1 /* 2 * Omnivision OV9650/OV9652 CMOS Image Sensor driver 3 * 4 * Copyright (C) 2013, Sylwester Nawrocki <sylvester.nawrocki@gmail.com> 5 * 6 * Register definitions and initial settings based on a driver written 7 * by Vladimir Fonov. 8 * Copyright (c) 2010, Vladimir Fonov 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 #include <linux/delay.h> 15 #include <linux/gpio.h> 16 #include <linux/i2c.h> 17 #include <linux/kernel.h> 18 #include <linux/media.h> 19 #include <linux/module.h> 20 #include <linux/ratelimit.h> 21 #include <linux/slab.h> 22 #include <linux/string.h> 23 #include <linux/videodev2.h> 24 25 #include <media/media-entity.h> 26 #include <media/v4l2-async.h> 27 #include <media/v4l2-ctrls.h> 28 #include <media/v4l2-device.h> 29 #include <media/v4l2-event.h> 30 #include <media/v4l2-image-sizes.h> 31 #include <media/v4l2-subdev.h> 32 #include <media/v4l2-mediabus.h> 33 #include <media/i2c/ov9650.h> 34 35 static int debug; 36 module_param(debug, int, 0644); 37 MODULE_PARM_DESC(debug, "Debug level (0-2)"); 38 39 #define DRIVER_NAME "OV9650" 40 41 /* 42 * OV9650/OV9652 register definitions 43 */ 44 #define REG_GAIN 0x00 /* Gain control, AGC[7:0] */ 45 #define REG_BLUE 0x01 /* AWB - Blue chanel gain */ 46 #define REG_RED 0x02 /* AWB - Red chanel gain */ 47 #define REG_VREF 0x03 /* [7:6] - AGC[9:8], [5:3]/[2:0] */ 48 #define VREF_GAIN_MASK 0xc0 /* - VREF end/start low 3 bits */ 49 #define REG_COM1 0x04 50 #define COM1_CCIR656 0x40 51 #define REG_B_AVE 0x05 52 #define REG_GB_AVE 0x06 53 #define REG_GR_AVE 0x07 54 #define REG_R_AVE 0x08 55 #define REG_COM2 0x09 56 #define REG_PID 0x0a /* Product ID MSB */ 57 #define REG_VER 0x0b /* Product ID LSB */ 58 #define REG_COM3 0x0c 59 #define COM3_SWAP 0x40 60 #define COM3_VARIOPIXEL1 0x04 61 #define REG_COM4 0x0d /* Vario Pixels */ 62 #define COM4_VARIOPIXEL2 0x80 63 #define REG_COM5 0x0e /* System clock options */ 64 #define COM5_SLAVE_MODE 0x10 65 #define COM5_SYSTEMCLOCK48MHZ 0x80 66 #define REG_COM6 0x0f /* HREF & ADBLC options */ 67 #define REG_AECH 0x10 /* Exposure value, AEC[9:2] */ 68 #define REG_CLKRC 0x11 /* Clock control */ 69 #define CLK_EXT 0x40 /* Use external clock directly */ 70 #define CLK_SCALE 0x3f /* Mask for internal clock scale */ 71 #define REG_COM7 0x12 /* SCCB reset, output format */ 72 #define COM7_RESET 0x80 73 #define COM7_FMT_MASK 0x38 74 #define COM7_FMT_VGA 0x40 75 #define COM7_FMT_CIF 0x20 76 #define COM7_FMT_QVGA 0x10 77 #define COM7_FMT_QCIF 0x08 78 #define COM7_RGB 0x04 79 #define COM7_YUV 0x00 80 #define COM7_BAYER 0x01 81 #define COM7_PBAYER 0x05 82 #define REG_COM8 0x13 /* AGC/AEC options */ 83 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ 84 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */ 85 #define COM8_BFILT 0x20 /* Band filter enable */ 86 #define COM8_AGC 0x04 /* Auto gain enable */ 87 #define COM8_AWB 0x02 /* White balance enable */ 88 #define COM8_AEC 0x01 /* Auto exposure enable */ 89 #define REG_COM9 0x14 /* Gain ceiling */ 90 #define COM9_GAIN_CEIL_MASK 0x70 /* */ 91 #define REG_COM10 0x15 /* PCLK, HREF, HSYNC signals polarity */ 92 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */ 93 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */ 94 #define COM10_HREF_REV 0x08 /* Reverse HREF */ 95 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */ 96 #define COM10_VS_NEG 0x02 /* VSYNC negative */ 97 #define COM10_HS_NEG 0x01 /* HSYNC negative */ 98 #define REG_HSTART 0x17 /* Horiz start high bits */ 99 #define REG_HSTOP 0x18 /* Horiz stop high bits */ 100 #define REG_VSTART 0x19 /* Vert start high bits */ 101 #define REG_VSTOP 0x1a /* Vert stop high bits */ 102 #define REG_PSHFT 0x1b /* Pixel delay after HREF */ 103 #define REG_MIDH 0x1c /* Manufacturer ID MSB */ 104 #define REG_MIDL 0x1d /* Manufufacturer ID LSB */ 105 #define REG_MVFP 0x1e /* Image mirror/flip */ 106 #define MVFP_MIRROR 0x20 /* Mirror image */ 107 #define MVFP_FLIP 0x10 /* Vertical flip */ 108 #define REG_BOS 0x20 /* B channel Offset */ 109 #define REG_GBOS 0x21 /* Gb channel Offset */ 110 #define REG_GROS 0x22 /* Gr channel Offset */ 111 #define REG_ROS 0x23 /* R channel Offset */ 112 #define REG_AEW 0x24 /* AGC upper limit */ 113 #define REG_AEB 0x25 /* AGC lower limit */ 114 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */ 115 #define REG_BBIAS 0x27 /* B channel output bias */ 116 #define REG_GBBIAS 0x28 /* Gb channel output bias */ 117 #define REG_GRCOM 0x29 /* Analog BLC & regulator */ 118 #define REG_EXHCH 0x2a /* Dummy pixel insert MSB */ 119 #define REG_EXHCL 0x2b /* Dummy pixel insert LSB */ 120 #define REG_RBIAS 0x2c /* R channel output bias */ 121 #define REG_ADVFL 0x2d /* LSB of dummy line insert */ 122 #define REG_ADVFH 0x2e /* MSB of dummy line insert */ 123 #define REG_YAVE 0x2f /* Y/G channel average value */ 124 #define REG_HSYST 0x30 /* HSYNC rising edge delay LSB*/ 125 #define REG_HSYEN 0x31 /* HSYNC falling edge delay LSB*/ 126 #define REG_HREF 0x32 /* HREF pieces */ 127 #define REG_CHLF 0x33 /* reserved */ 128 #define REG_ADC 0x37 /* reserved */ 129 #define REG_ACOM 0x38 /* reserved */ 130 #define REG_OFON 0x39 /* Power down register */ 131 #define OFON_PWRDN 0x08 /* Power down bit */ 132 #define REG_TSLB 0x3a /* YUVU format */ 133 #define TSLB_YUYV_MASK 0x0c /* UYVY or VYUY - see com13 */ 134 #define REG_COM11 0x3b /* Night mode, banding filter enable */ 135 #define COM11_NIGHT 0x80 /* Night mode enable */ 136 #define COM11_NMFR 0x60 /* Two bit NM frame rate */ 137 #define COM11_BANDING 0x01 /* Banding filter */ 138 #define COM11_AEC_REF_MASK 0x18 /* AEC reference area selection */ 139 #define REG_COM12 0x3c /* HREF option, UV average */ 140 #define COM12_HREF 0x80 /* HREF always */ 141 #define REG_COM13 0x3d /* Gamma selection, Color matrix en. */ 142 #define COM13_GAMMA 0x80 /* Gamma enable */ 143 