1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A V4L2 driver for OmniVision OV7670 cameras. 4 * 5 * Copyright 2006 One Laptop Per Child Association, Inc. Written 6 * by Jonathan Corbet with substantial inspiration from Mark 7 * McClelland's ovcamchip code. 8 * 9 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net> 10 */ 11 #include <linux/clk.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/i2c.h> 16 #include <linux/delay.h> 17 #include <linux/videodev2.h> 18 #include <linux/gpio.h> 19 #include <linux/gpio/consumer.h> 20 #include <media/v4l2-device.h> 21 #include <media/v4l2-event.h> 22 #include <media/v4l2-ctrls.h> 23 #include <media/v4l2-fwnode.h> 24 #include <media/v4l2-mediabus.h> 25 #include <media/v4l2-image-sizes.h> 26 #include <media/i2c/ov7670.h> 27 28 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>"); 29 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors"); 30 MODULE_LICENSE("GPL"); 31 32 static bool debug; 33 module_param(debug, bool, 0644); 34 MODULE_PARM_DESC(debug, "Debug level (0-1)"); 35 36 /* 37 * The 7670 sits on i2c with ID 0x42 38 */ 39 #define OV7670_I2C_ADDR 0x42 40 41 #define PLL_FACTOR 4 42 43 /* Registers */ 44 #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */ 45 #define REG_BLUE 0x01 /* blue gain */ 46 #define REG_RED 0x02 /* red gain */ 47 #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */ 48 #define REG_COM1 0x04 /* Control 1 */ 49 #define COM1_CCIR656 0x40 /* CCIR656 enable */ 50 #define REG_BAVE 0x05 /* U/B Average level */ 51 #define REG_GbAVE 0x06 /* Y/Gb Average level */ 52 #define REG_AECHH 0x07 /* AEC MS 5 bits */ 53 #define REG_RAVE 0x08 /* V/R Average level */ 54 #define REG_COM2 0x09 /* Control 2 */ 55 #define COM2_SSLEEP 0x10 /* Soft sleep mode */ 56 #define REG_PID 0x0a /* Product ID MSB */ 57 #define REG_VER 0x0b /* Product ID LSB */ 58 #define REG_COM3 0x0c /* Control 3 */ 59 #define COM3_SWAP 0x40 /* Byte swap */ 60 #define COM3_SCALEEN 0x08 /* Enable scaling */ 61 #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */ 62 #define REG_COM4 0x0d /* Control 4 */ 63 #define REG_COM5 0x0e /* All "reserved" */ 64 #define REG_COM6 0x0f /* Control 6 */ 65 #define REG_AECH 0x10 /* More bits of AEC value */ 66 #define REG_CLKRC 0x11 /* Clocl control */ 67 #define CLK_EXT 0x40 /* Use external clock directly */ 68 #define CLK_SCALE 0x3f /* Mask for internal clock scale */ 69 #define REG_COM7 0x12 /* Control 7 */ 70 #define COM7_RESET 0x80 /* Register reset */ 71 #define COM7_FMT_MASK 0x38 72 #define COM7_FMT_VGA 0x00 73 #define COM7_FMT_CIF 0x20 /* CIF format */ 74 #define COM7_FMT_QVGA 0x10 /* QVGA format */ 75 #define COM7_FMT_QCIF 0x08 /* QCIF format */ 76 #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */ 77 #define COM7_YUV 0x00 /* YUV */ 78 #define COM7_BAYER 0x01 /* Bayer format */ 79 #define COM7_PBAYER 0x05 /* "Processed bayer" */ 80 #define REG_COM8 0x13 /* Control 8 */ 81 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ 82 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */ 83 #define COM8_BFILT 0x20 /* Band filter enable */ 84 #define COM8_AGC 0x04 /* Auto gain enable */ 85 #define COM8_AWB 0x02 /* White balance enable */ 86 #define COM8_AEC 0x01 /* Auto exposure enable */ 87 #define REG_COM9 0x14 /* Control 9 - gain ceiling */ 88 #define REG_COM10 0x15 /* Control 10 */ 89 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */ 90 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */ 91 #define COM10_HREF_REV 0x08 /* Reverse HREF */ 92 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */ 93 #define COM10_VS_NEG 0x02 /* VSYNC negative */ 94 #define COM10_HS_NEG 0x01 /* HSYNC negative */ 95 #define REG_HSTART 0x17 /* Horiz start high bits */ 96 #define REG_HSTOP 0x18 /* Horiz stop high bits */ 97 #define REG_VSTART 0x19 /* Vert start high bits */ 98 #define REG_VSTOP 0x1a /* Vert stop high bits */ 99 #define REG_PSHFT 0x1b /* Pixel delay after HREF */ 100 #define REG_MIDH 0x1c /* Manuf. ID high */ 101 #define REG_MIDL 0x1d /* Manuf. ID low */ 102 #define REG_MVFP 0x1e /* Mirror / vflip */ 103 #define MVFP_MIRROR 0x20 /* Mirror image */ 104 #define MVFP_FLIP 0x10 /* Vertical flip */ 105 106 #define REG_AEW 0x24 /* AGC upper limit */ 107 #define REG_AEB 0x25 /* AGC lower limit */ 108 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */ 109 #define REG_HSYST 0x30 /* HSYNC rising edge delay */ 110 #define REG_HSYEN 0x31 /* HSYNC falling edge delay */ 111 #define REG_HREF 0x32 /* HREF pieces */ 112 #define REG_TSLB 0x3a /* lots of stuff */ 113 #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */ 114 #define REG_COM11 0x3b /* Control 11 */ 115 #define COM11_NIGHT 0x80 /* NIght mode enable */ 116 #define COM11_NMFR 0x60 /* Two bit NM frame rate */ 117 #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */ 118 #define COM11_50HZ 0x08 /* Manual 50Hz select */ 119 #define COM11_EXP 0x02 120 #define REG_COM12 0x3c /* Control 12 */ 121 #define COM12_HREF 0x80 /* HREF always */ 122 #define REG_COM13 0x3d /* Control 13 */ 123 #define COM13_GAMMA 0x80 /* Gamma enable */ 124 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */ 125 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */ 126 #define REG_COM14 0x3e /* Control 14 */ 127 #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */ 128 #define REG_EDGE 0x3f /* Edge enhancement factor */ 129 #define REG_COM15 0x40 /* Control 15 */ 130 #define COM15_R10F0 0x00 /* Data range 10 to F0 */ 131 #define COM15_R01FE 0x80 /* 01 to FE */ 132 #define COM15_R00FF 0xc0 /* 00 to FF */ 133 #define COM15_RGB565 0x10 /* RGB565 output */ 134 #define COM15_RGB555 0x30 /* RGB555 output */ 135 #define REG_COM16 0x41 /* Control 16 */ 136 #define COM16_AWBGAIN 0x08 /* AWB gain enable */ 137 #define REG_COM17 0x42 /* Control 17 */ 138 #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */ 139 #define COM17_CBAR 0x08 /* DSP Color bar */ 140 141 /* 142 * This matrix defines how the colors are generated, must be 143 * tweaked to adjust hue and saturation. 144 * 145 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue 146 * 147 * They are nine-bit signed quantities, with the sign bit 148 * stored in 0x58. Sign for v-red is bit 0, and up from there. 149 */ 150 #define REG_CMATRIX_BASE 0x4f 151 #define CMATRIX_LEN 6 152 #define REG_CMATRIX_SIGN 0x58 153 154 155 #define REG_BRIGHT 0x55 /* Brightness */ 156 #define REG_CONTRAS 0x56 /* Contrast control */ 157 158 #define REG_GFIX 0x69 /* Fix gain control */ 159 160 #define REG_DBLV 0x6b /* PLL control an debugging */ 161 #define DBLV_BYPASS 0x0a /* Bypass PLL */ 162 #define DBLV_X4 0x4a /* clock x4 */ 163 #define DBLV_X6 0x8a /* clock x6 */ 164 #define DBLV_X8 0xca /* clock x8 */ 165 166 #define REG_SCALING_XSC 0x70 /* Test pattern and horizontal scale factor */ 167 #define TEST_PATTTERN_0 0x80 168 #define REG_SCALING_YSC 0x71 /* Test pattern and vertical scale factor */ 169 #define TEST_PATTTERN_1 0x80 170 171 #define REG_REG76 0x76 /* OV's name */ 172 #define R76_BLKPCOR 0x80 /* Black pixel correction enable */ 173 #define R76_WHTPCOR 0x40 /* White pixel correction enable */ 174 175 #define REG_RGB444 0x8c /* RGB 444 control */ 176 #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */ 177 #define R444_RGBX 0x01 /* Empty nibble at end */ 178 179 #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */ 180 #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */ 181 182 #define REG_BD50MAX 0xa5 /* 50hz banding step limit */ 183 #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */ 184 #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */ 185 #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */ 186 #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */ 187 #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */ 188 #define REG_BD60MAX 0xab /* 60hz banding step limit */ 189 190 enum ov7670_model { 191 MODEL_OV7670 = 0, 192 MODEL_OV7675, 193 }; 194 195 struct ov7670_win_size { 196 int width; 197 int height; 198 unsigned char com7_bit; 199 int hstart; /* Start/stop values for the camera. Note */ 200 int hstop; /* that they do not always make complete */ 201 int vstart; /* sense to humans, but evidently the sensor */ 202 int vstop; /* will do the right thing... */ 203 struct regval_list *regs; /* Regs to tweak */ 204 }; 205 206 struct ov7670_devtype { 207 /* formats supported for each model */ 208 struct ov7670_win_size *win_sizes; 209 unsigned int n_win_sizes; 210 /* callbacks for frame rate control */ 211 int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *); 212 void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *); 213 }; 214 215 /* 216 * Information we maintain about a known sensor. 