
2673 
2674 	/* default format */
2675 	tda1997x_setup_format(state, state->mbus_codes[0]);
2676 	state->timings = cea1920x1080;
2677 
2678 	/*
2679 	 * default to SRGB full range quantization
2680 	 * (in case we don't get an infoframe such as DVI signal
2681 	 */
2682 	state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
2683 	state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
2684 
2685 	/* disable/reset HDCP to get correct I2C access to Rx HDMI */
2686 	io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
2687 
2688 	/*
2689 	 * if N2 version, reset compdel_bp as it may generate some small pixel
2690 	 * shifts in case of embedded sync/or delay lower than 4
2691 	 */
2692 	if (state->chip_revision != 0) {
2693 		io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
2694 		io_write(sd, REG_VDP_CTRL, 0x1f);
2695 	}
2696 
2697 	v4l_info(client, "NXP %s N%d detected\n", state->info->name,
2698 		 state->chip_revision + 1);
2699 	v4l_info(client, "video: %dbit %s %d formats available\n",
2700 		pdata->vidout_bus_width,
2701 		(pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
2702 			"parallel" : "BT656",
2703 		i);
2704 	if (pdata->audout_format) {
2705 		v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
2706 			 pdata->audout_layout ? 2 : 8,
2707 			 audfmt_names[pdata->audout_format],
2708 			 pdata->audout_layout,
2709 			 pdata->audout_mclk_fs);
2710 	}
2711 
2712 	ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
2713 	state->client_cec = devm_i2c_new_dummy_device(&client->dev,
2714 						      client->adapter, ret);
2715 	if (IS_ERR(state->client_cec)) {
2716 		ret = PTR_ERR(state->client_cec);
2717 		goto err_free_mutex;
2718 	}
2719 
2720 	v4l_info(client, "CEC slave address 0x%02x\n", ret);
2721 
2722 	ret = tda1997x_core_init(sd);
2723 	if (ret)
2724 		goto err_free_mutex;
2725 
2726 	/* control handlers */
2727 	hdl = &state->hdl;
2728 	v4l2_ctrl_handler_init(hdl, 3);
2729 	ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
2730 			V4L2_CID_DV_RX_IT_CONTENT_TYPE,
2731 			V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
2732 			V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
2733 	if (ctrl)
2734 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2735 	/* custom controls */
2736 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2737 			V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
2738 	state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
2739 			&tda1997x_ctrl_ops,
2740 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
2741 			V4L2_DV_RGB_RANGE_AUTO);
2742 	state->sd.ctrl_handler = hdl;
2743 	if (hdl->error) {
2744 		ret = hdl->error;
2745 		goto err_free_handler;
2746 	}
2747 	v4l2_ctrl_handler_setup(hdl);
2748 
2749 	/* initialize source pads */
2750 	state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
2751 	ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
2752 		state->pads);
2753 	if (ret) {
2754 		v4l_err(client, "failed entity_init: %d", ret);
2755 		goto err_free_handler;
2756 	}
2757 
2758 	ret = v4l2_async_register_subdev(sd);
2759 	if (ret)
2760 		goto err_free_media;
2761 
2762 	/* register audio DAI */
2763 	if (pdata->audout_format) {
2764 		u64 formats;
2765 
2766 		if (pdata->audout_width == 32)
2767 			formats = SNDRV_PCM_FMTBIT_S32_LE;
2768 		else
2769 			formats = SNDRV_PCM_FMTBIT_S16_LE;
2770 		tda1997x_audio_dai.capture.formats = formats;
2771 		ret = devm_snd_soc_register_component(&state->client->dev,
2772 					     &tda1997x_codec_driver,
2773 					     &tda1997x_audio_dai, 1);
2774 		if (ret) {
2775 			dev_err(&client->dev, "register audio codec failed\n");
2776 			goto err_free_media;
2777 		}
2778 		v4l_info(state->client, "registered audio codec\n");
2779 	}
2780 
2781 	/* request irq */
2782 	ret = devm_request_threaded_irq(&client->dev, client->irq,
2783 					NULL, tda1997x_isr_thread,
2784 					IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2785 					KBUILD_MODNAME, state);
2786 	if (ret) {
2787 		v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
2788 		goto err_free_media;
2789 	}
2790 
2791 	return 0;
2792 
2793 err_free_media:
2794 	media_entity_cleanup(&sd->entity);
2795 err_free_handler:
2796 	v4l2_ctrl_handler_free(&state->hdl);
2797 err_free_mutex:
2798 	cancel_delayed_work(&state->delayed_work_enable_hpd);
2799 	mutex_destroy(&state->page_lock);
2800 	mutex_destroy(&state->lock);
2801 err_free_state:
2802 	kfree(state);
2803 	dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
2804 
2805 	return ret;
2806 }
2807 
2808 static int tda1997x_remove(struct i2c_client *client)
2809 {
2810 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
2811 	struct tda1997x_state *state = to_state(sd);
2812 	struct tda1997x_platform_data *pdata = &state->pdata;
2813 
2814 	if (pdata->audout_format) {
2815 		mutex_destroy(&state->audio_lock);
2816 	}
2817 
2818 	disable_irq(state->client->irq);
2819 	tda1997x_power_mode(state, 0);
2820 
2821 	v4l2_async_unregister_subdev(sd);
2822 	media_entity_cleanup(&sd->entity);
2823 	v4l2_ctrl_handler_free(&state->hdl);
2824 	regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
2825 	cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
2826 	mutex_destroy(&state->page_lock);
2827 	mutex_destroy(&state->lock);
2828 
2829 	kfree(state);
2830 
2831 	return 0;
2832 }
2833 
2834 static struct i2c_driver tda1997x_i2c_driver = {
2835 	.driver = {
2836 		.name = "tda1997x",
2837 		.of_match_table = of_match_ptr(tda1997x_of_id),
2838 	},
2839 	.probe = tda1997x_probe,
2840 	.remove = tda1997x_remove,
2841 	.id_table = tda1997x_i2c_id,
2842 };
2843 
2844 module_i2c_driver(tda1997x_i2c_driver);
2845 
2846 MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
2847 MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
2848 MODULE_LICENSE("GPL v2");
2849