1 /* 2 * A V4L2 driver for OmniVision OV7670 cameras. 3 * 4 * Copyright 2006 One Laptop Per Child Association, Inc. Written 5 * by Jonathan Corbet with substantial inspiration from Mark 6 * McClelland's ovcamchip code. 7 * 8 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net> 9 * 10 * This file may be distributed under the terms of the GNU General 11 * Public License, version 2. 12 */ 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/delay.h> 18 #include <linux/videodev2.h> 19 #include <media/v4l2-device.h> 20 #include <media/v4l2-ctrls.h> 21 #include <media/v4l2-mediabus.h> 22 #include <media/v4l2-image-sizes.h> 23 #include <media/ov7670.h> 24 25 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>"); 26 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors"); 27 MODULE_LICENSE("GPL"); 28 29 static bool debug; 30 module_param(debug, bool, 0644); 31 MODULE_PARM_DESC(debug, "Debug level (0-1)"); 32 33 /* 34 * The 7670 sits on i2c with ID 0x42 35 */ 36 #define OV7670_I2C_ADDR 0x42 37 38 #define PLL_FACTOR 4 39 40 /* Registers */ 41 #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */ 42 #define REG_BLUE 0x01 /* blue gain */ 43 #define REG_RED 0x02 /* red gain */ 44 #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */ 45 #define REG_COM1 0x04 /* Control 1 */ 46 #define COM1_CCIR656 0x40 /* CCIR656 enable */ 47 #define REG_BAVE 0x05 /* U/B Average level */ 48 #define REG_GbAVE 0x06 /* Y/Gb Average level */ 49 #define REG_AECHH 0x07 /* AEC MS 5 bits */ 50 #define REG_RAVE 0x08 /* V/R Average level */ 51 #define REG_COM2 0x09 /* Control 2 */ 52 #define COM2_SSLEEP 0x10 /* Soft sleep mode */ 53 #define REG_PID 0x0a /* Product ID MSB */ 54 #define REG_VER 0x0b /* Product ID LSB */ 55 #define REG_COM3 0x0c /* Control 3 */ 56 #define COM3_SWAP 0x40 /* Byte swap */ 57 #define COM3_SCALEEN 0x08 /* Enable scaling */ 58 #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */ 59 #define REG_COM4 0x0d /* Control 4 */ 60 #define REG_COM5 0x0e /* All "reserved" */ 61 #define REG_COM6 0x0f /* Control 6 */ 62 #define REG_AECH 0x10 /* More bits of AEC value */ 63 #define REG_CLKRC 0x11 /* Clocl control */ 64 #define CLK_EXT 0x40 /* Use external clock directly */ 65 #define CLK_SCALE 0x3f /* Mask for internal clock scale */ 66 #define REG_COM7 0x12 /* Control 7 */ 67 #define COM7_RESET 0x80 /* Register reset */ 68 #define COM7_FMT_MASK 0x38 69 #define COM7_FMT_VGA 0x00 70 #define COM7_FMT_CIF 0x20 /* CIF format */ 71 #define COM7_FMT_QVGA 0x10 /* QVGA format */ 72 #define COM7_FMT_QCIF 0x08 /* QCIF format */ 73 #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */ 74 #define COM7_YUV 0x00 /* YUV */ 75 #define COM7_BAYER 0x01 /* Bayer format */ 76 #define COM7_PBAYER 0x05 /* "Processed bayer" */ 77 #define REG_COM8 0x13 /* Control 8 */ 78 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ 79 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */ 80 #define COM8_BFILT 0x20 /* Band filter enable */ 81 #define COM8_AGC 0x04 /* Auto gain enable */ 82 #define COM8_AWB 0x02 /* White balance enable */ 83 #define COM8_AEC 0x01 /* Auto exposure enable */ 84 #define REG_COM9 0x14 /* Control 9 - gain ceiling */ 85 #define REG_COM10 0x15 /* Control 10 */ 86 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */ 87 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */ 88 #define COM10_HREF_REV 0x08 /* Reverse HREF */ 89 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */ 90 #define COM10_VS_NEG 0x02 /* VSYNC negative */ 91 #define COM10_HS_NEG 0x01 /* HSYNC negative */ 92 #define REG_HSTART 0x17 /* Horiz start high bits */ 93 #define REG_HSTOP 0x18 /* Horiz stop high bits */ 94 #define REG_VSTART 0x19 /* Vert start high bits */ 95 #define REG_VSTOP 0x1a /* Vert stop high bits */ 96 #define REG_PSHFT 0x1b /* Pixel delay after HREF */ 97 #define REG_MIDH 0x1c /* Manuf. ID high */ 98 #define REG_MIDL 0x1d /* Manuf. ID low */ 99 #define REG_MVFP 0x1e /* Mirror / vflip */ 100 #define MVFP_MIRROR 0x20 /* Mirror image */ 101 #define MVFP_FLIP 0x10 /* Vertical flip */ 102 103 #define REG_AEW 0x24 /* AGC upper limit */ 104 #define REG_AEB 0x25 /* AGC lower limit */ 105 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */ 106 #define REG_HSYST 0x30 /* HSYNC rising edge delay */ 107 #define REG_HSYEN 0x31 /* HSYNC falling edge delay */ 108 #define REG_HREF 0x32 /* HREF pieces */ 109 #define REG_TSLB 0x3a /* lots of stuff */ 110 #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */ 111 #define REG_COM11 0x3b /* Control 11 */ 112 #define COM11_NIGHT 0x80 /* NIght mode enable */ 113 #define COM11_NMFR 0x60 /* Two bit NM frame rate */ 114 #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */ 115 #define COM11_50HZ 0x08 /* Manual 50Hz select */ 116 #define COM11_EXP 0x02 117 #define REG_COM12 0x3c /* Control 12 */ 118 #define COM12_HREF 0x80 /* HREF always */ 119 #define REG_COM13 0x3d /* Control 13 */ 120 #define COM13_GAMMA 0x80 /* Gamma enable */ 121 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */ 122 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */ 123 #define REG_COM14 0x3e /* Control 14 */ 124 #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */ 125 #define REG_EDGE 0x3f /* Edge enhancement factor */ 126 #define REG_COM15 0x40 /* Control 15 */ 127 #define COM15_R10F0 0x00 /* Data range 10 to F0 */ 128 #define COM15_R01FE 0x80 /* 01 to FE */ 129 #define COM15_R00FF 0xc0 /* 00 to FF */ 130 #define COM15_RGB565 0x10 /* RGB565 output */ 131 #define COM15_RGB555 0x30 /* RGB555 output */ 132 #define REG_COM16 0x41 /* Control 16 */ 133 #define COM16_AWBGAIN 0x08 /* AWB gain enable */ 134 #define REG_COM17 0x42 /* Control 17 */ 135 #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */ 136 #define COM17_CBAR 0x08 /* DSP Color bar */ 137 138 /* 139 * This matrix defines how the colors are generated, must be 140 * tweaked to adjust hue and saturation. 141 * 142 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue 143 * 144 * They are nine-bit signed quantities, with the sign bit 145 * stored in 0x58. Sign for v-red is bit 0, and up from there. 