xref: /openbmc/linux/drivers/media/i2c/ov7670.c (revision 60772e48)
1 /*
2  * A V4L2 driver for OmniVision OV7670 cameras.
3  *
4  * Copyright 2006 One Laptop Per Child Association, Inc.  Written
5  * by Jonathan Corbet with substantial inspiration from Mark
6  * McClelland's ovcamchip code.
7  *
8  * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9  *
10  * This file may be distributed under the terms of the GNU General
11  * Public License, version 2.
12  */
13 #include <linux/clk.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/i2c.h>
18 #include <linux/delay.h>
19 #include <linux/videodev2.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <media/v4l2-device.h>
23 #include <media/v4l2-ctrls.h>
24 #include <media/v4l2-mediabus.h>
25 #include <media/v4l2-image-sizes.h>
26 #include <media/i2c/ov7670.h>
27 
28 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
29 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
30 MODULE_LICENSE("GPL");
31 
32 static bool debug;
33 module_param(debug, bool, 0644);
34 MODULE_PARM_DESC(debug, "Debug level (0-1)");
35 
36 /*
37  * The 7670 sits on i2c with ID 0x42
38  */
39 #define OV7670_I2C_ADDR 0x42
40 
41 #define PLL_FACTOR	4
42 
43 /* Registers */
44 #define REG_GAIN	0x00	/* Gain lower 8 bits (rest in vref) */
45 #define REG_BLUE	0x01	/* blue gain */
46 #define REG_RED		0x02	/* red gain */
47 #define REG_VREF	0x03	/* Pieces of GAIN, VSTART, VSTOP */
48 #define REG_COM1	0x04	/* Control 1 */
49 #define  COM1_CCIR656	  0x40  /* CCIR656 enable */
50 #define REG_BAVE	0x05	/* U/B Average level */
51 #define REG_GbAVE	0x06	/* Y/Gb Average level */
52 #define REG_AECHH	0x07	/* AEC MS 5 bits */
53 #define REG_RAVE	0x08	/* V/R Average level */
54 #define REG_COM2	0x09	/* Control 2 */
55 #define  COM2_SSLEEP	  0x10	/* Soft sleep mode */
56 #define REG_PID		0x0a	/* Product ID MSB */
57 #define REG_VER		0x0b	/* Product ID LSB */
58 #define REG_COM3	0x0c	/* Control 3 */
59 #define  COM3_SWAP	  0x40	  /* Byte swap */
60 #define  COM3_SCALEEN	  0x08	  /* Enable scaling */
61 #define  COM3_DCWEN	  0x04	  /* Enable downsamp/crop/window */
62 #define REG_COM4	0x0d	/* Control 4 */
63 #define REG_COM5	0x0e	/* All "reserved" */
64 #define REG_COM6	0x0f	/* Control 6 */
65 #define REG_AECH	0x10	/* More bits of AEC value */
66 #define REG_CLKRC	0x11	/* Clocl control */
67 #define   CLK_EXT	  0x40	  /* Use external clock directly */
68 #define   CLK_SCALE	  0x3f	  /* Mask for internal clock scale */
69 #define REG_COM7	0x12	/* Control 7 */
70 #define   COM7_RESET	  0x80	  /* Register reset */
71 #define   COM7_FMT_MASK	  0x38
72 #define   COM7_FMT_VGA	  0x00
73 #define	  COM7_FMT_CIF	  0x20	  /* CIF format */
74 #define   COM7_FMT_QVGA	  0x10	  /* QVGA format */
75 #define   COM7_FMT_QCIF	  0x08	  /* QCIF format */
76 #define	  COM7_RGB	  0x04	  /* bits 0 and 2 - RGB format */
77 #define	  COM7_YUV	  0x00	  /* YUV */
78 #define	  COM7_BAYER	  0x01	  /* Bayer format */
79 #define	  COM7_PBAYER	  0x05	  /* "Processed bayer" */
80 #define REG_COM8	0x13	/* Control 8 */
81 #define   COM8_FASTAEC	  0x80	  /* Enable fast AGC/AEC */
82 #define   COM8_AECSTEP	  0x40	  /* Unlimited AEC step size */
83 #define   COM8_BFILT	  0x20	  /* Band filter enable */
84 #define   COM8_AGC	  0x04	  /* Auto gain enable */
85 #define   COM8_AWB	  0x02	  /* White balance enable */
86 #define   COM8_AEC	  0x01	  /* Auto exposure enable */
87 #define REG_COM9	0x14	/* Control 9  - gain ceiling */
88 #define REG_COM10	0x15	/* Control 10 */
89 #define   COM10_HSYNC	  0x40	  /* HSYNC instead of HREF */
90 #define   COM10_PCLK_HB	  0x20	  /* Suppress PCLK on horiz blank */
91 #define   COM10_HREF_REV  0x08	  /* Reverse HREF */
92 #define   COM10_VS_LEAD	  0x04	  /* VSYNC on clock leading edge */
93 #define   COM10_VS_NEG	  0x02	  /* VSYNC negative */
94 #define   COM10_HS_NEG	  0x01	  /* HSYNC negative */
95 #define REG_HSTART	0x17	/* Horiz start high bits */
96 #define REG_HSTOP	0x18	/* Horiz stop high bits */
97 #define REG_VSTART	0x19	/* Vert start high bits */
98 #define REG_VSTOP	0x1a	/* Vert stop high bits */
99 #define REG_PSHFT	0x1b	/* Pixel delay after HREF */
100 #define REG_MIDH	0x1c	/* Manuf. ID high */
101 #define REG_MIDL	0x1d	/* Manuf. ID low */
102 #define REG_MVFP	0x1e	/* Mirror / vflip */
103 #define   MVFP_MIRROR	  0x20	  /* Mirror image */
104 #define   MVFP_FLIP	  0x10	  /* Vertical flip */
105 
106 #define REG_AEW		0x24	/* AGC upper limit */
107 #define REG_AEB		0x25	/* AGC lower limit */
108 #define REG_VPT		0x26	/* AGC/AEC fast mode op region */
109 #define REG_HSYST	0x30	/* HSYNC rising edge delay */
110 #define REG_HSYEN	0x31	/* HSYNC falling edge delay */
111 #define REG_HREF	0x32	/* HREF pieces */
112 #define REG_TSLB	0x3a	/* lots of stuff */
113 #define   TSLB_YLAST	  0x04	  /* UYVY or VYUY - see com13 */
114 #define REG_COM11	0x3b	/* Control 11 */
115 #define   COM11_NIGHT	  0x80	  /* NIght mode enable */
116 #define   COM11_NMFR	  0x60	  /* Two bit NM frame rate */
117 #define   COM11_HZAUTO	  0x10	  /* Auto detect 50/60 Hz */
118 #define	  COM11_50HZ	  0x08	  /* Manual 50Hz select */
119 #define   COM11_EXP	  0x02
120 #define REG_COM12	0x3c	/* Control 12 */
121 #define   COM12_HREF	  0x80	  /* HREF always */
122 #define REG_COM13	0x3d	/* Control 13 */
123 #define   COM13_GAMMA	  0x80	  /* Gamma enable */
124 #define	  COM13_UVSAT	  0x40	  /* UV saturation auto adjustment */
125 #define   COM13_UVSWAP	  0x01	  /* V before U - w/TSLB */
126 #define REG_COM14	0x3e	/* Control 14 */
127 #define   COM14_DCWEN	  0x10	  /* DCW/PCLK-scale enable */
128 #define REG_EDGE	0x3f	/* Edge enhancement factor */
129 #define REG_COM15	0x40	/* Control 15 */
130 #define   COM15_R10F0	  0x00	  /* Data range 10 to F0 */
131 #define	  COM15_R01FE	  0x80	  /*            01 to FE */
132 #define   COM15_R00FF	  0xc0	  /*            00 to FF */
133 #define   COM15_RGB565	  0x10	  /* RGB565 output */
134 #define   COM15_RGB555	  0x30	  /* RGB555 output */
135 #define REG_COM16	0x41	/* Control 16 */
136 #define   COM16_AWBGAIN   0x08	  /* AWB gain enable */
137 #define REG_COM17	0x42	/* Control 17 */
138 #define   COM17_AECWIN	  0xc0	  /* AEC window - must match COM4 */
139 #define   COM17_CBAR	  0x08	  /* DSP Color bar */
140 
141 /*
142  * This matrix defines how the colors are generated, must be
143  * tweaked to adjust hue and saturation.
144  *
145  * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
146  *
147  * They are nine-bit signed quantities, with the sign bit
148  * stored in 0x58.  Sign for v-red is bit 0, and up from there.