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */ 144 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */ 145 #define REG_COM14 0x3e /* Edge enhancement options */ 146 #define COM14_EDGE_EN 0x02 147 #define COM14_EEF_X2 0x01 148 #define REG_EDGE 0x3f /* Edge enhancement factor */ 149 #define EDGE_FACTOR_MASK 0x0f 150 #define REG_COM15 0x40 /* Output range, RGB 555/565 */ 151 #define COM15_R10F0 0x00 /* Data range 10 to F0 */ 152 #define COM15_R01FE 0x80 /* 01 to FE */ 153 #define COM15_R00FF 0xc0 /* 00 to FF */ 154 #define COM15_RGB565 0x10 /* RGB565 output */ 155 #define COM15_RGB555 0x30 /* RGB555 output */ 156 #define COM15_SWAPRB 0x04 /* Swap R&B */ 157 #define REG_COM16 0x41 /* Color matrix coeff options */ 158 #define REG_COM17 0x42 /* Single frame out, banding filter */ 159 /* n = 1...9, 0x4f..0x57 */ 160 #define REG_MTX(__n) (0x4f + (__n) - 1) 161 #define REG_MTXS 0x58 162 /* Lens Correction Option 1...5, __n = 0...5 */ 163 #define REG_LCC(__n) (0x62 + (__n) - 1) 164 #define LCC5_LCC_ENABLE 0x01 /* LCC5, enable lens correction */ 165 #define LCC5_LCC_COLOR 0x04 166 #define REG_MANU 0x67 /* Manual U value */ 167 #define REG_MANV 0x68 /* Manual V value */ 168 #define REG_HV 0x69 /* Manual banding filter MSB */ 169 #define REG_MBD 0x6a /* Manual banding filter value */ 170 #define REG_DBLV 0x6b /* reserved */ 171 #define REG_GSP 0x6c /* Gamma curve */ 172 #define GSP_LEN 15 173 #define REG_GST 0x7c /* Gamma curve */ 174 #define GST_LEN 15 175 #define REG_COM21 0x8b 176 #define REG_COM22 0x8c /* Edge enhancement, denoising */ 177 #define COM22_WHTPCOR 0x02 /* White pixel correction enable */ 178 #define COM22_WHTPCOROPT 0x01 /* White pixel correction option */ 179 #define COM22_DENOISE 0x10 /* White pixel correction option */ 180 #define REG_COM23 0x8d /* Color bar test, color gain */ 181 #define COM23_TEST_MODE 0x10 182 #define REG_DBLC1 0x8f /* Digital BLC */ 183 #define REG_DBLC_B 0x90 /* Digital BLC B channel offset */ 184 #define REG_DBLC_R 0x91 /* Digital BLC R channel offset */ 185 #define REG_DM_LNL 0x92 /* Dummy line low 8 bits */ 186 #define REG_DM_LNH 0x93 /* Dummy line high 8 bits */ 187 #define REG_LCCFB 0x9d /* Lens Correction B channel */ 188 #define REG_LCCFR 0x9e /* Lens Correction R channel */ 189 #define REG_DBLC_GB 0x9f /* Digital BLC GB chan offset */ 190 #define REG_DBLC_GR 0xa0 /* Digital BLC GR chan offset */ 191 #define REG_AECHM 0xa1 /* Exposure value - bits AEC[15:10] */ 192 #define REG_BD50ST 0xa2 /* Banding filter value for 50Hz */ 193 #define REG_BD60ST 0xa3 /* Banding filter value for 60Hz */ 194 #define REG_NULL 0xff /* Array end token */ 195 196 #define DEF_CLKRC 0x80 197 198 #define OV965X_ID(_msb, _lsb) ((_msb) << 8 | (_lsb)) 199 #define OV9650_ID 0x9650 200 #define OV9652_ID 0x9652 201 202 struct ov965x_ctrls { 203 struct v4l2_ctrl_handler handler; 204 struct { 205 struct v4l2_ctrl *auto_exp; 206 struct v4l2_ctrl *exposure; 207 }; 208 struct { 209 struct v4l2_ctrl *auto_wb; 210 struct v4l2_ctrl *blue_balance; 211 struct v4l2_ctrl *red_balance; 212 }; 213 struct { 214 struct v4l2_ctrl *hflip; 215 struct v4l2_ctrl *vflip; 216 }; 217 struct { 218 struct v4l2_ctrl *auto_gain; 219 struct v4l2_ctrl *gain; 220 }; 221 struct v4l2_ctrl *brightness; 222 struct v4l2_ctrl *saturation; 223 struct v4l2_ctrl *sharpness; 224 struct v4l2_ctrl *light_freq; 225 u8 update; 226 }; 227 228 struct ov965x_framesize { 229 u16 width; 230 u16 height; 231 u16 max_exp_lines; 232 const u8 *regs; 233 }; 234 235 struct ov965x_interval { 236 struct v4l2_fract interval; 237 /* Maximum resolution for this interval */ 238 struct v4l2_frmsize_discrete size; 239 u8 clkrc_div; 240 }; 241 242 enum gpio_id { 243 GPIO_PWDN, 244 GPIO_RST, 245 NUM_GPIOS, 246 }; 247 248 struct ov965x { 249 struct v4l2_subdev sd; 250 struct media_pad pad; 251 enum v4l2_mbus_type bus_type; 252 int gpios[NUM_GPIOS]; 253 /* External master clock frequency */ 254 unsigned long mclk_frequency; 255 256 /* Protects the struct fields below */ 257 struct mutex lock; 258 259 struct i2c_client *client; 260 261 /* Exposure row interval in us */ 262 unsigned int exp_row_interval; 263 264 unsigned short id; 265 const struct ov965x_framesize *frame_size; 266 /* YUYV sequence (pixel format) control register */ 267 u8 tslb_reg; 268 struct v4l2_mbus_framefmt format; 269 270 struct ov965x_ctrls ctrls; 271 /* Pointer to frame rate control data structure */ 272 const struct ov965x_interval *fiv; 273 274 int streaming; 275 int power; 276 277 u8 apply_frame_fmt; 278 }; 279 280 struct i2c_rv { 281 u8 addr; 282 u8 value; 283 }; 284 285 static const struct i2c_rv ov965x_init_regs[] = { 286 { REG_COM2, 0x10 }, /* Set soft sleep mode */ 287 { REG_COM5, 0x00 }, /* System clock options */ 288 { REG_COM2, 0x01 }, /* Output drive, soft sleep mode */ 289 { REG_COM10, 0x00 }, /* Slave mode, HREF vs HSYNC, signals negate */ 290 { REG_EDGE, 0xa6 }, /* Edge enhancement treshhold and factor */ 291 { REG_COM16, 0x02 }, /* Color matrix coeff double option */ 292 { REG_COM17, 0x08 }, /* Single frame out, banding filter */ 293 { 0x16, 0x06 }, 294 { REG_CHLF, 0xc0 }, /* Reserved */ 295 { 0x34, 0xbf }, 296 { 0xa8, 0x80 }, 297 { 0x96, 0x04 }, 298 { 0x8e, 0x00 }, 299 { REG_COM12, 0x77 }, /* HREF option, UV average */ 300 { 0x8b, 0x06 }, 301 { 0x35, 0x91 }, 302 { 0x94, 0x88 }, 303 { 0x95, 0x88 }, 304 { REG_COM15, 0xc1 }, /* Output range, RGB 555/565 */ 305 { REG_GRCOM, 0x2f }, /* Analog BLC & regulator */ 306 { REG_COM6, 0x43 }, /* HREF & ADBLC options */ 307 { REG_COM8, 0xe5 }, /* AGC/AEC options */ 308 { REG_COM13, 0x90 }, /* Gamma selection, colour matrix, UV delay */ 309 { REG_HV, 0x80 }, /* Manual banding filter MSB */ 310 { 0x5c, 0x96 }, /* Reserved up to 0xa5 */ 311 { 0x5d, 0x96 }, 312 { 0x5e, 0x10 }, 313 { 0x59, 0xeb }, 314 { 0x5a, 0x9c }, 315 { 0x5b, 0x55 }, 316 { 0x43, 0xf0 }, 317 { 