xref: /openbmc/linux/drivers/media/i2c/ov7670.c (revision 9a8f3203)
1 /*
2  * A V4L2 driver for OmniVision OV7670 cameras.
3  *
4  * Copyright 2006 One Laptop Per Child Association, Inc.  Written
5  * by Jonathan Corbet with substantial inspiration from Mark
6  * McClelland's ovcamchip code.
7  *
8  * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9  *
10  * This file may be distributed under the terms of the GNU General
11  * Public License, version 2.
12  */
13 #include <linux/clk.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/i2c.h>
18 #include <linux/delay.h>
19 #include <linux/videodev2.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <media/v4l2-device.h>
23 #include <media/v4l2-event.h>
24 #include <media/v4l2-ctrls.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-mediabus.h>
27 #include <media/v4l2-image-sizes.h>
28 #include <media/i2c/ov7670.h>
29 
30 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
31 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
32 MODULE_LICENSE("GPL");
33 
34 static bool debug;
35 module_param(debug, bool, 0644);
36 MODULE_PARM_DESC(debug, "Debug level (0-1)");
37 
38 /*
39  * The 7670 sits on i2c with ID 0x42
40  */
41 #define OV7670_I2C_ADDR 0x42
42 
43 #define PLL_FACTOR	4
44 
45 /* Registers */
46 #define REG_GAIN	0x00	/* Gain lower 8 bits (rest in vref) */
47 #define REG_BLUE	0x01	/* blue gain */
48 #define REG_RED		0x02	/* red gain */
49 #define REG_VREF	0x03	/* Pieces of GAIN, VSTART, VSTOP */
50 #define REG_COM1	0x04	/* Control 1 */
51 #define  COM1_CCIR656	  0x40  /* CCIR656 enable */
52 #define REG_BAVE	0x05	/* U/B Average level */
53 #define REG_GbAVE	0x06	/* Y/Gb Average level */
54 #define REG_AECHH	0x07	/* AEC MS 5 bits */
55 #define REG_RAVE	0x08	/* V/R Average level */
56 #define REG_COM2	0x09	/* Control 2 */
57 #define  COM2_SSLEEP	  0x10	/* Soft sleep mode */
58 #define REG_PID		0x0a	/* Product ID MSB */
59 #define REG_VER		0x0b	/* Product ID LSB */
60 #define REG_COM3	0x0c	/* Control 3 */
61 #define  COM3_SWAP	  0x40	  /* Byte swap */
62 #define  COM3_SCALEEN	  0x08	  /* Enable scaling */
63 #define  COM3_DCWEN	  0x04	  /* Enable downsamp/crop/window */
64 #define REG_COM4	0x0d	/* Control 4 */
65 #define REG_COM5	0x0e	/* All "reserved" */
66 #define REG_COM6	0x0f	/* Control 6 */
67 #define REG_AECH	0x10	/* More bits of AEC value */
68 #define REG_CLKRC	0x11	/* Clocl control */
69 #define   CLK_EXT	  0x40	  /* Use external clock directly */
70 #define   CLK_SCALE	  0x3f	  /* Mask for internal clock scale */
71 #define REG_COM7	0x12	/* Control 7 */
72 #define   COM7_RESET	  0x80	  /* Register reset */
73 #define   COM7_FMT_MASK	  0x38
74 #define   COM7_FMT_VGA	  0x00
75 #define	  COM7_FMT_CIF	  0x20	  /* CIF format */
76 #define   COM7_FMT_QVGA	  0x10	  /* QVGA format */
77 #define   COM7_FMT_QCIF	  0x08	  /* QCIF format */
78 #define	  COM7_RGB	  0x04	  /* bits 0 and 2 - RGB format */
79 #define	  COM7_YUV	  0x00	  /* YUV */
80 #define	  COM7_BAYER	  0x01	  /* Bayer format */
81 #define	  COM7_PBAYER	  0x05	  /* "Processed bayer" */
82 #define REG_COM8	0x13	/* Control 8 */
83 #define   COM8_FASTAEC	  0x80	  /* Enable fast AGC/AEC */
84 #define   COM8_AECSTEP	  0x40	  /* Unlimited AEC step size */
85 #define   COM8_BFILT	  0x20	  /* Band filter enable */
86 #define   COM8_AGC	  0x04	  /* Auto gain enable */
87 #define   COM8_AWB	  0x02	  /* White balance enable */
88 #define   COM8_AEC	  0x01	  /* Auto exposure enable */
89 #define REG_COM9	0x14	/* Control 9  - gain ceiling */
90 #define REG_COM10	0x15	/* Control 10 */
91 #define   COM10_HSYNC	  0x40	  /* HSYNC instead of HREF */
92 #define   COM10_PCLK_HB	  0x20	  /* Suppress PCLK on horiz blank */
93 #define   COM10_HREF_REV  0x08	  /* Reverse HREF */
94 #define   COM10_VS_LEAD	  0x04	  /* VSYNC on clock leading edge */
95 #define   COM10_VS_NEG	  0x02	  /* VSYNC negative */
96 #define   COM10_HS_NEG	  0x01	  /* HSYNC negative */
97 #define REG_HSTART	0x17	/* Horiz start high bits */
98 #define REG_HSTOP	0x18	/* Horiz stop high bits */
99 #define REG_VSTART	0x19	/* Vert start high bits */
100 #define REG_VSTOP	0x1a	/* Vert stop high bits */
101 #define REG_PSHFT	0x1b	/* Pixel delay after HREF */
102 #define REG_MIDH	0x1c	/* Manuf. ID high */
103 #define REG_MIDL	0x1d	/* Manuf. ID low */
104 #define REG_MVFP	0x1e	/* Mirror / vflip */
105 #define   MVFP_MIRROR	  0x20	  /* Mirror image */
106 #define   MVFP_FLIP	  0x10	  /* Vertical flip */
107 
108 #define REG_AEW		0x24	/* AGC upper limit */
109 #define REG_AEB		0x25	/* AGC lower limit */
110 #define REG_VPT		0x26	/* AGC/AEC fast mode op region */
111 #define REG_HSYST	0x30	/* HSYNC rising edge delay */
112 #define REG_HSYEN	0x31	/* HSYNC falling edge delay */
113 #define REG_HREF	0x32	/* HREF pieces */
114 #define REG_TSLB	0x3a	/* lots of stuff */
115 #define   TSLB_YLAST	  0x04	  /* UYVY or VYUY - see com13 */
116 #define REG_COM11	0x3b	/* Control 11 */
117 #define   COM11_NIGHT	  0x80	  /* NIght mode enable */
118 #define   COM11_NMFR	  0x60	  /* Two bit NM frame rate */
119 #define   COM11_HZAUTO	  0x10	  /* Auto detect 50/60 Hz */
120 #define	  COM11_50HZ	  0x08	  /* Manual 50Hz select */
121 #define   COM11_EXP	  0x02
122 #define REG_COM12	0x3c	/* Control 12 */
123 #define   COM12_HREF	  0x80	  /* HREF always */
124 #define REG_COM13	0x3d	/* Control 13 */
125 #define   COM13_GAMMA	  0x80	  /* Gamma enable */
126 #define	  COM13_UVSAT	  0x40	  /* UV saturation auto adjustment */
127 #define   COM13_UVSWAP	  0x01	  /* V before U - w/TSLB */
128 #define REG_COM14	0x3e	/* Control 14 */
129 #define   COM14_DCWEN	  0x10	  /* DCW/PCLK-scale enable */
130 #define REG_EDGE	0x3f	/* Edge enhancement factor */
131 #define REG_COM15	0x40	/* Control 15 */
132 #define   COM15_R10F0	  0x00	  /* Data range 10 to F0 */
133 #define	  COM15_R01FE	  0x80	  /*            01 to FE */
134 #define   COM15_R00FF	  0xc0	  /*            00 to FF */
135 #define   COM15_RGB565	  0x10	  /* RGB565 output */
136 #define   COM15_RGB555	  0x30	  /* RGB555 output */
137 #define REG_COM16	0x41	/* Control 16 */
138 #define   COM16_AWBGAIN   0x08	  /* AWB gain enable */
139 #define REG_COM17	0x42	/* Control 17 */
140 #define   COM17_AECWIN	  0xc0	  /* AEC window - must match COM4 */
141 #define   COM17_CBAR	  0x08	  /* DSP Color bar */
142 
143 /*
144  * This matrix defines how the colors are generated, must be
145  * tweaked to adjust hue and saturation.
146  *
147  * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
148  *
149  * They are nine-bit signed quantities, with the sign bit
150  * stored in 0x58.  Sign for v-red is bit 0, and up from there.