149  */
150 #define	REG_CMATRIX_BASE 0x4f
151 #define   CMATRIX_LEN 6
152 #define REG_CMATRIX_SIGN 0x58
153 
154 
155 #define REG_BRIGHT	0x55	/* Brightness */
156 #define REG_CONTRAS	0x56	/* Contrast control */
157 
158 #define REG_GFIX	0x69	/* Fix gain control */
159 
160 #define REG_DBLV	0x6b	/* PLL control an debugging */
161 #define   DBLV_BYPASS	  0x00	  /* Bypass PLL */
162 #define   DBLV_X4	  0x01	  /* clock x4 */
163 #define   DBLV_X6	  0x10	  /* clock x6 */
164 #define   DBLV_X8	  0x11	  /* clock x8 */
165 
166 #define REG_SCALING_XSC	0x70	/* Test pattern and horizontal scale factor */
167 #define   TEST_PATTTERN_0 0x80
168 #define REG_SCALING_YSC	0x71	/* Test pattern and vertical scale factor */
169 #define   TEST_PATTTERN_1 0x80
170 
171 #define REG_REG76	0x76	/* OV's name */
172 #define   R76_BLKPCOR	  0x80	  /* Black pixel correction enable */
173 #define   R76_WHTPCOR	  0x40	  /* White pixel correction enable */
174 
175 #define REG_RGB444	0x8c	/* RGB 444 control */
176 #define   R444_ENABLE	  0x02	  /* Turn on RGB444, overrides 5x5 */
177 #define   R444_RGBX	  0x01	  /* Empty nibble at end */
178 
179 #define REG_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
180 #define REG_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
181 
182 #define REG_BD50MAX	0xa5	/* 50hz banding step limit */
183 #define REG_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
184 #define REG_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
185 #define REG_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
186 #define REG_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
187 #define REG_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
188 #define REG_BD60MAX	0xab	/* 60hz banding step limit */
189 
190 enum ov7670_model {
191 	MODEL_OV7670 = 0,
192 	MODEL_OV7675,
193 };
194 
195 struct ov7670_win_size {
196 	int	width;
197 	int	height;
198 	unsigned char com7_bit;
199 	int	hstart;		/* Start/stop values for the camera.  Note */
200 	int	hstop;		/* that they do not always make complete */
201 	int	vstart;		/* sense to humans, but evidently the sensor */
202 	int	vstop;		/* will do the right thing... */
203 	struct regval_list *regs; /* Regs to tweak */
204 };
205 
206 struct ov7670_devtype {
207 	/* formats supported for each model */
208 	struct ov7670_win_size *win_sizes;
209 	unsigned int n_win_sizes;
210 	/* callbacks for frame rate control */
211 	int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
212 	void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
213 };
214 
215 /*
216  * Information we maintain about a known sensor.
217  */
218 struct ov7670_format_struct;  /* coming later */
219 struct ov7670_info {
220 	struct v4l2_subdev sd;
221 #if defined(CONFIG_MEDIA_CONTROLLER)
222 	struct media_pad pad;
223 #endif
224 	struct v4l2_ctrl_handler hdl;
225 	struct {
226 		/* gain cluster */
227 		struct v4l2_ctrl *auto_gain;
228 		struct v4l2_ctrl *gain;
229 	};
230 	struct {
231 		/* exposure cluster */
232 		struct v4l2_ctrl *auto_exposure;
233 		struct v4l2_ctrl *exposure;
234 	};
235 	struct {
236 		/* saturation/hue cluster */
237 		struct v4l2_ctrl *saturation;
238 		struct v4l2_ctrl *hue;
239 	};
240 	struct v4l2_mbus_framefmt format;
241 	struct ov7670_format_struct *fmt;  /* Current format */
242 	struct clk *clk;
243 	struct gpio_desc *resetb_gpio;
244 	struct gpio_desc *pwdn_gpio;
245 	int min_width;			/* Filter out smaller sizes */
246 	int min_height;			/* Filter out smaller sizes */
247 	int clock_speed;		/* External clock speed (MHz) */
248 	u8 clkrc;			/* Clock divider value */
249 	bool use_smbus;			/* Use smbus I/O instead of I2C */
250 	bool pll_bypass;
251 	bool pclk_hb_disable;
252 	const struct ov7670_devtype *devtype; /* Device specifics */
253 };
254 
255 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
256 {
257 	return container_of(sd, struct ov7670_info, sd);
258 }
259 
260 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
261 {
262 	return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd;
263 }
264 
265 
266 
267 /*
268  * The default register settings, as obtained from OmniVision.  There
269  * is really no making sense of most of these - lots of "reserved" values
270  * and such.
271  *
272  * These settings give VGA YUYV.
273  */
274 
275 struct regval_list {
276 	unsigned char reg_num;
277 	unsigned char value;
278 };
279 
280 static struct regval_list ov7670_default_regs[] = {
281 	{ REG_COM7, COM7_RESET },
282 /*
283  * Clock scale: 3 = 15fps
284  *              2 = 20fps
285  *              1 = 30fps
286  */
287 	{ REG_CLKRC, 0x1 },	/* OV: clock scale (30 fps) */
288 	{ REG_TSLB,  0x04 },	/* OV */
289 	{ REG_COM7, 0 },	/* VGA */
290 	/*
291 	 * Set the hardware window.  These values from OV don't entirely
292 	 * make sense - hstop is less than hstart.  But they work...
293 	 */
294 	{ REG_HSTART, 0x13 },	{ REG_HSTOP, 0x01 },
295 	{ REG_HREF, 0xb6 },	{ REG_VSTART, 0x02 },
296 	{ REG_VSTOP, 0x7a },	{ REG_VREF, 0x0a },
297 
298 	{ REG_COM3, 0 },	{ REG_COM14, 0 },
299 	/* Mystery scaling numbers */
300 	{ REG_SCALING_XSC, 0x3a },
301 	{ REG_SCALING_YSC, 0x35 },
302 	{ 0x72, 0x11 },		{ 0x73, 0xf0 },
303 	{ 0xa2, 0x02 },		{ REG_COM10, 0x0 },
304 
305 	/* Gamma curve values */
306 	{ 0x7a, 0x20 },		{ 0x7b, 0x10 },
307 	{ 0x7c, 0x1e },		{ 0x7d, 0x35 },
308 	{ 0x7e, 0x5a },		{ 0x7f, 0x69 },
309 	{ 0x80, 0x76 },		{ 0x81, 0x80 },
310 	{ 0x82, 0x88 },		{ 0x83, 0x8f },
311 	{ 0x84, 0x96 },		{ 0x85, 0xa3 },
312 	{ 0x86, 0xaf },		{ 0x87, 0xc4 },
313 	{ 0x88, 0xd7 },		{ 0x89, 0xe8 },
314 
315 	/* AGC and AEC parameters.  Note we start by disabling those features,
316 	   then turn them only after tweaking the values. */
317 	{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
318 	{ REG_GAIN, 0 },	{ REG_AECH, 0 },
319 	{ REG_COM4, 0x40 }, /* magic reserved bit */
320 	{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
321 	{ REG_BD50MAX, 0x05 },	{ REG_BD60MAX, 0x07 },
322 	{ REG_AEW, 0x95 },	{ REG_AEB, 0x33 },
323 	{ REG_VPT, 0xe3 },	{ REG_HAECC1, 0x78 },
324 	{ REG_HAECC2, 0x68 },	{ 0xa1, 0x03 }, /* magic */
325 	{ REG_HAECC3, 0xd8 },	{ REG_HAECC4, 0xd8 },
326 	{ REG_HAECC5, 0xf0 },	{ REG_HAECC6, 0x90 },
327 	{ REG_HAECC7, 0x94 },
328 	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
329 
330 	/* Almost all of these are magic "reserved" values.  */
331 	{ REG_COM5, 0x61 },	{ REG_COM6, 0x4b },
332 	{ 0x16, 0x02 },		{ REG_MVFP, 0x07 },
333 	{ 0x21, 0x02 },		{ 0x22, 0x91 },
334 	{ 0x29, 0x07 },		{ 0x33, 0x0b },
335 	{ 0x35, 0x0b },		{ 0x37, 0x1d },
336 	{ 0x38, 0x71 },		{ 0x39, 0x2a },
337 	{ REG_COM12, 0x78 },	{ 0x4d, 0x40 },
338 	{ 0x4e, 0x20 },		{ REG_GFIX, 0 },
339 	{ 0x6b, 0x4a },		{ 0x74, 0x10 },
340 	{ 0x8d, 0x4f },		{ 0x8e, 0 },
341 	{ 0x8f, 0 },		{ 0x90, 0 },
342 	{ 0x91, 0 },		{ 0x96, 0 },
343 	{ 0x9a, 0 },		{ 0xb0, 0x84 },
344 	{ 0xb1, 0x0c },		{ 0xb2, 0x0e },
345 	{ 0xb3, 0x82 },		{ 0xb8, 0x0a },
346 
347 	/* More reserved magic, some of which tweaks white balance */
348 	{ 0x43, 0x0a },		{ 0x44, 0xf0 },
349 	{ 0x45, 0x34 },		{ 0x46, 0x58 },
350 	{ 0x47, 0x28 },		{ 0x48, 0x3a },
351 	{ 0x59, 0x88 },		{ 0x5a, 0x88 },
352 	{ 0x5b, 0x44 },		{ 0x5c, 0x67 },
353 	{ 0x5d, 0x49 },		{ 0x5e, 0x0e },
354 	{ 0x6c, 0x0a },		{ 0x6d, 0x55 },
355 	{ 0x6e, 0x11 },		{ 0x6f, 0x9f }, /* "9e for advance AWB" */