217 */ 218 struct ov7670_format_struct; /* coming later */ 219 struct ov7670_info { 220 struct v4l2_subdev sd; 221 #if defined(CONFIG_MEDIA_CONTROLLER) 222 struct media_pad pad; 223 #endif 224 struct v4l2_ctrl_handler hdl; 225 struct { 226 /* gain cluster */ 227 struct v4l2_ctrl *auto_gain; 228 struct v4l2_ctrl *gain; 229 }; 230 struct { 231 /* exposure cluster */ 232 struct v4l2_ctrl *auto_exposure; 233 struct v4l2_ctrl *exposure; 234 }; 235 struct { 236 /* saturation/hue cluster */ 237 struct v4l2_ctrl *saturation; 238 struct v4l2_ctrl *hue; 239 }; 240 struct v4l2_mbus_framefmt format; 241 struct ov7670_format_struct *fmt; /* Current format */ 242 struct ov7670_win_size *wsize; 243 struct clk *clk; 244 int on; 245 struct gpio_desc *resetb_gpio; 246 struct gpio_desc *pwdn_gpio; 247 unsigned int mbus_config; /* Media bus configuration flags */ 248 int min_width; /* Filter out smaller sizes */ 249 int min_height; /* Filter out smaller sizes */ 250 int clock_speed; /* External clock speed (MHz) */ 251 u8 clkrc; /* Clock divider value */ 252 bool use_smbus; /* Use smbus I/O instead of I2C */ 253 bool pll_bypass; 254 bool pclk_hb_disable; 255 const struct ov7670_devtype *devtype; /* Device specifics */ 256 }; 257 258 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd) 259 { 260 return container_of(sd, struct ov7670_info, sd); 261 } 262 263 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) 264 { 265 return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd; 266 } 267 268 269 270 /* 271 * The default register settings, as obtained from OmniVision. There 272 * is really no making sense of most of these - lots of "reserved" values 273 * and such. 274 * 275 * These settings give VGA YUYV. 276 */ 277 278 struct regval_list { 279 unsigned char reg_num; 280 unsigned char value; 281 }; 282 283 static struct regval_list ov7670_default_regs[] = { 284 { REG_COM7, COM7_RESET }, 285 /* 286 * Clock scale: 3 = 15fps 287 * 2 = 20fps 288 * 1 = 30fps 289 */ 290 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */ 291 { REG_TSLB, 0x04 }, /* OV */ 292 { REG_COM7, 0 }, /* VGA */ 293 /* 294 * Set the hardware window. These values from OV don't entirely 295 * make sense - hstop is less than hstart. But they work... 296 */ 297 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 }, 298 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 }, 299 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a }, 300 301 { REG_COM3, 0 }, { REG_COM14, 0 }, 302 /* Mystery scaling numbers */ 303 { REG_SCALING_XSC, 0x3a }, 304 { REG_SCALING_YSC, 0x35 }, 305 { 0x72, 0x11 }, { 0x73, 0xf0 }, 306 { 0xa2, 0x02 }, { REG_COM10, 0x0 }, 307 308 /* Gamma curve values */ 309 { 0x7a, 0x20 }, { 0x7b, 0x10 }, 310 { 0x7c, 0x1e }, { 0x7d, 0x35 }, 311 { 0x7e, 0x5a }, { 0x7f, 0x69 }, 312 { 0x80, 0x76 }, { 0x81, 0x80 }, 313 { 0x82, 0x88 }, { 0x83, 0x8f }, 314 { 0x84, 0x96 }, { 0x85, 0xa3 }, 315 { 0x86, 0xaf }, { 0x87, 0xc4 }, 316 { 0x88, 0xd7 }, { 0x89, 0xe8 }, 317 318 /* AGC and AEC parameters. Note we start by disabling those features, 319 then turn them only after tweaking the values. */ 320 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT }, 321 { REG_GAIN, 0 }, { REG_AECH, 0 }, 322 { REG_COM4, 0x40 }, /* magic reserved bit */ 323 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */ 324 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 }, 325 { REG_AEW, 0x95 }, { REG_AEB, 0x33 }, 326 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 }, 327 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */ 328 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 }, 329 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 }, 330 { REG_HAECC7, 0x94 }, 331 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC }, 332 333 /* Almost all of these are magic "reserved" values. */ 334 { REG_COM5, 0x61 }, { REG_COM6, 0x4b }, 335 { 0x16, 0x02 }, { REG_MVFP, 0x07 }, 336 { 0x21, 0x02 }, { 0x22, 0x91 }, 337 { 0x29, 0x07 }, { 0x33, 0x0b }, 338 { 0x35, 0x0b }, { 0x37, 0x1d }, 339 { 0x38, 0x71 }, { 0x39, 0x2a }, 340 { REG_COM12, 0x78 }, { 0x4d, 0x40 }, 341 { 0x4e, 0x20 }, { REG_GFIX, 0 }, 342 { 0x6b, 0x4a }, { 0x74, 0x10 }, 343 { 0x8d, 0x4f }, { 0x8e, 0 }, 344 { 0x8f, 0 }, { 0x90, 0 }, 345 { 0x91, 0 }, { 0x96, 0 }, 346 { 0x9a, 0 }, { 0xb0, 0x84 }, 347 { 0xb1, 0x0c }, { 0xb2, 0x0e }, 348 { 0xb3, 0x82 }, { 0xb8, 0x0a }, 349 350 /* More reserved magic, some of which tweaks white balance */ 351 { 0x43, 0x0a }, { 0x44, 0xf0 }, 352 { 0x45, 0x34 }, { 0x46, 0x58 }, 353 { 0x47, 0x28 }, { 0x48, 0x3a }, 354 { 0x59, 0x88 }, { 0x5a, 0x88 }, 355 { 0x5b, 0x44 }, { 0x5c, 0x67 }, 356 { 0x5d, 0x49 }, { 0x5e, 0x0e }, 357 { 0x6c, 0x0a }, { 0x6d, 0x55 }, 358 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */ 359 { 0x6a, 0x40 }, { REG_BLUE, 0x40 }, 360 { REG_RED, 0x60 }, 361 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB }, 362 363 /* Matrix coefficients */ 364 { 0x4f, 0x80 }, { 0x50, 0x80 }, 365 { 0x51, 0 }, { 0x52, 0x22 }, 366 { 0x53, 0x5e }, { 0x54, 0x80 }, 367 { 0x58, 0x9e }, 368 369 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 }, 370 { 0x75, 0x05 }, { 0x76, 0xe1 }, 371 { 0x4c, 0 }, { 0x77, 0x01 }, 372 { REG_COM13, 0xc3 }, { 0x4b, 0x09 }, 373 { 0xc9, 0x60 }, { REG_COM16, 0x38 }, 374 { 0x56, 0x40 }, 375 376 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO }, 377 { 0xa4, 0x88 }, { 0x96, 0 }, 378 { 0x97, 0x30 }, { 0x98, 0x20 }, 379 { 0x99, 0x30 }, { 0x9a, 0x84 }, 380 { 0x9b, 0x29 }, { 0x9c, 0x03 }, 381 { 0x9d, 0x4c }, { 0x9e, 0x3f }, 382 { 0x78, 0x04 }, 383 384 /* Extra-weird stuff. Some sort of multiplexor register */ 385 { 0x79, 0x01 }, { 0xc8, 0xf0 }, 386 { 0x79, 0x0f }, { 0xc8, 0x00 }, 387 { 0x79, 0x10 }, { 0xc8, 0x7e }, 388 { 0x79, 0x0a }, { 0xc8, 0x80 }, 389 { 0x79, 0x0b }, { 0xc8, 0x01 }, 390 { 0x79, 0x0c }, { 0xc8, 0x0f }, 391 { 0x79, 0x0d }, { 0xc8, 0x20 }, 392 { 0x79, 0x09 }, { 0xc8, 0x80 }, 393 { 0x79, 0x02 }, { 0xc8, 0xc0 }, 394 { 0x79, 0x03 }, { 0xc8, 0x40 }, 395 { 0x79, 0x05 }, { 0xc8, 0x30 }, 396 { 0x79, 0x26 }, 397 398 { 0xff, 0xff }, /* END MARKER */ 399 }; 400 401 402 /* 403 * Here we'll try to encapsulate the changes for just the output 404 * video format. 405 * 406 * RGB656 and YUV422 come from OV; RGB444 is homebrewed. 407 * 408 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why. 409 */ 410 411 412 static struct regval_list ov7670_fmt_yuv422[] = { 413 { REG_COM7, 0x0 }, /* Selects YUV mode */ 414 { REG_RGB444, 0 }, /* No RGB444 please */ 415 { REG_COM1, 0 }, /* CCIR601 */ 416 { REG_COM15, COM15_R00FF }, 417 { REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */ 418 { 0x4f, 0x80 }, /* "matrix coefficient 1" */ 419 { 0x50, 0x80 }, /* "matrix coefficient 2" */ 420 { 0x51, 0 }, /* vb */ 421 { 0x52, 0x22 }, /* "matrix coefficient 4" */ 422 { 0x53, 0x5e }, /* "matrix coefficient 5" */ 423 { 0x54, 0x80 }, /* "matrix coefficient 6" */ 424 { REG_COM13, COM13_GAMMA|COM13_UVSAT }, 425 { 0xff, 0xff }, 426 }; 427 428 static struct regval_list ov7670_fmt_rgb565[] = { 429 { REG_COM7, COM7_RGB }, /* Selects RGB mode */ 430 { REG_RGB444, 0 }, /* No RGB444 please */ 431 { REG_COM1, 0x0 }, /* CCIR601 */ 432 { REG_COM15, COM15_RGB565 }, 433 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */ 434 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */ 435 { 0x50, 0xb3 }, /* "matrix coefficient 2" */ 436 { 0x51, 0 }, /* vb */ 437 { 0x52, 0x3d }, /* "matrix coefficient 4" */ 438 { 0x53, 0xa7 }, /* "matrix coefficient 5" */ 439 { 0x54, 0xe4 }, /* "matrix coefficient 6" */ 440 { REG_COM13, COM13_GAMMA|COM13_UVSAT }, 441 { 0xff, 0xff }, 442 }; 443 444 static struct regval_list ov7670_fmt_rgb444[] = { 445 { REG_COM7, COM7_RGB }, /* Selects RGB mode */ 446 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */ 447 { REG_COM1, 0x0 }, /* CCIR601 */ 448 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */ 449 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */ 450 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */ 451 { 0x50, 0xb3 }, /* "matrix coefficient 2" */ 452 { 0x51, 0 }, /* vb */ 453 { 0x52, 0x3d }, /* "matrix coefficient 4" */ 454 { 0x53, 0xa7 }, /* "matrix coefficient 5" */ 455 { 0x54, 0xe4 }, /* "matrix coefficient 6" */ 456 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */ 457 { 0xff, 0xff }, 458 }; 459 460 static struct regval_list ov7670_fmt_raw[] = { 461 { REG_COM7, COM7_BAYER }, 462 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */ 463 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */ 464 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */ 465 { 0xff, 0xff }, 466 }; 467 468 469 470 /* 471 * Low-level register I/O. 472 * 473 * Note that there are two versions of these. On the XO 1, the 474 * i2c controller only does SMBUS, so that's what we use. The 475 * ov7670 is not really an SMBUS device, though, so the communication 476 * is not always entirely reliable. 477 */ 478 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg, 479 unsigned char *value) 480 { 481 struct i2c_client *client = v4l2_get_subdevdata(sd); 482 int ret; 483 484 ret = i2c_smbus_read_byte_data(client, reg); 485 if (ret >= 0) { 486 *value = (unsigned char)ret; 487 ret = 0; 488 } 489 return ret; 490 } 491 492 493 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg, 494 unsigned char value) 495 { 496 struct i2c_client *client = v4l2_get_subdevdata(sd); 497 int ret = i2c_smbus_write_byte_data(client, reg, value); 498 499 if (reg == REG_COM7 && (value & COM7_RESET)) 500 msleep(5); /* Wait for reset to run */ 501 return ret; 502 } 503 504 /* 505 * On most platforms, we'd rather do straight i2c I/O. 506 */ 507 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg, 508 unsigned char *value) 509 { 510 struct i2c_client *client = v4l2_get_subdevdata(sd); 511 u8 data = reg; 512 struct i2c_msg msg; 513 int ret; 514 515 /* 516 * Send out the register address... 