xref: /openbmc/linux/drivers/media/i2c/ov7670.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * A V4L2 driver for OmniVision OV7670 cameras.
3  *
4  * Copyright 2006 One Laptop Per Child Association, Inc.  Written
5  * by Jonathan Corbet with substantial inspiration from Mark
6  * McClelland's ovcamchip code.
7  *
8  * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9  *
10  * This file may be distributed under the terms of the GNU General
11  * Public License, version 2.
12  */
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/delay.h>
18 #include <linux/videodev2.h>
19 #include <media/v4l2-device.h>
20 #include <media/v4l2-ctrls.h>
21 #include <media/v4l2-mediabus.h>
22 #include <media/v4l2-image-sizes.h>
23 #include <media/ov7670.h>
24 
25 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
26 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
27 MODULE_LICENSE("GPL");
28 
29 static bool debug;
30 module_param(debug, bool, 0644);
31 MODULE_PARM_DESC(debug, "Debug level (0-1)");
32 
33 /*
34  * The 7670 sits on i2c with ID 0x42
35  */
36 #define OV7670_I2C_ADDR 0x42
37 
38 #define PLL_FACTOR	4
39 
40 /* Registers */
41 #define REG_GAIN	0x00	/* Gain lower 8 bits (rest in vref) */
42 #define REG_BLUE	0x01	/* blue gain */
43 #define REG_RED		0x02	/* red gain */
44 #define REG_VREF	0x03	/* Pieces of GAIN, VSTART, VSTOP */
45 #define REG_COM1	0x04	/* Control 1 */
46 #define  COM1_CCIR656	  0x40  /* CCIR656 enable */
47 #define REG_BAVE	0x05	/* U/B Average level */
48 #define REG_GbAVE	0x06	/* Y/Gb Average level */
49 #define REG_AECHH	0x07	/* AEC MS 5 bits */
50 #define REG_RAVE	0x08	/* V/R Average level */
51 #define REG_COM2	0x09	/* Control 2 */
52 #define  COM2_SSLEEP	  0x10	/* Soft sleep mode */
53 #define REG_PID		0x0a	/* Product ID MSB */
54 #define REG_VER		0x0b	/* Product ID LSB */
55 #define REG_COM3	0x0c	/* Control 3 */
56 #define  COM3_SWAP	  0x40	  /* Byte swap */
57 #define  COM3_SCALEEN	  0x08	  /* Enable scaling */
58 #define  COM3_DCWEN	  0x04	  /* Enable downsamp/crop/window */
59 #define REG_COM4	0x0d	/* Control 4 */
60 #define REG_COM5	0x0e	/* All "reserved" */
61 #define REG_COM6	0x0f	/* Control 6 */
62 #define REG_AECH	0x10	/* More bits of AEC value */
63 #define REG_CLKRC	0x11	/* Clocl control */
64 #define   CLK_EXT	  0x40	  /* Use external clock directly */
65 #define   CLK_SCALE	  0x3f	  /* Mask for internal clock scale */
66 #define REG_COM7	0x12	/* Control 7 */
67 #define   COM7_RESET	  0x80	  /* Register reset */
68 #define   COM7_FMT_MASK	  0x38
69 #define   COM7_FMT_VGA	  0x00
70 #define	  COM7_FMT_CIF	  0x20	  /* CIF format */
71 #define   COM7_FMT_QVGA	  0x10	  /* QVGA format */
72 #define   COM7_FMT_QCIF	  0x08	  /* QCIF format */
73 #define	  COM7_RGB	  0x04	  /* bits 0 and 2 - RGB format */
74 #define	  COM7_YUV	  0x00	  /* YUV */
75 #define	  COM7_BAYER	  0x01	  /* Bayer format */
76 #define	  COM7_PBAYER	  0x05	  /* "Processed bayer" */
77 #define REG_COM8	0x13	/* Control 8 */
78 #define   COM8_FASTAEC	  0x80	  /* Enable fast AGC/AEC */
79 #define   COM8_AECSTEP	  0x40	  /* Unlimited AEC step size */
80 #define   COM8_BFILT	  0x20	  /* Band filter enable */
81 #define   COM8_AGC	  0x04	  /* Auto gain enable */
82 #define   COM8_AWB	  0x02	  /* White balance enable */
83 #define   COM8_AEC	  0x01	  /* Auto exposure enable */
84 #define REG_COM9	0x14	/* Control 9  - gain ceiling */
85 #define REG_COM10	0x15	/* Control 10 */
86 #define   COM10_HSYNC	  0x40	  /* HSYNC instead of HREF */
87 #define   COM10_PCLK_HB	  0x20	  /* Suppress PCLK on horiz blank */
88 #define   COM10_HREF_REV  0x08	  /* Reverse HREF */
89 #define   COM10_VS_LEAD	  0x04	  /* VSYNC on clock leading edge */
90 #define   COM10_VS_NEG	  0x02	  /* VSYNC negative */
91 #define   COM10_HS_NEG	  0x01	  /* HSYNC negative */
92 #define REG_HSTART	0x17	/* Horiz start high bits */
93 #define REG_HSTOP	0x18	/* Horiz stop high bits */
94 #define REG_VSTART	0x19	/* Vert start high bits */
95 #define REG_VSTOP	0x1a	/* Vert stop high bits */
96 #define REG_PSHFT	0x1b	/* Pixel delay after HREF */
97 #define REG_MIDH	0x1c	/* Manuf. ID high */
98 #define REG_MIDL	0x1d	/* Manuf. ID low */
99 #define REG_MVFP	0x1e	/* Mirror / vflip */
100 #define   MVFP_MIRROR	  0x20	  /* Mirror image */
101 #define   MVFP_FLIP	  0x10	  /* Vertical flip */
102 
103 #define REG_AEW		0x24	/* AGC upper limit */
104 #define REG_AEB		0x25	/* AGC lower limit */
105 #define REG_VPT		0x26	/* AGC/AEC fast mode op region */
106 #define REG_HSYST	0x30	/* HSYNC rising edge delay */
107 #define REG_HSYEN	0x31	/* HSYNC falling edge delay */
108 #define REG_HREF	0x32	/* HREF pieces */
109 #define REG_TSLB	0x3a	/* lots of stuff */
110 #define   TSLB_YLAST	  0x04	  /* UYVY or VYUY - see com13 */
111 #define REG_COM11	0x3b	/* Control 11 */
112 #define   COM11_NIGHT	  0x80	  /* NIght mode enable */
113 #define   COM11_NMFR	  0x60	  /* Two bit NM frame rate */
114 #define   COM11_HZAUTO	  0x10	  /* Auto detect 50/60 Hz */
115 #define	  COM11_50HZ	  0x08	  /* Manual 50Hz select */
116 #define   COM11_EXP	  0x02
117 #define REG_COM12	0x3c	/* Control 12 */
118 #define   COM12_HREF	  0x80	  /* HREF always */
119 #define REG_COM13	0x3d	/* Control 13 */
120 #define   COM13_GAMMA	  0x80	  /* Gamma enable */
121 #define	  COM13_UVSAT	  0x40	  /* UV saturation auto adjustment */
122 #define   COM13_UVSWAP	  0x01	  /* V before U - w/TSLB */
123 #define REG_COM14	0x3e	/* Control 14 */
124 #define   COM14_DCWEN	  0x10	  /* DCW/PCLK-scale enable */
125 #define REG_EDGE	0x3f	/* Edge enhancement factor */
126 #define REG_COM15	0x40	/* Control 15 */
127 #define   COM15_R10F0	  0x00	  /* Data range 10 to F0 */
128 #define	  COM15_R01FE	  0x80	  /*            01 to FE */
129 #define   COM15_R00FF	  0xc0	  /*            00 to FF */
130 #define   COM15_RGB565	  0x10	  /* RGB565 output */
131 #define   COM15_RGB555	  0x30	  /* RGB555 output */
132 #define REG_COM16	0x41	/* Control 16 */
133 #define   COM16_AWBGAIN   0x08	  /* AWB gain enable */
134 #define REG_COM17	0x42	/* Control 17 */
135 #define   COM17_AECWIN	  0xc0	  /* AEC window - must match COM4 */
136 #define   COM17_CBAR	  0x08	  /* DSP Color bar */
137 
138 /*
139  * This matrix defines how the colors are generated, must be
140  * tweaked to adjust hue and saturation.