151  */
152 #define	REG_CMATRIX_BASE 0x4f
153 #define   CMATRIX_LEN 6
154 #define REG_CMATRIX_SIGN 0x58
155 
156 
157 #define REG_BRIGHT	0x55	/* Brightness */
158 #define REG_CONTRAS	0x56	/* Contrast control */
159 
160 #define REG_GFIX	0x69	/* Fix gain control */
161 
162 #define REG_DBLV	0x6b	/* PLL control an debugging */
163 #define   DBLV_BYPASS	  0x0a	  /* Bypass PLL */
164 #define   DBLV_X4	  0x4a	  /* clock x4 */
165 #define   DBLV_X6	  0x8a	  /* clock x6 */
166 #define   DBLV_X8	  0xca	  /* clock x8 */
167 
168 #define REG_SCALING_XSC	0x70	/* Test pattern and horizontal scale factor */
169 #define   TEST_PATTTERN_0 0x80
170 #define REG_SCALING_YSC	0x71	/* Test pattern and vertical scale factor */
171 #define   TEST_PATTTERN_1 0x80
172 
173 #define REG_REG76	0x76	/* OV's name */
174 #define   R76_BLKPCOR	  0x80	  /* Black pixel correction enable */
175 #define   R76_WHTPCOR	  0x40	  /* White pixel correction enable */
176 
177 #define REG_RGB444	0x8c	/* RGB 444 control */
178 #define   R444_ENABLE	  0x02	  /* Turn on RGB444, overrides 5x5 */
179 #define   R444_RGBX	  0x01	  /* Empty nibble at end */
180 
181 #define REG_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
182 #define REG_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
183 
184 #define REG_BD50MAX	0xa5	/* 50hz banding step limit */
185 #define REG_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
186 #define REG_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
187 #define REG_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
188 #define REG_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
189 #define REG_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
190 #define REG_BD60MAX	0xab	/* 60hz banding step limit */
191 
192 enum ov7670_model {
193 	MODEL_OV7670 = 0,
194 	MODEL_OV7675,
195 };
196 
197 struct ov7670_win_size {
198 	int	width;
199 	int	height;
200 	unsigned char com7_bit;
201 	int	hstart;		/* Start/stop values for the camera.  Note */
202 	int	hstop;		/* that they do not always make complete */
203 	int	vstart;		/* sense to humans, but evidently the sensor */
204 	int	vstop;		/* will do the right thing... */
205 	struct regval_list *regs; /* Regs to tweak */
206 };
207 
208 struct ov7670_devtype {
209 	/* formats supported for each model */
210 	struct ov7670_win_size *win_sizes;
211 	unsigned int n_win_sizes;
212 	/* callbacks for frame rate control */
213 	int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
214 	void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
215 };
216 
217 /*
218  * Information we maintain about a known sensor.
219  */
220 struct ov7670_format_struct;  /* coming later */
221 struct ov7670_info {
222 	struct v4l2_subdev sd;
223 #if defined(CONFIG_MEDIA_CONTROLLER)
224 	struct media_pad pad;
225 #endif
226 	struct v4l2_ctrl_handler hdl;
227 	struct {
228 		/* gain cluster */
229 		struct v4l2_ctrl *auto_gain;
230 		struct v4l2_ctrl *gain;
231 	};
232 	struct {
233 		/* exposure cluster */
234 		struct v4l2_ctrl *auto_exposure;
235 		struct v4l2_ctrl *exposure;
236 	};
237 	struct {
238 		/* saturation/hue cluster */
239 		struct v4l2_ctrl *saturation;
240 		struct v4l2_ctrl *hue;
241 	};
242 	struct v4l2_mbus_framefmt format;
243 	struct ov7670_format_struct *fmt;  /* Current format */
244 	struct ov7670_win_size *wsize;
245 	struct clk *clk;
246 	int on;
247 	struct gpio_desc *resetb_gpio;
248 	struct gpio_desc *pwdn_gpio;
249 	unsigned int mbus_config;	/* Media bus configuration flags */
250 	int min_width;			/* Filter out smaller sizes */
251 	int min_height;			/* Filter out smaller sizes */
252 	int clock_speed;		/* External clock speed (MHz) */
253 	u8 clkrc;			/* Clock divider value */
254 	bool use_smbus;			/* Use smbus I/O instead of I2C */
255 	bool pll_bypass;
256 	bool pclk_hb_disable;
257 	const struct ov7670_devtype *devtype; /* Device specifics */
258 };
259 
260 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
261 {
262 	return container_of(sd, struct ov7670_info, sd);
263 }
264 
265 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
266 {
267 	return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd;
268 }
269 
270 
271 
272 /*
273  * The default register settings, as obtained from OmniVision.  There
274  * is really no making sense of most of these - lots of "reserved" values
275  * and such.
276  *
277  * These settings give VGA YUYV.
278  */
279 
280 struct regval_list {
281 	unsigned char reg_num;
282 	unsigned char value;
283 };
284 
285 static struct regval_list ov7670_default_regs[] = {
286 	{ REG_COM7, COM7_RESET },
287 /*
288  * Clock scale: 3 = 15fps
289  *              2 = 20fps
290  *              1 = 30fps
291  */
292 	{ REG_CLKRC, 0x1 },	/* OV: clock scale (30 fps) */
293 	{ REG_TSLB,  0x04 },	/* OV */
294 	{ REG_COM7, 0 },	/* VGA */
295 	/*
296 	 * Set the hardware window.  These values from OV don't entirely
297 	 * make sense - hstop is less than hstart.  But they work...
298 	 */
299 	{ REG_HSTART, 0x13 },	{ REG_HSTOP, 0x01 },
300 	{ REG_HREF, 0xb6 },	{ REG_VSTART, 0x02 },
301 	{ REG_VSTOP, 0x7a },	{ REG_VREF, 0x0a },
302 
303 	{ REG_COM3, 0 },	{ REG_COM14, 0 },
304 	/* Mystery scaling numbers */
305 	{ REG_SCALING_XSC, 0x3a },
306 	{ REG_SCALING_YSC, 0x35 },
307 	{ 0x72, 0x11 },		{ 0x73, 0xf0 },
308 	{ 0xa2, 0x02 },		{ REG_COM10, 0x0 },
309 
310 	/* Gamma curve values */
311 	{ 0x7a, 0x20 },		{ 0x7b, 0x10 },
312 	{ 0x7c, 0x1e },		{ 0x7d, 0x35 },
313 	{ 0x7e, 0x5a },		{ 0x7f, 0x69 },
314 	{ 0x80, 0x76 },		{ 0x81, 0x80 },
315 	{ 0x82, 0x88 },		{ 0x83, 0x8f },
316 	{ 0x84, 0x96 },		{ 0x85, 0xa3 },
317 	{ 0x86, 0xaf },		{ 0x87, 0xc4 },
318 	{ 0x88, 0xd7 },		{ 0x89, 0xe8 },
319 
320 	/* AGC and AEC parameters.  Note we start by disabling those features,
321 	   then turn them only after tweaking the values. */
322 	{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
323 	{ REG_GAIN, 0 },	{ REG_AECH, 0 },
324 	{ REG_COM4, 0x40 }, /* magic reserved bit */
325 	{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
326 	{ REG_BD50MAX, 0x05 },	{ REG_BD60MAX, 0x07 },
327 	{ REG_AEW, 0x95 },	{ REG_AEB, 0x33 },
328 	{ REG_VPT, 0xe3 },	{ REG_HAECC1, 0x78 },
329 	{ REG_HAECC2, 0x68 },	{ 0xa1, 0x03 }, /* magic */
330 	{ REG_HAECC3, 0xd8 },	{ REG_HAECC4, 0xd8 },
331 	{ REG_HAECC5, 0xf0 },	{ REG_HAECC6, 0x90 },
332 	{ REG_HAECC7, 0x94 },
333 	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
334 
335 	/* Almost all of these are magic "reserved" values.  */
336 	{ REG_COM5, 0x61 },	{ REG_COM6, 0x4b },
337 	{ 0x16, 0x02 },		{ REG_MVFP, 0x07 },
338 	{ 0x21, 0x02 },		{ 0x22, 0x91 },
339 	{ 0x29, 0x07 },		{ 0x33, 0x0b },
340 	{ 0x35, 0x0b },		{ 0x37, 0x1d },
341 	{ 0x38, 0x71 },		{ 0x39, 0x2a },
342 	{ REG_COM12, 0x78 },	{ 0x4d, 0x40 },
343 	{ 0x4e, 0x20 },		{ REG_GFIX, 0 },
344 	{ 0x6b, 0x4a },		{ 0x74, 0x10 },
345 	{ 0x8d, 0x4f },		{ 0x8e, 0 },
346 	{ 0x8f, 0 },		{ 0x90, 0 },
347 	{ 0x91, 0 },		{ 0x96, 0 },
348 	{ 0x9a, 0 },		{ 0xb0, 0x84 },
349 	{ 0xb1, 0x0c },		{ 0xb2, 0x0e },
350 	{ 0xb3, 0x82 },		{ 0xb8, 0x0a },
351 
352 	/* More reserved magic, some of which tweaks white balance */
353 	{ 0x43, 0x0a },		{ 0x44, 0xf0 },
354 	{ 0x45, 0x34 },		{ 0x46, 0x58 },
355 	{ 0x47, 0x28 },		{ 0x48, 0x3a },
356 	{ 0x59, 0x88 },		{ 0x5a, 0x88 },
357 	{ 0x5b, 0x44 },		{ 0x5c, 0x67 },
358 	{ 0x5d, 0x49 },		{ 0x5e, 0x0e },
359 	{ 0x6c, 0x0a },		{ 0x6d, 0x55 },
360 	{ 0x6e, 0x11 },		{ 0x6f, 0x9f }, /* "9e for advance AWB" */
361 	{ 0x6a, 0x40 },		{ REG_BLUE, 0x40 },
362 	{ REG_RED, 0x60 },
363 	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
364 
365 	/* Matrix coefficients */
366 	{ 0x4f, 0x80 },		{ 0x50, 0x80 },
367 	{ 0x51, 0 },		{ 0x52, 0x22 },
368 	{ 0x53, 0x5e },		{ 0x54, 0x80 },
369 	{ 0x58, 0x9e },
370 
371 	{ REG_COM16, COM16_AWBGAIN },	{ REG_EDGE, 0 },
372 	{ 0x75, 0x05 },		{ 0x76, 0xe1 },
373 	{ 0x4c, 0 },		{ 0x77, 0x01 },
374 	{ REG_COM13, 0xc3 },	{ 0x4b, 0x09 },
375 	{ 0xc9, 0x60 },		{ REG_COM16, 0x38 },
376 	{ 0x56, 0x40 },
377 
378 	{ 0x34, 0x11 },		{ REG_COM11, COM11_EXP|COM11_HZAUTO },
379 	{ 0xa4, 0x88 },		{ 0x96, 0 },
380 	{ 0x97, 0x30 },		{ 0x98, 0x20 },
381 	{ 0x99, 0x30 },		{ 0x9a, 0x84 },
382 	{ 0x9b, 0x29 },		{ 0x9c, 0x03 },
383 	{ 0x9d, 0x4c },		{ 0x9e, 0x3f },
384 	{ 0x78, 0x04 },
385 
386 	/* Extra-weird stuff.  Some sort of multiplexor register */
387 	{ 0x79, 0x01 },		{ 0xc8, 0xf0 },
388 	{ 0x79, 0x0f },		{ 0xc8, 0x00 },
389 	{ 0x79, 0x10 },		{ 0xc8, 0x7e },
390 	{ 0x79, 0x0a },		{ 0xc8, 0x80 },
391 	{ 0x79, 0x0b },		{ 0xc8, 0x01 },
392 	{ 0x79, 0x0c },		{ 0xc8, 0x0f },
393 	{ 0x79, 0x0d },		{ 0xc8, 0x20 },
394 	{ 0x79, 0x09 },		{ 0xc8, 0x80 },
395 	{ 0x79, 0x02 },		{ 0xc8, 0xc0 },
396 	{ 0x79, 0x03 },		{ 0xc8, 0x40 },
397 	{ 0x79, 0x05 },		{ 0xc8, 0x30 },
398 	{ 0x79, 0x26 },
399 
400 	{ 0xff, 0xff },	/* END MARKER */
401 };
402 
403 
404 /*
405  * Here we'll try to encapsulate the changes for just the output
406  * video format.