517 */ 518 msg.addr = client->addr; 519 msg.flags = 0; 520 msg.len = 1; 521 msg.buf = &data; 522 ret = i2c_transfer(client->adapter, &msg, 1); 523 if (ret < 0) { 524 printk(KERN_ERR "Error %d on register write\n", ret); 525 return ret; 526 } 527 /* 528 * ...then read back the result. 529 */ 530 msg.flags = I2C_M_RD; 531 ret = i2c_transfer(client->adapter, &msg, 1); 532 if (ret >= 0) { 533 *value = data; 534 ret = 0; 535 } 536 return ret; 537 } 538 539 540 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg, 541 unsigned char value) 542 { 543 struct i2c_client *client = v4l2_get_subdevdata(sd); 544 struct i2c_msg msg; 545 unsigned char data[2] = { reg, value }; 546 int ret; 547 548 msg.addr = client->addr; 549 msg.flags = 0; 550 msg.len = 2; 551 msg.buf = data; 552 ret = i2c_transfer(client->adapter, &msg, 1); 553 if (ret > 0) 554 ret = 0; 555 if (reg == REG_COM7 && (value & COM7_RESET)) 556 msleep(5); /* Wait for reset to run */ 557 return ret; 558 } 559 560 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg, 561 unsigned char *value) 562 { 563 struct ov7670_info *info = to_state(sd); 564 565 if (info->use_smbus) 566 return ov7670_read_smbus(sd, reg, value); 567 else 568 return ov7670_read_i2c(sd, reg, value); 569 } 570 571 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg, 572 unsigned char value) 573 { 574 struct ov7670_info *info = to_state(sd); 575 576 if (info->use_smbus) 577 return ov7670_write_smbus(sd, reg, value); 578 else 579 return ov7670_write_i2c(sd, reg, value); 580 } 581 582 static int ov7670_update_bits(struct v4l2_subdev *sd, unsigned char reg, 583 unsigned char mask, unsigned char value) 584 { 585 unsigned char orig; 586 int ret; 587 588 ret = ov7670_read(sd, reg, &orig); 589 if (ret) 590 return ret; 591 592 return ov7670_write(sd, reg, (orig & ~mask) | (value & mask)); 593 } 594 595 /* 596 * Write a list of register settings; ff/ff stops the process. 597 */ 598 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals) 599 { 600 while (vals->reg_num != 0xff || vals->value != 0xff) { 601 int ret = ov7670_write(sd, vals->reg_num, vals->value); 602 603 if (ret < 0) 604 return ret; 605 vals++; 606 } 607 return 0; 608 } 609 610 611 /* 612 * Stuff that knows about the sensor. 613 */ 614 static int ov7670_reset(struct v4l2_subdev *sd, u32 val) 615 { 616 ov7670_write(sd, REG_COM7, COM7_RESET); 617 msleep(1); 618 return 0; 619 } 620 621 622 static int ov7670_init(struct v4l2_subdev *sd, u32 val) 623 { 624 return ov7670_write_array(sd, ov7670_default_regs); 625 } 626 627 static int ov7670_detect(struct v4l2_subdev *sd) 628 { 629 unsigned char v; 630 int ret; 631 632 ret = ov7670_init(sd, 0); 633 if (ret < 0) 634 return ret; 635 ret = ov7670_read(sd, REG_MIDH, &v); 636 if (ret < 0) 637 return ret; 638 if (v != 0x7f) /* OV manuf. id. */ 639 return -ENODEV; 640 ret = ov7670_read(sd, REG_MIDL, &v); 641 if (ret < 0) 642 return ret; 643 if (v != 0xa2) 644 return -ENODEV; 645 /* 646 * OK, we know we have an OmniVision chip...but which one? 647 */ 648 ret = ov7670_read(sd, REG_PID, &v); 649 if (ret < 0) 650 return ret; 651 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */ 652 return -ENODEV; 653 ret = ov7670_read(sd, REG_VER, &v); 654 if (ret < 0) 655 return ret; 656 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */ 657 return -ENODEV; 658 return 0; 659 } 660 661 662 /* 663 * Store information about the video data format. The color matrix 664 * is deeply tied into the format, so keep the relevant values here. 665 * The magic matrix numbers come from OmniVision. 666 */ 667 static struct ov7670_format_struct { 668 u32 mbus_code; 669 enum v4l2_colorspace colorspace; 670 struct regval_list *regs; 671 int cmatrix[CMATRIX_LEN]; 672 } ov7670_formats[] = { 673 { 674 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8, 675 .colorspace = V4L2_COLORSPACE_SRGB, 676 .regs = ov7670_fmt_yuv422, 677 .cmatrix = { 128, -128, 0, -34, -94, 128 }, 678 }, 679 { 680 .mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE, 681 .colorspace = V4L2_COLORSPACE_SRGB, 682 .regs = ov7670_fmt_rgb444, 683 .cmatrix = { 179, -179, 0, -61, -176, 228 }, 684 }, 685 { 686 .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE, 687 .colorspace = V4L2_COLORSPACE_SRGB, 688 .regs = ov7670_fmt_rgb565, 689 .cmatrix = { 179, -179, 0, -61, -176, 228 }, 690 }, 691 { 692 .