0x44, 0x10 }, 318 { 0x45, 0x55 }, 319 { 0x46, 0x86 }, 320 { 0x47, 0x64 }, 321 { 0x48, 0x86 }, 322 { 0x5f, 0xe0 }, 323 { 0x60, 0x8c }, 324 { 0x61, 0x20 }, 325 { 0xa5, 0xd9 }, 326 { 0xa4, 0x74 }, /* reserved */ 327 { REG_COM23, 0x02 }, /* Color gain analog/_digital_ */ 328 { REG_COM8, 0xe7 }, /* Enable AEC, AWB, AEC */ 329 { REG_COM22, 0x23 }, /* Edge enhancement, denoising */ 330 { 0xa9, 0xb8 }, 331 { 0xaa, 0x92 }, 332 { 0xab, 0x0a }, 333 { REG_DBLC1, 0xdf }, /* Digital BLC */ 334 { REG_DBLC_B, 0x00 }, /* Digital BLC B chan offset */ 335 { REG_DBLC_R, 0x00 }, /* Digital BLC R chan offset */ 336 { REG_DBLC_GB, 0x00 }, /* Digital BLC GB chan offset */ 337 { REG_DBLC_GR, 0x00 }, 338 { REG_COM9, 0x3a }, /* Gain ceiling 16x */ 339 { REG_NULL, 0 } 340 }; 341 342 #define NUM_FMT_REGS 14 343 /* 344 * COM7, COM3, COM4, HSTART, HSTOP, HREF, VSTART, VSTOP, VREF, 345 * EXHCH, EXHCL, ADC, OCOM, OFON 346 */ 347 static const u8 frame_size_reg_addr[NUM_FMT_REGS] = { 348 0x12, 0x0c, 0x0d, 0x17, 0x18, 0x32, 0x19, 0x1a, 0x03, 349 0x2a, 0x2b, 0x37, 0x38, 0x39, 350 }; 351 352 static const u8 ov965x_sxga_regs[NUM_FMT_REGS] = { 353 0x00, 0x00, 0x00, 0x1e, 0xbe, 0xbf, 0x01, 0x81, 0x12, 354 0x10, 0x34, 0x81, 0x93, 0x51, 355 }; 356 357 static const u8 ov965x_vga_regs[NUM_FMT_REGS] = { 358 0x40, 0x04, 0x80, 0x26, 0xc6, 0xed, 0x01, 0x3d, 0x00, 359 0x10, 0x40, 0x91, 0x12, 0x43, 360 }; 361 362 /* Determined empirically. */ 363 static const u8 ov965x_qvga_regs[NUM_FMT_REGS] = { 364 0x10, 0x04, 0x80, 0x25, 0xc5, 0xbf, 0x00, 0x80, 0x12, 365 0x10, 0x40, 0x91, 0x12, 0x43, 366 }; 367 368 static const struct ov965x_framesize ov965x_framesizes[] = { 369 { 370 .width = SXGA_WIDTH, 371 .height = SXGA_HEIGHT, 372 .regs = ov965x_sxga_regs, 373 .max_exp_lines = 1048, 374 }, { 375 .width = VGA_WIDTH, 376 .height = VGA_HEIGHT, 377 .regs = ov965x_vga_regs, 378 .max_exp_lines = 498, 379 }, { 380 .width = QVGA_WIDTH, 381 .height = QVGA_HEIGHT, 382 .regs = ov965x_qvga_regs, 383 .max_exp_lines = 248, 384 }, 385 }; 386 387 struct ov965x_pixfmt { 388 u32 code; 389 u32 colorspace; 390 /* REG_TSLB value, only bits [3:2] may be set. */ 391 u8 tslb_reg; 392 }; 393 394 static const struct ov965x_pixfmt ov965x_formats[] = { 395 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_JPEG, 0x00}, 396 { MEDIA_BUS_FMT_YVYU8_2X8, V4L2_COLORSPACE_JPEG, 0x04}, 397 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_JPEG, 0x0c}, 398 { MEDIA_BUS_FMT_VYUY8_2X8, V4L2_COLORSPACE_JPEG, 0x08}, 399 }; 400 401 /* 402 * This table specifies possible frame resolution and interval 403 * combinations. Default CLKRC[5:0] divider values are valid 404 * only for 24 MHz external clock frequency. 405 */ 406 static struct ov965x_interval ov965x_intervals[] = { 407 {{ 100, 625 }, { SXGA_WIDTH, SXGA_HEIGHT }, 0 }, /* 6.25 fps */ 408 {{ 10, 125 }, { VGA_WIDTH, VGA_HEIGHT }, 1 }, /* 12.5 fps */ 409 {{ 10, 125 }, { QVGA_WIDTH, QVGA_HEIGHT }, 3 }, /* 12.5 fps */ 410 {{ 1, 25 }, { VGA_WIDTH, VGA_HEIGHT }, 0 }, /* 25 fps */ 411 {{ 1, 25 }, { QVGA_WIDTH, QVGA_HEIGHT }, 1 }, /* 25 fps */ 412 }; 413 414 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 415 { 416 return &container_of(ctrl->handler, struct ov965x, ctrls.handler)->sd; 417 } 418 419 static inline struct ov965x *to_ov965x(struct v4l2_subdev *sd) 420 { 421 return container_of(sd, struct ov965x, sd); 422 } 423 424 static int ov965x_read(struct i2c_client *client, u8 addr, u8 *val) 425 { 426 u8 buf = addr; 427 struct i2c_msg msg = { 428 .addr = client->addr, 429 .flags = 0, 430 .len = 1, 431 .buf = &buf 432 }; 433 int ret; 434 435 ret = i2c_transfer(client->adapter, &msg, 1); 436 if (ret == 1) { 437 msg.flags = I2C_M_RD; 438 ret = i2c_transfer(client->adapter, &msg, 1); 439 440 if (ret == 1) 441 *val = buf; 442 } 443 444 v4l2_dbg(2, debug, client, "%s: 0x%02x @ 0x%02x. (%d)\n", 445 __func__, *val, addr, ret); 446 447 return ret == 1 ? 0 : ret; 448 } 449 450 static int ov965x_write(struct i2c_client *client, u8 addr, u8 val) 451 { 452 u8 buf[2] = { addr, val }; 453 454 int ret = i2c_master_send(client, buf, 2); 455 456 v4l2_dbg(2, debug, client, "%s: 0x%02x @ 0x%02X (%d)\n", 457 __func__, val, addr, ret); 458 459 return ret == 2 ? 0 : ret; 460 } 461 462 static int ov965x_write_array(struct i2c_client *client, 463 const struct i2c_rv *regs) 464 { 465 int i, ret = 0; 466 467 for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++) 468 ret = ov965x_write(client, regs[i].addr, regs[i].value); 469 470 return ret; 471 } 472 473 static int ov965x_set_default_gamma_curve(struct ov965x *ov965x) 474 { 475 static const u8 gamma_curve[] = { 476 /* Values taken from OV application note. */ 477 0x40, 0x30, 0x4b, 0x60, 0x70, 0x70, 0x70, 0x70, 478 0x60, 0x60, 0x50, 0x48, 0x3a, 0x2e, 0x28, 0x22, 479 0x04, 0x07, 0x10, 0x28, 0x36, 0x44, 0x52, 0x60, 480 0x6c, 0x78, 0x8c, 0x9e, 0xbb, 0xd2, 0xe6 481 }; 482 u8 addr = REG_GSP; 483 unsigned int i; 484 485 for (i = 0; i < ARRAY_SIZE(gamma_curve); i++) { 486 int ret = ov965x_write(ov965x->client, addr, gamma_curve[i]); 487 if (ret < 0) 488 return ret; 489 addr++; 490 } 491 492 return 0; 493 }; 494 495 static int ov965x_set_color_matrix(struct ov965x *ov965x) 496 { 497 static const u8 mtx[] = { 498 /* MTX1..MTX9, MTXS */ 499 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38, 0x40, 0x40, 0x40, 0x0d 500 }; 501 u8 addr = REG_MTX(1); 502 unsigned int i; 503 504 for (i = 0; i < ARRAY_SIZE(mtx); i++) { 505 int ret = ov965x_write(ov965x->client, addr, mtx[i]); 506 if (ret < 0) 507 return ret; 508 addr++; 509 } 510 511 return 0; 512 } 513 514 static void ov965x_gpio_set(int gpio, int val) 515 { 516 if (gpio_is_valid(gpio)) 517 gpio_set_value(gpio, val); 518 } 519 520 static void __ov965x_set_power(struct ov965x *ov965x, int on) 521 { 522 if (on) { 523 ov965x_gpio_set(ov965x->gpios[GPIO_PWDN], 0); 524 ov965x_gpio_set(ov965x->gpios[GPIO_RST], 0); 525 msleep(25); 526 } else { 527 ov965x_gpio_set(ov965x->gpios[GPIO_RST], 1); 528 ov965x_gpio_set(ov965x->gpios[GPIO_PWDN], 1); 529 } 530 531 ov965x->streaming = 0; 532 } 533 534 static int ov965x_s_power(struct v4l2_subdev *sd, int on) 535 { 536 struct ov965x *ov965x = to_ov965x(sd); 537 struct i2c_client *client = ov965x->client; 538 int ret = 0; 539 540 v4l2_dbg(1, debug, client, "%s: on: %d\n", __func__, on); 541 542 mutex_lock(&ov965x->lock); 543 if (ov965x->power == !on) { 544 __ov965x_set_power(ov965x, on); 545 if (on) { 546 ret = ov965x_write_array(client, 547 ov965x_init_regs); 548 ov965x->apply_frame_fmt = 1; 549 ov965x->ctrls.update = 1; 550 } 551 } 552 if (!ret) 553 ov965x->power += on ? 