356 	{ 0x6a, 0x40 },		{ REG_BLUE, 0x40 },
357 	{ REG_RED, 0x60 },
358 	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
359 
360 	/* Matrix coefficients */
361 	{ 0x4f, 0x80 },		{ 0x50, 0x80 },
362 	{ 0x51, 0 },		{ 0x52, 0x22 },
363 	{ 0x53, 0x5e },		{ 0x54, 0x80 },
364 	{ 0x58, 0x9e },
365 
366 	{ REG_COM16, COM16_AWBGAIN },	{ REG_EDGE, 0 },
367 	{ 0x75, 0x05 },		{ 0x76, 0xe1 },
368 	{ 0x4c, 0 },		{ 0x77, 0x01 },
369 	{ REG_COM13, 0xc3 },	{ 0x4b, 0x09 },
370 	{ 0xc9, 0x60 },		{ REG_COM16, 0x38 },
371 	{ 0x56, 0x40 },
372 
373 	{ 0x34, 0x11 },		{ REG_COM11, COM11_EXP|COM11_HZAUTO },
374 	{ 0xa4, 0x88 },		{ 0x96, 0 },
375 	{ 0x97, 0x30 },		{ 0x98, 0x20 },
376 	{ 0x99, 0x30 },		{ 0x9a, 0x84 },
377 	{ 0x9b, 0x29 },		{ 0x9c, 0x03 },
378 	{ 0x9d, 0x4c },		{ 0x9e, 0x3f },
379 	{ 0x78, 0x04 },
380 
381 	/* Extra-weird stuff.  Some sort of multiplexor register */
382 	{ 0x79, 0x01 },		{ 0xc8, 0xf0 },
383 	{ 0x79, 0x0f },		{ 0xc8, 0x00 },
384 	{ 0x79, 0x10 },		{ 0xc8, 0x7e },
385 	{ 0x79, 0x0a },		{ 0xc8, 0x80 },
386 	{ 0x79, 0x0b },		{ 0xc8, 0x01 },
387 	{ 0x79, 0x0c },		{ 0xc8, 0x0f },
388 	{ 0x79, 0x0d },		{ 0xc8, 0x20 },
389 	{ 0x79, 0x09 },		{ 0xc8, 0x80 },
390 	{ 0x79, 0x02 },		{ 0xc8, 0xc0 },
391 	{ 0x79, 0x03 },		{ 0xc8, 0x40 },
392 	{ 0x79, 0x05 },		{ 0xc8, 0x30 },
393 	{ 0x79, 0x26 },
394 
395 	{ 0xff, 0xff },	/* END MARKER */
396 };
397 
398 
399 /*
400  * Here we'll try to encapsulate the changes for just the output
401  * video format.
402  *
403  * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
404  *
405  * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
406  */
407 
408 
409 static struct regval_list ov7670_fmt_yuv422[] = {
410 	{ REG_COM7, 0x0 },  /* Selects YUV mode */
411 	{ REG_RGB444, 0 },	/* No RGB444 please */
412 	{ REG_COM1, 0 },	/* CCIR601 */
413 	{ REG_COM15, COM15_R00FF },
414 	{ REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
415 	{ 0x4f, 0x80 },		/* "matrix coefficient 1" */
416 	{ 0x50, 0x80 },		/* "matrix coefficient 2" */
417 	{ 0x51, 0    },		/* vb */
418 	{ 0x52, 0x22 },		/* "matrix coefficient 4" */
419 	{ 0x53, 0x5e },		/* "matrix coefficient 5" */
420 	{ 0x54, 0x80 },		/* "matrix coefficient 6" */
421 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
422 	{ 0xff, 0xff },
423 };
424 
425 static struct regval_list ov7670_fmt_rgb565[] = {
426 	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
427 	{ REG_RGB444, 0 },	/* No RGB444 please */
428 	{ REG_COM1, 0x0 },	/* CCIR601 */
429 	{ REG_COM15, COM15_RGB565 },
430 	{ REG_COM9, 0x38 },	/* 16x gain ceiling; 0x8 is reserved bit */
431 	{ 0x4f, 0xb3 },		/* "matrix coefficient 1" */
432 	{ 0x50, 0xb3 },		/* "matrix coefficient 2" */
433 	{ 0x51, 0    },		/* vb */
434 	{ 0x52, 0x3d },		/* "matrix coefficient 4" */
435 	{ 0x53, 0xa7 },		/* "matrix coefficient 5" */
436 	{ 0x54, 0xe4 },		/* "matrix coefficient 6" */
437 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
438 	{ 0xff, 0xff },
439 };
440 
441 static struct regval_list ov7670_fmt_rgb444[] = {
442 	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
443 	{ REG_RGB444, R444_ENABLE },	/* Enable xxxxrrrr ggggbbbb */
444 	{ REG_COM1, 0x0 },	/* CCIR601 */
445 	{ REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
446 	{ REG_COM9, 0x38 },	/* 16x gain ceiling; 0x8 is reserved bit */
447 	{ 0x4f, 0xb3 },		/* "matrix coefficient 1" */
448 	{ 0x50, 0xb3 },		/* "matrix coefficient 2" */
449 	{ 0x51, 0    },		/* vb */
450 	{ 0x52, 0x3d },		/* "matrix coefficient 4" */
451 	{ 0x53, 0xa7 },		/* "matrix coefficient 5" */
452 	{ 0x54, 0xe4 },		/* "matrix coefficient 6" */
453 	{ REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 },  /* Magic rsvd bit */
454 	{ 0xff, 0xff },
455 };
456 
457 static struct regval_list ov7670_fmt_raw[] = {
458 	{ REG_COM7, COM7_BAYER },
459 	{ REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
460 	{ REG_COM16, 0x3d }, /* Edge enhancement, denoise */
461 	{ REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
462 	{ 0xff, 0xff },
463 };
464 
465 
466 
467 /*
468  * Low-level register I/O.
469  *
470  * Note that there are two versions of these.  On the XO 1, the
471  * i2c controller only does SMBUS, so that's what we use.  The
472  * ov7670 is not really an SMBUS device, though, so the communication
473  * is not always entirely reliable.
474  */
475 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
476 		unsigned char *value)
477 {
478 	struct i2c_client *client = v4l2_get_subdevdata(sd);
479 	int ret;
480 
481 	ret = i2c_smbus_read_byte_data(client, reg);
482 	if (ret >= 0) {
483 		*value = (unsigned char)ret;
484 		ret = 0;
485 	}
486 	return ret;
487 }
488 
489 
490 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
491 		unsigned char value)
492 {
493 	struct i2c_client *client = v4l2_get_subdevdata(sd);
494 	int ret = i2c_smbus_write_byte_data(client, reg, value);
495 
496 	if (reg == REG_COM7 && (value & COM7_RESET))
497 		msleep(5);  /* Wait for reset to run */
498 	return ret;
499 }
500 
501 /*
502  * On most platforms, we'd rather do straight i2c I/O.
503  */
504 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
505 		unsigned char *value)
506 {
507 	struct i2c_client *client = v4l2_get_subdevdata(sd);
508 	u8 data = reg;
509 	struct i2c_msg msg;
510 	int ret;
511 
512 	/*
513 	 * Send out the register address...
514 	 */
515 	msg.addr = client->addr;
516 	msg.flags = 0;
517 	msg.len = 1;
518 	msg.buf = &data;
519 	ret = i2c_transfer(client->adapter, &msg, 1);
520 	if (ret < 0) {
521 		printk(KERN_ERR "Error %d on register write\n", ret);
522 		return ret;
523 	}
524 	/*
525 	 * ...then read back the result.
526 	 */
527 	msg.flags = I2C_M_RD;
528 	ret = i2c_transfer(client->adapter, &msg, 1);
529 	if (ret >= 0) {
530 		*value = data;
531 		ret = 0;
532 	}
533 	return ret;
534 }
535 
536 
537 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
538 		unsigned char value)
539 {
540 	struct i2c_client *client = v4l2_get_subdevdata(sd);
541 	struct i2c_msg msg;
542 	unsigned char data[2] = { reg, value };
543 	int ret;
544 
545 	msg.addr = client->addr;
546 	msg.flags = 0;
547 	msg.len = 2;
548 	msg.buf = data;
549 	ret = i2c_transfer(client->adapter, &msg, 1);
550 	if (ret > 0)
551 		ret = 0;
552 	if (reg == REG_COM7 && (value & COM7_RESET))
553 		msleep(5);  /* Wait for reset to run */
554 	return ret;
555 }
556 
557 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
558 		unsigned char *value)
559 {
560 	struct ov7670_info *info = to_state(sd);
561 	if (info->use_smbus)
562 		return ov7670_read_smbus(sd, reg, value);
563 	else
564 		return ov7670_read_i2c(sd, reg, value);
565 }
566 
567 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
568 		unsigned char value)
569 {
570 	struct ov7670_info *info = to_state(sd);
571 	if (info->use_smbus)
572 		return ov7670_write_smbus(sd, reg, value);
573 	else
574 		return ov7670_write_i2c(sd, reg, value);
575 }
576 
577 static int ov7670_update_bits(struct v4l2_subdev *sd, unsigned char reg,
578 		unsigned char mask, unsigned char value)
579 {
580 	unsigned char orig;
581 	int ret;
582 
583 	ret = ov7670_read(sd, reg, &orig);
584 	if (ret)
585 		return ret;
586 
587 	return ov7670_write(sd, reg, (orig & ~mask) | (value & mask));
588 }
589 
590 /*
591  * Write a list of register settings; ff/ff stops the process.