407  *
408  * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
409  *
410  * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
411  */
412 
413 
414 static struct regval_list ov7670_fmt_yuv422[] = {
415 	{ REG_COM7, 0x0 },  /* Selects YUV mode */
416 	{ REG_RGB444, 0 },	/* No RGB444 please */
417 	{ REG_COM1, 0 },	/* CCIR601 */
418 	{ REG_COM15, COM15_R00FF },
419 	{ REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
420 	{ 0x4f, 0x80 },		/* "matrix coefficient 1" */
421 	{ 0x50, 0x80 },		/* "matrix coefficient 2" */
422 	{ 0x51, 0    },		/* vb */
423 	{ 0x52, 0x22 },		/* "matrix coefficient 4" */
424 	{ 0x53, 0x5e },		/* "matrix coefficient 5" */
425 	{ 0x54, 0x80 },		/* "matrix coefficient 6" */
426 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
427 	{ 0xff, 0xff },
428 };
429 
430 static struct regval_list ov7670_fmt_rgb565[] = {
431 	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
432 	{ REG_RGB444, 0 },	/* No RGB444 please */
433 	{ REG_COM1, 0x0 },	/* CCIR601 */
434 	{ REG_COM15, COM15_RGB565 },
435 	{ REG_COM9, 0x38 },	/* 16x gain ceiling; 0x8 is reserved bit */
436 	{ 0x4f, 0xb3 },		/* "matrix coefficient 1" */
437 	{ 0x50, 0xb3 },		/* "matrix coefficient 2" */
438 	{ 0x51, 0    },		/* vb */
439 	{ 0x52, 0x3d },		/* "matrix coefficient 4" */
440 	{ 0x53, 0xa7 },		/* "matrix coefficient 5" */
441 	{ 0x54, 0xe4 },		/* "matrix coefficient 6" */
442 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
443 	{ 0xff, 0xff },
444 };
445 
446 static struct regval_list ov7670_fmt_rgb444[] = {
447 	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
448 	{ REG_RGB444, R444_ENABLE },	/* Enable xxxxrrrr ggggbbbb */
449 	{ REG_COM1, 0x0 },	/* CCIR601 */
450 	{ REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
451 	{ REG_COM9, 0x38 },	/* 16x gain ceiling; 0x8 is reserved bit */
452 	{ 0x4f, 0xb3 },		/* "matrix coefficient 1" */
453 	{ 0x50, 0xb3 },		/* "matrix coefficient 2" */
454 	{ 0x51, 0    },		/* vb */
455 	{ 0x52, 0x3d },		/* "matrix coefficient 4" */
456 	{ 0x53, 0xa7 },		/* "matrix coefficient 5" */
457 	{ 0x54, 0xe4 },		/* "matrix coefficient 6" */
458 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 },  /* Magic rsvd bit */
459 	{ 0xff, 0xff },
460 };
461 
462 static struct regval_list ov7670_fmt_raw[] = {
463 	{ REG_COM7, COM7_BAYER },
464 	{ REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
465 	{ REG_COM16, 0x3d }, /* Edge enhancement, denoise */
466 	{ REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
467 	{ 0xff, 0xff },
468 };
469 
470 
471 
472 /*
473  * Low-level register I/O.
474  *
475  * Note that there are two versions of these.  On the XO 1, the
476  * i2c controller only does SMBUS, so that's what we use.  The
477  * ov7670 is not really an SMBUS device, though, so the communication
478  * is not always entirely reliable.
479  */
480 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
481 		unsigned char *value)
482 {
483 	struct i2c_client *client = v4l2_get_subdevdata(sd);
484 	int ret;
485 
486 	ret = i2c_smbus_read_byte_data(client, reg);
487 	if (ret >= 0) {
488 		*value = (unsigned char)ret;
489 		ret = 0;
490 	}
491 	return ret;
492 }
493 
494 
495 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
496 		unsigned char value)
497 {
498 	struct i2c_client *client = v4l2_get_subdevdata(sd);
499 	int ret = i2c_smbus_write_byte_data(client, reg, value);
500 
501 	if (reg == REG_COM7 && (value & COM7_RESET))
502 		msleep(5);  /* Wait for reset to run */
503 	return ret;
504 }
505 
506 /*
507  * On most platforms, we'd rather do straight i2c I/O.
508  */
509 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
510 		unsigned char *value)
511 {
512 	struct i2c_client *client = v4l2_get_subdevdata(sd);
513 	u8 data = reg;
514 	struct i2c_msg msg;
515 	int ret;
516 
517 	/*
518 	 * Send out the register address...
519 	 */
520 	msg.addr = client->addr;
521 	msg.flags = 0;
522 	msg.len = 1;
523 	msg.buf = &data;
524 	ret = i2c_transfer(client->adapter, &msg, 1);
525 	if (ret < 0) {
526 		printk(KERN_ERR "Error %d on register write\n", ret);
527 		return ret;
528 	}
529 	/*
530 	 * ...then read back the result.
531 	 */
532 	msg.flags = I2C_M_RD;
533 	ret = i2c_transfer(client->adapter, &msg, 1);
534 	if (ret >= 0) {
535 		*value = data;
536 		ret = 0;
537 	}
538 	return ret;
539 }
540 
541 
542 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
543 		unsigned char value)
544 {
545 	struct i2c_client *client = v4l2_get_subdevdata(sd);
546 	struct i2c_msg msg;
547 	unsigned char data[2] = { reg, value };
548 	int ret;
549 
550 	msg.addr = client->addr;
551 	msg.flags = 0;
552 	msg.len = 2;
553 	msg.buf = data;
554 	ret = i2c_transfer(client->adapter, &msg, 1);
555 	if (ret > 0)
556 		ret = 0;
557 	if (reg == REG_COM7 && (value & COM7_RESET))
558 		msleep(5);  /* Wait for reset to run */
559 	return ret;
560 }
561 
562 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
563 		unsigned char *value)
564 {
565 	struct ov7670_info *info = to_state(sd);
566 	if (info->use_smbus)
567 		return ov7670_read_smbus(sd, reg, value);
568 	else
569 		return ov7670_read_i2c(sd, reg, value);
570 }
571 
572 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
573 		unsigned char value)
574 {
575 	struct ov7670_info *info = to_state(sd);
576 	if (info->use_smbus)
577 		return ov7670_write_smbus(sd, reg, value);
578 	else
579 		return ov7670_write_i2c(sd, reg, value);
580 }
581 
582 static int ov7670_update_bits(struct v4l2_subdev *sd, unsigned char reg,
583 		unsigned char mask, unsigned char value)
584 {
585 	unsigned char orig;
586 	int ret;
587 
588 	ret = ov7670_read(sd, reg, &orig);
589 	if (ret)
590 		return ret;
591 
592 	return ov7670_write(sd, reg, (orig & ~mask) | (value & mask));
593 }
594 
595 /*
596  * Write a list of register settings; ff/ff stops the process.
597  */
598 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
599 {
600 	while (vals->reg_num != 0xff || vals->value != 0xff) {
601 		int ret = ov7670_write(sd, vals->reg_num, vals->value);
602 		if (ret < 0)
603 			return ret;
604 		vals++;
605 	}
606 	return 0;
607 }
608 
609 
610 /*
611  * Stuff that knows about the sensor.