141  *
142  * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
143  *
144  * They are nine-bit signed quantities, with the sign bit
145  * stored in 0x58.  Sign for v-red is bit 0, and up from there.
146  */
147 #define	REG_CMATRIX_BASE 0x4f
148 #define   CMATRIX_LEN 6
149 #define REG_CMATRIX_SIGN 0x58
150 
151 
152 #define REG_BRIGHT	0x55	/* Brightness */
153 #define REG_CONTRAS	0x56	/* Contrast control */
154 
155 #define REG_GFIX	0x69	/* Fix gain control */
156 
157 #define REG_DBLV	0x6b	/* PLL control an debugging */
158 #define   DBLV_BYPASS	  0x00	  /* Bypass PLL */
159 #define   DBLV_X4	  0x01	  /* clock x4 */
160 #define   DBLV_X6	  0x10	  /* clock x6 */
161 #define   DBLV_X8	  0x11	  /* clock x8 */
162 
163 #define REG_REG76	0x76	/* OV's name */
164 #define   R76_BLKPCOR	  0x80	  /* Black pixel correction enable */
165 #define   R76_WHTPCOR	  0x40	  /* White pixel correction enable */
166 
167 #define REG_RGB444	0x8c	/* RGB 444 control */
168 #define   R444_ENABLE	  0x02	  /* Turn on RGB444, overrides 5x5 */
169 #define   R444_RGBX	  0x01	  /* Empty nibble at end */
170 
171 #define REG_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
172 #define REG_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
173 
174 #define REG_BD50MAX	0xa5	/* 50hz banding step limit */
175 #define REG_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
176 #define REG_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
177 #define REG_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
178 #define REG_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
179 #define REG_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
180 #define REG_BD60MAX	0xab	/* 60hz banding step limit */
181 
182 enum ov7670_model {
183 	MODEL_OV7670 = 0,
184 	MODEL_OV7675,
185 };
186 
187 struct ov7670_win_size {
188 	int	width;
189 	int	height;
190 	unsigned char com7_bit;
191 	int	hstart;		/* Start/stop values for the camera.  Note */
192 	int	hstop;		/* that they do not always make complete */
193 	int	vstart;		/* sense to humans, but evidently the sensor */
194 	int	vstop;		/* will do the right thing... */
195 	struct regval_list *regs; /* Regs to tweak */
196 };
197 
198 struct ov7670_devtype {
199 	/* formats supported for each model */
200 	struct ov7670_win_size *win_sizes;
201 	unsigned int n_win_sizes;
202 	/* callbacks for frame rate control */
203 	int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
204 	void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
205 };
206 
207 /*
208  * Information we maintain about a known sensor.
209  */
210 struct ov7670_format_struct;  /* coming later */
211 struct ov7670_info {
212 	struct v4l2_subdev sd;
213 	struct v4l2_ctrl_handler hdl;
214 	struct {
215 		/* gain cluster */
216 		struct v4l2_ctrl *auto_gain;
217 		struct v4l2_ctrl *gain;
218 	};
219 	struct {
220 		/* exposure cluster */
221 		struct v4l2_ctrl *auto_exposure;
222 		struct v4l2_ctrl *exposure;
223 	};
224 	struct {
225 		/* saturation/hue cluster */
226 		struct v4l2_ctrl *saturation;
227 		struct v4l2_ctrl *hue;
228 	};
229 	struct ov7670_format_struct *fmt;  /* Current format */
230 	int min_width;			/* Filter out smaller sizes */
231 	int min_height;			/* Filter out smaller sizes */
232 	int clock_speed;		/* External clock speed (MHz) */
233 	u8 clkrc;			/* Clock divider value */
234 	bool use_smbus;			/* Use smbus I/O instead of I2C */
235 	bool pll_bypass;
236 	bool pclk_hb_disable;
237 	const struct ov7670_devtype *devtype; /* Device specifics */
238 };
239 
240 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
241 {
242 	return container_of(sd, struct ov7670_info, sd);
243 }
244 
245 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
246 {
247 	return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd;
248 }
249 
250 
251 
252 /*
253  * The default register settings, as obtained from OmniVision.  There
254  * is really no making sense of most of these - lots of "reserved" values
255  * and such.
256  *
257  * These settings give VGA YUYV.
258  */
259 
260 struct regval_list {
261 	unsigned char reg_num;
262 	unsigned char value;
263 };
264 
265 static struct regval_list ov7670_default_regs[] = {
266 	{ REG_COM7, COM7_RESET },
267 /*
268  * Clock scale: 3 = 15fps
269  *              2 = 20fps
270  *              1 = 30fps
271  */
272 	{ REG_CLKRC, 0x1 },	/* OV: clock scale (30 fps) */
273 	{ REG_TSLB,  0x04 },	/* OV */
274 	{ REG_COM7, 0 },	/* VGA */
275 	/*
276 	 * Set the hardware window.  These values from OV don't entirely
277 	 * make sense - hstop is less than hstart.  But they work...
278 	 */
279 	{ REG_HSTART, 0x13 },	{ REG_HSTOP, 0x01 },
280 	{ REG_HREF, 0xb6 },	{ REG_VSTART, 0x02 },
281 	{ REG_VSTOP, 0x7a },	{ REG_VREF, 0x0a },
282 
283 	{ REG_COM3, 0 },	{ REG_COM14, 0 },
284 	/* Mystery scaling numbers */
285 	{ 0x70, 0x3a },		{ 0x71, 0x35 },
286 	{ 0x72, 0x11 },		{ 0x73, 0xf0 },
287 	{ 0xa2, 0x02 },		{ REG_COM10, 0x0 },
288 
289 	/* Gamma curve values */
290 	{ 0x7a, 0x20 },		{ 0x7b, 0x10 },
291 	{ 0x7c, 0x1e },		{ 0x7d, 0x35 },
292 	{ 0x7e, 0x5a },		{ 0x7f, 0x69 },
293 	{ 0x80, 0x76 },		{ 0x81, 0x80 },
294 	{ 0x82, 0x88 },		{ 0x83, 0x8f },
295 	{ 0x84, 0x96 },		{ 0x85, 0xa3 },
296 	{ 0x86, 0xaf },		{ 0x87, 0xc4 },
297 	{ 0x88, 0xd7 },		{ 0x89, 0xe8 },
298 
299 	/* AGC and AEC parameters.  Note we start by disabling those features,
300 	   then turn them only after tweaking the values. */
301 	{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
302 	{ REG_GAIN, 0 },	{ REG_AECH, 0 },
303 	{ REG_COM4, 0x40 }, /* magic reserved bit */
304 	{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
305 	{ REG_BD50MAX, 0x05 },	{ REG_BD60MAX, 0x07 },