592  */
593 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
594 {
595 	while (vals->reg_num != 0xff || vals->value != 0xff) {
596 		int ret = ov7670_write(sd, vals->reg_num, vals->value);
597 		if (ret < 0)
598 			return ret;
599 		vals++;
600 	}
601 	return 0;
602 }
603 
604 
605 /*
606  * Stuff that knows about the sensor.
607  */
608 static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
609 {
610 	ov7670_write(sd, REG_COM7, COM7_RESET);
611 	msleep(1);
612 	return 0;
613 }
614 
615 
616 static int ov7670_init(struct v4l2_subdev *sd, u32 val)
617 {
618 	return ov7670_write_array(sd, ov7670_default_regs);
619 }
620 
621 static int ov7670_detect(struct v4l2_subdev *sd)
622 {
623 	unsigned char v;
624 	int ret;
625 
626 	ret = ov7670_init(sd, 0);
627 	if (ret < 0)
628 		return ret;
629 	ret = ov7670_read(sd, REG_MIDH, &v);
630 	if (ret < 0)
631 		return ret;
632 	if (v != 0x7f) /* OV manuf. id. */
633 		return -ENODEV;
634 	ret = ov7670_read(sd, REG_MIDL, &v);
635 	if (ret < 0)
636 		return ret;
637 	if (v != 0xa2)
638 		return -ENODEV;
639 	/*
640 	 * OK, we know we have an OmniVision chip...but which one?
641 	 */
642 	ret = ov7670_read(sd, REG_PID, &v);
643 	if (ret < 0)
644 		return ret;
645 	if (v != 0x76)  /* PID + VER = 0x76 / 0x73 */
646 		return -ENODEV;
647 	ret = ov7670_read(sd, REG_VER, &v);
648 	if (ret < 0)
649 		return ret;
650 	if (v != 0x73)  /* PID + VER = 0x76 / 0x73 */
651 		return -ENODEV;
652 	return 0;
653 }
654 
655 
656 /*
657  * Store information about the video data format.  The color matrix
658  * is deeply tied into the format, so keep the relevant values here.
659  * The magic matrix numbers come from OmniVision.
660  */
661 static struct ov7670_format_struct {
662 	u32 mbus_code;
663 	enum v4l2_colorspace colorspace;
664 	struct regval_list *regs;
665 	int cmatrix[CMATRIX_LEN];
666 } ov7670_formats[] = {
667 	{
668 		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
669 		.colorspace	= V4L2_COLORSPACE_SRGB,
670 		.regs		= ov7670_fmt_yuv422,
671 		.cmatrix	= { 128, -128, 0, -34, -94, 128 },
672 	},
673 	{
674 		.mbus_code	= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
675 		.colorspace	= V4L2_COLORSPACE_SRGB,
676 		.regs		= ov7670_fmt_rgb444,
677 		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
678 	},
679 	{
680 		.mbus_code	= MEDIA_BUS_FMT_RGB565_2X8_LE,
681 		.colorspace	= V4L2_COLORSPACE_SRGB,
682 		.regs		= ov7670_fmt_rgb565,
683 		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
684 	},
685 	{
686 		.mbus_code	= MEDIA_BUS_FMT_SBGGR8_1X8,
687 		.colorspace	= V4L2_COLORSPACE_SRGB,
688 		.regs		= ov7670_fmt_raw,
689 		.cmatrix	= { 0, 0, 0, 0, 0, 0 },
690 	},
691 };
692 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
693 
694 
695 /*
696  * Then there is the issue of window sizes.  Try to capture the info here.
697  */
698 
699 /*
700  * QCIF mode is done (by OV) in a very strange way - it actually looks like
701  * VGA with weird scaling options - they do *not* use the canned QCIF mode
702  * which is allegedly provided by the sensor.  So here's the weird register
703  * settings.
704  */
705 static struct regval_list ov7670_qcif_regs[] = {
706 	{ REG_COM3, COM3_SCALEEN|COM3_DCWEN },
707 	{ REG_COM3, COM3_DCWEN },
708 	{ REG_COM14, COM14_DCWEN | 0x01},
709 	{ 0x73, 0xf1 },
710 	{ 0xa2, 0x52 },
711 	{ 0x7b, 0x1c },
712 	{ 0x7c, 0x28 },
713 	{ 0x7d, 0x3c },
714 	{ 0x7f, 0x69 },
715 	{ REG_COM9, 0x38 },
716 	{ 0xa1, 0x0b },
717 	{ 0x74, 0x19 },
718 	{ 0x9a, 0x80 },
719 	{ 0x43, 0x14 },
720 	{ REG_COM13, 0xc0 },
721 	{ 0xff, 0xff },
722 };
723 
724 static struct ov7670_win_size ov7670_win_sizes[] = {
725 	/* VGA */
726 	{
727 		.width		= VGA_WIDTH,
728 		.height		= VGA_HEIGHT,
729 		.com7_bit	= COM7_FMT_VGA,
730 		.hstart		= 158,	/* These values from */
731 		.hstop		=  14,	/* Omnivision */
732 		.vstart		=  10,
733 		.vstop		= 490,
734 		.regs		= NULL,
735 	},
736 	/* CIF */
737 	{
738 		.width		= CIF_WIDTH,
739 		.height		= CIF_HEIGHT,
740 		.com7_bit	= COM7_FMT_CIF,
741 		.hstart		= 170,	/* Empirically determined */
742 		.hstop		=  90,
743 		.vstart		=  14,
744 		.vstop		= 494,
745 		.regs		= NULL,
746 	},
747 	/* QVGA */
748 	{
749 		.width		= QVGA_WIDTH,
750 		.height		= QVGA_HEIGHT,
751 		.com7_bit	= COM7_FMT_QVGA,
752 		.hstart		= 168,	/* Empirically determined */
753 		.hstop		=  24,
754 		.vstart		=  12,
755 		.vstop		= 492,
756 		.regs		= NULL,
757 	},
758 	/* QCIF */
759 	{
760 		.width		= QCIF_WIDTH,
761 		.height		= QCIF_HEIGHT,
762 		.com7_bit	= COM7_FMT_VGA, /* see comment above */
763 		.hstart		= 456,	/* Empirically determined */
764 		.hstop		=  24,
765 		.vstart		=  14,
766 		.vstop		= 494,
767 		.regs		= ov7670_qcif_regs,
768 	}
769 };
770 
771 static struct ov7670_win_size ov7675_win_sizes[] = {
772 	/*
773 	 * Currently, only VGA is supported. Theoretically it could be possible
774 	 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
775 	 * base and tweak them empirically could be required.
776 	 */
777 	{
778 		.width		= VGA_WIDTH,
779 		.height		= VGA_HEIGHT,
780 		.com7_bit	= COM7_FMT_VGA,
781 		.hstart		= 158,	/* These values from */
782 		.hstop		=  14,	/* Omnivision */
783 		.vstart		=  14,  /* Empirically determined */
784 		.vstop		= 494,
785 		.regs		= NULL,
786 	}
787 };
788 
789 static void ov7675_get_framerate(struct v4l2_subdev *sd,
790 				 struct v4l2_fract *tpf)
791 {
792 	struct ov7670_info *info = to_state(sd);
793 	u32 clkrc = info->clkrc;
794 	int pll_factor;
795 
796 	if (info->pll_bypass)
797 		pll_factor = 1;
798 	else
799 		pll_factor = PLL_FACTOR;
800 
801 	clkrc++;
802 	if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
803 		clkrc = (clkrc >> 1);
804 
805 	tpf->numerator = 1;
806 	tpf->denominator = (5 * pll_factor * info->clock_speed) /
807 			(4 * clkrc);
808 }
809 
810 static int ov7675_set_framerate(struct v4l2_subdev *sd,
811 				 struct v4l2_fract *tpf)
812 {
813 	struct ov7670_info *info = to_state(sd);
814 	u32 clkrc;
815 	int pll_factor;
816 	int ret;
817 
818 	/*
819 	 * The formula is fps = 5/4*pixclk for YUV/RGB and
820 	 * fps = 5/2*pixclk for RAW.
821 	 *
822 	 * pixclk = clock_speed / (clkrc + 1) * PLLfactor
823 	 *
824 	 */
825 	if (info->pll_bypass) {
826 		pll_factor = 1;
827 		ret = ov7670_write(sd, REG_DBLV, DBLV_BYPASS);
828 	} else {
829 		pll_factor = PLL_FACTOR;
830 		ret = ov7670_write(sd, REG_DBLV, DBLV_X4);
831 	}
832 	if (ret < 0)
833 		return ret;
834 
835 	if (tpf->numerator == 0 || tpf->denominator == 0) {
836 		clkrc = 0;
837 	} else {
838 		clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) /
839 			(4 * tpf->denominator);
840 		if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8)
841 			clkrc = (clkrc << 1);
842 		clkrc--;
843 	}
844 
845 	/*
846 	 * The datasheet claims that clkrc = 0 will divide the input clock by 1
847 	 * but we've checked with an oscilloscope that it divides by 2 instead.