612  */
613 static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
614 {
615 	ov7670_write(sd, REG_COM7, COM7_RESET);
616 	msleep(1);
617 	return 0;
618 }
619 
620 
621 static int ov7670_init(struct v4l2_subdev *sd, u32 val)
622 {
623 	return ov7670_write_array(sd, ov7670_default_regs);
624 }
625 
626 static int ov7670_detect(struct v4l2_subdev *sd)
627 {
628 	unsigned char v;
629 	int ret;
630 
631 	ret = ov7670_init(sd, 0);
632 	if (ret < 0)
633 		return ret;
634 	ret = ov7670_read(sd, REG_MIDH, &v);
635 	if (ret < 0)
636 		return ret;
637 	if (v != 0x7f) /* OV manuf. id. */
638 		return -ENODEV;
639 	ret = ov7670_read(sd, REG_MIDL, &v);
640 	if (ret < 0)
641 		return ret;
642 	if (v != 0xa2)
643 		return -ENODEV;
644 	/*
645 	 * OK, we know we have an OmniVision chip...but which one?
646 	 */
647 	ret = ov7670_read(sd, REG_PID, &v);
648 	if (ret < 0)
649 		return ret;
650 	if (v != 0x76)  /* PID + VER = 0x76 / 0x73 */
651 		return -ENODEV;
652 	ret = ov7670_read(sd, REG_VER, &v);
653 	if (ret < 0)
654 		return ret;
655 	if (v != 0x73)  /* PID + VER = 0x76 / 0x73 */
656 		return -ENODEV;
657 	return 0;
658 }
659 
660 
661 /*
662  * Store information about the video data format.  The color matrix
663  * is deeply tied into the format, so keep the relevant values here.
664  * The magic matrix numbers come from OmniVision.
665  */
666 static struct ov7670_format_struct {
667 	u32 mbus_code;
668 	enum v4l2_colorspace colorspace;
669 	struct regval_list *regs;
670 	int cmatrix[CMATRIX_LEN];
671 } ov7670_formats[] = {
672 	{
673 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
674 		.colorspace	= V4L2_COLORSPACE_SRGB,
675 		.regs		= ov7670_fmt_yuv422,
676 		.cmatrix	= { 128, -128, 0, -34, -94, 128 },
677 	},
678 	{
679 		.mbus_code	= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
680 		.colorspace	= V4L2_COLORSPACE_SRGB,
681 		.regs		= ov7670_fmt_rgb444,
682 		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
683 	},
684 	{
685 		.mbus_code	= MEDIA_BUS_FMT_RGB565_2X8_LE,
686 		.colorspace	= V4L2_COLORSPACE_SRGB,
687 		.regs		= ov7670_fmt_rgb565,
688 		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
689 	},
690 	{
691 		.mbus_code	= MEDIA_BUS_FMT_SBGGR8_1X8,
692 		.colorspace	= V4L2_COLORSPACE_SRGB,
693 		.regs		= ov7670_fmt_raw,
694 		.cmatrix	= { 0, 0, 0, 0, 0, 0 },
695 	},
696 };
697 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
698 
699 
700 /*
701  * Then there is the issue of window sizes.  Try to capture the info here.
702  */
703 
704 /*
705  * QCIF mode is done (by OV) in a very strange way - it actually looks like
706  * VGA with weird scaling options - they do *not* use the canned QCIF mode
707  * which is allegedly provided by the sensor.  So here's the weird register
708  * settings.
709  */
710 static struct regval_list ov7670_qcif_regs[] = {
711 	{ REG_COM3, COM3_SCALEEN|COM3_DCWEN },
712 	{ REG_COM3, COM3_DCWEN },
713 	{ REG_COM14, COM14_DCWEN | 0x01},
714 	{ 0x73, 0xf1 },
715 	{ 0xa2, 0x52 },
716 	{ 0x7b, 0x1c },
717 	{ 0x7c, 0x28 },
718 	{ 0x7d, 0x3c },
719 	{ 0x7f, 0x69 },
720 	{ REG_COM9, 0x38 },
721 	{ 0xa1, 0x0b },
722 	{ 0x74, 0x19 },
723 	{ 0x9a, 0x80 },
724 	{ 0x43, 0x14 },
725 	{ REG_COM13, 0xc0 },
726 	{ 0xff, 0xff },
727 };
728 
729 static struct ov7670_win_size ov7670_win_sizes[] = {
730 	/* VGA */
731 	{
732 		.width		= VGA_WIDTH,
733 		.height		= VGA_HEIGHT,
734 		.com7_bit	= COM7_FMT_VGA,
735 		.hstart		= 158,	/* These values from */
736 		.hstop		=  14,	/* Omnivision */
737 		.vstart		=  10,
738 		.vstop		= 490,
739 		.regs		= NULL,
740 	},
741 	/* CIF */
742 	{
743 		.width		= CIF_WIDTH,
744 		.height		= CIF_HEIGHT,
745 		.com7_bit	= COM7_FMT_CIF,
746 		.hstart		= 170,	/* Empirically determined */
747 		.hstop		=  90,
748 		.vstart		=  14,
749 		.vstop		= 494,
750 		.regs		= NULL,
751 	},
752 	/* QVGA */
753 	{
754 		.width		= QVGA_WIDTH,
755 		.height		= QVGA_HEIGHT,
756 		.com7_bit	= COM7_FMT_QVGA,
757 		.hstart		= 168,	/* Empirically determined */
758 		.hstop		=  24,
759 		.vstart		=  12,
760 		.vstop		= 492,
761 		.regs		= NULL,
762 	},
763 	/* QCIF */
764 	{
765 		.width		= QCIF_WIDTH,
766 		.height		= QCIF_HEIGHT,
767 		.com7_bit	= COM7_FMT_VGA, /* see comment above */
768 		.hstart		= 456,	/* Empirically determined */
769 		.hstop		=  24,
770 		.vstart		=  14,
771 		.vstop		= 494,
772 		.regs		= ov7670_qcif_regs,
773 	}
774 };
775 
776 static struct ov7670_win_size ov7675_win_sizes[] = {
777 	/*
778 	 * Currently, only VGA is supported. Theoretically it could be possible
779 	 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
780 	 * base and tweak them empirically could be required.
781 	 */
782 	{
783 		.width		= VGA_WIDTH,
784 		.height		= VGA_HEIGHT,
785 		.com7_bit	= COM7_FMT_VGA,
786 		.hstart		= 158,	/* These values from */
787 		.hstop		=  14,	/* Omnivision */
788 		.vstart		=  14,  /* Empirically determined */
789 		.vstop		= 494,
790 		.regs		= NULL,
791 	}
792 };
793 
794 static void ov7675_get_framerate(struct v4l2_subdev *sd,
795 				 struct v4l2_fract *tpf)
796 {
797 	struct ov7670_info *info = to_state(sd);
798 	u32 clkrc = info->clkrc;
799 	int pll_factor;
800 
801 	if (info->pll_bypass)
802 		pll_factor = 1;
803 	else
804 		pll_factor = PLL_FACTOR;
805 
806 	clkrc++;
807 	if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
808 		clkrc = (clkrc >> 1);
809 
810 	tpf->numerator = 1;
811 	tpf->denominator = (5 * pll_factor * info->clock_speed) /
812 			(4 * clkrc);
813 }
814 
815 static int ov7675_apply_framerate(struct v4l2_subdev *sd)
816 {
817 	struct ov7670_info *info = to_state(sd);
818 	int ret;
819 
820 	ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
821 	if (ret < 0)
822 		return ret;
823 
824 	return ov7670_write(sd, REG_DBLV,
825 			    info->pll_bypass ? DBLV_BYPASS : DBLV_X4);
826 }
827 
828 static int ov7675_set_framerate(struct v4l2_subdev *sd,
829 				 struct v4l2_fract *tpf)
830 {
831 	struct ov7670_info *info = to_state(sd);
832 	u32 clkrc;
833 	int pll_factor;
834 
835 	/*
836 	 * The formula is fps = 5/4*pixclk for YUV/RGB and
837 	 * fps = 5/2*pixclk for RAW.
838 	 *
839 	 * pixclk = clock_speed / (clkrc + 1) * PLLfactor
840 	 *
841 	 */
842 	if (tpf->numerator == 0 || tpf->denominator == 0) {
843 		clkrc = 0;
844 	} else {
845 		pll_factor = info->pll_bypass ? 1 : PLL_FACTOR;
846 		clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) /
847 			(4 * tpf->denominator);
848 		if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
849 			clkrc = (clkrc << 1);
850 		clkrc--;
851 	}
852 
853 	/*
854 	 * The datasheet claims that clkrc = 0 will divide the input clock by 1
855 	 * but we've checked with an oscilloscope that it divides by 2 instead.
856 	 * So, if clkrc = 0 just bypass the divider.
857 	 */
858 	if (clkrc <= 0)
859 		clkrc = CLK_EXT;
860 	else if (clkrc > CLK_SCALE)
861 		clkrc = CLK_SCALE;
862 	info->clkrc = clkrc;
863 
864 	/* Recalculate frame rate */
865 	ov7675_get_framerate(sd, tpf);
866 
867 	return ov7675_apply_framerate(sd);
868 }
869 
870 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd,
871 				 struct v4l2_fract *tpf)
872 {
873 	struct ov7670_info *info = to_state(sd);
874 
875 	tpf->numerator = 1;
876 	tpf->denominator = info->clock_speed;
877 	if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
878 		tpf->denominator /= (info->clkrc & CLK_SCALE);
879 }
880 
881 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd,
882 					struct v4l2_fract *tpf)
883 {
884 	struct ov7670_info *info = to_state(sd);
885 	int div;
886 
887 	if (tpf->numerator == 0 || tpf->denominator == 0)
888 		div = 1;  /* Reset to full rate */
889 	else
890 		div = (tpf->numerator * info->clock_speed) / tpf->denominator;
891 	if (div == 0)
892 		div = 1;
893 	else if (div > CLK_SCALE)
894 		div = CLK_SCALE;
895 	info->clkrc = (info->clkrc & 0x80) | div;
896 	tpf->numerator = 1;
897 	tpf->denominator = info->clock_speed / div;
898 	return ov7670_write(sd, REG_CLKRC, info->clkrc);
899 }
900 
901 /*
902  * Store a set of start/stop values into the camera.