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, 693 .colorspace = V4L2_COLORSPACE_SRGB, 694 .regs = ov7670_fmt_raw, 695 .cmatrix = { 0, 0, 0, 0, 0, 0 }, 696 }, 697 }; 698 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats) 699 700 701 /* 702 * Then there is the issue of window sizes. Try to capture the info here. 703 */ 704 705 /* 706 * QCIF mode is done (by OV) in a very strange way - it actually looks like 707 * VGA with weird scaling options - they do *not* use the canned QCIF mode 708 * which is allegedly provided by the sensor. So here's the weird register 709 * settings. 710 */ 711 static struct regval_list ov7670_qcif_regs[] = { 712 { REG_COM3, COM3_SCALEEN|COM3_DCWEN }, 713 { REG_COM3, COM3_DCWEN }, 714 { REG_COM14, COM14_DCWEN | 0x01}, 715 { 0x73, 0xf1 }, 716 { 0xa2, 0x52 }, 717 { 0x7b, 0x1c }, 718 { 0x7c, 0x28 }, 719 { 0x7d, 0x3c }, 720 { 0x7f, 0x69 }, 721 { REG_COM9, 0x38 }, 722 { 0xa1, 0x0b }, 723 { 0x74, 0x19 }, 724 { 0x9a, 0x80 }, 725 { 0x43, 0x14 }, 726 { REG_COM13, 0xc0 }, 727 { 0xff, 0xff }, 728 }; 729 730 static struct ov7670_win_size ov7670_win_sizes[] = { 731 /* VGA */ 732 { 733 .width = VGA_WIDTH, 734 .height = VGA_HEIGHT, 735 .com7_bit = COM7_FMT_VGA, 736 .hstart = 158, /* These values from */ 737 .hstop = 14, /* Omnivision */ 738 .vstart = 10, 739 .vstop = 490, 740 .regs = NULL, 741 }, 742 /* CIF */ 743 { 744 .width = CIF_WIDTH, 745 .height = CIF_HEIGHT, 746 .com7_bit = COM7_FMT_CIF, 747 .hstart = 170, /* Empirically determined */ 748 .hstop = 90, 749 .vstart = 14, 750 .vstop = 494, 751 .regs = NULL, 752 }, 753 /* QVGA */ 754 { 755 .width = QVGA_WIDTH, 756 .height = QVGA_HEIGHT, 757 .com7_bit = COM7_FMT_QVGA, 758 .hstart = 168, /* Empirically determined */ 759 .hstop = 24, 760 .vstart = 12, 761 .vstop = 492, 762 .regs = NULL, 763 }, 764 /* QCIF */ 765 { 766 .width = QCIF_WIDTH, 767 .height = QCIF_HEIGHT, 768 .com7_bit = COM7_FMT_VGA, /* see comment above */ 769 .hstart = 456, /* Empirically determined */ 770 .hstop = 24, 771 .vstart = 14, 772 .vstop = 494, 773 .regs = ov7670_qcif_regs, 774 } 775 }; 776 777 static struct ov7670_win_size ov7675_win_sizes[] = { 778 /* 779 * Currently, only VGA is supported. Theoretically it could be possible 780 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a 781 * base and tweak them empirically could be required. 782 */ 783 { 784 .width = VGA_WIDTH, 785 .height = VGA_HEIGHT, 786 .com7_bit = COM7_FMT_VGA, 787 .hstart = 158, /* These values from */ 788 .hstop = 14, /* Omnivision */ 789 .vstart = 14, /* Empirically determined */ 790 .vstop = 494, 791 .regs = NULL, 792 } 793 }; 794 795 static void ov7675_get_framerate(struct v4l2_subdev *sd, 796 struct v4l2_fract *tpf) 797 { 798 struct ov7670_info *info = to_state(sd); 799 u32 clkrc = info->clkrc; 800 int pll_factor; 801 802 if (info->pll_bypass) 803 pll_factor = 1; 804 else 805 pll_factor = PLL_FACTOR; 806 807 clkrc++; 808 if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8) 809 clkrc = (clkrc >> 1); 810 811 tpf->numerator = 1; 812 tpf->denominator = (5 * pll_factor * info->clock_speed) / 813 (4 * clkrc); 814 } 815 816 static int ov7675_apply_framerate(struct v4l2_subdev *sd) 817 { 818 struct ov7670_info *info = to_state(sd); 819 int ret; 820 821 ret = ov7670_write(sd, REG_CLKRC, info->clkrc); 822 if (ret < 0) 823 return ret; 824 825 return ov7670_write(sd, REG_DBLV, 826 info->pll_bypass ? DBLV_BYPASS : DBLV_X4); 827 } 828 829 static int ov7675_set_framerate(struct v4l2_subdev *sd, 830 struct v4l2_fract *tpf) 831 { 832 struct ov7670_info *info = to_state(sd); 833 u32 clkrc; 834 int pll_factor; 835 836 /* 837 * The formula is fps = 5/4*pixclk for YUV/RGB and 838 * fps = 5/2*pixclk for RAW. 839 * 840 * pixclk = clock_speed / (clkrc + 1) * PLLfactor 841 * 842 */ 843 if (tpf->numerator == 0 || tpf->denominator == 0) { 844 clkrc = 0; 845 } else { 846 pll_factor = info->pll_bypass ? 1 : PLL_FACTOR; 847 clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) / 848 (4 * tpf->denominator); 849 if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8) 850 clkrc = (clkrc << 1); 851 clkrc--; 852 } 853 854 /* 855 * The datasheet claims that clkrc = 0 will divide the input clock by 1 856 * but we've checked with an oscilloscope that it divides by 2 instead. 857 * So, if clkrc = 0 just bypass the divider. 