848 	 * So, if clkrc = 0 just bypass the divider.
849 	 */
850 	if (clkrc <= 0)
851 		clkrc = CLK_EXT;
852 	else if (clkrc > CLK_SCALE)
853 		clkrc = CLK_SCALE;
854 	info->clkrc = clkrc;
855 
856 	/* Recalculate frame rate */
857 	ov7675_get_framerate(sd, tpf);
858 
859 	ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
860 	if (ret < 0)
861 		return ret;
862 
863 	return ov7670_write(sd, REG_DBLV, DBLV_X4);
864 }
865 
866 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd,
867 				 struct v4l2_fract *tpf)
868 {
869 	struct ov7670_info *info = to_state(sd);
870 
871 	tpf->numerator = 1;
872 	tpf->denominator = info->clock_speed;
873 	if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
874 		tpf->denominator /= (info->clkrc & CLK_SCALE);
875 }
876 
877 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd,
878 					struct v4l2_fract *tpf)
879 {
880 	struct ov7670_info *info = to_state(sd);
881 	int div;
882 
883 	if (tpf->numerator == 0 || tpf->denominator == 0)
884 		div = 1;  /* Reset to full rate */
885 	else
886 		div = (tpf->numerator * info->clock_speed) / tpf->denominator;
887 	if (div == 0)
888 		div = 1;
889 	else if (div > CLK_SCALE)
890 		div = CLK_SCALE;
891 	info->clkrc = (info->clkrc & 0x80) | div;
892 	tpf->numerator = 1;
893 	tpf->denominator = info->clock_speed / div;
894 	return ov7670_write(sd, REG_CLKRC, info->clkrc);
895 }
896 
897 /*
898  * Store a set of start/stop values into the camera.
899  */
900 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
901 		int vstart, int vstop)
902 {
903 	int ret;
904 	unsigned char v;
905 /*
906  * Horizontal: 11 bits, top 8 live in hstart and hstop.  Bottom 3 of
907  * hstart are in href[2:0], bottom 3 of hstop in href[5:3].  There is
908  * a mystery "edge offset" value in the top two bits of href.
909  */
910 	ret =  ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
911 	ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
912 	ret += ov7670_read(sd, REG_HREF, &v);
913 	v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
914 	msleep(10);
915 	ret += ov7670_write(sd, REG_HREF, v);
916 /*
917  * Vertical: similar arrangement, but only 10 bits.
918  */
919 	ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
920 	ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
921 	ret += ov7670_read(sd, REG_VREF, &v);
922 	v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
923 	msleep(10);
924 	ret += ov7670_write(sd, REG_VREF, v);
925 	return ret;
926 }
927 
928 
929 static int ov7670_enum_mbus_code(struct v4l2_subdev *sd,
930 		struct v4l2_subdev_pad_config *cfg,
931 		struct v4l2_subdev_mbus_code_enum *code)
932 {
933 	if (code->pad || code->index >= N_OV7670_FMTS)
934 		return -EINVAL;
935 
936 	code->code = ov7670_formats[code->index].mbus_code;
937 	return 0;
938 }
939 
940 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
941 		struct v4l2_mbus_framefmt *fmt,
942 		struct ov7670_format_struct **ret_fmt,
943 		struct ov7670_win_size **ret_wsize)
944 {
945 	int index, i;
946 	struct ov7670_win_size *wsize;
947 	struct ov7670_info *info = to_state(sd);
948 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
949 	unsigned int win_sizes_limit = n_win_sizes;
950 
951 	for (index = 0; index < N_OV7670_FMTS; index++)
952 		if (ov7670_formats[index].mbus_code == fmt->code)
953 			break;
954 	if (index >= N_OV7670_FMTS) {
955 		/* default to first format */
956 		index = 0;
957 		fmt->code = ov7670_formats[0].mbus_code;
958 	}
959 	if (ret_fmt != NULL)
960 		*ret_fmt = ov7670_formats + index;
961 	/*
962 	 * Fields: the OV devices claim to be progressive.
963 	 */
964 	fmt->field = V4L2_FIELD_NONE;
965 
966 	/*
967 	 * Don't consider values that don't match min_height and min_width
968 	 * constraints.
969 	 */
970 	if (info->min_width || info->min_height)
971 		for (i = 0; i < n_win_sizes; i++) {
972 			wsize = info->devtype->win_sizes + i;
973 
974 			if (wsize->width < info->min_width ||
975 				wsize->height < info->min_height) {
976 				win_sizes_limit = i;
977 				break;
978 			}
979 		}
980 	/*
981 	 * Round requested image size down to the nearest
982 	 * we support, but not below the smallest.
983 	 */
984 	for (wsize = info->devtype->win_sizes;
985 	     wsize < info->devtype->win_sizes + win_sizes_limit; wsize++)
986 		if (fmt->width >= wsize->width && fmt->height >= wsize->height)
987 			break;
988 	if (wsize >= info->devtype->win_sizes + win_sizes_limit)
989 		wsize--;   /* Take the smallest one */
990 	if (ret_wsize != NULL)
991 		*ret_wsize = wsize;
992 	/*
993 	 * Note the size we'll actually handle.
994 	 */
995 	fmt->width = wsize->width;
996 	fmt->height = wsize->height;
997 	fmt->colorspace = ov7670_formats[index].colorspace;
998 
999 	info->format = *fmt;
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * Set a format.
1006  */
1007 static int ov7670_set_fmt(struct v4l2_subdev *sd,
1008 		struct v4l2_subdev_pad_config *cfg,
1009 		struct v4l2_subdev_format *format)
1010 {
1011 	struct ov7670_format_struct *ovfmt;
1012 	struct ov7670_win_size *wsize;
1013 	struct ov7670_info *info = to_state(sd);
1014 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1015 	struct v4l2_mbus_framefmt *mbus_fmt;
1016 #endif
1017 	unsigned char com7;
1018 	int ret;
1019 
1020 	if (format->pad)
1021 		return -EINVAL;
1022 
1023 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1024 		ret = ov7670_try_fmt_internal(sd, &format->format, NULL, NULL);
1025 		if (ret)
1026 			return ret;
1027 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1028 		mbus_fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1029 		*mbus_fmt = format->format;
1030 		return 0;
1031 #else
1032 		return -ENOTTY;
1033 #endif
1034 	}
1035 
1036 	ret = ov7670_try_fmt_internal(sd, &format->format, &ovfmt, &wsize);
1037 
1038 	if (ret)
1039 		return ret;
1040 	/*
1041 	 * COM7 is a pain in the ass, it doesn't like to be read then
1042 	 * quickly written afterward.  But we have everything we need
1043 	 * to set it absolutely here, as long as the format-specific
1044 	 * register sets list it first.
1045 	 */
1046 	com7 = ovfmt->regs[0].value;
1047 	com7 |= wsize->com7_bit;
1048 	ov7670_write(sd, REG_COM7, com7);
1049 	/*
1050 	 * Now write the rest of the array.  Also store start/stops
1051 	 */
1052 	ov7670_write_array(sd, ovfmt->regs + 1);
1053 	ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
1054 			wsize->vstop);
1055 	ret = 0;
1056 	if (wsize->regs)
1057 		ret = ov7670_write_array(sd, wsize->regs);
1058 	info->fmt = ovfmt;
1059 
1060 	/*
1061 	 * If we're running RGB565, we must rewrite clkrc after setting
1062 	 * the other parameters or the image looks poor.  If we're *not*
1063 	 * doing RGB565, we must not rewrite clkrc or the image looks
1064 	 * *really* poor.
1065 	 *
1066 	 * (Update) Now that we retain clkrc state, we should be able
1067 	 * to write it unconditionally, and that will make the frame
1068 	 * rate persistent too.
1069 	 */
1070 	if (ret == 0)
1071 		ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
1072 	return 0;
1073 }
1074 
1075 static int ov7670_get_fmt(struct v4l2_subdev *sd,
1076 			  struct v4l2_subdev_pad_config *cfg,
1077 			  struct v4l2_subdev_format *format)
1078 {
1079 	struct ov7670_info *info = to_state(sd);
1080 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1081 	struct v4l2_mbus_framefmt *mbus_fmt;
1082 #endif
1083 
1084 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1085 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1086 		mbus_fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
1087 		format->format = *mbus_fmt;
1088 		return 0;
1089 #else
1090 		return -ENOTTY;
1091 #endif
1092 	} else {
1093 		format->format = info->format;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Implement G/S_PARM.  There is a "high quality" mode we could try
1101  * to do someday; for now, we just do the frame rate tweak.