146 */ 147 #define REG_CMATRIX_BASE 0x4f 148 #define CMATRIX_LEN 6 149 #define REG_CMATRIX_SIGN 0x58 150 151 152 #define REG_BRIGHT 0x55 /* Brightness */ 153 #define REG_CONTRAS 0x56 /* Contrast control */ 154 155 #define REG_GFIX 0x69 /* Fix gain control */ 156 157 #define REG_DBLV 0x6b /* PLL control an debugging */ 158 #define DBLV_BYPASS 0x00 /* Bypass PLL */ 159 #define DBLV_X4 0x01 /* clock x4 */ 160 #define DBLV_X6 0x10 /* clock x6 */ 161 #define DBLV_X8 0x11 /* clock x8 */ 162 163 #define REG_REG76 0x76 /* OV's name */ 164 #define R76_BLKPCOR 0x80 /* Black pixel correction enable */ 165 #define R76_WHTPCOR 0x40 /* White pixel correction enable */ 166 167 #define REG_RGB444 0x8c /* RGB 444 control */ 168 #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */ 169 #define R444_RGBX 0x01 /* Empty nibble at end */ 170 171 #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */ 172 #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */ 173 174 #define REG_BD50MAX 0xa5 /* 50hz banding step limit */ 175 #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */ 176 #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */ 177 #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */ 178 #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */ 179 #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */ 180 #define REG_BD60MAX 0xab /* 60hz banding step limit */ 181 182 enum ov7670_model { 183 MODEL_OV7670 = 0, 184 MODEL_OV7675, 185 }; 186 187 struct ov7670_win_size { 188 int width; 189 int height; 190 unsigned char com7_bit; 191 int hstart; /* Start/stop values for the camera. Note */ 192 int hstop; /* that they do not always make complete */ 193 int vstart; /* sense to humans, but evidently the sensor */ 194 int vstop; /* will do the right thing... */ 195 struct regval_list *regs; /* Regs to tweak */ 196 }; 197 198 struct ov7670_devtype { 199 /* formats supported for each model */ 200 struct ov7670_win_size *win_sizes; 201 unsigned int n_win_sizes; 202 /* callbacks for frame rate control */ 203 int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *); 204 void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *); 205 }; 206 207 /* 208 * Information we maintain about a known sensor. 209 */ 210 struct ov7670_format_struct; /* coming later */ 211 struct ov7670_info { 212 struct v4l2_subdev sd; 213 struct v4l2_ctrl_handler hdl; 214 struct { 215 /* gain cluster */ 216 struct v4l2_ctrl *auto_gain; 217 struct v4l2_ctrl *gain; 218 }; 219 struct { 220 /* exposure cluster */ 221 struct v4l2_ctrl *auto_exposure; 222 struct v4l2_ctrl *exposure; 223 }; 224 struct { 225 /* saturation/hue cluster */ 226 struct v4l2_ctrl *saturation; 227 struct v4l2_ctrl *hue; 228 }; 229 struct ov7670_format_struct *fmt; /* Current format */ 230 int min_width; /* Filter out smaller sizes */ 231 int min_height; /* Filter out smaller sizes */ 232 int clock_speed; /* External clock speed (MHz) */ 233 u8 clkrc; /* Clock divider value */ 234 bool use_smbus; /* Use smbus I/O instead of I2C */ 235 bool pll_bypass; 236 bool pclk_hb_disable; 237 const struct ov7670_devtype *devtype; /* Device specifics */ 238 }; 239 240 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd) 241 { 242 return container_of(sd, struct ov7670_info, sd); 243 } 244 245 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) 246 { 247 return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd; 248 } 249 250 251 252 /* 253 * The default register settings, as obtained from OmniVision. There 254 * is really no making sense of most of these - lots of "reserved" values 255 * and such. 256 * 257 * These settings give VGA YUYV. 258 */ 259 260 struct regval_list { 261 unsigned char reg_num; 262 unsigned char value; 263 }; 264 265 static struct regval_list ov7670_default_regs[] = { 266 { REG_COM7, COM7_RESET }, 267 /* 268 * Clock scale: 3 = 15fps 269 * 2 = 20fps 270 * 1 = 30fps 271 */ 272 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */ 273 { REG_TSLB, 0x04 }, /* OV */ 274 { REG_COM7, 0 }, /* VGA */ 275 /* 276 * Set the hardware window. These values from OV don't entirely 277 * make sense - hstop is less than hstart. But they work... 278 */ 279 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 }, 280 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 }, 281 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a }, 282 283 { REG_COM3, 0 }, { REG_COM14, 0 }, 284 /* Mystery scaling numbers */ 285 { 0x70, 0x3a }, { 0x71, 0x35 }, 286 { 0x72, 0x11 }, { 0x73, 0xf0 }, 287 { 0xa2, 0x02 }, { REG_COM10, 0x0 }, 288 289 /* Gamma curve values */ 290 { 0x7a, 0x20 }, { 0x7b, 0x10 }, 291 { 0x7c, 0x1e }, { 0x7d, 0x35 }, 292 { 0x7e, 0x5a }, { 0x7f, 0x69 }, 293 { 0x80, 0x76 }, { 0x81, 0x80 }, 294 { 0x82, 0x88 }, { 0x83, 0x8f }, 295 { 0x84, 0x96 }, { 0x85, 0xa3 }, 296 { 0x86, 0xaf }, { 0x87, 0xc4 }, 297 { 0x88, 0xd7 }, { 0x89, 0xe8 }, 298 299 /* AGC and AEC parameters. Note we start by disabling those features, 300 then turn them only after tweaking the values. */ 301 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT }, 302 { REG_GAIN, 0 }, { REG_AECH, 0 }, 303 { REG_COM4, 0x40 }, /* magic reserved bit */ 304 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */ 305 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 }, 306 { REG_AEW, 0x95 }, { REG_AEB, 0x33 }, 307 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 }, 308 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */ 309 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 }, 310 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 }, 311 { REG_HAECC7, 0x94 }, 312 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC }, 313 314 /* Almost all of these are magic "reserved" values. */ 315 { REG_COM5, 0x61 }, { REG_COM6, 0x4b }, 316 { 0x16, 0x02 }, { REG_MVFP, 0x07 }, 317 { 0x21, 0x02 }, { 0x22, 0x91 }, 318 { 0x29, 0x07 }, { 0x33, 0x0b }, 319 { 0x35, 0x0b }, { 0x37, 0x1d }, 320 { 0x38, 0x71 }, { 0x39, 0x2a }, 321 { REG_COM12, 0x78 }, { 0x4d, 0x40 }, 322 { 0x4e, 0x20 }, { REG_GFIX, 0 }, 323 { 0x6b, 0x4a }, { 0x74, 0x10 }, 324 { 0x8d, 0x4f }, { 0x8e, 0 }, 325 { 0x8f, 0 }, { 0x90, 0 }, 326 { 0x91, 0 }, { 0x96, 0 }, 327 { 0x9a, 0 }, { 0xb0, 0x84 }, 328 { 0xb1, 0x0c }, { 0xb2, 0x0e }, 329 { 0xb3, 0x82 }, { 0xb8, 0x0a }, 330 331 /* More reserved magic, some of which tweaks white balance */ 332 { 0x43, 0x0a }, { 0x44, 0xf0 }, 333 { 0x45, 0x34 }, { 0x46, 0x58 }, 334 { 0x47, 0x28 }, { 0x48, 0x3a }, 335 { 0x59, 0x88 }, { 