1 : -1; 554 555 WARN_ON(ov965x->power < 0); 556 mutex_unlock(&ov965x->lock); 557 return ret; 558 } 559 560 /* 561 * V4L2 controls 562 */ 563 564 static void ov965x_update_exposure_ctrl(struct ov965x *ov965x) 565 { 566 struct v4l2_ctrl *ctrl = ov965x->ctrls.exposure; 567 unsigned long fint, trow; 568 int min, max, def; 569 u8 clkrc; 570 571 mutex_lock(&ov965x->lock); 572 if (WARN_ON(!ctrl || !ov965x->frame_size)) { 573 mutex_unlock(&ov965x->lock); 574 return; 575 } 576 clkrc = DEF_CLKRC + ov965x->fiv->clkrc_div; 577 /* Calculate internal clock frequency */ 578 fint = ov965x->mclk_frequency * ((clkrc >> 7) + 1) / 579 ((2 * ((clkrc & 0x3f) + 1))); 580 /* and the row interval (in us). */ 581 trow = (2 * 1520 * 1000000UL) / fint; 582 max = ov965x->frame_size->max_exp_lines * trow; 583 ov965x->exp_row_interval = trow; 584 mutex_unlock(&ov965x->lock); 585 586 v4l2_dbg(1, debug, &ov965x->sd, "clkrc: %#x, fi: %lu, tr: %lu, %d\n", 587 clkrc, fint, trow, max); 588 589 /* Update exposure time range to match current frame format. */ 590 min = (trow + 100) / 100; 591 max = (max - 100) / 100; 592 def = min + (max - min) / 2; 593 594 if (v4l2_ctrl_modify_range(ctrl, min, max, 1, def)) 595 v4l2_err(&ov965x->sd, "Exposure ctrl range update failed\n"); 596 } 597 598 static int ov965x_set_banding_filter(struct ov965x *ov965x, int value) 599 { 600 unsigned long mbd, light_freq; 601 int ret; 602 u8 reg; 603 604 ret = ov965x_read(ov965x->client, REG_COM8, ®); 605 if (!ret) { 606 if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED) 607 reg &= ~COM8_BFILT; 608 else 609 reg |= COM8_BFILT; 610 ret = ov965x_write(ov965x->client, REG_COM8, reg); 611 } 612 if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED) 613 return 0; 614 if (WARN_ON(ov965x->fiv == NULL)) 615 return -EINVAL; 616 /* Set minimal exposure time for 50/60 HZ lighting */ 617 if (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) 618 light_freq = 50; 619 else 620 light_freq = 60; 621 mbd = (1000UL * ov965x->fiv->interval.denominator * 622 ov965x->frame_size->max_exp_lines) / 623 ov965x->fiv->interval.numerator; 624 mbd = ((mbd / (light_freq * 2)) + 500) / 1000UL; 625 626 return ov965x_write(ov965x->client, REG_MBD, mbd); 627 } 628 629 static int ov965x_set_white_balance(struct ov965x *ov965x, int awb) 630 { 631 int ret; 632 u8 reg; 633 634 ret = ov965x_read(ov965x->client, REG_COM8, ®); 635 if (!ret) { 636 reg = awb ? reg | REG_COM8 : reg & ~REG_COM8; 637 ret = ov965x_write(ov965x->client, REG_COM8, reg); 638 } 639 if (!ret && !awb) { 640 ret = ov965x_write(ov965x->client, REG_BLUE, 641 ov965x->ctrls.blue_balance->val); 642 if (ret < 0) 643 return ret; 644 ret = ov965x_write(ov965x->client, REG_RED, 645 ov965x->ctrls.red_balance->val); 646 } 647 return ret; 648 } 649 650 #define NUM_BR_LEVELS 7 651 #define NUM_BR_REGS 3 652 653 static int ov965x_set_brightness(struct ov965x *ov965x, int val) 654 { 655 static const u8 regs[NUM_BR_LEVELS + 1][NUM_BR_REGS] = { 656 { REG_AEW, REG_AEB, REG_VPT }, 657 { 0x1c, 0x12, 0x50 }, /* -3 */ 658 { 0x3d, 0x30, 0x71 }, /* -2 */ 659 { 0x50, 0x44, 0x92 }, /* -1 */ 660 { 0x70, 0x64, 0xc3 }, /* 0 */ 661 { 0x90, 0x84, 0xd4 }, /* +1 */ 662 { 0xc4, 0xbf, 0xf9 }, /* +2 */ 663 { 0xd8, 0xd0, 0xfa }, /* +3 */ 664 }; 665 int i, ret = 0; 666 667 val += (NUM_BR_LEVELS / 2 + 1); 668 if (val > NUM_BR_LEVELS) 669 return -EINVAL; 670 671 for (i = 0; i < NUM_BR_REGS && !ret; i++) 672 ret = ov965x_write(ov965x->client, regs[0][i], 673 regs[val][i]); 674 return ret; 675 } 676 677 static int ov965x_set_gain(struct ov965x *ov965x, int auto_gain) 678 { 679 struct i2c_client *client = ov965x->client; 680 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 681 int ret = 0; 682 u8 reg; 683 /* 684 * For manual mode we need to disable AGC first, so 685 * gain value in REG_VREF, REG_GAIN is not overwritten. 686 */ 687 if (ctrls->auto_gain->is_new) { 688 ret = ov965x_read(client, REG_COM8, ®); 689 if (ret < 0) 690 return ret; 691 if (ctrls->auto_gain->val) 692 reg |= COM8_AGC; 693 else 694 reg &= ~COM8_AGC; 695 ret = ov965x_write(client, REG_COM8, reg); 696 if (ret < 0) 697 return ret; 698 } 699 700 if (ctrls->gain->is_new && !auto_gain) { 701 unsigned int gain = ctrls->gain->val; 702 unsigned int rgain; 703 int m; 704 /* 705 * Convert gain control value to the sensor's gain 706 * registers (VREF[7:6], GAIN[7:0]) format. 