903  */
904 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
905 		int vstart, int vstop)
906 {
907 	int ret;
908 	unsigned char v;
909 /*
910  * Horizontal: 11 bits, top 8 live in hstart and hstop.  Bottom 3 of
911  * hstart are in href[2:0], bottom 3 of hstop in href[5:3].  There is
912  * a mystery "edge offset" value in the top two bits of href.
913  */
914 	ret =  ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
915 	ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
916 	ret += ov7670_read(sd, REG_HREF, &v);
917 	v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
918 	msleep(10);
919 	ret += ov7670_write(sd, REG_HREF, v);
920 /*
921  * Vertical: similar arrangement, but only 10 bits.
922  */
923 	ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
924 	ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
925 	ret += ov7670_read(sd, REG_VREF, &v);
926 	v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
927 	msleep(10);
928 	ret += ov7670_write(sd, REG_VREF, v);
929 	return ret;
930 }
931 
932 
933 static int ov7670_enum_mbus_code(struct v4l2_subdev *sd,
934 		struct v4l2_subdev_pad_config *cfg,
935 		struct v4l2_subdev_mbus_code_enum *code)
936 {
937 	if (code->pad || code->index >= N_OV7670_FMTS)
938 		return -EINVAL;
939 
940 	code->code = ov7670_formats[code->index].mbus_code;
941 	return 0;
942 }
943 
944 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
945 		struct v4l2_mbus_framefmt *fmt,
946 		struct ov7670_format_struct **ret_fmt,
947 		struct ov7670_win_size **ret_wsize)
948 {
949 	int index, i;
950 	struct ov7670_win_size *wsize;
951 	struct ov7670_info *info = to_state(sd);
952 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
953 	unsigned int win_sizes_limit = n_win_sizes;
954 
955 	for (index = 0; index < N_OV7670_FMTS; index++)
956 		if (ov7670_formats[index].mbus_code == fmt->code)
957 			break;
958 	if (index >= N_OV7670_FMTS) {
959 		/* default to first format */
960 		index = 0;
961 		fmt->code = ov7670_formats[0].mbus_code;
962 	}
963 	if (ret_fmt != NULL)
964 		*ret_fmt = ov7670_formats + index;
965 	/*
966 	 * Fields: the OV devices claim to be progressive.
967 	 */
968 	fmt->field = V4L2_FIELD_NONE;
969 
970 	/*
971 	 * Don't consider values that don't match min_height and min_width
972 	 * constraints.
973 	 */
974 	if (info->min_width || info->min_height)
975 		for (i = 0; i < n_win_sizes; i++) {
976 			wsize = info->devtype->win_sizes + i;
977 
978 			if (wsize->width < info->min_width ||
979 				wsize->height < info->min_height) {
980 				win_sizes_limit = i;
981 				break;
982 			}
983 		}
984 	/*
985 	 * Round requested image size down to the nearest
986 	 * we support, but not below the smallest.
987 	 */
988 	for (wsize = info->devtype->win_sizes;
989 	     wsize < info->devtype->win_sizes + win_sizes_limit; wsize++)
990 		if (fmt->width >= wsize->width && fmt->height >= wsize->height)
991 			break;
992 	if (wsize >= info->devtype->win_sizes + win_sizes_limit)
993 		wsize--;   /* Take the smallest one */
994 	if (ret_wsize != NULL)
995 		*ret_wsize = wsize;
996 	/*
997 	 * Note the size we'll actually handle.
998 	 */
999 	fmt->width = wsize->width;
1000 	fmt->height = wsize->height;
1001 	fmt->colorspace = ov7670_formats[index].colorspace;
1002 
1003 	info->format = *fmt;
1004 
1005 	return 0;
1006 }
1007 
1008 static int ov7670_apply_fmt(struct v4l2_subdev *sd)
1009 {
1010 	struct ov7670_info *info = to_state(sd);
1011 	struct ov7670_win_size *wsize = info->wsize;
1012 	unsigned char com7, com10 = 0;
1013 	int ret;
1014 
1015 	/*
1016 	 * COM7 is a pain in the ass, it doesn't like to be read then
1017 	 * quickly written afterward.  But we have everything we need
1018 	 * to set it absolutely here, as long as the format-specific
1019 	 * register sets list it first.
1020 	 */
1021 	com7 = info->fmt->regs[0].value;
1022 	com7 |= wsize->com7_bit;
1023 	ret = ov7670_write(sd, REG_COM7, com7);
1024 	if (ret)
1025 		return ret;
1026 
1027 	/*
1028 	 * Configure the media bus through COM10 register
1029 	 */
1030 	if (info->mbus_config & V4L2_MBUS_VSYNC_ACTIVE_LOW)
1031 		com10 |= COM10_VS_NEG;
1032 	if (info->mbus_config & V4L2_MBUS_HSYNC_ACTIVE_LOW)
1033 		com10 |= COM10_HREF_REV;
1034 	if (info->pclk_hb_disable)
1035 		com10 |= COM10_PCLK_HB;
1036 	ret = ov7670_write(sd, REG_COM10, com10);
1037 	if (ret)
1038 		return ret;
1039 
1040 	/*
1041 	 * Now write the rest of the array.  Also store start/stops
1042 	 */
1043 	ret = ov7670_write_array(sd, info->fmt->regs + 1);
1044 	if (ret)
1045 		return ret;
1046 
1047 	ret = ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
1048 			    wsize->vstop);
1049 	if (ret)
1050 		return ret;
1051 
1052 	if (wsize->regs) {
1053 		ret = ov7670_write_array(sd, wsize->regs);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	/*
1059 	 * If we're running RGB565, we must rewrite clkrc after setting
1060 	 * the other parameters or the image looks poor.  If we're *not*
1061 	 * doing RGB565, we must not rewrite clkrc or the image looks
1062 	 * *really* poor.
1063 	 *
1064 	 * (Update) Now that we retain clkrc state, we should be able
1065 	 * to write it unconditionally, and that will make the frame
1066 	 * rate persistent too.
1067 	 */
1068 	ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
1069 	if (ret)
1070 		return ret;
1071 
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Set a format.
1077  */
1078 static int ov7670_set_fmt(struct v4l2_subdev *sd,
1079 		struct v4l2_subdev_pad_config *cfg,
1080 		struct v4l2_subdev_format *format)
1081 {
1082 	struct ov7670_info *info = to_state(sd);
1083 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1084 	struct v4l2_mbus_framefmt *mbus_fmt;
1085 #endif
1086 	int ret;
1087 
1088 	if (format->pad)
1089 		return -EINVAL;
1090 
1091 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1092 		ret = ov7670_try_fmt_internal(sd, &format->format, NULL, NULL);
1093 		if (ret)
1094 			return ret;
1095 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1096 		mbus_fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1097 		*mbus_fmt = format->format;
1098 		return 0;
1099 #else
1100 		return -ENOTTY;
1101 #endif
1102 	}
1103 
1104 	ret = ov7670_try_fmt_internal(sd, &format->format, &info->fmt, &info->wsize);
1105 	if (ret)
1106 		return ret;
1107 
1108 	ret = ov7670_apply_fmt(sd);
1109 	if (ret)
1110 		return ret;
1111 
1112 	return 0;
1113 }
1114 
1115 static int ov7670_get_fmt(struct v4l2_subdev *sd,
1116 			  struct v4l2_subdev_pad_config *cfg,
1117 			  struct v4l2_subdev_format *format)
1118 {
1119 	struct ov7670_info *info = to_state(sd);
1120 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1121 	struct v4l2_mbus_framefmt *mbus_fmt;
1122 #endif
1123 
1124 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1125 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1126 		mbus_fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
1127 		format->format = *mbus_fmt;
1128 		return 0;
1129 #else
1130 		return -ENOTTY;
1131 #endif
1132 	} else {
1133 		format->format = info->format;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Implement G/S_PARM.  There is a "high quality" mode we could try
1141  * to do someday; for now, we just do the frame rate tweak.
1142  */
1143 static int ov7670_g_frame_interval(struct v4l2_subdev *sd,
1144 				   struct v4l2_subdev_frame_interval *ival)
1145 {
1146 	struct ov7670_info *info = to_state(sd);
1147 
1148 
1149 	info->devtype->get_framerate(sd, &ival->interval);
1150 
1151 	return 0;
1152 }
1153 
1154 static int ov7670_s_frame_interval(struct v4l2_subdev *sd,
1155 				   struct v4l2_subdev_frame_interval *ival)
1156 {
1157 	struct v4l2_fract *tpf = &ival->interval;
1158 	struct ov7670_info *info = to_state(sd);
1159 
1160 
1161 	return info->devtype->set_framerate(sd, tpf);
1162 }
1163 
1164 
1165 /*
1166  * Frame intervals.  Since frame rates are controlled with the clock
1167  * divider, we can only do 30/n for integer n values.  So no continuous
1168  * or stepwise options.  Here we just pick a handful of logical values.