0x5a, 0x88 }, 336 { 0x5b, 0x44 }, { 0x5c, 0x67 }, 337 { 0x5d, 0x49 }, { 0x5e, 0x0e }, 338 { 0x6c, 0x0a }, { 0x6d, 0x55 }, 339 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */ 340 { 0x6a, 0x40 }, { REG_BLUE, 0x40 }, 341 { REG_RED, 0x60 }, 342 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB }, 343 344 /* Matrix coefficients */ 345 { 0x4f, 0x80 }, { 0x50, 0x80 }, 346 { 0x51, 0 }, { 0x52, 0x22 }, 347 { 0x53, 0x5e }, { 0x54, 0x80 }, 348 { 0x58, 0x9e }, 349 350 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 }, 351 { 0x75, 0x05 }, { 0x76, 0xe1 }, 352 { 0x4c, 0 }, { 0x77, 0x01 }, 353 { REG_COM13, 0xc3 }, { 0x4b, 0x09 }, 354 { 0xc9, 0x60 }, { REG_COM16, 0x38 }, 355 { 0x56, 0x40 }, 356 357 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO }, 358 { 0xa4, 0x88 }, { 0x96, 0 }, 359 { 0x97, 0x30 }, { 0x98, 0x20 }, 360 { 0x99, 0x30 }, { 0x9a, 0x84 }, 361 { 0x9b, 0x29 }, { 0x9c, 0x03 }, 362 { 0x9d, 0x4c }, { 0x9e, 0x3f }, 363 { 0x78, 0x04 }, 364 365 /* Extra-weird stuff. Some sort of multiplexor register */ 366 { 0x79, 0x01 }, { 0xc8, 0xf0 }, 367 { 0x79, 0x0f }, { 0xc8, 0x00 }, 368 { 0x79, 0x10 }, { 0xc8, 0x7e }, 369 { 0x79, 0x0a }, { 0xc8, 0x80 }, 370 { 0x79, 0x0b }, { 0xc8, 0x01 }, 371 { 0x79, 0x0c }, { 0xc8, 0x0f }, 372 { 0x79, 0x0d }, { 0xc8, 0x20 }, 373 { 0x79, 0x09 }, { 0xc8, 0x80 }, 374 { 0x79, 0x02 }, { 0xc8, 0xc0 }, 375 { 0x79, 0x03 }, { 0xc8, 0x40 }, 376 { 0x79, 0x05 }, { 0xc8, 0x30 }, 377 { 0x79, 0x26 }, 378 379 { 0xff, 0xff }, /* END MARKER */ 380 }; 381 382 383 /* 384 * Here we'll try to encapsulate the changes for just the output 385 * video format. 386 * 387 * RGB656 and YUV422 come from OV; RGB444 is homebrewed. 388 * 389 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why. 390 */ 391 392 393 static struct regval_list ov7670_fmt_yuv422[] = { 394 { REG_COM7, 0x0 }, /* Selects YUV mode */ 395 { REG_RGB444, 0 }, /* No RGB444 please */ 396 { REG_COM1, 0 }, /* CCIR601 */ 397 { REG_COM15, COM15_R00FF }, 398 { REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */ 399 { 0x4f, 0x80 }, /* "matrix coefficient 1" */ 400 { 0x50, 0x80 }, /* "matrix coefficient 2" */ 401 { 0x51, 0 }, /* vb */ 402 { 0x52, 0x22 }, /* "matrix coefficient 4" */ 403 { 0x53, 0x5e }, /* "matrix coefficient 5" */ 404 { 0x54, 0x80 }, /* "matrix coefficient 6" */ 405 { REG_COM13, COM13_GAMMA|COM13_UVSAT }, 406 { 0xff, 0xff }, 407 }; 408 409 static struct regval_list ov7670_fmt_rgb565[] = { 410 { REG_COM7, COM7_RGB }, /* Selects RGB mode */ 411 { REG_RGB444, 0 }, /* No RGB444 please */ 412 { REG_COM1, 0x0 }, /* CCIR601 */ 413 { REG_COM15, COM15_RGB565 }, 414 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */ 415 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */ 416 { 0x50, 0xb3 }, /* "matrix coefficient 2" */ 417 { 0x51, 0 }, /* vb */ 418 { 0x52, 0x3d }, /* "matrix coefficient 4" */ 419 { 0x53, 0xa7 }, /* "matrix coefficient 5" */ 420 { 0x54, 0xe4 }, /* "matrix coefficient 6" */ 421 { REG_COM13, COM13_GAMMA|COM13_UVSAT }, 422 { 0xff, 0xff }, 423 }; 424 425 static struct regval_list ov7670_fmt_rgb444[] = { 426 { REG_COM7, COM7_RGB }, /* Selects RGB mode */ 427 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */ 428 { REG_COM1, 0x0 }, /* CCIR601 */ 429 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */ 430 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */ 431 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */ 432 { 0x50, 0xb3 }, /* "matrix coefficient 2" */ 433 { 0x51, 0 }, /* vb */ 434 { 0x52, 0x3d }, /* "matrix coefficient 4" */ 435 { 0x53, 0xa7 }, /* "matrix coefficient 5" */ 436 { 0x54, 0xe4 }, /* "matrix coefficient 6" */ 437 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */ 438 { 0xff, 0xff }, 439 }; 440 441 static struct regval_list ov7670_fmt_raw[] = { 442 { REG_COM7, COM7_BAYER }, 443 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */ 444 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */ 445 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */ 446 { 0xff, 0xff }, 447 }; 448 449 450 451 /* 452 * Low-level register I/O. 453 * 454 * Note that there are two versions of these. On the XO 1, the 455 * i2c controller only does SMBUS, so that's what we use. The 456 * ov7670 is not really an SMBUS device, though, so the communication 457 * is not always entirely reliable. 458 */ 459 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg, 460 unsigned char *value) 461 { 462 struct i2c_client *client = v4l2_get_subdevdata(sd); 463 int ret; 464 465 ret = i2c_smbus_read_byte_data(client, reg); 466 if (ret >= 0) { 467 *value = (unsigned char)ret; 468 ret = 0; 469 } 470 return ret; 471 } 472 473 474 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg, 475 unsigned char value) 476 { 477 struct i2c_client *client = v4l2_get_subdevdata(sd); 478 int ret = i2c_smbus_write_byte_data(client, reg, value); 479 480 if (reg == REG_COM7 && (value & COM7_RESET)) 481 msleep(5); /* Wait for reset to run */ 482 return ret; 483 } 484 485 /* 486 * On most platforms, we'd rather do straight i2c I/O. 487 */ 488 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg, 489 unsigned char *value) 490 { 491 struct i2c_client *client = v4l2_get_subdevdata(sd); 492 u8 data = reg; 493 struct i2c_msg msg; 494 int ret; 495 496 /* 497 * Send out the register address... 498 */ 499 msg.addr = client->addr; 500 msg.flags = 0; 501 msg.len = 1; 502 msg.buf = &data; 503 ret = i2c_transfer(client->adapter, &msg, 1); 504 if (ret < 0) { 505 printk(KERN_ERR "Error %d on register write\n", ret); 506 return ret; 507 } 508 /* 509 * ...then read back the result. 510 */ 511 msg.flags = I2C_M_RD; 512 ret = i2c_transfer(client->adapter, &msg, 1); 513 if (ret >= 0) { 514 *value = data; 515 ret = 0; 516 } 517 return ret; 518 } 519 520 521 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg, 522 unsigned char value) 523 { 524 struct i2c_client *client = v4l2_get_subdevdata(sd); 525 struct i2c_msg msg; 526 unsigned char data[2] = { reg, value }; 527 int ret; 528 529 msg.addr = client->addr; 530 msg.flags = 0; 531 msg.len = 2; 532 msg.buf = data; 533 ret = i2c_transfer(client->adapter, &msg, 1); 534 if (ret > 0) 535 ret = 0; 536 if (reg == REG_COM7 && (value & COM7_RESET)) 537 msleep(5); /* Wait for reset to run */ 538 return ret; 539 } 540 541 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg, 542 unsigned char *value) 543 { 544 struct ov7670_info *info = to_state(sd); 545 if (info->use_smbus) 546 return ov7670_read_smbus(sd, reg, value); 547 else 548 return ov7670_read_i2c(sd, reg, value); 549 } 550 551 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg, 552 unsigned char value) 553 { 554 struct ov7670_info *info = to_state(sd); 555 if (info->use_smbus) 556 return ov7670_write_smbus(sd, reg, value); 557 else 558 return ov7670_write_i2c(sd, reg, value); 559 } 560 561 /* 562 * Write a list of register settings; ff/ff stops the process. 