858 */ 859 if (clkrc <= 0) 860 clkrc = CLK_EXT; 861 else if (clkrc > CLK_SCALE) 862 clkrc = CLK_SCALE; 863 info->clkrc = clkrc; 864 865 /* Recalculate frame rate */ 866 ov7675_get_framerate(sd, tpf); 867 868 /* 869 * If the device is not powered up by the host driver do 870 * not apply any changes to H/W at this time. Instead 871 * the framerate will be restored right after power-up. 872 */ 873 if (info->on) 874 return ov7675_apply_framerate(sd); 875 876 return 0; 877 } 878 879 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd, 880 struct v4l2_fract *tpf) 881 { 882 struct ov7670_info *info = to_state(sd); 883 884 tpf->numerator = 1; 885 tpf->denominator = info->clock_speed; 886 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1) 887 tpf->denominator /= (info->clkrc & CLK_SCALE); 888 } 889 890 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd, 891 struct v4l2_fract *tpf) 892 { 893 struct ov7670_info *info = to_state(sd); 894 int div; 895 896 if (tpf->numerator == 0 || tpf->denominator == 0) 897 div = 1; /* Reset to full rate */ 898 else 899 div = (tpf->numerator * info->clock_speed) / tpf->denominator; 900 if (div == 0) 901 div = 1; 902 else if (div > CLK_SCALE) 903 div = CLK_SCALE; 904 info->clkrc = (info->clkrc & 0x80) | div; 905 tpf->numerator = 1; 906 tpf->denominator = info->clock_speed / div; 907 908 /* 909 * If the device is not powered up by the host driver do 910 * not apply any changes to H/W at this time. Instead 911 * the framerate will be restored right after power-up. 912 */ 913 if (info->on) 914 return ov7670_write(sd, REG_CLKRC, info->clkrc); 915 916 return 0; 917 } 918 919 /* 920 * Store a set of start/stop values into the camera. 921 */ 922 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop, 923 int vstart, int vstop) 924 { 925 int ret; 926 unsigned char v; 927 /* 928 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of 929 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is 930 * a mystery "edge offset" value in the top two bits of href. 931 */ 932 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff); 933 if (ret) 934 return ret; 935 ret = ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff); 936 if (ret) 937 return ret; 938 ret = ov7670_read(sd, REG_HREF, &v); 939 if (ret) 940 return ret; 941 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7); 942 msleep(10); 943 ret = ov7670_write(sd, REG_HREF, v); 944 if (ret) 945 return ret; 946 /* Vertical: similar arrangement, but only 10 bits. */ 947 ret = ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff); 948 if (ret) 949 return ret; 950 ret = ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff); 951 if (ret) 952 return ret; 953 ret = ov7670_read(sd, REG_VREF, &v); 954 if (ret) 955 return ret; 956 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3); 957 msleep(10); 958 return ov7670_write(sd, REG_VREF, v); 959 } 960 961 962 static int ov7670_enum_mbus_code(struct v4l2_subdev *sd, 963 struct v4l2_subdev_state *sd_state, 964 struct v4l2_subdev_mbus_code_enum *code) 965 { 966 if (code->pad || code->index >= N_OV7670_FMTS) 967 return -EINVAL; 968 969 code->code = ov7670_formats[code->index].mbus_code; 970 return 0; 971 } 972 973 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd, 974 struct v4l2_mbus_framefmt *fmt, 975 struct ov7670_format_struct **ret_fmt, 976 struct ov7670_win_size **ret_wsize) 977 { 978 int index, i; 979 struct ov7670_win_size *wsize; 980 struct ov7670_info *info = to_state(sd); 981 unsigned int n_win_sizes = info->devtype->n_win_sizes; 982 unsigned int win_sizes_limit = n_win_sizes; 983 984 for (index = 0; index < N_OV7670_FMTS; index++) 985 if (ov7670_formats[index].mbus_code == fmt->code) 986 break; 987 if (index >= N_OV7670_FMTS) { 988 /* default to first format */ 989 index = 0; 990 fmt->code = ov7670_formats[0].mbus_code; 991 } 992 if (ret_fmt != NULL) 993 *ret_fmt = ov7670_formats + index; 994 /* 995 * Fields: the OV devices claim to be progressive. 996 */ 997 fmt->field = V4L2_FIELD_NONE; 998 999 /* 1000 * Don't consider values that don't match min_height and min_width 1001 * constraints. 1002 */ 1003 if (info->min_width || info->min_height) 1004 for (i = 0; i < n_win_sizes; i++) { 1005 wsize = info->devtype->win_sizes + i; 1006 1007 if (wsize->width < info->min_width || 1008 wsize->height < info->min_height) { 1009 win_sizes_limit = i; 1010 break; 1011 } 1012 } 1013 /* 1014 * Round requested image size down to the nearest 1015 * we support, but not below the smallest. 1016 */ 1017 for (wsize = info->devtype->win_sizes; 1018 wsize < info->devtype->win_sizes + win_sizes_limit; wsize++) 1019 if (fmt->width >= wsize->width && fmt->height >= wsize->height) 1020 break; 1021 if (wsize >= info->devtype->win_sizes + win_sizes_limit) 1022 wsize--; /* Take the smallest one */ 1023 if (ret_wsize != NULL) 1024 *ret_wsize = wsize; 1025 /* 1026 * Note the size we'll actually handle. 