306 	{ REG_AEW, 0x95 },	{ REG_AEB, 0x33 },
307 	{ REG_VPT, 0xe3 },	{ REG_HAECC1, 0x78 },
308 	{ REG_HAECC2, 0x68 },	{ 0xa1, 0x03 }, /* magic */
309 	{ REG_HAECC3, 0xd8 },	{ REG_HAECC4, 0xd8 },
310 	{ REG_HAECC5, 0xf0 },	{ REG_HAECC6, 0x90 },
311 	{ REG_HAECC7, 0x94 },
312 	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
313 
314 	/* Almost all of these are magic "reserved" values.  */
315 	{ REG_COM5, 0x61 },	{ REG_COM6, 0x4b },
316 	{ 0x16, 0x02 },		{ REG_MVFP, 0x07 },
317 	{ 0x21, 0x02 },		{ 0x22, 0x91 },
318 	{ 0x29, 0x07 },		{ 0x33, 0x0b },
319 	{ 0x35, 0x0b },		{ 0x37, 0x1d },
320 	{ 0x38, 0x71 },		{ 0x39, 0x2a },
321 	{ REG_COM12, 0x78 },	{ 0x4d, 0x40 },
322 	{ 0x4e, 0x20 },		{ REG_GFIX, 0 },
323 	{ 0x6b, 0x4a },		{ 0x74, 0x10 },
324 	{ 0x8d, 0x4f },		{ 0x8e, 0 },
325 	{ 0x8f, 0 },		{ 0x90, 0 },
326 	{ 0x91, 0 },		{ 0x96, 0 },
327 	{ 0x9a, 0 },		{ 0xb0, 0x84 },
328 	{ 0xb1, 0x0c },		{ 0xb2, 0x0e },
329 	{ 0xb3, 0x82 },		{ 0xb8, 0x0a },
330 
331 	/* More reserved magic, some of which tweaks white balance */
332 	{ 0x43, 0x0a },		{ 0x44, 0xf0 },
333 	{ 0x45, 0x34 },		{ 0x46, 0x58 },
334 	{ 0x47, 0x28 },		{ 0x48, 0x3a },
335 	{ 0x59, 0x88 },		{ 0x5a, 0x88 },
336 	{ 0x5b, 0x44 },		{ 0x5c, 0x67 },
337 	{ 0x5d, 0x49 },		{ 0x5e, 0x0e },
338 	{ 0x6c, 0x0a },		{ 0x6d, 0x55 },
339 	{ 0x6e, 0x11 },		{ 0x6f, 0x9f }, /* "9e for advance AWB" */
340 	{ 0x6a, 0x40 },		{ REG_BLUE, 0x40 },
341 	{ REG_RED, 0x60 },
342 	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
343 
344 	/* Matrix coefficients */
345 	{ 0x4f, 0x80 },		{ 0x50, 0x80 },
346 	{ 0x51, 0 },		{ 0x52, 0x22 },
347 	{ 0x53, 0x5e },		{ 0x54, 0x80 },
348 	{ 0x58, 0x9e },
349 
350 	{ REG_COM16, COM16_AWBGAIN },	{ REG_EDGE, 0 },
351 	{ 0x75, 0x05 },		{ 0x76, 0xe1 },
352 	{ 0x4c, 0 },		{ 0x77, 0x01 },
353 	{ REG_COM13, 0xc3 },	{ 0x4b, 0x09 },
354 	{ 0xc9, 0x60 },		{ REG_COM16, 0x38 },
355 	{ 0x56, 0x40 },
356 
357 	{ 0x34, 0x11 },		{ REG_COM11, COM11_EXP|COM11_HZAUTO },
358 	{ 0xa4, 0x88 },		{ 0x96, 0 },
359 	{ 0x97, 0x30 },		{ 0x98, 0x20 },
360 	{ 0x99, 0x30 },		{ 0x9a, 0x84 },
361 	{ 0x9b, 0x29 },		{ 0x9c, 0x03 },
362 	{ 0x9d, 0x4c },		{ 0x9e, 0x3f },
363 	{ 0x78, 0x04 },
364 
365 	/* Extra-weird stuff.  Some sort of multiplexor register */
366 	{ 0x79, 0x01 },		{ 0xc8, 0xf0 },
367 	{ 0x79, 0x0f },		{ 0xc8, 0x00 },
368 	{ 0x79, 0x10 },		{ 0xc8, 0x7e },
369 	{ 0x79, 0x0a },		{ 0xc8, 0x80 },
370 	{ 0x79, 0x0b },		{ 0xc8, 0x01 },
371 	{ 0x79, 0x0c },		{ 0xc8, 0x0f },
372 	{ 0x79, 0x0d },		{ 0xc8, 0x20 },
373 	{ 0x79, 0x09 },		{ 0xc8, 0x80 },
374 	{ 0x79, 0x02 },		{ 0xc8, 0xc0 },
375 	{ 0x79, 0x03 },		{ 0xc8, 0x40 },
376 	{ 0x79, 0x05 },		{ 0xc8, 0x30 },
377 	{ 0x79, 0x26 },
378 
379 	{ 0xff, 0xff },	/* END MARKER */
380 };
381 
382 
383 /*
384  * Here we'll try to encapsulate the changes for just the output
385  * video format.
386  *
387  * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
388  *
389  * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
390  */
391 
392 
393 static struct regval_list ov7670_fmt_yuv422[] = {
394 	{ REG_COM7, 0x0 },  /* Selects YUV mode */
395 	{ REG_RGB444, 0 },	/* No RGB444 please */
396 	{ REG_COM1, 0 },	/* CCIR601 */
397 	{ REG_COM15, COM15_R00FF },
398 	{ REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
399 	{ 0x4f, 0x80 }, 	/* "matrix coefficient 1" */
400 	{ 0x50, 0x80 }, 	/* "matrix coefficient 2" */
401 	{ 0x51, 0    },		/* vb */
402 	{ 0x52, 0x22 }, 	/* "matrix coefficient 4" */
403 	{ 0x53, 0x5e }, 	/* "matrix coefficient 5" */
404 	{ 0x54, 0x80 }, 	/* "matrix coefficient 6" */
405 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
406 	{ 0xff, 0xff },
407 };
408 
409 static struct regval_list ov7670_fmt_rgb565[] = {
410 	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
411 	{ REG_RGB444, 0 },	/* No RGB444 please */
412 	{ REG_COM1, 0x0 },	/* CCIR601 */
413 	{ REG_COM15, COM15_RGB565 },
414 	{ REG_COM9, 0x38 }, 	/* 16x gain ceiling; 0x8 is reserved bit */
415 	{ 0x4f, 0xb3 }, 	/* "matrix coefficient 1" */
416 	{ 0x50, 0xb3 }, 	/* "matrix coefficient 2" */
417 	{ 0x51, 0    },		/* vb */
418 	{ 0x52, 0x3d }, 	/* "matrix coefficient 4" */
419 	{ 0x53, 0xa7 }, 	/* "matrix coefficient 5" */
420 	{ 0x54, 0xe4 }, 	/* "matrix coefficient 6" */
421 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
422 	{ 0xff, 0xff },
423 };
424 
425 static struct regval_list ov7670_fmt_rgb444[] = {
426 	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
427 	{ REG_RGB444, R444_ENABLE },	/* Enable xxxxrrrr ggggbbbb */
428 	{ REG_COM1, 0x0 },	/* CCIR601 */
429 	{ REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
430 	{ REG_COM9, 0x38 }, 	/* 16x gain ceiling; 0x8 is reserved bit */
431 	{ 0x4f, 0xb3 }, 	/* "matrix coefficient 1" */
432 	{ 0x50, 0xb3 }, 	/* "matrix coefficient 2" */
433 	{ 0x51, 0    },		/* vb */
434 	{ 0x52, 0x3d }, 	/* "matrix coefficient 4" */
435 	{ 0x53, 0xa7 }, 	/* "matrix coefficient 5" */
436 	{ 0x54, 0xe4 }, 	/* "matrix coefficient 6" */
437 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 },  /* Magic rsvd bit */
438 	{ 0xff, 0xff },
439 };
440 
441 static struct regval_list ov7670_fmt_raw[] = {
442 	{ REG_COM7, COM7_BAYER },
443 	{ REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
444 	{ REG_COM16, 0x3d }, /* Edge enhancement, denoise */
445 	{ REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
446 	{ 0xff, 0xff },
447 };
448 
449 
450 
451 /*
452  * Low-level register I/O.
453  *
454  * Note that there are two versions of these.  On the XO 1, the
455  * i2c controller only does SMBUS, so that's what we use.  The
456  * ov7670 is not really an SMBUS device, though, so the communication
457  * is not always entirely reliable.