563 */ 564 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals) 565 { 566 while (vals->reg_num != 0xff || vals->value != 0xff) { 567 int ret = ov7670_write(sd, vals->reg_num, vals->value); 568 if (ret < 0) 569 return ret; 570 vals++; 571 } 572 return 0; 573 } 574 575 576 /* 577 * Stuff that knows about the sensor. 578 */ 579 static int ov7670_reset(struct v4l2_subdev *sd, u32 val) 580 { 581 ov7670_write(sd, REG_COM7, COM7_RESET); 582 msleep(1); 583 return 0; 584 } 585 586 587 static int ov7670_init(struct v4l2_subdev *sd, u32 val) 588 { 589 return ov7670_write_array(sd, ov7670_default_regs); 590 } 591 592 593 594 static int ov7670_detect(struct v4l2_subdev *sd) 595 { 596 unsigned char v; 597 int ret; 598 599 ret = ov7670_init(sd, 0); 600 if (ret < 0) 601 return ret; 602 ret = ov7670_read(sd, REG_MIDH, &v); 603 if (ret < 0) 604 return ret; 605 if (v != 0x7f) /* OV manuf. id. */ 606 return -ENODEV; 607 ret = ov7670_read(sd, REG_MIDL, &v); 608 if (ret < 0) 609 return ret; 610 if (v != 0xa2) 611 return -ENODEV; 612 /* 613 * OK, we know we have an OmniVision chip...but which one? 614 */ 615 ret = ov7670_read(sd, REG_PID, &v); 616 if (ret < 0) 617 return ret; 618 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */ 619 return -ENODEV; 620 ret = ov7670_read(sd, REG_VER, &v); 621 if (ret < 0) 622 return ret; 623 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */ 624 return -ENODEV; 625 return 0; 626 } 627 628 629 /* 630 * Store information about the video data format. The color matrix 631 * is deeply tied into the format, so keep the relevant values here. 632 * The magic matrix numbers come from OmniVision. 633 */ 634 static struct ov7670_format_struct { 635 u32 mbus_code; 636 enum v4l2_colorspace colorspace; 637 struct regval_list *regs; 638 int cmatrix[CMATRIX_LEN]; 639 } ov7670_formats[] = { 640 { 641 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8, 642 .colorspace = V4L2_COLORSPACE_JPEG, 643 .regs = ov7670_fmt_yuv422, 644 .cmatrix = { 128, -128, 0, -34, -94, 128 }, 645 }, 646 { 647 .mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE, 648 .colorspace = V4L2_COLORSPACE_SRGB, 649 .regs = ov7670_fmt_rgb444, 650 .cmatrix = { 179, -179, 0, -61, -176, 228 }, 651 }, 652 { 653 .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE, 654 .colorspace = V4L2_COLORSPACE_SRGB, 655 .regs = ov7670_fmt_rgb565, 656 .cmatrix = { 179, -179, 0, -61, -176, 228 }, 657 }, 658 { 659 .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, 660 .colorspace = V4L2_COLORSPACE_SRGB, 661 .regs = ov7670_fmt_raw, 662 .cmatrix = { 0, 0, 0, 0, 0, 0 }, 663 }, 664 }; 665 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats) 666 667 668 /* 669 * Then there is the issue of window sizes. Try to capture the info here. 670 */ 671 672 /* 673 * QCIF mode is done (by OV) in a very strange way - it actually looks like 674 * VGA with weird scaling options - they do *not* use the canned QCIF mode 675 * which is allegedly provided by the sensor. So here's the weird register 676 * settings. 677 */ 678 static struct regval_list ov7670_qcif_regs[] = { 679 { REG_COM3, COM3_SCALEEN|COM3_DCWEN }, 680 { REG_COM3, COM3_DCWEN }, 681 { REG_COM14, COM14_DCWEN | 0x01}, 682 { 0x73, 0xf1 }, 683 { 0xa2, 0x52 }, 684 { 0x7b, 0x1c }, 685 { 0x7c, 0x28 }, 686 { 0x7d, 0x3c }, 687 { 0x7f, 0x69 }, 688 { REG_COM9, 0x38 }, 689 { 0xa1, 0x0b }, 690 { 0x74, 0x19 }, 691 { 0x9a, 0x80 }, 692 { 0x43, 0x14 }, 693 { REG_COM13, 0xc0 }, 694 { 0xff, 0xff }, 695 }; 696 697 static struct ov7670_win_size ov7670_win_sizes[] = { 698 /* VGA */ 699 { 700 .width = VGA_WIDTH, 701 .height = VGA_HEIGHT, 702 .com7_bit = COM7_FMT_VGA, 703 .hstart = 158, /* These values from */ 704 .hstop = 14, /* Omnivision */ 705 .vstart = 10, 706 .vstop = 490, 707 .regs = NULL, 708 }, 709 /* CIF */ 710 { 711 .width = CIF_WIDTH, 712 .height = CIF_HEIGHT, 713 .com7_bit = COM7_FMT_CIF, 714 .hstart = 170, /* Empirically determined */ 715 .hstop = 90, 716 .vstart = 14, 717 .vstop = 494, 718 .regs = NULL, 719 }, 720 /* QVGA */ 721 { 722 .width = QVGA_WIDTH, 723 .height = QVGA_HEIGHT, 724 .com7_bit = COM7_FMT_QVGA, 725 .hstart = 168, /* Empirically determined */ 726 .hstop = 24, 727 .vstart = 12, 728 .vstop = 492, 729 .regs = NULL, 730 }, 731 /* QCIF */ 732 { 733 .width = QCIF_WIDTH, 734 .height = QCIF_HEIGHT, 735 .com7_bit = COM7_FMT_VGA, /* see comment above */ 736 .hstart = 456, /* Empirically determined */ 737 .hstop = 24, 738 .vstart = 14, 739 .vstop = 494, 740 .regs = ov7670_qcif_regs, 741 } 742 }; 743 744 static struct ov7670_win_size ov7675_win_sizes[] = { 745 /* 746 * Currently, only VGA is supported. Theoretically it could be possible 747 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a 748 * base and tweak them empirically could be required. 