707 */ 708 for (m = 6; m >= 0; m--) 709 if (gain >= (1 << m) * 16) 710 break; 711 rgain = (gain - ((1 << m) * 16)) / (1 << m); 712 rgain |= (((1 << m) - 1) << 4); 713 714 ret = ov965x_write(client, REG_GAIN, rgain & 0xff); 715 if (ret < 0) 716 return ret; 717 ret = ov965x_read(client, REG_VREF, ®); 718 if (ret < 0) 719 return ret; 720 reg &= ~VREF_GAIN_MASK; 721 reg |= (((rgain >> 8) & 0x3) << 6); 722 ret = ov965x_write(client, REG_VREF, reg); 723 if (ret < 0) 724 return ret; 725 /* Return updated control's value to userspace */ 726 ctrls->gain->val = (1 << m) * (16 + (rgain & 0xf)); 727 } 728 729 return ret; 730 } 731 732 static int ov965x_set_sharpness(struct ov965x *ov965x, unsigned int value) 733 { 734 u8 com14, edge; 735 int ret; 736 737 ret = ov965x_read(ov965x->client, REG_COM14, &com14); 738 if (ret < 0) 739 return ret; 740 ret = ov965x_read(ov965x->client, REG_EDGE, &edge); 741 if (ret < 0) 742 return ret; 743 com14 = value ? com14 | COM14_EDGE_EN : com14 & ~COM14_EDGE_EN; 744 value--; 745 if (value > 0x0f) { 746 com14 |= COM14_EEF_X2; 747 value >>= 1; 748 } else { 749 com14 &= ~COM14_EEF_X2; 750 } 751 ret = ov965x_write(ov965x->client, REG_COM14, com14); 752 if (ret < 0) 753 return ret; 754 755 edge &= ~EDGE_FACTOR_MASK; 756 edge |= ((u8)value & 0x0f); 757 758 return ov965x_write(ov965x->client, REG_EDGE, edge); 759 } 760 761 static int ov965x_set_exposure(struct ov965x *ov965x, int exp) 762 { 763 struct i2c_client *client = ov965x->client; 764 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 765 bool auto_exposure = (exp == V4L2_EXPOSURE_AUTO); 766 int ret; 767 u8 reg; 768 769 if (ctrls->auto_exp->is_new) { 770 ret = ov965x_read(client, REG_COM8, ®); 771 if (ret < 0) 772 return ret; 773 if (auto_exposure) 774 reg |= (COM8_AEC | COM8_AGC); 775 else 776 reg &= ~(COM8_AEC | COM8_AGC); 777 ret = ov965x_write(client, REG_COM8, reg); 778 if (ret < 0) 779 return ret; 780 } 781 782 if (!auto_exposure && ctrls->exposure->is_new) { 783 unsigned int exposure = (ctrls->exposure->val * 100) 784 / ov965x->exp_row_interval; 785 /* 786 * Manual exposure value 787 * [b15:b0] - AECHM (b15:b10), AECH (b9:b2), COM1 (b1:b0) 788 */ 789 ret = ov965x_write(client, REG_COM1, exposure & 0x3); 790 if (!ret) 791 ret = ov965x_write(client, REG_AECH, 792 (exposure >> 2) & 0xff); 793 if (!ret) 794 ret = ov965x_write(client, REG_AECHM, 795 (exposure >> 10) & 0x3f); 796 /* Update the value to minimize rounding errors */ 797 ctrls->exposure->val = ((exposure * ov965x->exp_row_interval) 798 + 50) / 100; 799 if (ret < 0) 800 return ret; 801 } 802 803 v4l2_ctrl_activate(ov965x->ctrls.brightness, !exp); 804 return 0; 805 } 806 807 static int ov965x_set_flip(struct ov965x *ov965x) 808 { 809 u8 mvfp = 0; 810 811 if (ov965x->ctrls.hflip->val) 812 mvfp |= MVFP_MIRROR; 813 814 if (ov965x->ctrls.vflip->val) 815 mvfp |= MVFP_FLIP; 816 817 return ov965x_write(ov965x->client, REG_MVFP, mvfp); 818 } 819 820 #define NUM_SAT_LEVELS 5 821 #define NUM_SAT_REGS 6 822 823 static int ov965x_set_saturation(struct ov965x *ov965x, int val) 824 { 825 static const u8 regs[NUM_SAT_LEVELS][NUM_SAT_REGS] = { 826 /* MTX(1)...MTX(6) */ 827 { 0x1d, 0x1f, 0x02, 0x09, 0x13, 0x1c }, /* -2 */ 828 { 0x2e, 0x31, 0x02, 0x0e, 0x1e, 0x2d }, /* -1 */ 829 { 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38 }, /* 0 */ 830 { 0x46, 0x49, 0x04, 0x16, 0x2e, 0x43 }, /* +1 */ 831 { 0x57, 0x5c, 0x05, 0x1b, 0x39, 0x54 }, /* +2 */ 832 }; 833 u8 addr = REG_MTX(1); 834 int i, ret = 0; 835 836 val += (NUM_SAT_LEVELS / 2); 837 if (val >= NUM_SAT_LEVELS) 838 return -EINVAL; 839 840 for (i = 0; i < NUM_SAT_REGS && !ret; i++) 841 ret = ov965x_write(ov965x->client, addr + i, regs[val][i]); 842 843 return ret; 844 } 845 846 static int ov965x_set_test_pattern(struct ov965x *ov965x, int value) 847 { 848 int ret; 849 u8 reg; 850 851 ret = ov965x_read(ov965x->client, REG_COM23, ®); 852 if (ret < 0) 853 return ret; 854 reg = value ? reg | COM23_TEST_MODE : reg & ~COM23_TEST_MODE; 855 return ov965x_write(ov965x->client, REG_COM23, reg); 856 } 857 858 static int __g_volatile_ctrl(struct ov965x *ov965x, struct v4l2_ctrl *ctrl) 859 { 860 struct i2c_client *client = ov965x->client; 861 unsigned int exposure, gain, m; 862 u8 reg0, reg1, reg2; 863 int ret; 864 865 if (!ov965x->power) 866 return 0; 867 868 switch (ctrl->id) { 869 case V4L2_CID_AUTOGAIN: 870 if (!ctrl->val) 871 return 0; 872 ret = ov965x_read(client, REG_GAIN, ®0); 873 if (ret < 0) 874 return ret; 875 ret = ov965x_read(client, REG_VREF, ®1); 876 if (ret < 0) 877 return ret; 878 gain = ((reg1 >> 6) << 8) | reg0; 879 m = 0x01 << fls(gain >> 4); 880 ov965x->ctrls.gain->val = m * (16 + (gain & 0xf)); 881 break; 882 883 case V4L2_CID_EXPOSURE_AUTO: 884 if (ctrl->val == V4L2_EXPOSURE_MANUAL) 885 return 0; 886 ret = ov965x_read(client, REG_COM1, ®0); 887 if (!ret) 888 ret = ov965x_read(client, REG_AECH, ®1); 889 if (!ret) 890 ret = ov965x_read(client, REG_AECHM, ®2); 891 if (ret < 0) 892 return ret; 893 exposure = ((reg2 & 0x3f) << 10) | (reg1 << 2) | 894 (reg0 & 0x3); 895 ov965x->ctrls.exposure->val = ((exposure * 896 ov965x->exp_row_interval) + 50) / 100; 897 break; 898 } 899 900 return 0; 901 } 902 903 static int ov965x_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 904 { 905 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 906 struct ov965x *ov965x = to_ov965x(sd); 907 int ret; 908 909 v4l2_dbg(1, debug, sd, "g_ctrl: %s\n", ctrl->name); 910 911 mutex_lock(&ov965x->lock); 912 ret = __g_volatile_ctrl(ov965x, ctrl); 913 mutex_unlock(&ov965x->lock); 914 return ret; 915 } 916 917 static int ov965x_s_ctrl(struct v4l2_ctrl *ctrl) 918 { 919 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 920 struct ov965x *ov965x = to_ov965x(sd); 921 int ret = -EINVAL; 922 923 v4l2_dbg(1, debug, sd, "s_ctrl: %s, value: %d. power: %d\n", 924 ctrl->name, ctrl->val, ov965x->power); 925 926 mutex_lock(&ov965x->lock); 927 /* 928 * If the device is not powered up now postpone applying control's 929 * value to the hardware, until it is ready to accept commands. 