458  */
459 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
460 		unsigned char *value)
461 {
462 	struct i2c_client *client = v4l2_get_subdevdata(sd);
463 	int ret;
464 
465 	ret = i2c_smbus_read_byte_data(client, reg);
466 	if (ret >= 0) {
467 		*value = (unsigned char)ret;
468 		ret = 0;
469 	}
470 	return ret;
471 }
472 
473 
474 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
475 		unsigned char value)
476 {
477 	struct i2c_client *client = v4l2_get_subdevdata(sd);
478 	int ret = i2c_smbus_write_byte_data(client, reg, value);
479 
480 	if (reg == REG_COM7 && (value & COM7_RESET))
481 		msleep(5);  /* Wait for reset to run */
482 	return ret;
483 }
484 
485 /*
486  * On most platforms, we'd rather do straight i2c I/O.
487  */
488 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
489 		unsigned char *value)
490 {
491 	struct i2c_client *client = v4l2_get_subdevdata(sd);
492 	u8 data = reg;
493 	struct i2c_msg msg;
494 	int ret;
495 
496 	/*
497 	 * Send out the register address...
498 	 */
499 	msg.addr = client->addr;
500 	msg.flags = 0;
501 	msg.len = 1;
502 	msg.buf = &data;
503 	ret = i2c_transfer(client->adapter, &msg, 1);
504 	if (ret < 0) {
505 		printk(KERN_ERR "Error %d on register write\n", ret);
506 		return ret;
507 	}
508 	/*
509 	 * ...then read back the result.
510 	 */
511 	msg.flags = I2C_M_RD;
512 	ret = i2c_transfer(client->adapter, &msg, 1);
513 	if (ret >= 0) {
514 		*value = data;
515 		ret = 0;
516 	}
517 	return ret;
518 }
519 
520 
521 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
522 		unsigned char value)
523 {
524 	struct i2c_client *client = v4l2_get_subdevdata(sd);
525 	struct i2c_msg msg;
526 	unsigned char data[2] = { reg, value };
527 	int ret;
528 
529 	msg.addr = client->addr;
530 	msg.flags = 0;
531 	msg.len = 2;
532 	msg.buf = data;
533 	ret = i2c_transfer(client->adapter, &msg, 1);
534 	if (ret > 0)
535 		ret = 0;
536 	if (reg == REG_COM7 && (value & COM7_RESET))
537 		msleep(5);  /* Wait for reset to run */
538 	return ret;
539 }
540 
541 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
542 		unsigned char *value)
543 {
544 	struct ov7670_info *info = to_state(sd);
545 	if (info->use_smbus)
546 		return ov7670_read_smbus(sd, reg, value);
547 	else
548 		return ov7670_read_i2c(sd, reg, value);
549 }
550 
551 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
552 		unsigned char value)
553 {
554 	struct ov7670_info *info = to_state(sd);
555 	if (info->use_smbus)
556 		return ov7670_write_smbus(sd, reg, value);
557 	else
558 		return ov7670_write_i2c(sd, reg, value);
559 }
560 
561 /*
562  * Write a list of register settings; ff/ff stops the process.
563  */
564 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
565 {
566 	while (vals->reg_num != 0xff || vals->value != 0xff) {
567 		int ret = ov7670_write(sd, vals->reg_num, vals->value);
568 		if (ret < 0)
569 			return ret;
570 		vals++;
571 	}
572 	return 0;
573 }
574 
575 
576 /*
577  * Stuff that knows about the sensor.
578  */
579 static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
580 {
581 	ov7670_write(sd, REG_COM7, COM7_RESET);
582 	msleep(1);
583 	return 0;
584 }
585 
586 
587 static int ov7670_init(struct v4l2_subdev *sd, u32 val)
588 {
589 	return ov7670_write_array(sd, ov7670_default_regs);
590 }
591 
592 
593 
594 static int ov7670_detect(struct v4l2_subdev *sd)
595 {
596 	unsigned char v;
597 	int ret;
598 
599 	ret = ov7670_init(sd, 0);
600 	if (ret < 0)
601 		return ret;
602 	ret = ov7670_read(sd, REG_MIDH, &v);
603 	if (ret < 0)
604 		return ret;
605 	if (v != 0x7f) /* OV manuf. id. */
606 		return -ENODEV;
607 	ret = ov7670_read(sd, REG_MIDL, &v);
608 	if (ret < 0)
609 		return ret;
610 	if (v != 0xa2)
611 		return -ENODEV;
612 	/*
613 	 * OK, we know we have an OmniVision chip...but which one?
614 	 */
615 	ret = ov7670_read(sd, REG_PID, &v);
616 	if (ret < 0)
617 		return ret;
618 	if (v != 0x76)  /* PID + VER = 0x76 / 0x73 */
619 		return -ENODEV;
620 	ret = ov7670_read(sd, REG_VER, &v);
621 	if (ret < 0)
622 		return ret;
623 	if (v != 0x73)  /* PID + VER = 0x76 / 0x73 */
624 		return -ENODEV;
625 	return 0;
626 }
627 
628 
629 /*
630  * Store information about the video data format.  The color matrix
631  * is deeply tied into the format, so keep the relevant values here.
632  * The magic matrix numbers come from OmniVision.
633  */
634 static struct ov7670_format_struct {
635 	u32 mbus_code;
636 	enum v4l2_colorspace colorspace;
637 	struct regval_list *regs;
638 	int cmatrix[CMATRIX_LEN];
639 } ov7670_formats[] = {
640 	{
641 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
642 		.colorspace	= V4L2_COLORSPACE_JPEG,
643 		.regs 		= ov7670_fmt_yuv422,
644 		.cmatrix	= { 128, -128, 0, -34, -94, 128 },
645 	},
646 	{
647 		.mbus_code	= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
648 		.colorspace	= V4L2_COLORSPACE_SRGB,
649 		.regs		= ov7670_fmt_rgb444,
650 		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
651 	},
652 	{
653 		.mbus_code	= MEDIA_BUS_FMT_RGB565_2X8_LE,
654 		.colorspace	= V4L2_COLORSPACE_SRGB,
655 		.regs		= ov7670_fmt_rgb565,
656 		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
657 	},
658 	{
659 		.mbus_code	= MEDIA_BUS_FMT_SBGGR8_1X8,
660 		.colorspace	= V4L2_COLORSPACE_SRGB,
661 		.regs 		= ov7670_fmt_raw,
662 		.cmatrix	= { 0, 0, 0, 0, 0, 0 },
663 	},
664 };
665 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
666 
667 
668 /*
669  * Then there is the issue of window sizes.  Try to capture the info here.
670  */
671 
672 /*
673  * QCIF mode is done (by OV) in a very strange way - it actually looks like
674  * VGA with weird scaling options - they do *not* use the canned QCIF mode
675  * which is allegedly provided by the sensor.  So here's the weird register
676  * settings.