749 */ 750 { 751 .width = VGA_WIDTH, 752 .height = VGA_HEIGHT, 753 .com7_bit = COM7_FMT_VGA, 754 .hstart = 158, /* These values from */ 755 .hstop = 14, /* Omnivision */ 756 .vstart = 14, /* Empirically determined */ 757 .vstop = 494, 758 .regs = NULL, 759 } 760 }; 761 762 static void ov7675_get_framerate(struct v4l2_subdev *sd, 763 struct v4l2_fract *tpf) 764 { 765 struct ov7670_info *info = to_state(sd); 766 u32 clkrc = info->clkrc; 767 int pll_factor; 768 769 if (info->pll_bypass) 770 pll_factor = 1; 771 else 772 pll_factor = PLL_FACTOR; 773 774 clkrc++; 775 if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8) 776 clkrc = (clkrc >> 1); 777 778 tpf->numerator = 1; 779 tpf->denominator = (5 * pll_factor * info->clock_speed) / 780 (4 * clkrc); 781 } 782 783 static int ov7675_set_framerate(struct v4l2_subdev *sd, 784 struct v4l2_fract *tpf) 785 { 786 struct ov7670_info *info = to_state(sd); 787 u32 clkrc; 788 int pll_factor; 789 int ret; 790 791 /* 792 * The formula is fps = 5/4*pixclk for YUV/RGB and 793 * fps = 5/2*pixclk for RAW. 794 * 795 * pixclk = clock_speed / (clkrc + 1) * PLLfactor 796 * 797 */ 798 if (info->pll_bypass) { 799 pll_factor = 1; 800 ret = ov7670_write(sd, REG_DBLV, DBLV_BYPASS); 801 } else { 802 pll_factor = PLL_FACTOR; 803 ret = ov7670_write(sd, REG_DBLV, DBLV_X4); 804 } 805 if (ret < 0) 806 return ret; 807 808 if (tpf->numerator == 0 || tpf->denominator == 0) { 809 clkrc = 0; 810 } else { 811 clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) / 812 (4 * tpf->denominator); 813 if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8) 814 clkrc = (clkrc << 1); 815 clkrc--; 816 } 817 818 /* 819 * The datasheet claims that clkrc = 0 will divide the input clock by 1 820 * but we've checked with an oscilloscope that it divides by 2 instead. 821 * So, if clkrc = 0 just bypass the divider. 822 */ 823 if (clkrc <= 0) 824 clkrc = CLK_EXT; 825 else if (clkrc > CLK_SCALE) 826 clkrc = CLK_SCALE; 827 info->clkrc = clkrc; 828 829 /* Recalculate frame rate */ 830 ov7675_get_framerate(sd, tpf); 831 832 ret = ov7670_write(sd, REG_CLKRC, info->clkrc); 833 if (ret < 0) 834 return ret; 835 836 return ov7670_write(sd, REG_DBLV, DBLV_X4); 837 } 838 839 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd, 840 struct v4l2_fract *tpf) 841 { 842 struct ov7670_info *info = to_state(sd); 843 844 tpf->numerator = 1; 845 tpf->denominator = info->clock_speed; 846 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1) 847 tpf->denominator /= (info->clkrc & CLK_SCALE); 848 } 849 850 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd, 851 struct v4l2_fract *tpf) 852 { 853 struct ov7670_info *info = to_state(sd); 854 int div; 855 856 if (tpf->numerator == 0 || tpf->denominator == 0) 857 div = 1; /* Reset to full rate */ 858 else 859 div = (tpf->numerator * info->clock_speed) / tpf->denominator; 860 if (div == 0) 861 div = 1; 862 else if (div > CLK_SCALE) 863 div = CLK_SCALE; 864 info->clkrc = (info->clkrc & 0x80) | div; 865 tpf->numerator = 1; 866 tpf->denominator = info->clock_speed / div; 867 return ov7670_write(sd, REG_CLKRC, info->clkrc); 868 } 869 870 /* 871 * Store a set of start/stop values into the camera. 872 */ 873 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop, 874 int vstart, int vstop) 875 { 876 int ret; 877 unsigned char v; 878 /* 879 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of 880 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is 881 * a mystery "edge offset" value in the top two bits of href. 882 */ 883 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff); 884 ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff); 885 ret += ov7670_read(sd, REG_HREF, &v); 886 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7); 887 msleep(10); 888 ret += ov7670_write(sd, REG_HREF, v); 889 /* 890 * Vertical: similar arrangement, but only 10 bits. 891 */ 892 ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff); 893 ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff); 894 ret += ov7670_read(sd, REG_VREF, &v); 895 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3); 896 msleep(10); 897 ret += ov7670_write(sd, REG_VREF, v); 898 return ret; 899 } 900 901 902 static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index, 903 u32 *code) 904 { 905 if (index >= N_OV7670_FMTS) 906 return -EINVAL; 907 908 *code = ov7670_formats[index].mbus_code; 909 return 0; 910 } 911 912 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd, 913 struct v4l2_mbus_framefmt *fmt, 914 struct ov7670_format_struct **ret_fmt, 915 struct ov7670_win_size **ret_wsize) 916 { 917 int index, i; 918 struct ov7670_win_size *wsize; 919 struct ov7670_info *info = to_state(sd); 920 unsigned int n_win_sizes = info->devtype->n_win_sizes; 921 unsigned int win_sizes_limit = n_win_sizes; 922 923 for (index = 0; index < N_OV7670_FMTS; index++) 924 if (ov7670_formats[index].mbus_code == fmt->code) 925 break; 926 if (index >= N_OV7670_FMTS) { 927 /* default to first format */ 928 index = 0; 929 fmt->code = ov7670_formats[0].mbus_code; 930 } 931 if (ret_fmt != NULL) 932 *ret_fmt = ov7670_formats + index; 933 /* 934 * Fields: the OV devices claim to be progressive. 935 */ 936 fmt->field = V4L2_FIELD_NONE; 937 938 /* 939 * Don't consider values that don't match min_height and min_width 940 * constraints. 941 */ 942 if (info->min_width || info->min_height) 943 for (i = 0; i < n_win_sizes; i++) { 944 wsize = info->devtype->win_sizes + i; 945 946 if (wsize->width < info->min_width || 947 wsize->height < info->min_height) { 948 win_sizes_limit = i; 949 break; 950 } 951 } 952 /* 953 * Round requested image size down to the nearest 954 * we support, but not below the smallest. 955 */ 956 for (wsize = info->devtype->win_sizes; 957 wsize < info->devtype->win_sizes + win_sizes_limit; wsize++) 958 if (fmt->width >= wsize->width && fmt->height >= wsize->height) 959 break; 960 if (wsize >= info->devtype->win_sizes + win_sizes_limit) 961 wsize--; /* Take the smallest one */ 962 if (ret_wsize != NULL) 963 *ret_wsize = wsize; 964 /* 965 * Note the size we'll actually handle. 966 */ 967 fmt->width = wsize->width; 968 fmt->height = wsize->height; 969 fmt->colorspace = ov7670_formats[index].colorspace; 970 return 0; 971 } 972 973 static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd, 974 struct v4l2_mbus_framefmt *fmt) 975 { 976 return ov7670_try_fmt_internal(sd, fmt, NULL, NULL); 977 } 978 979 /* 980 * Set a format. 981 */ 982 static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd, 983 struct v4l2_mbus_framefmt *fmt) 984 { 985 struct ov7670_format_struct *ovfmt; 986 struct ov7670_win_size *wsize; 987 struct ov7670_info *info = to_state(sd); 988 unsigned char com7; 989 int ret; 990 991 ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize); 992 993 if (ret) 994 return ret; 995 /* 996 * COM7 is a pain in the ass, it doesn't like to be read then 997 * quickly written afterward. But we have everything we need 998 * to set it absolutely here, as long as the format-specific 999 * register sets list it first. 