930 */ 931 if (ov965x->power == 0) { 932 mutex_unlock(&ov965x->lock); 933 return 0; 934 } 935 936 switch (ctrl->id) { 937 case V4L2_CID_AUTO_WHITE_BALANCE: 938 ret = ov965x_set_white_balance(ov965x, ctrl->val); 939 break; 940 941 case V4L2_CID_BRIGHTNESS: 942 ret = ov965x_set_brightness(ov965x, ctrl->val); 943 break; 944 945 case V4L2_CID_EXPOSURE_AUTO: 946 ret = ov965x_set_exposure(ov965x, ctrl->val); 947 break; 948 949 case V4L2_CID_AUTOGAIN: 950 ret = ov965x_set_gain(ov965x, ctrl->val); 951 break; 952 953 case V4L2_CID_HFLIP: 954 ret = ov965x_set_flip(ov965x); 955 break; 956 957 case V4L2_CID_POWER_LINE_FREQUENCY: 958 ret = ov965x_set_banding_filter(ov965x, ctrl->val); 959 break; 960 961 case V4L2_CID_SATURATION: 962 ret = ov965x_set_saturation(ov965x, ctrl->val); 963 break; 964 965 case V4L2_CID_SHARPNESS: 966 ret = ov965x_set_sharpness(ov965x, ctrl->val); 967 break; 968 969 case V4L2_CID_TEST_PATTERN: 970 ret = ov965x_set_test_pattern(ov965x, ctrl->val); 971 break; 972 } 973 974 mutex_unlock(&ov965x->lock); 975 return ret; 976 } 977 978 static const struct v4l2_ctrl_ops ov965x_ctrl_ops = { 979 .g_volatile_ctrl = ov965x_g_volatile_ctrl, 980 .s_ctrl = ov965x_s_ctrl, 981 }; 982 983 static const char * const test_pattern_menu[] = { 984 "Disabled", 985 "Color bars", 986 NULL 987 }; 988 989 static int ov965x_initialize_controls(struct ov965x *ov965x) 990 { 991 const struct v4l2_ctrl_ops *ops = &ov965x_ctrl_ops; 992 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 993 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 994 int ret; 995 996 ret = v4l2_ctrl_handler_init(hdl, 16); 997 if (ret < 0) 998 return ret; 999 1000 /* Auto/manual white balance */ 1001 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 1002 V4L2_CID_AUTO_WHITE_BALANCE, 1003 0, 1, 1, 1); 1004 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 1005 0, 0xff, 1, 0x80); 1006 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 1007 0, 0xff, 1, 0x80); 1008 /* Auto/manual exposure */ 1009 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 1010 V4L2_CID_EXPOSURE_AUTO, 1011 V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); 1012 /* Exposure time, in 100 us units. min/max is updated dynamically. */ 1013 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, 1014 V4L2_CID_EXPOSURE_ABSOLUTE, 1015 2, 1500, 1, 500); 1016 /* Auto/manual gain */ 1017 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 1018 0, 1, 1, 1); 1019 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 1020 16, 64 * (16 + 15), 1, 64 * 16); 1021 1022 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 1023 -2, 2, 1, 0); 1024 ctrls->brightness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, 1025 -3, 3, 1, 0); 1026 ctrls->sharpness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS, 1027 0, 32, 1, 6); 1028 1029 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); 1030 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); 1031 1032 ctrls->light_freq = v4l2_ctrl_new_std_menu(hdl, ops, 1033 V4L2_CID_POWER_LINE_FREQUENCY, 1034 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, ~0x7, 1035 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 1036 1037 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 1038 ARRAY_SIZE(test_pattern_menu) - 1, 0, 0, 1039 test_pattern_menu); 1040 if (hdl->error) { 1041 ret = hdl->error; 1042 v4l2_ctrl_handler_free(hdl); 1043 return ret; 1044 } 1045 1046 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 1047 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 1048 1049 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 1050 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 1051 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 1052 v4l2_ctrl_cluster(2, &ctrls->hflip); 1053 1054 ov965x->sd.ctrl_handler = hdl; 1055 return 0; 1056 } 1057 1058 /* 1059 * V4L2 subdev video and pad level operations 1060 */ 1061 static void ov965x_get_default_format(struct v4l2_mbus_framefmt *mf) 1062 { 1063 mf->width = ov965x_framesizes[0].width; 1064 mf->height = ov965x_framesizes[0].height; 1065 mf->colorspace = ov965x_formats[0].colorspace; 1066 mf->code = ov965x_formats[0].code; 1067 mf->field = V4L2_FIELD_NONE; 1068 } 1069 1070 static int ov965x_enum_mbus_code(struct v4l2_subdev *sd, 1071 struct v4l2_subdev_pad_config *cfg, 1072 struct v4l2_subdev_mbus_code_enum *code) 1073 { 1074 if (code->index >= ARRAY_SIZE(ov965x_formats)) 1075 return -EINVAL; 1076 1077 code->code = ov965x_formats[code->index].code; 1078 return 0; 1079 } 1080 1081 static int ov965x_enum_frame_sizes(struct v4l2_subdev *sd, 1082 struct v4l2_subdev_pad_config *cfg, 1083 struct v4l2_subdev_frame_size_enum *fse) 1084 { 1085 int i = ARRAY_SIZE(ov965x_formats); 1086 1087 if (fse->index >= ARRAY_SIZE(ov965x_framesizes)) 1088 return -EINVAL; 1089 1090 while (--i) 1091 if (fse->code == ov965x_formats[i].code) 1092 break; 1093 1094 fse->code = ov965x_formats[i].code; 1095 1096 fse->min_width = ov965x_framesizes[fse->index].width; 1097 fse->max_width = fse->min_width; 1098 fse->max_height = ov965x_framesizes[fse->index].height; 1099 fse->min_height = fse->max_height; 1100 1101 return 0; 1102 } 1103 1104 static int ov965x_g_frame_interval(struct v4l2_subdev *sd, 1105 struct v4l2_subdev_frame_interval *fi) 1106 { 1107 struct ov965x *ov965x = to_ov965x(sd); 1108 1109 mutex_lock(&ov965x->lock); 1110 fi->interval = ov965x->fiv->interval; 1111 mutex_unlock(&ov965x->lock); 1112 1113 return 0; 1114 } 1115 1116 static int __ov965x_set_frame_interval(struct ov965x *ov965x, 1117 struct v4l2_subdev_frame_interval *fi) 1118 { 1119 struct v4l2_mbus_framefmt *mbus_fmt = &ov965x->format; 1120 const struct ov965x_interval *fiv = &ov965x_intervals[0]; 1121 u64 req_int, err, min_err = ~0ULL; 1122 unsigned int i; 1123 1124 1125 if (fi->interval.denominator == 0) 1126 return -EINVAL; 1127 1128 req_int = (u64)(fi->interval.numerator * 10000) / 1129 fi->interval.denominator; 1130 1131 for (i = 0; i < ARRAY_SIZE(ov965x_intervals); i++) { 1132 const struct ov965x_interval *iv = &ov965x_intervals[i]; 1133 1134 if (mbus_fmt->width != iv->size.width || 1135 mbus_fmt->height != iv->size.height) 1136 continue; 1137 err = abs((u64)(iv->interval.numerator * 10000) / 1138 iv->interval.denominator - req_int); 1139 if (err < min_err) { 1140 fiv = iv; 1141 min_err = err; 1142 } 1143 } 1144 ov965x->fiv = fiv; 1145 1146 v4l2_dbg(1, debug, &ov965x->sd, "Changed