677  */
678 static struct regval_list ov7670_qcif_regs[] = {
679 	{ REG_COM3, COM3_SCALEEN|COM3_DCWEN },
680 	{ REG_COM3, COM3_DCWEN },
681 	{ REG_COM14, COM14_DCWEN | 0x01},
682 	{ 0x73, 0xf1 },
683 	{ 0xa2, 0x52 },
684 	{ 0x7b, 0x1c },
685 	{ 0x7c, 0x28 },
686 	{ 0x7d, 0x3c },
687 	{ 0x7f, 0x69 },
688 	{ REG_COM9, 0x38 },
689 	{ 0xa1, 0x0b },
690 	{ 0x74, 0x19 },
691 	{ 0x9a, 0x80 },
692 	{ 0x43, 0x14 },
693 	{ REG_COM13, 0xc0 },
694 	{ 0xff, 0xff },
695 };
696 
697 static struct ov7670_win_size ov7670_win_sizes[] = {
698 	/* VGA */
699 	{
700 		.width		= VGA_WIDTH,
701 		.height		= VGA_HEIGHT,
702 		.com7_bit	= COM7_FMT_VGA,
703 		.hstart		= 158,	/* These values from */
704 		.hstop		=  14,	/* Omnivision */
705 		.vstart		=  10,
706 		.vstop		= 490,
707 		.regs		= NULL,
708 	},
709 	/* CIF */
710 	{
711 		.width		= CIF_WIDTH,
712 		.height		= CIF_HEIGHT,
713 		.com7_bit	= COM7_FMT_CIF,
714 		.hstart		= 170,	/* Empirically determined */
715 		.hstop		=  90,
716 		.vstart		=  14,
717 		.vstop		= 494,
718 		.regs		= NULL,
719 	},
720 	/* QVGA */
721 	{
722 		.width		= QVGA_WIDTH,
723 		.height		= QVGA_HEIGHT,
724 		.com7_bit	= COM7_FMT_QVGA,
725 		.hstart		= 168,	/* Empirically determined */
726 		.hstop		=  24,
727 		.vstart		=  12,
728 		.vstop		= 492,
729 		.regs		= NULL,
730 	},
731 	/* QCIF */
732 	{
733 		.width		= QCIF_WIDTH,
734 		.height		= QCIF_HEIGHT,
735 		.com7_bit	= COM7_FMT_VGA, /* see comment above */
736 		.hstart		= 456,	/* Empirically determined */
737 		.hstop		=  24,
738 		.vstart		=  14,
739 		.vstop		= 494,
740 		.regs		= ov7670_qcif_regs,
741 	}
742 };
743 
744 static struct ov7670_win_size ov7675_win_sizes[] = {
745 	/*
746 	 * Currently, only VGA is supported. Theoretically it could be possible
747 	 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
748 	 * base and tweak them empirically could be required.
749 	 */
750 	{
751 		.width		= VGA_WIDTH,
752 		.height		= VGA_HEIGHT,
753 		.com7_bit	= COM7_FMT_VGA,
754 		.hstart		= 158,	/* These values from */
755 		.hstop		=  14,	/* Omnivision */
756 		.vstart		=  14,  /* Empirically determined */
757 		.vstop		= 494,
758 		.regs		= NULL,
759 	}
760 };
761 
762 static void ov7675_get_framerate(struct v4l2_subdev *sd,
763 				 struct v4l2_fract *tpf)
764 {
765 	struct ov7670_info *info = to_state(sd);
766 	u32 clkrc = info->clkrc;
767 	int pll_factor;
768 
769 	if (info->pll_bypass)
770 		pll_factor = 1;
771 	else
772 		pll_factor = PLL_FACTOR;
773 
774 	clkrc++;
775 	if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
776 		clkrc = (clkrc >> 1);
777 
778 	tpf->numerator = 1;
779 	tpf->denominator = (5 * pll_factor * info->clock_speed) /
780 			(4 * clkrc);
781 }
782 
783 static int ov7675_set_framerate(struct v4l2_subdev *sd,
784 				 struct v4l2_fract *tpf)
785 {
786 	struct ov7670_info *info = to_state(sd);
787 	u32 clkrc;
788 	int pll_factor;
789 	int ret;
790 
791 	/*
792 	 * The formula is fps = 5/4*pixclk for YUV/RGB and
793 	 * fps = 5/2*pixclk for RAW.
794 	 *
795 	 * pixclk = clock_speed / (clkrc + 1) * PLLfactor
796 	 *
797 	 */
798 	if (info->pll_bypass) {
799 		pll_factor = 1;
800 		ret = ov7670_write(sd, REG_DBLV, DBLV_BYPASS);
801 	} else {
802 		pll_factor = PLL_FACTOR;
803 		ret = ov7670_write(sd, REG_DBLV, DBLV_X4);
804 	}
805 	if (ret < 0)
806 		return ret;
807 
808 	if (tpf->numerator == 0 || tpf->denominator == 0) {
809 		clkrc = 0;
810 	} else {
811 		clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) /
812 			(4 * tpf->denominator);
813 		if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
814 			clkrc = (clkrc << 1);
815 		clkrc--;
816 	}
817 
818 	/*
819 	 * The datasheet claims that clkrc = 0 will divide the input clock by 1
820 	 * but we've checked with an oscilloscope that it divides by 2 instead.
821 	 * So, if clkrc = 0 just bypass the divider.
822 	 */
823 	if (clkrc <= 0)
824 		clkrc = CLK_EXT;
825 	else if (clkrc > CLK_SCALE)
826 		clkrc = CLK_SCALE;
827 	info->clkrc = clkrc;
828 
829 	/* Recalculate frame rate */
830 	ov7675_get_framerate(sd, tpf);
831 
832 	ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
833 	if (ret < 0)
834 		return ret;
835 
836 	return ov7670_write(sd, REG_DBLV, DBLV_X4);
837 }
838 
839 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd,
840 				 struct v4l2_fract *tpf)
841 {
842 	struct ov7670_info *info = to_state(sd);
843 
844 	tpf->numerator = 1;
845 	tpf->denominator = info->clock_speed;
846 	if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
847 		tpf->denominator /= (info->clkrc & CLK_SCALE);
848 }
849 
850 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd,
851 					struct v4l2_fract *tpf)
852 {
853 	struct ov7670_info *info = to_state(sd);
854 	int div;
855 
856 	if (tpf->numerator == 0 || tpf->denominator == 0)
857 		div = 1;  /* Reset to full rate */
858 	else
859 		div = (tpf->numerator * info->clock_speed) / tpf->denominator;
860 	if (div == 0)
861 		div = 1;
862 	else if (div > CLK_SCALE)
863 		div = CLK_SCALE;
864 	info->clkrc = (info->clkrc & 0x80) | div;
865 	tpf->numerator = 1;
866 	tpf->denominator = info->clock_speed / div;
867 	return ov7670_write(sd, REG_CLKRC, info->clkrc);
868 }
869 
870 /*
871  * Store a set of start/stop values into the camera.
872  */
873 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
874 		int vstart, int vstop)
875 {
876 	int ret;
877 	unsigned char v;
878 /*
879  * Horizontal: 11 bits, top 8 live in hstart and hstop.  Bottom 3 of
880  * hstart are in href[2:0], bottom 3 of hstop in href[5:3].  There is
881  * a mystery "edge offset" value in the top two bits of href.
882  */
883 	ret =  ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
884 	ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
885 	ret += ov7670_read(sd, REG_HREF, &v);
886 	v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
887 	msleep(10);
888 	ret += ov7670_write(sd, REG_HREF, v);
889 /*
890  * Vertical: similar arrangement, but only 10 bits.
891  */
892 	ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
893 	ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
894 	ret += ov7670_read(sd, REG_VREF, &v);
895 	v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
896 	msleep(10);
897 	ret += ov7670_write(sd, REG_VREF, v);
898 	return ret;
899 }
900 
901 
902 static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
903 					u32 *code)
904 {
905 	if (index >= N_OV7670_FMTS)
906 		return -EINVAL;
907 
908 	*code = ov7670_formats[index].mbus_code;
909 	return 0;
910 }
911 
912 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
913 		struct v4l2_mbus_framefmt *fmt,
914 		struct ov7670_format_struct **ret_fmt,
915 		struct ov7670_win_size **ret_wsize)
916 {
917 	int index, i;
918 	struct ov7670_win_size *wsize;
919 	struct ov7670_info *info = to_state(sd);
920 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
921 	unsigned int win_sizes_limit = n_win_sizes;
922 
923 	for (index = 0; index < N_OV7670_FMTS; index++)
924 		if (ov7670_formats[index].mbus_code == fmt->code)
925 			break;
926 	if (index >= N_OV7670_FMTS) {
927 		/* default to first format */
928 		index = 0;
929 		fmt->code = ov7670_formats[0].mbus_code;
930 	}
931 	if (ret_fmt != NULL)
932 		*ret_fmt = ov7670_formats + index;
933 	/*
934 	 * Fields: the OV devices claim to be progressive.
935 	 */
936 	fmt->field = V4L2_FIELD_NONE;
937 
938 	/*
939 	 * Don't consider values that don't match min_height and min_width
940 	 * constraints.