1102  */
1103 static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1104 {
1105 	struct v4l2_captureparm *cp = &parms->parm.capture;
1106 	struct ov7670_info *info = to_state(sd);
1107 
1108 	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1109 		return -EINVAL;
1110 
1111 	cp->capability = V4L2_CAP_TIMEPERFRAME;
1112 	info->devtype->get_framerate(sd, &cp->timeperframe);
1113 
1114 	return 0;
1115 }
1116 
1117 static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1118 {
1119 	struct v4l2_captureparm *cp = &parms->parm.capture;
1120 	struct v4l2_fract *tpf = &cp->timeperframe;
1121 	struct ov7670_info *info = to_state(sd);
1122 
1123 	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1124 		return -EINVAL;
1125 
1126 	cp->capability = V4L2_CAP_TIMEPERFRAME;
1127 	return info->devtype->set_framerate(sd, tpf);
1128 }
1129 
1130 
1131 /*
1132  * Frame intervals.  Since frame rates are controlled with the clock
1133  * divider, we can only do 30/n for integer n values.  So no continuous
1134  * or stepwise options.  Here we just pick a handful of logical values.
1135  */
1136 
1137 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
1138 
1139 static int ov7670_enum_frame_interval(struct v4l2_subdev *sd,
1140 				      struct v4l2_subdev_pad_config *cfg,
1141 				      struct v4l2_subdev_frame_interval_enum *fie)
1142 {
1143 	struct ov7670_info *info = to_state(sd);
1144 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
1145 	int i;
1146 
1147 	if (fie->pad)
1148 		return -EINVAL;
1149 	if (fie->index >= ARRAY_SIZE(ov7670_frame_rates))
1150 		return -EINVAL;
1151 
1152 	/*
1153 	 * Check if the width/height is valid.
1154 	 *
1155 	 * If a minimum width/height was requested, filter out the capture
1156 	 * windows that fall outside that.
1157 	 */
1158 	for (i = 0; i < n_win_sizes; i++) {
1159 		struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1160 
1161 		if (info->min_width && win->width < info->min_width)
1162 			continue;
1163 		if (info->min_height && win->height < info->min_height)
1164 			continue;
1165 		if (fie->width == win->width && fie->height == win->height)
1166 			break;
1167 	}
1168 	if (i == n_win_sizes)
1169 		return -EINVAL;
1170 	fie->interval.numerator = 1;
1171 	fie->interval.denominator = ov7670_frame_rates[fie->index];
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Frame size enumeration
1177  */
1178 static int ov7670_enum_frame_size(struct v4l2_subdev *sd,
1179 				  struct v4l2_subdev_pad_config *cfg,
1180 				  struct v4l2_subdev_frame_size_enum *fse)
1181 {
1182 	struct ov7670_info *info = to_state(sd);
1183 	int i;
1184 	int num_valid = -1;
1185 	__u32 index = fse->index;
1186 	unsigned int n_win_sizes = info->devtype->n_win_sizes;
1187 
1188 	if (fse->pad)
1189 		return -EINVAL;
1190 
1191 	/*
1192 	 * If a minimum width/height was requested, filter out the capture
1193 	 * windows that fall outside that.
1194 	 */
1195 	for (i = 0; i < n_win_sizes; i++) {
1196 		struct ov7670_win_size *win = &info->devtype->win_sizes[i];
1197 		if (info->min_width && win->width < info->min_width)
1198 			continue;
1199 		if (info->min_height && win->height < info->min_height)
1200 			continue;
1201 		if (index == ++num_valid) {
1202 			fse->min_width = fse->max_width = win->width;
1203 			fse->min_height = fse->max_height = win->height;
1204 			return 0;
1205 		}
1206 	}
1207 
1208 	return -EINVAL;
1209 }
1210 
1211 /*
1212  * Code for dealing with controls.
1213  */
1214 
1215 static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
1216 		int matrix[CMATRIX_LEN])
1217 {
1218 	int i, ret;
1219 	unsigned char signbits = 0;
1220 
1221 	/*
1222 	 * Weird crap seems to exist in the upper part of
1223 	 * the sign bits register, so let's preserve it.
1224 	 */
1225 	ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
1226 	signbits &= 0xc0;
1227 
1228 	for (i = 0; i < CMATRIX_LEN; i++) {
1229 		unsigned char raw;
1230 
1231 		if (matrix[i] < 0) {
1232 			signbits |= (1 << i);
1233 			if (matrix[i] < -255)
1234 				raw = 0xff;
1235 			else
1236 				raw = (-1 * matrix[i]) & 0xff;
1237 		}
1238 		else {
1239 			if (matrix[i] > 255)
1240 				raw = 0xff;
1241 			else
1242 				raw = matrix[i] & 0xff;
1243 		}
1244 		ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
1245 	}
1246 	ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
1247 	return ret;
1248 }
1249 
1250 
1251 /*
1252  * Hue also requires messing with the color matrix.  It also requires
1253  * trig functions, which tend not to be well supported in the kernel.
1254  * So here is a simple table of sine values, 0-90 degrees, in steps
1255  * of five degrees.  Values are multiplied by 1000.
1256  *
1257  * The following naive approximate trig functions require an argument
1258  * carefully limited to -180 <= theta <= 180.
1259  */
1260 #define SIN_STEP 5
1261 static const int ov7670_sin_table[] = {
1262 	   0,	 87,   173,   258,   342,   422,
1263 	 499,	573,   642,   707,   766,   819,
1264 	 866,	906,   939,   965,   984,   996,
1265 	1000
1266 };
1267 
1268 static int ov7670_sine(int theta)
1269 {
1270 	int chs = 1;
1271 	int sine;
1272 
1273 	if (theta < 0) {
1274 		theta = -theta;
1275 		chs = -1;
1276 	}
1277 	if (theta <= 90)
1278 		sine = ov7670_sin_table[theta/SIN_STEP];
1279 	else {
1280 		theta -= 90;
1281 		sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1282 	}
1283 	return sine*chs;
1284 }
1285 
1286 static int ov7670_cosine(int theta)
1287 {
1288 	theta = 90 - theta;
1289 	if (theta > 180)
1290 		theta -= 360;
1291 	else if (theta < -180)
1292 		theta += 360;
1293 	return ov7670_sine(theta);
1294 }
1295 
1296 
1297 
1298 
1299 static void ov7670_calc_cmatrix(struct ov7670_info *info,
1300 		int matrix[CMATRIX_LEN], int sat, int hue)
1301 {
1302 	int i;
1303 	/*
1304 	 * Apply the current saturation setting first.
1305 	 */
1306 	for (i = 0; i < CMATRIX_LEN; i++)
1307 		matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7;
1308 	/*
1309 	 * Then, if need be, rotate the hue value.
1310 	 */
1311 	if (hue != 0) {
1312 		int sinth, costh, tmpmatrix[CMATRIX_LEN];
1313 
1314 		memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1315 		sinth = ov7670_sine(hue);
1316 		costh = ov7670_cosine(hue);
1317 
1318 		matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1319 		matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1320 		matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1321 		matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1322 		matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1323 		matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1324 	}
1325 }
1326 
1327 
1328 
1329 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue)
1330 {
1331 	struct ov7670_info *info = to_state(sd);
1332 	int matrix[CMATRIX_LEN];
1333 	int ret;
1334 
1335 	ov7670_calc_cmatrix(info, matrix, sat, hue);
1336 	ret = ov7670_store_cmatrix(sd, matrix);
1337 	return ret;
1338 }
1339 
1340 
1341 /*
1342  * Some weird registers seem to store values in a sign/magnitude format!
1343  */
1344 
1345 static unsigned char ov7670_abs_to_sm(unsigned char v)
1346 {
1347 	if (v > 127)
1348 		return v & 0x7f;
1349 	return (128 - v) | 0x80;
1350 }
1351 
1352 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1353 {
1354 	unsigned char com8 = 0, v;
1355 	int ret;
1356 
1357 	ov7670_read(sd, REG_COM8, &com8);
1358 	com8 &= ~COM8_AEC;
1359 	ov7670_write(sd, REG_COM8, com8);
1360 	v = ov7670_abs_to_sm(value);
1361 	ret = ov7670_write(sd, REG_BRIGHT, v);
1362 	return ret;
1363 }
1364 
1365 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1366 {
1367 	return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1368 }
1369 
1370 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1371 {
1372 	unsigned char v = 0;
1373 	int ret;
1374 
1375 	ret = ov7670_read(sd, REG_MVFP, &v);
1376 	if (value)
1377 		v |= MVFP_MIRROR;
1378 	else
1379 		v &= ~MVFP_MIRROR;
1380 	msleep(10);  /* FIXME */
1381 	ret += ov7670_write(sd, REG_MVFP, v);
1382 	return ret;
1383 }
1384 
1385 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1386 {
1387 	unsigned char v = 0;
1388 	int ret;
1389 
1390 	ret = ov7670_read(sd, REG_MVFP, &v);
1391 	if (value)
1392 		v |= MVFP_FLIP;
1393 	else
1394 		v &= ~MVFP_FLIP;
1395 	msleep(10);  /* FIXME */
1396 	ret += ov7670_write(sd, REG_MVFP, v);
1397 	return ret;
1398 }
1399 
1400 /*
1401  * GAIN is split between REG_GAIN and REG_VREF[7:6].  If one believes
1402  * the data sheet, the VREF parts should be the most significant, but
1403  * experience shows otherwise.  There seems to be little value in
1404  * messing with the VREF bits, so we leave them alone.