1000 */ 1001 com7 = ovfmt->regs[0].value; 1002 com7 |= wsize->com7_bit; 1003 ov7670_write(sd, REG_COM7, com7); 1004 /* 1005 * Now write the rest of the array. Also store start/stops 1006 */ 1007 ov7670_write_array(sd, ovfmt->regs + 1); 1008 ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart, 1009 wsize->vstop); 1010 ret = 0; 1011 if (wsize->regs) 1012 ret = ov7670_write_array(sd, wsize->regs); 1013 info->fmt = ovfmt; 1014 1015 /* 1016 * If we're running RGB565, we must rewrite clkrc after setting 1017 * the other parameters or the image looks poor. If we're *not* 1018 * doing RGB565, we must not rewrite clkrc or the image looks 1019 * *really* poor. 1020 * 1021 * (Update) Now that we retain clkrc state, we should be able 1022 * to write it unconditionally, and that will make the frame 1023 * rate persistent too. 1024 */ 1025 if (ret == 0) 1026 ret = ov7670_write(sd, REG_CLKRC, info->clkrc); 1027 return 0; 1028 } 1029 1030 /* 1031 * Implement G/S_PARM. There is a "high quality" mode we could try 1032 * to do someday; for now, we just do the frame rate tweak. 1033 */ 1034 static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) 1035 { 1036 struct v4l2_captureparm *cp = &parms->parm.capture; 1037 struct ov7670_info *info = to_state(sd); 1038 1039 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) 1040 return -EINVAL; 1041 1042 memset(cp, 0, sizeof(struct v4l2_captureparm)); 1043 cp->capability = V4L2_CAP_TIMEPERFRAME; 1044 info->devtype->get_framerate(sd, &cp->timeperframe); 1045 1046 return 0; 1047 } 1048 1049 static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms) 1050 { 1051 struct v4l2_captureparm *cp = &parms->parm.capture; 1052 struct v4l2_fract *tpf = &cp->timeperframe; 1053 struct ov7670_info *info = to_state(sd); 1054 1055 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) 1056 return -EINVAL; 1057 if (cp->extendedmode != 0) 1058 return -EINVAL; 1059 1060 return info->devtype->set_framerate(sd, tpf); 1061 } 1062 1063 1064 /* 1065 * Frame intervals. Since frame rates are controlled with the clock 1066 * divider, we can only do 30/n for integer n values. So no continuous 1067 * or stepwise options. Here we just pick a handful of logical values. 1068 */ 1069 1070 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 }; 1071 1072 static int ov7670_enum_frame_interval(struct v4l2_subdev *sd, 1073 struct v4l2_subdev_pad_config *cfg, 1074 struct v4l2_subdev_frame_interval_enum *fie) 1075 { 1076 if (fie->pad) 1077 return -EINVAL; 1078 if (fie->index >= ARRAY_SIZE(ov7670_frame_rates)) 1079 return -EINVAL; 1080 fie->interval.numerator = 1; 1081 fie->interval.denominator = ov7670_frame_rates[fie->index]; 1082 return 0; 1083 } 1084 1085 /* 1086 * Frame size enumeration 1087 */ 1088 static int ov7670_enum_frame_size(struct v4l2_subdev *sd, 1089 struct v4l2_subdev_pad_config *cfg, 1090 struct v4l2_subdev_frame_size_enum *fse) 1091 { 1092 struct ov7670_info *info = to_state(sd); 1093 int i; 1094 int num_valid = -1; 1095 __u32 index = fse->index; 1096 unsigned int n_win_sizes = info->devtype->n_win_sizes; 1097 1098 if (fse->pad) 1099 return -EINVAL; 1100 1101 /* 1102 * If a minimum width/height was requested, filter out the capture 1103 * windows that fall outside that. 1104 */ 1105 for (i = 0; i < n_win_sizes; i++) { 1106 struct ov7670_win_size *win = &info->devtype->win_sizes[i]; 1107 if (info->min_width && win->width < info->min_width) 1108 continue; 1109 if (info->min_height && win->height < info->min_height) 1110 continue; 1111 if (index == ++num_valid) { 1112 fse->min_width = fse->max_width = win->width; 1113 fse->min_height = fse->max_height = win->height; 1114 return 0; 1115 } 1116 } 1117 1118 return -EINVAL; 1119 } 1120 1121 /* 1122 * Code for dealing with controls. 1123 */ 1124 1125 static int ov7670_store_cmatrix(struct v4l2_subdev *sd, 1126 int matrix[CMATRIX_LEN]) 1127 { 1128 int i, ret; 1129 unsigned char signbits = 0; 1130 1131 /* 1132 * Weird crap seems to exist in the upper part of 1133 * the sign bits register, so let's preserve it. 1134 */ 1135 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits); 1136 signbits &= 0xc0; 1137 1138 for (i = 0; i < CMATRIX_LEN; i++) { 1139 unsigned char raw; 1140 1141 if (matrix[i] < 0) { 1142 signbits |= (1 << i); 1143 if (matrix[i] < -255) 1144 raw = 0xff; 1145 else 1146 raw = (-1 * matrix[i]) & 0xff; 1147 } 1148 else { 1149 if (matrix[i] > 255) 1150 raw = 0xff; 1151 else 1152 raw = matrix[i] & 0xff; 1153 } 1154 ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw); 1155 } 1156 ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits); 1157 return ret; 1158 } 1159 1160 1161 /* 1162 * Hue also requires messing with the color matrix. It also requires 1163 * trig functions, which tend not to be well supported in the kernel. 1164 * So here is a simple table of sine values, 0-90 degrees, in steps 1165 * of five degrees. Values are multiplied by 1000. 1166 * 1167 * The following naive approximate trig functions require an argument 1168 * carefully limited to -180 <= theta <= 180. 1169 */ 1170 #define SIN_STEP 5 1171 static const int ov7670_sin_table[] = { 1172 0, 87, 173, 258, 342, 422, 1173 499, 573, 642, 707, 766, 819, 1174 866, 906, 939, 965, 984, 996, 1175 1000 1176 }; 1177 1178 static int ov7670_sine(int theta) 1179 { 1180 int chs = 1; 1181 int sine; 1182 1183 if (theta < 0) { 1184 theta = -theta; 1185 chs = -1; 1186 } 1187 if (theta <= 90) 1188 sine = ov7670_sin_table[theta/SIN_STEP]; 1189 else { 1190 theta -= 90; 1191 sine = 1000 - ov7670_sin_table[theta/SIN_STEP]; 1192 } 1193 return sine*chs; 1194 } 1195 1196 static int ov7670_cosine(int theta) 1197 { 1198 theta = 90 - theta; 1199 if (theta > 180) 1200 theta -= 360; 1201 else if (theta < -180) 1202 theta += 360; 1203 return ov7670_sine(theta); 1204 } 1205 1206 1207 1208 1209 static void ov7670_calc_cmatrix(struct ov7670_info *info, 1210 int matrix[CMATRIX_LEN], int sat, int hue) 1211 { 1212 int i; 1213 /* 1214 * Apply the current saturation setting first. 1215 */ 1216 for (i = 0; i < CMATRIX_LEN; i++) 1217 matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7; 1218 /* 1219 * Then, if need be, rotate the hue value. 