1169  */
1170 
1171 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
1172 
1173 static int ov7670_enum_frame_interval(struct v4l2_subdev *sd,
1174 				      struct v4l2_subdev_pad_config *cfg,
1175 				      struct v4l2_subdev_frame_interval_enum *fie)
1176 {
1177 	struct ov7670_info *info = to_state(sd);
1178 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
1179 	int i;
1180 
1181 	if (fie->pad)
1182 		return -EINVAL;
1183 	if (fie->index >= ARRAY_SIZE(ov7670_frame_rates))
1184 		return -EINVAL;
1185 
1186 	/*
1187 	 * Check if the width/height is valid.
1188 	 *
1189 	 * If a minimum width/height was requested, filter out the capture
1190 	 * windows that fall outside that.
1191 	 */
1192 	for (i = 0; i < n_win_sizes; i++) {
1193 		struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1194 
1195 		if (info->min_width && win->width < info->min_width)
1196 			continue;
1197 		if (info->min_height && win->height < info->min_height)
1198 			continue;
1199 		if (fie->width == win->width && fie->height == win->height)
1200 			break;
1201 	}
1202 	if (i == n_win_sizes)
1203 		return -EINVAL;
1204 	fie->interval.numerator = 1;
1205 	fie->interval.denominator = ov7670_frame_rates[fie->index];
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Frame size enumeration
1211  */
1212 static int ov7670_enum_frame_size(struct v4l2_subdev *sd,
1213 				  struct v4l2_subdev_pad_config *cfg,
1214 				  struct v4l2_subdev_frame_size_enum *fse)
1215 {
1216 	struct ov7670_info *info = to_state(sd);
1217 	int i;
1218 	int num_valid = -1;
1219 	__u32 index = fse->index;
1220 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
1221 
1222 	if (fse->pad)
1223 		return -EINVAL;
1224 
1225 	/*
1226 	 * If a minimum width/height was requested, filter out the capture
1227 	 * windows that fall outside that.
1228 	 */
1229 	for (i = 0; i < n_win_sizes; i++) {
1230 		struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1231 		if (info->min_width && win->width < info->min_width)
1232 			continue;
1233 		if (info->min_height && win->height < info->min_height)
1234 			continue;
1235 		if (index == ++num_valid) {
1236 			fse->min_width = fse->max_width = win->width;
1237 			fse->min_height = fse->max_height = win->height;
1238 			return 0;
1239 		}
1240 	}
1241 
1242 	return -EINVAL;
1243 }
1244 
1245 /*
1246  * Code for dealing with controls.
1247  */
1248 
1249 static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
1250 		int matrix[CMATRIX_LEN])
1251 {
1252 	int i, ret;
1253 	unsigned char signbits = 0;
1254 
1255 	/*
1256 	 * Weird crap seems to exist in the upper part of
1257 	 * the sign bits register, so let's preserve it.
1258 	 */
1259 	ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
1260 	signbits &= 0xc0;
1261 
1262 	for (i = 0; i < CMATRIX_LEN; i++) {
1263 		unsigned char raw;
1264 
1265 		if (matrix[i] < 0) {
1266 			signbits |= (1 << i);
1267 			if (matrix[i] < -255)
1268 				raw = 0xff;
1269 			else
1270 				raw = (-1 * matrix[i]) & 0xff;
1271 		}
1272 		else {
1273 			if (matrix[i] > 255)
1274 				raw = 0xff;
1275 			else
1276 				raw = matrix[i] & 0xff;
1277 		}
1278 		ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
1279 	}
1280 	ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
1281 	return ret;
1282 }
1283 
1284 
1285 /*
1286  * Hue also requires messing with the color matrix.  It also requires
1287  * trig functions, which tend not to be well supported in the kernel.
1288  * So here is a simple table of sine values, 0-90 degrees, in steps
1289  * of five degrees.  Values are multiplied by 1000.
1290  *
1291  * The following naive approximate trig functions require an argument
1292  * carefully limited to -180 <= theta <= 180.
1293  */
1294 #define SIN_STEP 5
1295 static const int ov7670_sin_table[] = {
1296 	   0,	 87,   173,   258,   342,   422,
1297 	 499,	573,   642,   707,   766,   819,
1298 	 866,	906,   939,   965,   984,   996,
1299 	1000
1300 };
1301 
1302 static int ov7670_sine(int theta)
1303 {
1304 	int chs = 1;
1305 	int sine;
1306 
1307 	if (theta < 0) {
1308 		theta = -theta;
1309 		chs = -1;
1310 	}
1311 	if (theta <= 90)
1312 		sine = ov7670_sin_table[theta/SIN_STEP];
1313 	else {
1314 		theta -= 90;
1315 		sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1316 	}
1317 	return sine*chs;
1318 }
1319 
1320 static int ov7670_cosine(int theta)
1321 {
1322 	theta = 90 - theta;
1323 	if (theta > 180)
1324 		theta -= 360;
1325 	else if (theta < -180)
1326 		theta += 360;
1327 	return ov7670_sine(theta);
1328 }
1329 
1330 
1331 
1332 
1333 static void ov7670_calc_cmatrix(struct ov7670_info *info,
1334 		int matrix[CMATRIX_LEN], int sat, int hue)
1335 {
1336 	int i;
1337 	/*
1338 	 * Apply the current saturation setting first.
1339 	 */
1340 	for (i = 0; i < CMATRIX_LEN; i++)
1341 		matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7;
1342 	/*
1343 	 * Then, if need be, rotate the hue value.
1344 	 */
1345 	if (hue != 0) {
1346 		int sinth, costh, tmpmatrix[CMATRIX_LEN];
1347 
1348 		memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1349 		sinth = ov7670_sine(hue);
1350 		costh = ov7670_cosine(hue);
1351 
1352 		matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1353 		matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1354 		matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1355 		matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1356 		matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1357 		matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1358 	}
1359 }
1360 
1361 
1362 
1363 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue)
1364 {
1365 	struct ov7670_info *info = to_state(sd);
1366 	int matrix[CMATRIX_LEN];
1367 	int ret;
1368 
1369 	ov7670_calc_cmatrix(info, matrix, sat, hue);
1370 	ret = ov7670_store_cmatrix(sd, matrix);
1371 	return ret;
1372 }
1373 
1374 
1375 /*
1376  * Some weird registers seem to store values in a sign/magnitude format!
1377  */
1378 
1379 static unsigned char ov7670_abs_to_sm(unsigned char v)
1380 {
1381 	if (v > 127)
1382 		return v & 0x7f;
1383 	return (128 - v) | 0x80;
1384 }
1385 
1386 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1387 {
1388 	unsigned char com8 = 0, v;
1389 	int ret;
1390 
1391 	ov7670_read(sd, REG_COM8, &com8);
1392 	com8 &= ~COM8_AEC;
1393 	ov7670_write(sd, REG_COM8, com8);
1394 	v = ov7670_abs_to_sm(value);
1395 	ret = ov7670_write(sd, REG_BRIGHT, v);
1396 	return ret;
1397 }
1398 
1399 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1400 {
1401 	return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1402 }
1403 
1404 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1405 {
1406 	unsigned char v = 0;
1407 	int ret;
1408 
1409 	ret = ov7670_read(sd, REG_MVFP, &v);
1410 	if (value)
1411 		v |= MVFP_MIRROR;
1412 	else
1413 		v &= ~MVFP_MIRROR;
1414 	msleep(10);  /* FIXME */
1415 	ret += ov7670_write(sd, REG_MVFP, v);
1416 	return ret;
1417 }
1418 
1419 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1420 {
1421 	unsigned char v = 0;
1422 	int ret;
1423 
1424 	ret = ov7670_read(sd, REG_MVFP, &v);
1425 	if (value)
1426 		v |= MVFP_FLIP;
1427 	else
1428 		v &= ~MVFP_FLIP;
1429 	msleep(10);  /* FIXME */
1430 	ret += ov7670_write(sd, REG_MVFP, v);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * GAIN is split between REG_GAIN and REG_VREF[7:6].  If one believes
1436  * the data sheet, the VREF parts should be the most significant, but
1437  * experience shows otherwise.  There seems to be little value in
1438  * messing with the VREF bits, so we leave them alone.
1439  */
1440 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1441 {
1442 	int ret;
1443 	unsigned char gain;
1444 
1445 	ret = ov7670_read(sd, REG_GAIN, &gain);
1446 	*value = gain;
1447 	return ret;
1448 }
1449 
1450 static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1451 {
1452 	int ret;
1453 	unsigned char com8;
1454 
1455 	ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1456 	/* Have to turn off AGC as well */
1457 	if (ret == 0) {
1458 		ret = ov7670_read(sd, REG_COM8, &com8);
1459 		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1460 	}
1461 	return ret;
1462 }
1463 
1464 /*
1465  * Tweak autogain.
1466  */
1467 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1468 {
1469 	int ret;
1470 	unsigned char com8;
1471 
1472 	ret = ov7670_read(sd, REG_COM8, &com8);
1473 	if (ret == 0) {
1474 		if (value)
1475 			com8 |= COM8_AGC;
1476 		else
1477 			com8 &= ~COM8_AGC;
1478 		ret = ov7670_write(sd, REG_COM8, com8);
1479 	}
1480 	return ret;
1481 }
1482 
1483 static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1484 {
1485 	int ret;
1486 	unsigned char com1, com8, aech, aechh;
1487 
1488 	ret = ov7670_read(sd, REG_COM1, &com1) +
1489 		ov7670_read(sd, REG_COM8, &com8) +
1490 		ov7670_read(sd, REG_AECHH, &aechh);
1491 	if (ret)
1492 		return ret;
1493 
1494 	com1 = (com1 & 0xfc) | (value & 0x03);
1495 	aech = (value >> 2) & 0xff;
1496 	aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1497 	ret = ov7670_write(sd, REG_COM1, com1) +
1498 		ov7670_write(sd, REG_AECH, aech) +
1499 		ov7670_write(sd, REG_AECHH, aechh);
1500 	/* Have to turn off AEC as well */
1501 	if (ret == 0)
1502 		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Tweak autoexposure.