1405  */
1406 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1407 {
1408 	int ret;
1409 	unsigned char gain;
1410 
1411 	ret = ov7670_read(sd, REG_GAIN, &gain);
1412 	*value = gain;
1413 	return ret;
1414 }
1415 
1416 static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1417 {
1418 	int ret;
1419 	unsigned char com8;
1420 
1421 	ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1422 	/* Have to turn off AGC as well */
1423 	if (ret == 0) {
1424 		ret = ov7670_read(sd, REG_COM8, &com8);
1425 		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1426 	}
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Tweak autogain.
1432  */
1433 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1434 {
1435 	int ret;
1436 	unsigned char com8;
1437 
1438 	ret = ov7670_read(sd, REG_COM8, &com8);
1439 	if (ret == 0) {
1440 		if (value)
1441 			com8 |= COM8_AGC;
1442 		else
1443 			com8 &= ~COM8_AGC;
1444 		ret = ov7670_write(sd, REG_COM8, com8);
1445 	}
1446 	return ret;
1447 }
1448 
1449 static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1450 {
1451 	int ret;
1452 	unsigned char com1, com8, aech, aechh;
1453 
1454 	ret = ov7670_read(sd, REG_COM1, &com1) +
1455 		ov7670_read(sd, REG_COM8, &com8) +
1456 		ov7670_read(sd, REG_AECHH, &aechh);
1457 	if (ret)
1458 		return ret;
1459 
1460 	com1 = (com1 & 0xfc) | (value & 0x03);
1461 	aech = (value >> 2) & 0xff;
1462 	aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1463 	ret = ov7670_write(sd, REG_COM1, com1) +
1464 		ov7670_write(sd, REG_AECH, aech) +
1465 		ov7670_write(sd, REG_AECHH, aechh);
1466 	/* Have to turn off AEC as well */
1467 	if (ret == 0)
1468 		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1469 	return ret;
1470 }
1471 
1472 /*
1473  * Tweak autoexposure.
1474  */
1475 static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1476 		enum v4l2_exposure_auto_type value)
1477 {
1478 	int ret;
1479 	unsigned char com8;
1480 
1481 	ret = ov7670_read(sd, REG_COM8, &com8);
1482 	if (ret == 0) {
1483 		if (value == V4L2_EXPOSURE_AUTO)
1484 			com8 |= COM8_AEC;
1485 		else
1486 			com8 &= ~COM8_AEC;
1487 		ret = ov7670_write(sd, REG_COM8, com8);
1488 	}
1489 	return ret;
1490 }
1491 
1492 static const char * const ov7670_test_pattern_menu[] = {
1493 	"No test output",
1494 	"Shifting \"1\"",
1495 	"8-bar color bar",
1496 	"Fade to gray color bar",
1497 };
1498 
1499 static int ov7670_s_test_pattern(struct v4l2_subdev *sd, int value)
1500 {
1501 	int ret;
1502 
1503 	ret = ov7670_update_bits(sd, REG_SCALING_XSC, TEST_PATTTERN_0,
1504 				value & BIT(0) ? TEST_PATTTERN_0 : 0);
1505 	if (ret)
1506 		return ret;
1507 
1508 	return ov7670_update_bits(sd, REG_SCALING_YSC, TEST_PATTTERN_1,
1509 				value & BIT(1) ? TEST_PATTTERN_1 : 0);
1510 }
1511 
1512 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1513 {
1514 	struct v4l2_subdev *sd = to_sd(ctrl);
1515 	struct ov7670_info *info = to_state(sd);
1516 
1517 	switch (ctrl->id) {
1518 	case V4L2_CID_AUTOGAIN:
1519 		return ov7670_g_gain(sd, &info->gain->val);
1520 	}
1521 	return -EINVAL;
1522 }
1523 
1524 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl)
1525 {
1526 	struct v4l2_subdev *sd = to_sd(ctrl);
1527 	struct ov7670_info *info = to_state(sd);
1528 
1529 	switch (ctrl->id) {
1530 	case V4L2_CID_BRIGHTNESS:
1531 		return ov7670_s_brightness(sd, ctrl->val);
1532 	case V4L2_CID_CONTRAST:
1533 		return ov7670_s_contrast(sd, ctrl->val);
1534 	case V4L2_CID_SATURATION:
1535 		return ov7670_s_sat_hue(sd,
1536 				info->saturation->val, info->hue->val);
1537 	case V4L2_CID_VFLIP:
1538 		return ov7670_s_vflip(sd, ctrl->val);
1539 	case V4L2_CID_HFLIP:
1540 		return ov7670_s_hflip(sd, ctrl->val);
1541 	case V4L2_CID_AUTOGAIN:
1542 		/* Only set manual gain if auto gain is not explicitly
1543 		   turned on. */
1544 		if (!ctrl->val) {
1545 			/* ov7670_s_gain turns off auto gain */
1546 			return ov7670_s_gain(sd, info->gain->val);
1547 		}
1548 		return ov7670_s_autogain(sd, ctrl->val);
1549 	case V4L2_CID_EXPOSURE_AUTO:
1550 		/* Only set manual exposure if auto exposure is not explicitly
1551 		   turned on. */
1552 		if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
1553 			/* ov7670_s_exp turns off auto exposure */
1554 			return ov7670_s_exp(sd, info->exposure->val);
1555 		}
1556 		return ov7670_s_autoexp(sd, ctrl->val);
1557 	case V4L2_CID_TEST_PATTERN:
1558 		return ov7670_s_test_pattern(sd, ctrl->val);
1559 	}
1560 	return -EINVAL;
1561 }
1562 
1563 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = {
1564 	.s_ctrl = ov7670_s_ctrl,
1565 	.g_volatile_ctrl = ov7670_g_volatile_ctrl,
1566 };
1567 
1568 #ifdef CONFIG_VIDEO_ADV_DEBUG
1569 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1570 {
1571 	unsigned char val = 0;
1572 	int ret;
1573 
1574 	ret = ov7670_read(sd, reg->reg & 0xff, &val);
1575 	reg->val = val;
1576 	reg->size = 1;
1577 	return ret;
1578 }
1579 
1580 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
1581 {
1582 	ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1583 	return 0;
1584 }
1585 #endif
1586 
1587 static int ov7670_s_power(struct v4l2_subdev *sd, int on)
1588 {
1589 	struct ov7670_info *info = to_state(sd);
1590 
1591 	if (info->pwdn_gpio)
1592 		gpiod_set_value(info->pwdn_gpio, !on);
1593 	if (on && info->resetb_gpio) {
1594 		gpiod_set_value(info->resetb_gpio, 1);
1595 		usleep_range(500, 1000);
1596 		gpiod_set_value(info->resetb_gpio, 0);
1597 		usleep_range(3000, 5000);
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static void ov7670_get_default_format(struct v4l2_subdev *sd,
1604 				      struct v4l2_mbus_framefmt *format)
1605 {
1606 	struct ov7670_info *info = to_state(sd);
1607 
1608 	format->width = info->devtype->win_sizes[0].width;
1609 	format->height = info->devtype->win_sizes[0].height;
1610 	format->colorspace = info->fmt->colorspace;
1611 	format->code = info->fmt->mbus_code;
1612 	format->field = V4L2_FIELD_NONE;
1613 }
1614 
1615 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1616 static int ov7670_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
1617 {
1618 	struct v4l2_mbus_framefmt *format =
1619 				v4l2_subdev_get_try_format(sd, fh->pad, 0);
1620 
1621 	ov7670_get_default_format(sd, format);
1622 
1623 	return 0;
1624 }
1625 #endif
1626 
1627 /* ----------------------------------------------------------------------- */
1628 
1629 static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1630 	.reset = ov7670_reset,
1631 	.init = ov7670_init,
1632 #ifdef CONFIG_VIDEO_ADV_DEBUG
1633 	.g_register = ov7670_g_register,
1634 	.s_register = ov7670_s_register,
1635 #endif
1636 };
1637 
1638 static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1639 	.s_parm = ov7670_s_parm,
1640 	.g_parm = ov7670_g_parm,
1641 };
1642 
1643 static const struct v4l2_subdev_pad_ops ov7670_pad_ops = {
1644 	.enum_frame_interval = ov7670_enum_frame_interval,
1645 	.enum_frame_size = ov7670_enum_frame_size,
1646 	.enum_mbus_code = ov7670_enum_mbus_code,
1647 	.get_fmt = ov7670_get_fmt,
1648 	.set_fmt = ov7670_set_fmt,
1649 };
1650 
1651 static const struct v4l2_subdev_ops ov7670_ops = {
1652 	.core = &ov7670_core_ops,
1653 	.video = &ov7670_video_ops,
1654 	.pad = &ov7670_pad_ops,
1655 };
1656 
1657 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1658 static const struct v4l2_subdev_internal_ops ov7670_subdev_internal_ops = {
1659 	.open = ov7670_open,
1660 };
1661 #endif
1662 
1663 /* ----------------------------------------------------------------------- */
1664 
1665 static const struct ov7670_devtype ov7670_devdata[] = {
1666 	[MODEL_OV7670] = {
1667 		.win_sizes = ov7670_win_sizes,
1668 		.n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1669 		.set_framerate = ov7670_set_framerate_legacy,
1670 		.get_framerate = ov7670_get_framerate_legacy,
1671 	},
1672 	[MODEL_OV7675] = {
1673 		.win_sizes = ov7675_win_sizes,
1674 		.n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1675 		.set_framerate = ov7675_set_framerate,
1676 		.get_framerate = ov7675_get_framerate,
1677 	},
1678 };
1679 
1680 static int ov7670_init_gpio(struct i2c_client *client, struct ov7670_info *info)
1681 {
1682 	info->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown",
1683 			GPIOD_OUT_LOW);
1684 	if (IS_ERR(info->pwdn_gpio)) {
1685 		dev_info(&client->dev, "can't get %s GPIO\n", "powerdown");
1686 		return PTR_ERR(info->pwdn_gpio);
1687 	}
1688 
1689 	info->resetb_gpio = devm_gpiod_get_optional(&client->dev, "reset",
1690 			GPIOD_OUT_LOW);
1691 	if (IS_ERR(info->resetb_gpio)) {
1692 		dev_info(&client->dev, "can't get %s GPIO\n", "reset");
1693 		return PTR_ERR(info->resetb_gpio);
1694 	}
1695 
1696 	usleep_range(3000, 5000);
1697 
1698 	return 0;
1699 }
1700 
1701 static int ov7670_probe(struct i2c_client *client,
1702 			const struct i2c_device_id *id)
1703 {
1704 	struct v4l2_fract tpf;
1705 	struct v4l2_subdev *sd;
1706 	struct ov7670_info *info;
1707 	int ret;
1708 
1709 	info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL);
1710 	if (info == NULL)
1711 		return -ENOMEM;
1712 	sd = &info->sd;
1713 	v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1714 
1715 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1716 	sd->internal_ops = &ov7670_subdev_internal_ops;
1717 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1718 #endif
1719 
1720 	info->clock_speed = 30; /* default: a guess */
1721 	if (client->dev.platform_data) {
1722 		struct ov7670_config *config = client->dev.platform_data;
1723 
1724 		/*
1725 		 * Must apply configuration before initializing device, because it
1726 		 * selects I/O method.