1220 */ 1221 if (hue != 0) { 1222 int sinth, costh, tmpmatrix[CMATRIX_LEN]; 1223 1224 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int)); 1225 sinth = ov7670_sine(hue); 1226 costh = ov7670_cosine(hue); 1227 1228 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000; 1229 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000; 1230 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000; 1231 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000; 1232 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000; 1233 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000; 1234 } 1235 } 1236 1237 1238 1239 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue) 1240 { 1241 struct ov7670_info *info = to_state(sd); 1242 int matrix[CMATRIX_LEN]; 1243 int ret; 1244 1245 ov7670_calc_cmatrix(info, matrix, sat, hue); 1246 ret = ov7670_store_cmatrix(sd, matrix); 1247 return ret; 1248 } 1249 1250 1251 /* 1252 * Some weird registers seem to store values in a sign/magnitude format! 1253 */ 1254 1255 static unsigned char ov7670_abs_to_sm(unsigned char v) 1256 { 1257 if (v > 127) 1258 return v & 0x7f; 1259 return (128 - v) | 0x80; 1260 } 1261 1262 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value) 1263 { 1264 unsigned char com8 = 0, v; 1265 int ret; 1266 1267 ov7670_read(sd, REG_COM8, &com8); 1268 com8 &= ~COM8_AEC; 1269 ov7670_write(sd, REG_COM8, com8); 1270 v = ov7670_abs_to_sm(value); 1271 ret = ov7670_write(sd, REG_BRIGHT, v); 1272 return ret; 1273 } 1274 1275 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value) 1276 { 1277 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value); 1278 } 1279 1280 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value) 1281 { 1282 unsigned char v = 0; 1283 int ret; 1284 1285 ret = ov7670_read(sd, REG_MVFP, &v); 1286 if (value) 1287 v |= MVFP_MIRROR; 1288 else 1289 v &= ~MVFP_MIRROR; 1290 msleep(10); /* FIXME */ 1291 ret += ov7670_write(sd, REG_MVFP, v); 1292 return ret; 1293 } 1294 1295 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value) 1296 { 1297 unsigned char v = 0; 1298 int ret; 1299 1300 ret = ov7670_read(sd, REG_MVFP, &v); 1301 if (value) 1302 v |= MVFP_FLIP; 1303 else 1304 v &= ~MVFP_FLIP; 1305 msleep(10); /* FIXME */ 1306 ret += ov7670_write(sd, REG_MVFP, v); 1307 return ret; 1308 } 1309 1310 /* 1311 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes 1312 * the data sheet, the VREF parts should be the most significant, but 1313 * experience shows otherwise. There seems to be little value in 1314 * messing with the VREF bits, so we leave them alone. 1315 */ 1316 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value) 1317 { 1318 int ret; 1319 unsigned char gain; 1320 1321 ret = ov7670_read(sd, REG_GAIN, &gain); 1322 *value = gain; 1323 return ret; 1324 } 1325 1326 static int ov7670_s_gain(struct v4l2_subdev *sd, int value) 1327 { 1328 int ret; 1329 unsigned char com8; 1330 1331 ret = ov7670_write(sd, REG_GAIN, value & 0xff); 1332 /* Have to turn off AGC as well */ 1333 if (ret == 0) { 1334 ret = ov7670_read(sd, REG_COM8, &com8); 1335 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC); 1336 } 1337 return ret; 1338 } 1339 1340 /* 1341 * Tweak autogain. 1342 */ 1343 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value) 1344 { 1345 int ret; 1346 unsigned char com8; 1347 1348 ret = ov7670_read(sd, REG_COM8, &com8); 1349 if (ret == 0) { 1350 if (value) 1351 com8 |= COM8_AGC; 1352 else 1353 com8 &= ~COM8_AGC; 1354 ret = ov7670_write(sd, REG_COM8, com8); 1355 } 1356 return ret; 1357 } 1358 1359 static int ov7670_s_exp(struct v4l2_subdev *sd, int value) 1360 { 1361 int ret; 1362 unsigned char com1, com8, aech, aechh; 1363 1364 ret = ov7670_read(sd, REG_COM1, &com1) + 1365 ov7670_read(sd, REG_COM8, &com8); 1366 ov7670_read(sd, REG_AECHH, &aechh); 1367 if (ret) 1368 return ret; 1369 1370 com1 = (com1 & 0xfc) | (value & 0x03); 1371 aech = (value >> 2) & 0xff; 1372 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f); 1373 ret = ov7670_write(sd, REG_COM1, com1) + 1374 ov7670_write(sd, REG_AECH, aech) + 1375 ov7670_write(sd, REG_AECHH, aechh); 1376 /* Have to turn off AEC as well */ 1377 if (ret == 0) 1378 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC); 1379 return ret; 1380 } 1381 1382 /* 1383 * Tweak autoexposure. 1384 */ 1385 static int ov7670_s_autoexp(struct v4l2_subdev *sd, 1386 enum v4l2_exposure_auto_type value) 1387 { 1388 int ret; 1389 unsigned char com8; 1390 1391 ret = ov7670_read(sd, REG_COM8, &com8); 1392 if (ret == 0) { 1393 if (value == V4L2_EXPOSURE_AUTO) 1394 com8 |= COM8_AEC; 1395 else 1396 com8 &= ~COM8_AEC; 1397 ret = ov7670_write(sd, REG_COM8, com8); 1398 } 1399 return ret; 1400 } 1401 1402 1403 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1404 { 1405 struct v4l2_subdev *sd = to_sd(ctrl); 1406 struct ov7670_info *info = to_state(sd); 1407 1408 switch (ctrl->id) { 1409 case V4L2_CID_AUTOGAIN: 1410 return ov7670_g_gain(sd, &info->gain->val); 1411 } 1412 return -EINVAL; 1413 } 1414 1415 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl) 1416 { 1417 struct v4l2_subdev *sd = to_sd(ctrl); 1418 struct ov7670_info *info = to_state(sd); 1419 1420 switch (ctrl->id) { 1421 case V4L2_CID_BRIGHTNESS: 1422 return ov7670_s_brightness(sd, ctrl->val); 1423 case V4L2_CID_CONTRAST: 1424 return ov7670_s_contrast(sd, ctrl->val); 1425 case V4L2_CID_SATURATION: 1426 return ov7670_s_sat_hue(sd, 1427 info->saturation->val, info->hue->val); 1428 case V4L2_CID_VFLIP: 1429 return ov7670_s_vflip(sd, ctrl->val); 1430 case V4L2_CID_HFLIP: 1431 return ov7670_s_hflip(sd, ctrl->val); 1432 case V4L2_CID_AUTOGAIN: 1433 /* Only set manual gain if auto gain is not explicitly 1434 turned on. */ 1435 if (!ctrl->val) { 1436 /* ov7670_s_gain turns off auto gain */ 1437 return ov7670_s_gain(sd, info->gain->val); 1438 } 1439 return ov7670_s_autogain(sd, ctrl->val); 1440 case V4L2_CID_EXPOSURE_AUTO: 1441 /* Only set manual exposure if auto exposure is not explicitly 1442 turned on. */ 1443 if (ctrl->val == V4L2_EXPOSURE_MANUAL) { 1444 /* ov7670_s_exp turns off auto exposure */ 1445 return ov7670_s_exp(sd, info->exposure->val); 1446 } 1447 return ov7670_s_autoexp(sd, ctrl->val); 1448 } 1449 return -EINVAL; 1450 } 1451 1452 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = { 1453 .s_ctrl = ov7670_s_ctrl, 1454 .g_volatile_ctrl = ov7670_g_volatile_ctrl, 1455 }; 1456 1457 #ifdef CONFIG_VIDEO_ADV_DEBUG 1458 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) 