941 	 */
942 	if (info->min_width || info->min_height)
943 		for (i = 0; i < n_win_sizes; i++) {
944 			wsize = info->devtype->win_sizes + i;
945 
946 			if (wsize->width < info->min_width ||
947 				wsize->height < info->min_height) {
948 				win_sizes_limit = i;
949 				break;
950 			}
951 		}
952 	/*
953 	 * Round requested image size down to the nearest
954 	 * we support, but not below the smallest.
955 	 */
956 	for (wsize = info->devtype->win_sizes;
957 	     wsize < info->devtype->win_sizes + win_sizes_limit; wsize++)
958 		if (fmt->width >= wsize->width && fmt->height >= wsize->height)
959 			break;
960 	if (wsize >= info->devtype->win_sizes + win_sizes_limit)
961 		wsize--;   /* Take the smallest one */
962 	if (ret_wsize != NULL)
963 		*ret_wsize = wsize;
964 	/*
965 	 * Note the size we'll actually handle.
966 	 */
967 	fmt->width = wsize->width;
968 	fmt->height = wsize->height;
969 	fmt->colorspace = ov7670_formats[index].colorspace;
970 	return 0;
971 }
972 
973 static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
974 			    struct v4l2_mbus_framefmt *fmt)
975 {
976 	return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
977 }
978 
979 /*
980  * Set a format.
981  */
982 static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
983 			  struct v4l2_mbus_framefmt *fmt)
984 {
985 	struct ov7670_format_struct *ovfmt;
986 	struct ov7670_win_size *wsize;
987 	struct ov7670_info *info = to_state(sd);
988 	unsigned char com7;
989 	int ret;
990 
991 	ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
992 
993 	if (ret)
994 		return ret;
995 	/*
996 	 * COM7 is a pain in the ass, it doesn't like to be read then
997 	 * quickly written afterward.  But we have everything we need
998 	 * to set it absolutely here, as long as the format-specific
999 	 * register sets list it first.
1000 	 */
1001 	com7 = ovfmt->regs[0].value;
1002 	com7 |= wsize->com7_bit;
1003 	ov7670_write(sd, REG_COM7, com7);
1004 	/*
1005 	 * Now write the rest of the array.  Also store start/stops
1006 	 */
1007 	ov7670_write_array(sd, ovfmt->regs + 1);
1008 	ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
1009 			wsize->vstop);
1010 	ret = 0;
1011 	if (wsize->regs)
1012 		ret = ov7670_write_array(sd, wsize->regs);
1013 	info->fmt = ovfmt;
1014 
1015 	/*
1016 	 * If we're running RGB565, we must rewrite clkrc after setting
1017 	 * the other parameters or the image looks poor.  If we're *not*
1018 	 * doing RGB565, we must not rewrite clkrc or the image looks
1019 	 * *really* poor.
1020 	 *
1021 	 * (Update) Now that we retain clkrc state, we should be able
1022 	 * to write it unconditionally, and that will make the frame
1023 	 * rate persistent too.
1024 	 */
1025 	if (ret == 0)
1026 		ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Implement G/S_PARM.  There is a "high quality" mode we could try
1032  * to do someday; for now, we just do the frame rate tweak.
1033  */
1034 static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1035 {
1036 	struct v4l2_captureparm *cp = &parms->parm.capture;
1037 	struct ov7670_info *info = to_state(sd);
1038 
1039 	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1040 		return -EINVAL;
1041 
1042 	memset(cp, 0, sizeof(struct v4l2_captureparm));
1043 	cp->capability = V4L2_CAP_TIMEPERFRAME;
1044 	info->devtype->get_framerate(sd, &cp->timeperframe);
1045 
1046 	return 0;
1047 }
1048 
1049 static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1050 {
1051 	struct v4l2_captureparm *cp = &parms->parm.capture;
1052 	struct v4l2_fract *tpf = &cp->timeperframe;
1053 	struct ov7670_info *info = to_state(sd);
1054 
1055 	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1056 		return -EINVAL;
1057 	if (cp->extendedmode != 0)
1058 		return -EINVAL;
1059 
1060 	return info->devtype->set_framerate(sd, tpf);
1061 }
1062 
1063 
1064 /*
1065  * Frame intervals.  Since frame rates are controlled with the clock
1066  * divider, we can only do 30/n for integer n values.  So no continuous
1067  * or stepwise options.  Here we just pick a handful of logical values.
1068  */
1069 
1070 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
1071 
1072 static int ov7670_enum_frame_interval(struct v4l2_subdev *sd,
1073 				      struct v4l2_subdev_pad_config *cfg,
1074 				      struct v4l2_subdev_frame_interval_enum *fie)
1075 {
1076 	if (fie->pad)
1077 		return -EINVAL;
1078 	if (fie->index >= ARRAY_SIZE(ov7670_frame_rates))
1079 		return -EINVAL;
1080 	fie->interval.numerator = 1;
1081 	fie->interval.denominator = ov7670_frame_rates[fie->index];
1082 	return 0;
1083 }
1084 
1085 /*
1086  * Frame size enumeration
1087  */
1088 static int ov7670_enum_frame_size(struct v4l2_subdev *sd,
1089 				  struct v4l2_subdev_pad_config *cfg,
1090 				  struct v4l2_subdev_frame_size_enum *fse)
1091 {
1092 	struct ov7670_info *info = to_state(sd);
1093 	int i;
1094 	int num_valid = -1;
1095 	__u32 index = fse->index;
1096 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
1097 
1098 	if (fse->pad)
1099 		return -EINVAL;
1100 
1101 	/*
1102 	 * If a minimum width/height was requested, filter out the capture
1103 	 * windows that fall outside that.
1104 	 */
1105 	for (i = 0; i < n_win_sizes; i++) {
1106 		struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1107 		if (info->min_width && win->width < info->min_width)
1108 			continue;
1109 		if (info->min_height && win->height < info->min_height)
1110 			continue;
1111 		if (index == ++num_valid) {
1112 			fse->min_width = fse->max_width = win->width;
1113 			fse->min_height = fse->max_height = win->height;
1114 			return 0;
1115 		}
1116 	}
1117 
1118 	return -EINVAL;
1119 }
1120 
1121 /*
1122  * Code for dealing with controls.
1123  */
1124 
1125 static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
1126 		int matrix[CMATRIX_LEN])
1127 {
1128 	int i, ret;
1129 	unsigned char signbits = 0;
1130 
1131 	/*
1132 	 * Weird crap seems to exist in the upper part of
1133 	 * the sign bits register, so let's preserve it.
1134 	 */
1135 	ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
1136 	signbits &= 0xc0;
1137 
1138 	for (i = 0; i < CMATRIX_LEN; i++) {
1139 		unsigned char raw;
1140 
1141 		if (matrix[i] < 0) {
1142 			signbits |= (1 << i);
1143 			if (matrix[i] < -255)
1144 				raw = 0xff;
1145 			else
1146 				raw = (-1 * matrix[i]) & 0xff;
1147 		}
1148 		else {
1149 			if (matrix[i] > 255)
1150 				raw = 0xff;
1151 			else
1152 				raw = matrix[i] & 0xff;
1153 		}
1154 		ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
1155 	}
1156 	ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
1157 	return ret;
1158 }
1159 
1160 
1161 /*
1162  * Hue also requires messing with the color matrix.  It also requires
1163  * trig functions, which tend not to be well supported in the kernel.
1164  * So here is a simple table of sine values, 0-90 degrees, in steps
1165  * of five degrees.  Values are multiplied by 1000.
1166  *
1167  * The following naive approximate trig functions require an argument
1168  * carefully limited to -180 <= theta <= 180.