1727 		 */
1728 		info->min_width = config->min_width;
1729 		info->min_height = config->min_height;
1730 		info->use_smbus = config->use_smbus;
1731 
1732 		if (config->clock_speed)
1733 			info->clock_speed = config->clock_speed;
1734 
1735 		/*
1736 		 * It should be allowed for ov7670 too when it is migrated to
1737 		 * the new frame rate formula.
1738 		 */
1739 		if (config->pll_bypass && id->driver_data != MODEL_OV7670)
1740 			info->pll_bypass = true;
1741 
1742 		if (config->pclk_hb_disable)
1743 			info->pclk_hb_disable = true;
1744 	}
1745 
1746 	info->clk = devm_clk_get(&client->dev, "xclk");
1747 	if (IS_ERR(info->clk))
1748 		return PTR_ERR(info->clk);
1749 	ret = clk_prepare_enable(info->clk);
1750 	if (ret)
1751 		return ret;
1752 
1753 	info->clock_speed = clk_get_rate(info->clk) / 1000000;
1754 	if (info->clock_speed < 10 || info->clock_speed > 48) {
1755 		ret = -EINVAL;
1756 		goto clk_disable;
1757 	}
1758 
1759 	ret = ov7670_init_gpio(client, info);
1760 	if (ret)
1761 		goto clk_disable;
1762 
1763 	ov7670_s_power(sd, 1);
1764 
1765 	/* Make sure it's an ov7670 */
1766 	ret = ov7670_detect(sd);
1767 	if (ret) {
1768 		v4l_dbg(1, debug, client,
1769 			"chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1770 			client->addr << 1, client->adapter->name);
1771 		goto power_off;
1772 	}
1773 	v4l_info(client, "chip found @ 0x%02x (%s)\n",
1774 			client->addr << 1, client->adapter->name);
1775 
1776 	info->devtype = &ov7670_devdata[id->driver_data];
1777 	info->fmt = &ov7670_formats[0];
1778 
1779 	ov7670_get_default_format(sd, &info->format);
1780 
1781 	info->clkrc = 0;
1782 
1783 	/* Set default frame rate to 30 fps */
1784 	tpf.numerator = 1;
1785 	tpf.denominator = 30;
1786 	info->devtype->set_framerate(sd, &tpf);
1787 
1788 	if (info->pclk_hb_disable)
1789 		ov7670_write(sd, REG_COM10, COM10_PCLK_HB);
1790 
1791 	v4l2_ctrl_handler_init(&info->hdl, 10);
1792 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1793 			V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
1794 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1795 			V4L2_CID_CONTRAST, 0, 127, 1, 64);
1796 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1797 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1798 	v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1799 			V4L2_CID_HFLIP, 0, 1, 1, 0);
1800 	info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1801 			V4L2_CID_SATURATION, 0, 256, 1, 128);
1802 	info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1803 			V4L2_CID_HUE, -180, 180, 5, 0);
1804 	info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1805 			V4L2_CID_GAIN, 0, 255, 1, 128);
1806 	info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1807 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1808 	info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1809 			V4L2_CID_EXPOSURE, 0, 65535, 1, 500);
1810 	info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops,
1811 			V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0,
1812 			V4L2_EXPOSURE_AUTO);
1813 	v4l2_ctrl_new_std_menu_items(&info->hdl, &ov7670_ctrl_ops,
1814 			V4L2_CID_TEST_PATTERN,
1815 			ARRAY_SIZE(ov7670_test_pattern_menu) - 1, 0, 0,
1816 			ov7670_test_pattern_menu);
1817 	sd->ctrl_handler = &info->hdl;
1818 	if (info->hdl.error) {
1819 		ret = info->hdl.error;
1820 
1821 		goto hdl_free;
1822 	}
1823 	/*
1824 	 * We have checked empirically that hw allows to read back the gain
1825 	 * value chosen by auto gain but that's not the case for auto exposure.
1826 	 */
1827 	v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true);
1828 	v4l2_ctrl_auto_cluster(2, &info->auto_exposure,
1829 			       V4L2_EXPOSURE_MANUAL, false);
1830 	v4l2_ctrl_cluster(2, &info->saturation);
1831 
1832 #if defined(CONFIG_MEDIA_CONTROLLER)
1833 	info->pad.flags = MEDIA_PAD_FL_SOURCE;
1834 	info->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1835 	ret = media_entity_pads_init(&info->sd.entity, 1, &info->pad);
1836 	if (ret < 0)
1837 		goto hdl_free;
1838 #endif
1839 
1840 	v4l2_ctrl_handler_setup(&info->hdl);
1841 
1842 	ret = v4l2_async_register_subdev(&info->sd);
1843 	if (ret < 0)
1844 		goto entity_cleanup;
1845 
1846 	return 0;
1847 
1848 entity_cleanup:
1849 	media_entity_cleanup(&info->sd.entity);
1850 hdl_free:
1851 	v4l2_ctrl_handler_free(&info->hdl);
1852 power_off:
1853 	ov7670_s_power(sd, 0);
1854 clk_disable:
1855 	clk_disable_unprepare(info->clk);
1856 	return ret;
1857 }
1858 
1859 
1860 static int ov7670_remove(struct i2c_client *client)
1861 {
1862 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1863 	struct ov7670_info *info = to_state(sd);
1864 
1865 	v4l2_async_unregister_subdev(sd);
1866 	v4l2_ctrl_handler_free(&info->hdl);
1867 	clk_disable_unprepare(info->clk);
1868 	media_entity_cleanup(&info->sd.entity);
1869 	ov7670_s_power(sd, 0);
1870 	return 0;
1871 }
1872 
1873 static const struct i2c_device_id ov7670_id[] = {
1874 	{ "ov7670", MODEL_OV7670 },
1875 	{ "ov7675", MODEL_OV7675 },
1876 	{ }
1877 };
1878 MODULE_DEVICE_TABLE(i2c, ov7670_id);
1879 
1880 #if IS_ENABLED(CONFIG_OF)
1881 static const struct of_device_id ov7670_of_match[] = {
1882 	{ .compatible = "ovti,ov7670", },
1883 	{ /* sentinel */ },
1884 };
1885 MODULE_DEVICE_TABLE(of, ov7670_of_match);
1886 #endif
1887 
1888 static struct i2c_driver ov7670_driver = {
1889 	.driver = {
1890 		.name	= "ov7670",
1891 		.of_match_table = of_match_ptr(ov7670_of_match),
1892 	},
1893 	.probe		= ov7670_probe,
1894 	.remove		= ov7670_remove,
1895 	.id_table	= ov7670_id,
1896 };
1897 
1898 module_i2c_driver(ov7670_driver);
1899