1508  */
1509 static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1510 		enum v4l2_exposure_auto_type value)
1511 {
1512 	int ret;
1513 	unsigned char com8;
1514 
1515 	ret = ov7670_read(sd, REG_COM8, &com8);
1516 	if (ret == 0) {
1517 		if (value == V4L2_EXPOSURE_AUTO)
1518 			com8 |= COM8_AEC;
1519 		else
1520 			com8 &= ~COM8_AEC;
1521 		ret = ov7670_write(sd, REG_COM8, com8);
1522 	}
1523 	return ret;
1524 }
1525 
1526 static const char * const ov7670_test_pattern_menu[] = {
1527 	"No test output",
1528 	"Shifting \"1\"",
1529 	"8-bar color bar",
1530 	"Fade to gray color bar",
1531 };
1532 
1533 static int ov7670_s_test_pattern(struct v4l2_subdev *sd, int value)
1534 {
1535 	int ret;
1536 
1537 	ret = ov7670_update_bits(sd, REG_SCALING_XSC, TEST_PATTTERN_0,
1538 				value & BIT(0) ? TEST_PATTTERN_0 : 0);
1539 	if (ret)
1540 		return ret;
1541 
1542 	return ov7670_update_bits(sd, REG_SCALING_YSC, TEST_PATTTERN_1,
1543 				value & BIT(1) ? TEST_PATTTERN_1 : 0);
1544 }
1545 
1546 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1547 {
1548 	struct v4l2_subdev *sd = to_sd(ctrl);
1549 	struct ov7670_info *info = to_state(sd);
1550 
1551 	switch (ctrl->id) {
1552 	case V4L2_CID_AUTOGAIN:
1553 		return ov7670_g_gain(sd, &info->gain->val);
1554 	}
1555 	return -EINVAL;
1556 }
1557 
1558 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl)
1559 {
1560 	struct v4l2_subdev *sd = to_sd(ctrl);
1561 	struct ov7670_info *info = to_state(sd);
1562 
1563 	switch (ctrl->id) {
1564 	case V4L2_CID_BRIGHTNESS:
1565 		return ov7670_s_brightness(sd, ctrl->val);
1566 	case V4L2_CID_CONTRAST:
1567 		return ov7670_s_contrast(sd, ctrl->val);
1568 	case V4L2_CID_SATURATION:
1569 		return ov7670_s_sat_hue(sd,
1570 				info->saturation->val, info->hue->val);
1571 	case V4L2_CID_VFLIP:
1572 		return ov7670_s_vflip(sd, ctrl->val);
1573 	case V4L2_CID_HFLIP:
1574 		return ov7670_s_hflip(sd, ctrl->val);
1575 	case V4L2_CID_AUTOGAIN:
1576 		/* Only set manual gain if auto gain is not explicitly
1577 		   turned on. */
1578 		if (!ctrl->val) {
1579 			/* ov7670_s_gain turns off auto gain */
1580 			return ov7670_s_gain(sd, info->gain->val);
1581 		}
1582 		return ov7670_s_autogain(sd, ctrl->val);
1583 	case V4L2_CID_EXPOSURE_AUTO:
1584 		/* Only set manual exposure if auto exposure is not explicitly
1585 		   turned on. */
1586 		if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
1587 			/* ov7670_s_exp turns off auto exposure */
1588 			return ov7670_s_exp(sd, info->exposure->val);
1589 		}
1590 		return ov7670_s_autoexp(sd, ctrl->val);
1591 	case V4L2_CID_TEST_PATTERN:
1592 		return ov7670_s_test_pattern(sd, ctrl->val);
1593 	}
1594 	return -EINVAL;
1595 }
1596 
1597 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = {
1598 	.s_ctrl = ov7670_s_ctrl,
1599 	.g_volatile_ctrl = ov7670_g_volatile_ctrl,
1600 };
1601 
1602 #ifdef CONFIG_VIDEO_ADV_DEBUG
1603 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1604 {
1605 	unsigned char val = 0;
1606 	int ret;
1607 
1608 	ret = ov7670_read(sd, reg->reg & 0xff, &val);
1609 	reg->val = val;
1610 	reg->size = 1;
1611 	return ret;
1612 }
1613 
1614 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
1615 {
1616 	ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1617 	return 0;
1618 }
1619 #endif
1620 
1621 static void ov7670_power_on(struct v4l2_subdev *sd)
1622 {
1623 	struct ov7670_info *info = to_state(sd);
1624 
1625 	if (info->on)
1626 		return;
1627 
1628 	clk_prepare_enable(info->clk);
1629 
1630 	if (info->pwdn_gpio)
1631 		gpiod_set_value(info->pwdn_gpio, 0);
1632 	if (info->resetb_gpio) {
1633 		gpiod_set_value(info->resetb_gpio, 1);
1634 		usleep_range(500, 1000);
1635 		gpiod_set_value(info->resetb_gpio, 0);
1636 	}
1637 	if (info->pwdn_gpio || info->resetb_gpio || info->clk)
1638 		usleep_range(3000, 5000);
1639 
1640 	info->on = true;
1641 }
1642 
1643 static void ov7670_power_off(struct v4l2_subdev *sd)
1644 {
1645 	struct ov7670_info *info = to_state(sd);
1646 
1647 	if (!info->on)
1648 		return;
1649 
1650 	clk_disable_unprepare(info->clk);
1651 
1652 	if (info->pwdn_gpio)
1653 		gpiod_set_value(info->pwdn_gpio, 1);
1654 
1655 	info->on = false;
1656 }
1657 
1658 static int ov7670_s_power(struct v4l2_subdev *sd, int on)
1659 {
1660 	struct ov7670_info *info = to_state(sd);
1661 
1662 	if (info->on == on)
1663 		return 0;
1664 
1665 	if (on) {
1666 		ov7670_power_on (sd);
1667 		ov7670_apply_fmt(sd);
1668 		ov7675_apply_framerate(sd);
1669 		v4l2_ctrl_handler_setup(&info->hdl);
1670 	} else {
1671 		ov7670_power_off (sd);
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static void ov7670_get_default_format(struct v4l2_subdev *sd,
1678 				      struct v4l2_mbus_framefmt *format)
1679 {
1680 	struct ov7670_info *info = to_state(sd);
1681 
1682 	format->width = info->devtype->win_sizes[0].width;
1683 	format->height = info->devtype->win_sizes[0].height;
1684 	format->colorspace = info->fmt->colorspace;
1685 	format->code = info->fmt->mbus_code;
1686 	format->field = V4L2_FIELD_NONE;
1687 }
1688 
1689 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1690 static int ov7670_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
1691 {
1692 	struct v4l2_mbus_framefmt *format =
1693 				v4l2_subdev_get_try_format(sd, fh->pad, 0);
1694 
1695 	ov7670_get_default_format(sd, format);
1696 
1697 	return 0;
1698 }
1699 #endif
1700 
1701 /* ----------------------------------------------------------------------- */
1702 
1703 static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1704 	.reset = ov7670_reset,
1705 	.init = ov7670_init,
1706 	.s_power = ov7670_s_power,
1707 	.log_status = v4l2_ctrl_subdev_log_status,
1708 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
1709 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
1710 #ifdef CONFIG_VIDEO_ADV_DEBUG
1711 	.g_register = ov7670_g_register,
1712 	.s_register = ov7670_s_register,
1713 #endif
1714 };
1715 
1716 static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1717 	.s_frame_interval = ov7670_s_frame_interval,
1718 	.g_frame_interval = ov7670_g_frame_interval,
1719 };
1720 
1721 static const struct v4l2_subdev_pad_ops ov7670_pad_ops = {
1722 	.enum_frame_interval = ov7670_enum_frame_interval,
1723 	.enum_frame_size = ov7670_enum_frame_size,
1724 	.enum_mbus_code = ov7670_enum_mbus_code,
1725 	.get_fmt = ov7670_get_fmt,
1726 	.set_fmt = ov7670_set_fmt,
1727 };
1728 
1729 static const struct v4l2_subdev_ops ov7670_ops = {
1730 	.core = &ov7670_core_ops,
1731 	.video = &ov7670_video_ops,
1732 	.pad = &ov7670_pad_ops,
1733 };
1734 
1735 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1736 static const struct v4l2_subdev_internal_ops ov7670_subdev_internal_ops = {
1737 	.open = ov7670_open,
1738 };
1739 #endif
1740 
1741 /* ----------------------------------------------------------------------- */
1742 
1743 static const struct ov7670_devtype ov7670_devdata[] = {
1744 	[MODEL_OV7670] = {
1745 		.win_sizes = ov7670_win_sizes,
1746 		.n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1747 		.set_framerate = ov7670_set_framerate_legacy,
1748 		.get_framerate = ov7670_get_framerate_legacy,
1749 	},
1750 	[MODEL_OV7675] = {
1751 		.win_sizes = ov7675_win_sizes,
1752 		.n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1753 		.set_framerate = ov7675_set_framerate,
1754 		.get_framerate = ov7675_get_framerate,
1755 	},
1756 };
1757 
1758 static int ov7670_init_gpio(struct i2c_client *client, struct ov7670_info *info)
1759 {
1760 	info->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown",
1761 			GPIOD_OUT_LOW);
1762 	if (IS_ERR(info->pwdn_gpio)) {
1763 		dev_info(&client->dev, "can't get %s GPIO\n", "powerdown");
1764 		return PTR_ERR(info->pwdn_gpio);
1765 	}
1766 