1169  */
1170 #define SIN_STEP 5
1171 static const int ov7670_sin_table[] = {
1172 	   0,	 87,   173,   258,   342,   422,
1173 	 499,	573,   642,   707,   766,   819,
1174 	 866,	906,   939,   965,   984,   996,
1175 	1000
1176 };
1177 
1178 static int ov7670_sine(int theta)
1179 {
1180 	int chs = 1;
1181 	int sine;
1182 
1183 	if (theta < 0) {
1184 		theta = -theta;
1185 		chs = -1;
1186 	}
1187 	if (theta <= 90)
1188 		sine = ov7670_sin_table[theta/SIN_STEP];
1189 	else {
1190 		theta -= 90;
1191 		sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1192 	}
1193 	return sine*chs;
1194 }
1195 
1196 static int ov7670_cosine(int theta)
1197 {
1198 	theta = 90 - theta;
1199 	if (theta > 180)
1200 		theta -= 360;
1201 	else if (theta < -180)
1202 		theta += 360;
1203 	return ov7670_sine(theta);
1204 }
1205 
1206 
1207 
1208 
1209 static void ov7670_calc_cmatrix(struct ov7670_info *info,
1210 		int matrix[CMATRIX_LEN], int sat, int hue)
1211 {
1212 	int i;
1213 	/*
1214 	 * Apply the current saturation setting first.
1215 	 */
1216 	for (i = 0; i < CMATRIX_LEN; i++)
1217 		matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7;
1218 	/*
1219 	 * Then, if need be, rotate the hue value.
1220 	 */
1221 	if (hue != 0) {
1222 		int sinth, costh, tmpmatrix[CMATRIX_LEN];
1223 
1224 		memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1225 		sinth = ov7670_sine(hue);
1226 		costh = ov7670_cosine(hue);
1227 
1228 		matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1229 		matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1230 		matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1231 		matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1232 		matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1233 		matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1234 	}
1235 }
1236 
1237 
1238 
1239 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue)
1240 {
1241 	struct ov7670_info *info = to_state(sd);
1242 	int matrix[CMATRIX_LEN];
1243 	int ret;
1244 
1245 	ov7670_calc_cmatrix(info, matrix, sat, hue);
1246 	ret = ov7670_store_cmatrix(sd, matrix);
1247 	return ret;
1248 }
1249 
1250 
1251 /*
1252  * Some weird registers seem to store values in a sign/magnitude format!
1253  */
1254 
1255 static unsigned char ov7670_abs_to_sm(unsigned char v)
1256 {
1257 	if (v > 127)
1258 		return v & 0x7f;
1259 	return (128 - v) | 0x80;
1260 }
1261 
1262 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1263 {
1264 	unsigned char com8 = 0, v;
1265 	int ret;
1266 
1267 	ov7670_read(sd, REG_COM8, &com8);
1268 	com8 &= ~COM8_AEC;
1269 	ov7670_write(sd, REG_COM8, com8);
1270 	v = ov7670_abs_to_sm(value);
1271 	ret = ov7670_write(sd, REG_BRIGHT, v);
1272 	return ret;
1273 }
1274 
1275 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1276 {
1277 	return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1278 }
1279 
1280 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1281 {
1282 	unsigned char v = 0;
1283 	int ret;
1284 
1285 	ret = ov7670_read(sd, REG_MVFP, &v);
1286 	if (value)
1287 		v |= MVFP_MIRROR;
1288 	else
1289 		v &= ~MVFP_MIRROR;
1290 	msleep(10);  /* FIXME */
1291 	ret += ov7670_write(sd, REG_MVFP, v);
1292 	return ret;
1293 }
1294 
1295 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1296 {
1297 	unsigned char v = 0;
1298 	int ret;
1299 
1300 	ret = ov7670_read(sd, REG_MVFP, &v);
1301 	if (value)
1302 		v |= MVFP_FLIP;
1303 	else
1304 		v &= ~MVFP_FLIP;
1305 	msleep(10);  /* FIXME */
1306 	ret += ov7670_write(sd, REG_MVFP, v);
1307 	return ret;
1308 }
1309 
1310 /*
1311  * GAIN is split between REG_GAIN and REG_VREF[7:6].  If one believes
1312  * the data sheet, the VREF parts should be the most significant, but
1313  * experience shows otherwise.  There seems to be little value in
1314  * messing with the VREF bits, so we leave them alone.
1315  */
1316 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1317 {
1318 	int ret;
1319 	unsigned char gain;
1320 
1321 	ret = ov7670_read(sd, REG_GAIN, &gain);
1322 	*value = gain;
1323 	return ret;
1324 }
1325 
1326 static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1327 {
1328 	int ret;
1329 	unsigned char com8;
1330 
1331 	ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1332 	/* Have to turn off AGC as well */
1333 	if (ret == 0) {
1334 		ret = ov7670_read(sd, REG_COM8, &com8);
1335 		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1336 	}
1337 	return ret;
1338 }
1339 
1340 /*
1341  * Tweak autogain.
1342  */
1343 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1344 {
1345 	int ret;
1346 	unsigned char com8;
1347 
1348 	ret = ov7670_read(sd, REG_COM8, &com8);
1349 	if (ret == 0) {
1350 		if (value)
1351 			com8 |= COM8_AGC;
1352 		else
1353 			com8 &= ~COM8_AGC;
1354 		ret = ov7670_write(sd, REG_COM8, com8);
1355 	}
1356 	return ret;
1357 }
1358 
1359 static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1360 {
1361 	int ret;
1362 	unsigned char com1, com8, aech, aechh;
1363 
1364 	ret = ov7670_read(sd, REG_COM1, &com1) +
1365 		ov7670_read(sd, REG_COM8, &com8);
1366 		ov7670_read(sd, REG_AECHH, &aechh);
1367 	if (ret)
1368 		return ret;
1369 
1370 	com1 = (com1 & 0xfc) | (value & 0x03);
1371 	aech = (value >> 2) & 0xff;
1372 	aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1373 	ret = ov7670_write(sd, REG_COM1, com1) +
1374 		ov7670_write(sd, REG_AECH, aech) +
1375 		ov7670_write(sd, REG_AECHH, aechh);
1376 	/* Have to turn off AEC as well */
1377 	if (ret == 0)
1378 		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1379 	return ret;
1380 }
1381 
1382 /*
1383  * Tweak autoexposure.