frame interval to %u us\n", 1147 fiv->interval.numerator * 1000000 / fiv->interval.denominator); 1148 1149 return 0; 1150 } 1151 1152 static int ov965x_s_frame_interval(struct v4l2_subdev *sd, 1153 struct v4l2_subdev_frame_interval *fi) 1154 { 1155 struct ov965x *ov965x = to_ov965x(sd); 1156 int ret; 1157 1158 v4l2_dbg(1, debug, sd, "Setting %d/%d frame interval\n", 1159 fi->interval.numerator, fi->interval.denominator); 1160 1161 mutex_lock(&ov965x->lock); 1162 ret = __ov965x_set_frame_interval(ov965x, fi); 1163 ov965x->apply_frame_fmt = 1; 1164 mutex_unlock(&ov965x->lock); 1165 return ret; 1166 } 1167 1168 static int ov965x_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, 1169 struct v4l2_subdev_format *fmt) 1170 { 1171 struct ov965x *ov965x = to_ov965x(sd); 1172 struct v4l2_mbus_framefmt *mf; 1173 1174 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { 1175 mf = v4l2_subdev_get_try_format(sd, cfg, 0); 1176 fmt->format = *mf; 1177 return 0; 1178 } 1179 1180 mutex_lock(&ov965x->lock); 1181 fmt->format = ov965x->format; 1182 mutex_unlock(&ov965x->lock); 1183 1184 return 0; 1185 } 1186 1187 static void __ov965x_try_frame_size(struct v4l2_mbus_framefmt *mf, 1188 const struct ov965x_framesize **size) 1189 { 1190 const struct ov965x_framesize *fsize = &ov965x_framesizes[0], 1191 *match = NULL; 1192 int i = ARRAY_SIZE(ov965x_framesizes); 1193 unsigned int min_err = UINT_MAX; 1194 1195 while (i--) { 1196 int err = abs(fsize->width - mf->width) 1197 + abs(fsize->height - mf->height); 1198 if (err < min_err) { 1199 min_err = err; 1200 match = fsize; 1201 } 1202 fsize++; 1203 } 1204 if (!match) 1205 match = &ov965x_framesizes[0]; 1206 mf->width = match->width; 1207 mf->height = match->height; 1208 if (size) 1209 *size = match; 1210 } 1211 1212 static int ov965x_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, 1213 struct v4l2_subdev_format *fmt) 1214 { 1215 unsigned int index = ARRAY_SIZE(ov965x_formats); 1216 struct v4l2_mbus_framefmt *mf = &fmt->format; 1217 struct ov965x *ov965x = to_ov965x(sd); 1218 const struct ov965x_framesize *size = NULL; 1219 int ret = 0; 1220 1221 __ov965x_try_frame_size(mf, &size); 1222 1223 while (--index) 1224 if (ov965x_formats[index].code == mf->code) 1225 break; 1226 1227 mf->colorspace = V4L2_COLORSPACE_JPEG; 1228 mf->code = ov965x_formats[index].code; 1229 mf->field = V4L2_FIELD_NONE; 1230 1231 mutex_lock(&ov965x->lock); 1232 1233 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { 1234 if (cfg != NULL) { 1235 mf = v4l2_subdev_get_try_format(sd, cfg, fmt->pad); 1236 *mf = fmt->format; 1237 } 1238 } else { 1239 if (ov965x->streaming) { 1240 ret = -EBUSY; 1241 } else { 1242 ov965x->frame_size = size; 1243 ov965x->format = fmt->format; 1244 ov965x->tslb_reg = ov965x_formats[index].tslb_reg; 1245 ov965x->apply_frame_fmt = 1; 1246 } 1247 } 1248 1249 if (!ret && fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) { 1250 struct v4l2_subdev_frame_interval fiv = { 1251 .interval = { 0, 1 } 1252 }; 1253 /* Reset to minimum possible frame interval */ 1254 __ov965x_set_frame_interval(ov965x, &fiv); 1255 } 1256 mutex_unlock(&ov965x->lock); 1257 1258 if (!ret) 1259 ov965x_update_exposure_ctrl(ov965x); 1260 1261 return ret; 1262 } 1263 1264 static int ov965x_set_frame_size(struct ov965x *ov965x) 1265 { 1266 int i, ret = 0; 1267 1268 for (i = 0; ret == 0 && i < NUM_FMT_REGS; i++) 1269 ret = ov965x_write(ov965x->client, frame_size_reg_addr[i], 1270 ov965x->frame_size->regs[i]); 1271 return ret; 1272 } 1273 1274 static int __ov965x_set_params(struct ov965x *ov965x) 1275 { 1276 struct i2c_client *client = ov965x->client; 1277 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 1278 int ret = 0; 1279 u8 reg; 1280 1281 if (ov965x->apply_frame_fmt) { 1282 reg = DEF_CLKRC + ov965x->fiv->clkrc_div; 1283 ret = ov965x_write(client, REG_CLKRC, reg); 1284 if (ret < 0) 1285 return ret; 1286 ret = ov965x_set_frame_size(ov965x); 1287 if (ret < 0) 1288 return ret; 1289 ret = ov965x_read(client, REG_TSLB, ®); 1290 if (ret < 0) 1291 return ret; 1292 reg &= ~TSLB_YUYV_MASK; 1293 reg |= ov965x->tslb_reg; 1294 ret = ov965x_write(client, REG_TSLB, reg); 1295 if (ret < 0) 1296 return ret; 1297 } 1298 ret = ov965x_set_default_gamma_curve(ov965x); 1299 if (ret < 0) 1300 return ret; 1301 ret = ov965x_set_color_matrix(ov965x); 1302 if (ret < 0) 1303 return ret; 1304 /* 1305 * Select manual banding filter, the filter will 1306 * be enabled further if required. 1307 */ 1308 ret = ov965x_read(client, REG_COM11, ®); 1309 if (!ret) 1310 reg |= COM11_BANDING; 1311 ret = ov965x_write(client, REG_COM11, reg); 1312 if (ret < 0) 1313 return ret; 1314 /* 1315 * Banding filter (REG_MBD value) needs to match selected 1316 * resolution and frame rate, so it's always updated here. 1317 */ 1318 return ov965x_set_banding_filter(ov965x, ctrls->light_freq->val); 1319 } 1320 1321 static int ov965x_s_stream(struct v4l2_subdev *sd, int on) 1322 { 1323 struct i2c_client *client = v4l2_get_subdevdata(sd); 1324 struct ov965x *ov965x = to_ov965x(sd); 1325 struct ov965x_ctrls *ctrls = &ov965x->ctrls; 1326 int ret = 0; 1327 1328 v4l2_dbg(1, debug, client, "%s: on: %d\n", __func__, on); 1329 1330 mutex_lock(&ov965x->lock); 1331 if (ov965x->streaming == !on) { 1332 if (on) 1333 ret = __ov965x_set_params(ov965x); 1334 1335 if (!ret && ctrls->update) { 1336 /* 1337 * ov965x_s_ctrl callback takes the mutex 1338 * so it needs to be released here. 1339 */ 1340 mutex_unlock(&ov965x->lock); 1341 ret = v4l2_ctrl_handler_setup(&ctrls->handler); 1342 1343 mutex_lock(&ov965x->lock); 1344 if (!ret) 1345 ctrls->update = 0; 1346 } 1347 if (!ret) 1348 ret = ov965x_write(client, REG_COM2, 1349 on ? 0x01 : 0x11); 1350 } 1351 if (!ret) 1352 ov965x->streaming += on ? 