1459 { 1460 unsigned char val = 0; 1461 int ret; 1462 1463 ret = ov7670_read(sd, reg->reg & 0xff, &val); 1464 reg->val = val; 1465 reg->size = 1; 1466 return ret; 1467 } 1468 1469 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) 1470 { 1471 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff); 1472 return 0; 1473 } 1474 #endif 1475 1476 /* ----------------------------------------------------------------------- */ 1477 1478 static const struct v4l2_subdev_core_ops ov7670_core_ops = { 1479 .reset = ov7670_reset, 1480 .init = ov7670_init, 1481 #ifdef CONFIG_VIDEO_ADV_DEBUG 1482 .g_register = ov7670_g_register, 1483 .s_register = ov7670_s_register, 1484 #endif 1485 }; 1486 1487 static const struct v4l2_subdev_video_ops ov7670_video_ops = { 1488 .enum_mbus_fmt = ov7670_enum_mbus_fmt, 1489 .try_mbus_fmt = ov7670_try_mbus_fmt, 1490 .s_mbus_fmt = ov7670_s_mbus_fmt, 1491 .s_parm = ov7670_s_parm, 1492 .g_parm = ov7670_g_parm, 1493 }; 1494 1495 static const struct v4l2_subdev_pad_ops ov7670_pad_ops = { 1496 .enum_frame_interval = ov7670_enum_frame_interval, 1497 .enum_frame_size = ov7670_enum_frame_size, 1498 }; 1499 1500 static const struct v4l2_subdev_ops ov7670_ops = { 1501 .core = &ov7670_core_ops, 1502 .video = &ov7670_video_ops, 1503 .pad = &ov7670_pad_ops, 1504 }; 1505 1506 /* ----------------------------------------------------------------------- */ 1507 1508 static const struct ov7670_devtype ov7670_devdata[] = { 1509 [MODEL_OV7670] = { 1510 .win_sizes = ov7670_win_sizes, 1511 .n_win_sizes = ARRAY_SIZE(ov7670_win_sizes), 1512 .set_framerate = ov7670_set_framerate_legacy, 1513 .get_framerate = ov7670_get_framerate_legacy, 1514 }, 1515 [MODEL_OV7675] = { 1516 .win_sizes = ov7675_win_sizes, 1517 .n_win_sizes = ARRAY_SIZE(ov7675_win_sizes), 1518 .set_framerate = ov7675_set_framerate, 1519 .get_framerate = ov7675_get_framerate, 1520 }, 1521 }; 1522 1523 static int ov7670_probe(struct i2c_client *client, 1524 const struct i2c_device_id *id) 1525 { 1526 struct v4l2_fract tpf; 1527 struct v4l2_subdev *sd; 1528 struct ov7670_info *info; 1529 int ret; 1530 1531 info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL); 1532 if (info == NULL) 1533 return -ENOMEM; 1534 sd = &info->sd; 1535 v4l2_i2c_subdev_init(sd, client, &ov7670_ops); 1536 1537 info->clock_speed = 30; /* default: a guess */ 1538 if (client->dev.platform_data) { 1539 struct ov7670_config *config = client->dev.platform_data; 1540 1541 /* 1542 * Must apply configuration before initializing device, because it 1543 * selects I/O method. 1544 */ 1545 info->min_width = config->min_width; 1546 info->min_height = config->min_height; 1547 info->use_smbus = config->use_smbus; 1548 1549 if (config->clock_speed) 1550 info->clock_speed = config->clock_speed; 1551 1552 /* 1553 * It should be allowed for ov7670 too when it is migrated to 1554 * the new frame rate formula. 1555 */ 1556 if (config->pll_bypass && id->driver_data != MODEL_OV7670) 1557 info->pll_bypass = true; 1558 1559 if (config->pclk_hb_disable) 1560 info->pclk_hb_disable = true; 1561 } 1562 1563 /* Make sure it's an ov7670 */ 1564 ret = ov7670_detect(sd); 1565 if (ret) { 1566 v4l_dbg(1, debug, client, 1567 "chip found @ 0x%x (%s) is not an ov7670 chip.\n", 1568 client->addr << 1, client->adapter->name); 1569 return ret; 1570 } 1571 v4l_info(client, "chip found @ 0x%02x (%s)\n", 1572 client->addr << 1, client->adapter->name); 1573 1574 info->devtype = &ov7670_devdata[id->driver_data]; 1575 info->fmt = &ov7670_formats[0]; 1576 info->clkrc = 0; 1577 1578 /* Set default frame rate to 30 fps */ 1579 tpf.numerator = 1; 1580 tpf.denominator = 30; 1581 info->devtype->set_framerate(sd, &tpf); 1582 1583 if (info->pclk_hb_disable) 1584 ov7670_write(sd, REG_COM10, COM10_PCLK_HB); 1585 1586 v4l2_ctrl_handler_init(&info->hdl, 10); 1587 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1588 V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); 1589 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1590 V4L2_CID_CONTRAST, 0, 127, 1, 64); 1591 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1592 V4L2_CID_VFLIP, 0, 1, 1, 0); 1593 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1594 V4L2_CID_HFLIP, 0, 1, 1, 0); 1595 info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1596 V4L2_CID_SATURATION, 0, 256, 1, 128); 1597 info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1598 V4L2_CID_HUE, -180, 180, 5, 0); 1599 info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1600 V4L2_CID_GAIN, 0, 255, 1, 128); 1601 info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1602 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1603 info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1604 V4L2_CID_EXPOSURE, 0, 65535, 1, 500); 1605 info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops, 1606 V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, 1607 V4L2_EXPOSURE_AUTO); 1608 sd->ctrl_handler = &info->hdl; 1609 if (info->hdl.error) { 1610 int err = info->hdl.error; 1611 1612 v4l2_ctrl_handler_free(&info->hdl); 1613 return err; 1614 } 1615 /* 1616 * We have checked empirically that hw allows to read back the gain 1617 * value chosen by auto gain but that's not the case for auto exposure. 1618 */ 1619 v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true); 1620 v4l2_ctrl_auto_cluster(2, &info->auto_exposure, 1621 V4L2_EXPOSURE_MANUAL, false); 1622 v4l2_ctrl_cluster(2, &info->saturation); 1623 v4l2_ctrl_handler_setup(&info->hdl); 1624 1625 return 0; 1626 } 1627 1628 1629 static int ov7670_remove(struct i2c_client *client) 1630 { 1631 struct v4l2_subdev *sd = i2c_get_clientdata(client); 1632 struct ov7670_info *info = to_state(sd); 1633 1634 v4l2_device_unregister_subdev(sd); 1635 v4l2_ctrl_handler_free(&info->hdl); 1636 return 0; 1637 } 1638 1639 static const struct i2c_device_id ov7670_id[] = { 1640 { "ov7670", MODEL_OV7670 }, 1641 { "ov7675", MODEL_OV7675 }, 1642 { } 1643 }; 1644 MODULE_DEVICE_TABLE(i2c, ov7670_id); 1645 1646 static struct i2c_driver ov7670_driver = { 1647 .driver = { 1648 .owner = THIS_MODULE, 1649 .name = "ov7670", 1650 }, 1651 .probe = ov7670_probe, 1652 .remove = ov7670_remove, 1653 .id_table = ov7670_id, 1654 }; 1655 1656 module_i2c_driver(ov7670_driver); 1657