1767 	info->resetb_gpio = devm_gpiod_get_optional(&client->dev, "reset",
1768 			GPIOD_OUT_LOW);
1769 	if (IS_ERR(info->resetb_gpio)) {
1770 		dev_info(&client->dev, "can't get %s GPIO\n", "reset");
1771 		return PTR_ERR(info->resetb_gpio);
1772 	}
1773 
1774 	usleep_range(3000, 5000);
1775 
1776 	return 0;
1777 }
1778 
1779 /*
1780  * ov7670_parse_dt() - Parse device tree to collect mbus configuration
1781  *			properties
1782  */
1783 static int ov7670_parse_dt(struct device *dev,
1784 			   struct ov7670_info *info)
1785 {
1786 	struct fwnode_handle *fwnode = dev_fwnode(dev);
1787 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
1788 	struct fwnode_handle *ep;
1789 	int ret;
1790 
1791 	if (!fwnode)
1792 		return -EINVAL;
1793 
1794 	info->pclk_hb_disable = false;
1795 	if (fwnode_property_present(fwnode, "ov7670,pclk-hb-disable"))
1796 		info->pclk_hb_disable = true;
1797 
1798 	ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
1799 	if (!ep)
1800 		return -EINVAL;
1801 
1802 	ret = v4l2_fwnode_endpoint_parse(ep, &bus_cfg);
1803 	fwnode_handle_put(ep);
1804 	if (ret)
1805 		return ret;
1806 
1807 	if (bus_cfg.bus_type != V4L2_MBUS_PARALLEL) {
1808 		dev_err(dev, "Unsupported media bus type\n");
1809 		return ret;
1810 	}
1811 	info->mbus_config = bus_cfg.bus.parallel.flags;
1812 
1813 	return 0;
1814 }
1815 
1816 static int ov7670_probe(struct i2c_client *client,
1817 			const struct i2c_device_id *id)
1818 {
1819 	struct v4l2_fract tpf;
1820 	struct v4l2_subdev *sd;
1821 	struct ov7670_info *info;
1822 	int ret;
1823 
1824 	info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL);
1825 	if (info == NULL)
1826 		return -ENOMEM;
1827 	sd = &info->sd;
1828 	v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1829 
1830 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1831 	sd->internal_ops = &ov7670_subdev_internal_ops;
1832 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
1833 #endif
1834 
1835 	info->clock_speed = 30; /* default: a guess */
1836 
1837 	if (dev_fwnode(&client->dev)) {
1838 		ret = ov7670_parse_dt(&client->dev, info);
1839 		if (ret)
1840 			return ret;
1841 
1842 	} else if (client->dev.platform_data) {
1843 		struct ov7670_config *config = client->dev.platform_data;
1844 
1845 		/*
1846 		 * Must apply configuration before initializing device, because it
1847 		 * selects I/O method.
1848 		 */
1849 		info->min_width = config->min_width;
1850 		info->min_height = config->min_height;
1851 		info->use_smbus = config->use_smbus;
1852 
1853 		if (config->clock_speed)
1854 			info->clock_speed = config->clock_speed;
1855 
1856 		if (config->pll_bypass)
1857 			info->pll_bypass = true;
1858 
1859 		if (config->pclk_hb_disable)
1860 			info->pclk_hb_disable = true;
1861 	}
1862 
1863 	info->clk = devm_clk_get(&client->dev, "xclk"); /* optional */
1864 	if (IS_ERR(info->clk)) {
1865 		ret = PTR_ERR(info->clk);
1866 		if (ret == -ENOENT)
1867 			info->clk = NULL;
1868 		else
1869 			return ret;
1870 	}
1871 
1872 	ret = ov7670_init_gpio(client, info);
1873 	if (ret)
1874 		return ret;
1875 
1876 	ov7670_power_on(sd);
1877 
1878 	if (info->clk) {
1879 		info->clock_speed = clk_get_rate(info->clk) / 1000000;
1880 		if (info->clock_speed < 10 || info->clock_speed > 48) {
1881 			ret = -EINVAL;
1882 			goto power_off;
1883 		}
1884 	}
1885 
1886 	/* Make sure it's an ov7670 */
1887 	ret = ov7670_detect(sd);
1888 	if (ret) {
1889 		v4l_dbg(1, debug, client,
1890 			"chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1891 			client->addr << 1, client->adapter->name);
1892 		goto power_off;
1893 	}
1894 	v4l_info(client, "chip found @ 0x%02x (%s)\n",
1895 			client->addr << 1, client->adapter->name);
1896 
1897 	info->devtype = &ov7670_devdata[id->driver_data];
1898 	info->fmt = &ov7670_formats[0];
1899 	info->wsize = &info->devtype->win_sizes[0];
1900 
1901 	ov7670_get_default_format(sd, &info->format);
1902 
1903 	info->clkrc = 0;
1904 
1905 	/* Set default frame rate to 30 fps */
1906 	tpf.numerator = 1;
1907 	tpf.denominator = 30;
1908 	info->devtype->set_framerate(sd, &tpf);
1909 
1910 	v4l2_ctrl_handler_init(&info->hdl, 10);
1911 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1912 			V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
1913 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1914 			V4L2_CID_CONTRAST, 0, 127, 1, 64);
1915 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1916 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1917 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1918 			V4L2_CID_HFLIP, 0, 1, 1, 0);
1919 	info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1920 			V4L2_CID_SATURATION, 0, 256, 1, 128);
1921 	info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1922 			V4L2_CID_HUE, -180, 180, 5, 0);
1923 	info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1924 			V4L2_CID_GAIN, 0, 255, 1, 128);
1925 	info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1926 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1927 	info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1928 			V4L2_CID_EXPOSURE, 0, 65535, 1, 500);
1929 	info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops,
1930 			V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0,
1931 			V4L2_EXPOSURE_AUTO);
1932 	v4l2_ctrl_new_std_menu_items(&info->hdl, &ov7670_ctrl_ops,
1933 			V4L2_CID_TEST_PATTERN,
1934 			ARRAY_SIZE(ov7670_test_pattern_menu) - 1, 0, 0,
1935 			ov7670_test_pattern_menu);
1936 	sd->ctrl_handler = &info->hdl;
1937 	if (info->hdl.error) {
1938 		ret = info->hdl.error;
1939 
1940 		goto hdl_free;
1941 	}
1942 	/*
1943 	 * We have checked empirically that hw allows to read back the gain
1944 	 * value chosen by auto gain but that's not the case for auto exposure.
1945 	 */
1946 	v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true);
1947 	v4l2_ctrl_auto_cluster(2, &info->auto_exposure,
1948 			       V4L2_EXPOSURE_MANUAL, false);
1949 	v4l2_ctrl_cluster(2, &info->saturation);
1950 
1951 #if defined(CONFIG_MEDIA_CONTROLLER)
1952 	info->pad.flags = MEDIA_PAD_FL_SOURCE;
1953 	info->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1954 	ret = media_entity_pads_init(&info->sd.entity, 1, &info->pad);
1955 	if (ret < 0)
1956 		goto hdl_free;
1957 #endif
1958 
1959 	v4l2_ctrl_handler_setup(&info->hdl);
1960 
1961 	ret = v4l2_async_register_subdev(&info->sd);
1962 	if (ret < 0)
1963 		goto entity_cleanup;
1964 
1965 	ov7670_power_off(sd);
1966 	return 0;
1967 
1968 entity_cleanup:
1969 	media_entity_cleanup(&info->sd.entity);
1970 hdl_free:
1971 	v4l2_ctrl_handler_free(&info->hdl);
1972 power_off:
1973 	ov7670_power_off(sd);
1974 	return ret;
1975 }
1976 
1977 static int ov7670_remove(struct i2c_client *client)
1978 {
1979 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1980 	struct ov7670_info *info = to_state(sd);
1981 
1982 	v4l2_async_unregister_subdev(sd);
1983 	v4l2_ctrl_handler_free(&info->hdl);
1984 	media_entity_cleanup(&info->sd.entity);
1985 	ov7670_power_off(sd);
1986 	return 0;
1987 }
1988 
1989 static const struct i2c_device_id ov7670_id[] = {
1990 	{ "ov7670", MODEL_OV7670 },
1991 	{ "ov7675", MODEL_OV7675 },
1992 	{ }
1993 };
1994 MODULE_DEVICE_TABLE(i2c, ov7670_id);
1995 
1996 #if IS_ENABLED(CONFIG_OF)
1997 static const struct of_device_id ov7670_of_match[] = {
1998 	{ .compatible = "ovti,ov7670", },
1999 	{ /* sentinel */ },
2000 };
2001 MODULE_DEVICE_TABLE(of, ov7670_of_match);
2002 #endif
2003 
2004 static struct i2c_driver ov7670_driver = {
2005 	.driver = {
2006 		.name	= "ov7670",
2007 		.of_match_table = of_match_ptr(ov7670_of_match),
2008 	},
2009 	.probe		= ov7670_probe,
2010 	.remove		= ov7670_remove,
2011 	.id_table	= ov7670_id,
2012 };
2013 
2014 module_i2c_driver(ov7670_driver);
2015