1 : -1; 1353 1354 WARN_ON(ov965x->streaming < 0); 1355 mutex_unlock(&ov965x->lock); 1356 1357 return ret; 1358 } 1359 1360 /* 1361 * V4L2 subdev internal operations 1362 */ 1363 static int ov965x_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) 1364 { 1365 struct v4l2_mbus_framefmt *mf = v4l2_subdev_get_try_format(sd, fh->pad, 0); 1366 1367 ov965x_get_default_format(mf); 1368 return 0; 1369 } 1370 1371 static const struct v4l2_subdev_pad_ops ov965x_pad_ops = { 1372 .enum_mbus_code = ov965x_enum_mbus_code, 1373 .enum_frame_size = ov965x_enum_frame_sizes, 1374 .get_fmt = ov965x_get_fmt, 1375 .set_fmt = ov965x_set_fmt, 1376 }; 1377 1378 static const struct v4l2_subdev_video_ops ov965x_video_ops = { 1379 .s_stream = ov965x_s_stream, 1380 .g_frame_interval = ov965x_g_frame_interval, 1381 .s_frame_interval = ov965x_s_frame_interval, 1382 1383 }; 1384 1385 static const struct v4l2_subdev_internal_ops ov965x_sd_internal_ops = { 1386 .open = ov965x_open, 1387 }; 1388 1389 static const struct v4l2_subdev_core_ops ov965x_core_ops = { 1390 .s_power = ov965x_s_power, 1391 .log_status = v4l2_ctrl_subdev_log_status, 1392 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 1393 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 1394 }; 1395 1396 static const struct v4l2_subdev_ops ov965x_subdev_ops = { 1397 .core = &ov965x_core_ops, 1398 .pad = &ov965x_pad_ops, 1399 .video = &ov965x_video_ops, 1400 }; 1401 1402 /* 1403 * Reset and power down GPIOs configuration 1404 */ 1405 static int ov965x_configure_gpios(struct ov965x *ov965x, 1406 const struct ov9650_platform_data *pdata) 1407 { 1408 int ret, i; 1409 1410 ov965x->gpios[GPIO_PWDN] = pdata->gpio_pwdn; 1411 ov965x->gpios[GPIO_RST] = pdata->gpio_reset; 1412 1413 for (i = 0; i < ARRAY_SIZE(ov965x->gpios); i++) { 1414 int gpio = ov965x->gpios[i]; 1415 1416 if (!gpio_is_valid(gpio)) 1417 continue; 1418 ret = devm_gpio_request_one(&ov965x->client->dev, gpio, 1419 GPIOF_OUT_INIT_HIGH, "OV965X"); 1420 if (ret < 0) 1421 return ret; 1422 v4l2_dbg(1, debug, &ov965x->sd, "set gpio %d to 1\n", gpio); 1423 1424 gpio_set_value(gpio, 1); 1425 gpio_export(gpio, 0); 1426 ov965x->gpios[i] = gpio; 1427 } 1428 1429 return 0; 1430 } 1431 1432 static int ov965x_detect_sensor(struct v4l2_subdev *sd) 1433 { 1434 struct i2c_client *client = v4l2_get_subdevdata(sd); 1435 struct ov965x *ov965x = to_ov965x(sd); 1436 u8 pid, ver; 1437 int ret; 1438 1439 mutex_lock(&ov965x->lock); 1440 __ov965x_set_power(ov965x, 1); 1441 msleep(25); 1442 1443 /* Check sensor revision */ 1444 ret = ov965x_read(client, REG_PID, &pid); 1445 if (!ret) 1446 ret = ov965x_read(client, REG_VER, &ver); 1447 1448 __ov965x_set_power(ov965x, 0); 1449 1450 if (!ret) { 1451 ov965x->id = OV965X_ID(pid, ver); 1452 if (ov965x->id == OV9650_ID || ov965x->id == OV9652_ID) { 1453 v4l2_info(sd, "Found OV%04X sensor\n", ov965x->id); 1454 } else { 1455 v4l2_err(sd, "Sensor detection failed (%04X, %d)\n", 1456 ov965x->id, ret); 1457 ret = -ENODEV; 1458 } 1459 } 1460 mutex_unlock(&ov965x->lock); 1461 1462 return ret; 1463 } 1464 1465 static int ov965x_probe(struct i2c_client *client, 1466 const struct i2c_device_id *id) 1467 { 1468 const struct ov9650_platform_data *pdata = client->dev.platform_data; 1469 struct v4l2_subdev *sd; 1470 struct ov965x *ov965x; 1471 int ret; 1472 1473 if (pdata == NULL) { 1474 dev_err(&client->dev, "platform data not specified\n"); 1475 return -EINVAL; 1476 } 1477 1478 if (pdata->mclk_frequency == 0) { 1479 dev_err(&client->dev, "MCLK frequency not specified\n"); 1480 return -EINVAL; 1481 } 1482 1483 ov965x = devm_kzalloc(&client->dev, sizeof(*ov965x), GFP_KERNEL); 1484 if (!ov965x) 1485 return -ENOMEM; 1486 1487 mutex_init(&ov965x->lock); 1488 ov965x->client = client; 1489 ov965x->mclk_frequency = pdata->mclk_frequency; 1490 1491 sd = &ov965x->sd; 1492 v4l2_i2c_subdev_init(sd, client, &ov965x_subdev_ops); 1493 strlcpy(sd->name, DRIVER_NAME, sizeof(sd->name)); 1494 1495 sd->internal_ops = &ov965x_sd_internal_ops; 1496 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 1497 V4L2_SUBDEV_FL_HAS_EVENTS; 1498 1499 ret = ov965x_configure_gpios(ov965x, pdata); 1500 if (ret < 0) 1501 return ret; 1502 1503 ov965x->pad.flags = MEDIA_PAD_FL_SOURCE; 1504 sd->entity.function = MEDIA_ENT_F_CAM_SENSOR; 1505 ret = media_entity_pads_init(&sd->entity, 1, &ov965x->pad); 1506 if (ret < 0) 1507 return ret; 1508 1509 ret = ov965x_initialize_controls(ov965x); 1510 if (ret < 0) 1511 goto err_me; 1512 1513 ov965x_get_default_format(&ov965x->format); 1514 ov965x->frame_size = &ov965x_framesizes[0]; 1515 ov965x->fiv = &ov965x_intervals[0]; 1516 1517 ret = ov965x_detect_sensor(sd); 1518 if (ret < 0) 1519 goto err_ctrls; 1520 1521 /* Update exposure time min/max to match frame format */ 1522 ov965x_update_exposure_ctrl(ov965x); 1523 1524 ret = v4l2_async_register_subdev(sd); 1525 if (ret < 0) 1526 goto err_ctrls; 1527 1528 return 0; 1529 err_ctrls: 1530 v4l2_ctrl_handler_free(sd->ctrl_handler); 1531 err_me: 1532 media_entity_cleanup(&sd->entity); 1533 return ret; 1534 } 1535 1536 static int ov965x_remove(struct i2c_client *client) 1537 { 1538 struct v4l2_subdev *sd = i2c_get_clientdata(client); 1539 1540 v4l2_async_unregister_subdev(sd); 1541 v4l2_ctrl_handler_free(sd->ctrl_handler); 1542 media_entity_cleanup(&sd->entity); 1543 1544 return 0; 1545 } 1546 1547 static const struct i2c_device_id ov965x_id[] = { 1548 { "OV9650", 0 }, 1549 { "OV9652", 0 }, 1550 { /* sentinel */ } 1551 }; 1552 MODULE_DEVICE_TABLE(i2c, ov965x_id); 1553 1554 static struct i2c_driver ov965x_i2c_driver = { 1555 .driver = { 1556 .name = DRIVER_NAME, 1557 }, 1558 .probe = ov965x_probe, 1559 .remove = ov965x_remove, 1560 .id_table = ov965x_id, 1561 }; 1562 1563 module_i2c_driver(ov965x_i2c_driver); 1564 1565 MODULE_AUTHOR("Sylwester Nawrocki <sylvester.nawrocki@gmail.com>"); 1566 MODULE_DESCRIPTION("OV9650/OV9652 CMOS Image Sensor driver"); 1567 MODULE_LICENSE("GPL"); 1568