1384  */
1385 static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1386 		enum v4l2_exposure_auto_type value)
1387 {
1388 	int ret;
1389 	unsigned char com8;
1390 
1391 	ret = ov7670_read(sd, REG_COM8, &com8);
1392 	if (ret == 0) {
1393 		if (value == V4L2_EXPOSURE_AUTO)
1394 			com8 |= COM8_AEC;
1395 		else
1396 			com8 &= ~COM8_AEC;
1397 		ret = ov7670_write(sd, REG_COM8, com8);
1398 	}
1399 	return ret;
1400 }
1401 
1402 
1403 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1404 {
1405 	struct v4l2_subdev *sd = to_sd(ctrl);
1406 	struct ov7670_info *info = to_state(sd);
1407 
1408 	switch (ctrl->id) {
1409 	case V4L2_CID_AUTOGAIN:
1410 		return ov7670_g_gain(sd, &info->gain->val);
1411 	}
1412 	return -EINVAL;
1413 }
1414 
1415 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl)
1416 {
1417 	struct v4l2_subdev *sd = to_sd(ctrl);
1418 	struct ov7670_info *info = to_state(sd);
1419 
1420 	switch (ctrl->id) {
1421 	case V4L2_CID_BRIGHTNESS:
1422 		return ov7670_s_brightness(sd, ctrl->val);
1423 	case V4L2_CID_CONTRAST:
1424 		return ov7670_s_contrast(sd, ctrl->val);
1425 	case V4L2_CID_SATURATION:
1426 		return ov7670_s_sat_hue(sd,
1427 				info->saturation->val, info->hue->val);
1428 	case V4L2_CID_VFLIP:
1429 		return ov7670_s_vflip(sd, ctrl->val);
1430 	case V4L2_CID_HFLIP:
1431 		return ov7670_s_hflip(sd, ctrl->val);
1432 	case V4L2_CID_AUTOGAIN:
1433 		/* Only set manual gain if auto gain is not explicitly
1434 		   turned on. */
1435 		if (!ctrl->val) {
1436 			/* ov7670_s_gain turns off auto gain */
1437 			return ov7670_s_gain(sd, info->gain->val);
1438 		}
1439 		return ov7670_s_autogain(sd, ctrl->val);
1440 	case V4L2_CID_EXPOSURE_AUTO:
1441 		/* Only set manual exposure if auto exposure is not explicitly
1442 		   turned on. */
1443 		if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
1444 			/* ov7670_s_exp turns off auto exposure */
1445 			return ov7670_s_exp(sd, info->exposure->val);
1446 		}
1447 		return ov7670_s_autoexp(sd, ctrl->val);
1448 	}
1449 	return -EINVAL;
1450 }
1451 
1452 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = {
1453 	.s_ctrl = ov7670_s_ctrl,
1454 	.g_volatile_ctrl = ov7670_g_volatile_ctrl,
1455 };
1456 
1457 #ifdef CONFIG_VIDEO_ADV_DEBUG
1458 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1459 {
1460 	unsigned char val = 0;
1461 	int ret;
1462 
1463 	ret = ov7670_read(sd, reg->reg & 0xff, &val);
1464 	reg->val = val;
1465 	reg->size = 1;
1466 	return ret;
1467 }
1468 
1469 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
1470 {
1471 	ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1472 	return 0;
1473 }
1474 #endif
1475 
1476 /* ----------------------------------------------------------------------- */
1477 
1478 static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1479 	.reset = ov7670_reset,
1480 	.init = ov7670_init,
1481 #ifdef CONFIG_VIDEO_ADV_DEBUG
1482 	.g_register = ov7670_g_register,
1483 	.s_register = ov7670_s_register,
1484 #endif
1485 };
1486 
1487 static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1488 	.enum_mbus_fmt = ov7670_enum_mbus_fmt,
1489 	.try_mbus_fmt = ov7670_try_mbus_fmt,
1490 	.s_mbus_fmt = ov7670_s_mbus_fmt,
1491 	.s_parm = ov7670_s_parm,
1492 	.g_parm = ov7670_g_parm,
1493 };
1494 
1495 static const struct v4l2_subdev_pad_ops ov7670_pad_ops = {
1496 	.enum_frame_interval = ov7670_enum_frame_interval,
1497 	.enum_frame_size = ov7670_enum_frame_size,
1498 };
1499 
1500 static const struct v4l2_subdev_ops ov7670_ops = {
1501 	.core = &ov7670_core_ops,
1502 	.video = &ov7670_video_ops,
1503 	.pad = &ov7670_pad_ops,
1504 };
1505 
1506 /* ----------------------------------------------------------------------- */
1507 
1508 static const struct ov7670_devtype ov7670_devdata[] = {
1509 	[MODEL_OV7670] = {
1510 		.win_sizes = ov7670_win_sizes,
1511 		.n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1512 		.set_framerate = ov7670_set_framerate_legacy,
1513 		.get_framerate = ov7670_get_framerate_legacy,
1514 	},
1515 	[MODEL_OV7675] = {
1516 		.win_sizes = ov7675_win_sizes,
1517 		.n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1518 		.set_framerate = ov7675_set_framerate,
1519 		.get_framerate = ov7675_get_framerate,
1520 	},
1521 };
1522 
1523 static int ov7670_probe(struct i2c_client *client,
1524 			const struct i2c_device_id *id)
1525 {
1526 	struct v4l2_fract tpf;
1527 	struct v4l2_subdev *sd;
1528 	struct ov7670_info *info;
1529 	int ret;
1530 
1531 	info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL);
1532 	if (info == NULL)
1533 		return -ENOMEM;
1534 	sd = &info->sd;
1535 	v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1536 
1537 	info->clock_speed = 30; /* default: a guess */
1538 	if (client->dev.platform_data) {
1539 		struct ov7670_config *config = client->dev.platform_data;
1540 
1541 		/*
1542 		 * Must apply configuration before initializing device, because it
1543 		 * selects I/O method.
1544 		 */
1545 		info->min_width = config->min_width;
1546 		info->min_height = config->min_height;
1547 		info->use_smbus = config->use_smbus;
1548 
1549 		if (config->clock_speed)
1550 			info->clock_speed = config->clock_speed;
1551 
1552 		/*
1553 		 * It should be allowed for ov7670 too when it is migrated to
1554 		 * the new frame rate formula.
1555 		 */
1556 		if (config->pll_bypass && id->driver_data != MODEL_OV7670)
1557 			info->pll_bypass = true;
1558 
1559 		if (config->pclk_hb_disable)
1560 			info->pclk_hb_disable = true;
1561 	}
1562 
1563 	/* Make sure it's an ov7670 */
1564 	ret = ov7670_detect(sd);
1565 	if (ret) {
1566 		v4l_dbg(1, debug, client,
1567 			"chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1568 			client->addr << 1, client->adapter->name);
1569 		return ret;
1570 	}
1571 	v4l_info(client, "chip found @ 0x%02x (%s)\n",
1572 			client->addr << 1, client->adapter->name);
1573 
1574 	info->devtype = &ov7670_devdata[id->driver_data];
1575 	info->fmt = &ov7670_formats[0];
1576 	info->clkrc = 0;
1577 
1578 	/* Set default frame rate to 30 fps */
1579 	tpf.numerator = 1;
1580 	tpf.denominator = 30;
1581 	info->devtype->set_framerate(sd, &tpf);
1582 
1583 	if (info->pclk_hb_disable)
1584 		ov7670_write(sd, REG_COM10, COM10_PCLK_HB);
1585 
1586 	v4l2_ctrl_handler_init(&info->hdl, 10);
1587 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1588 			V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
1589 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1590 			V4L2_CID_CONTRAST, 0, 127, 1, 64);
1591 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1592 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1593 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1594 			V4L2_CID_HFLIP, 0, 1, 1, 0);
1595 	info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1596 			V4L2_CID_SATURATION, 0, 256, 1, 128);
1597 	info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1598 			V4L2_CID_HUE, -180, 180, 5, 0);
1599 	info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1600 			V4L2_CID_GAIN, 0, 255, 1, 128);
1601 	info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1602 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1603 	info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1604 			V4L2_CID_EXPOSURE, 0, 65535, 1, 500);
1605 	info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops,
1606 			V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0,
1607 			V4L2_EXPOSURE_AUTO);
1608 	sd->ctrl_handler = &info->hdl;
1609 	if (info->hdl.error) {
1610 		int err = info->hdl.error;
1611 
1612 		v4l2_ctrl_handler_free(&info->hdl);
1613 		return err;
1614 	}
1615 	/*
1616 	 * We have checked empirically that hw allows to read back the gain
1617 	 * value chosen by auto gain but that's not the case for auto exposure.
1618 	 */
1619 	v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true);
1620 	v4l2_ctrl_auto_cluster(2, &info->auto_exposure,
1621 			       V4L2_EXPOSURE_MANUAL, false);
1622 	v4l2_ctrl_cluster(2, &info->saturation);
1623 	v4l2_ctrl_handler_setup(&info->hdl);
1624 
1625 	return 0;
1626 }
1627 
1628 
1629 static int ov7670_remove(struct i2c_client *client)
1630 {
1631 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1632 	struct ov7670_info *info = to_state(sd);
1633 
1634 	v4l2_device_unregister_subdev(sd);
1635 	v4l2_ctrl_handler_free(&info->hdl);
1636 	return 0;
1637 }
1638 
1639 static const struct i2c_device_id ov7670_id[] = {
1640 	{ "ov7670", MODEL_OV7670 },
1641 	{ "ov7675", MODEL_OV7675 },
1642 	{ }
1643 };
1644 MODULE_DEVICE_TABLE(i2c, ov7670_id);
1645 
1646 static struct i2c_driver ov7670_driver = {
1647 	.driver = {
1648 		.owner	= THIS_MODULE,
1649 		.name	= "ov7670",
1650 	},
1651 	.probe		= ov7670_probe,
1652 	.remove		= ov7670_remove,
1653 	.id_table	= ov7670_id,
1654 };
1655 
1656 module_i2c_driver(ov7670_driver);
1657