1027 */ 1028 fmt->width = wsize->width; 1029 fmt->height = wsize->height; 1030 fmt->colorspace = ov7670_formats[index].colorspace; 1031 1032 info->format = *fmt; 1033 1034 return 0; 1035 } 1036 1037 static int ov7670_apply_fmt(struct v4l2_subdev *sd) 1038 { 1039 struct ov7670_info *info = to_state(sd); 1040 struct ov7670_win_size *wsize = info->wsize; 1041 unsigned char com7, com10 = 0; 1042 int ret; 1043 1044 /* 1045 * COM7 is a pain in the ass, it doesn't like to be read then 1046 * quickly written afterward. But we have everything we need 1047 * to set it absolutely here, as long as the format-specific 1048 * register sets list it first. 1049 */ 1050 com7 = info->fmt->regs[0].value; 1051 com7 |= wsize->com7_bit; 1052 ret = ov7670_write(sd, REG_COM7, com7); 1053 if (ret) 1054 return ret; 1055 1056 /* 1057 * Configure the media bus through COM10 register 1058 */ 1059 if (info->mbus_config & V4L2_MBUS_VSYNC_ACTIVE_LOW) 1060 com10 |= COM10_VS_NEG; 1061 if (info->mbus_config & V4L2_MBUS_HSYNC_ACTIVE_LOW) 1062 com10 |= COM10_HREF_REV; 1063 if (info->pclk_hb_disable) 1064 com10 |= COM10_PCLK_HB; 1065 ret = ov7670_write(sd, REG_COM10, com10); 1066 if (ret) 1067 return ret; 1068 1069 /* 1070 * Now write the rest of the array. Also store start/stops 1071 */ 1072 ret = ov7670_write_array(sd, info->fmt->regs + 1); 1073 if (ret) 1074 return ret; 1075 1076 ret = ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart, 1077 wsize->vstop); 1078 if (ret) 1079 return ret; 1080 1081 if (wsize->regs) { 1082 ret = ov7670_write_array(sd, wsize->regs); 1083 if (ret) 1084 return ret; 1085 } 1086 1087 /* 1088 * If we're running RGB565, we must rewrite clkrc after setting 1089 * the other parameters or the image looks poor. If we're *not* 1090 * doing RGB565, we must not rewrite clkrc or the image looks 1091 * *really* poor. 1092 * 1093 * (Update) Now that we retain clkrc state, we should be able 1094 * to write it unconditionally, and that will make the frame 1095 * rate persistent too. 1096 */ 1097 ret = ov7670_write(sd, REG_CLKRC, info->clkrc); 1098 if (ret) 1099 return ret; 1100 1101 return 0; 1102 } 1103 1104 /* 1105 * Set a format. 1106 */ 1107 static int ov7670_set_fmt(struct v4l2_subdev *sd, 1108 struct v4l2_subdev_state *sd_state, 1109 struct v4l2_subdev_format *format) 1110 { 1111 struct ov7670_info *info = to_state(sd); 1112 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1113 struct v4l2_mbus_framefmt *mbus_fmt; 1114 #endif 1115 int ret; 1116 1117 if (format->pad) 1118 return -EINVAL; 1119 1120 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1121 ret = ov7670_try_fmt_internal(sd, &format->format, NULL, NULL); 1122 if (ret) 1123 return ret; 1124 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1125 mbus_fmt = v4l2_subdev_get_try_format(sd, sd_state, 1126 format->pad); 1127 *mbus_fmt = format->format; 1128 #endif 1129 return 0; 1130 } 1131 1132 ret = ov7670_try_fmt_internal(sd, &format->format, &info->fmt, &info->wsize); 1133 if (ret) 1134 return ret; 1135 1136 /* 1137 * If the device is not powered up by the host driver do 1138 * not apply any changes to H/W at this time. Instead 1139 * the frame format will be restored right after power-up. 1140 */ 1141 if (info->on) 1142 return ov7670_apply_fmt(sd); 1143 1144 return 0; 1145 } 1146 1147 static int ov7670_get_fmt(struct v4l2_subdev *sd, 1148 struct v4l2_subdev_state *sd_state, 1149 struct v4l2_subdev_format *format) 1150 { 1151 struct ov7670_info *info = to_state(sd); 1152 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1153 struct v4l2_mbus_framefmt *mbus_fmt; 1154 #endif 1155 1156 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1157 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1158 mbus_fmt = v4l2_subdev_get_try_format(sd, sd_state, 0); 1159 format->format = *mbus_fmt; 1160 return 0; 1161 #else 1162 return -EINVAL; 1163 #endif 1164 } else { 1165 format->format = info->format; 1166 } 1167 1168 return 0; 1169 } 1170 1171 /* 1172 * Implement G/S_PARM. There is a "high quality" mode we could try 1173 * to do someday; for now, we just do the frame rate tweak. 1174 */ 1175 static int ov7670_g_frame_interval(struct v4l2_subdev *sd, 1176 struct v4l2_subdev_frame_interval *ival) 1177 { 1178 struct ov7670_info *info = to_state(sd); 1179 1180 1181 info->devtype->get_framerate(sd, &ival->interval); 1182 1183 return 0; 1184 } 1185 1186 static int ov7670_s_frame_interval(struct v4l2_subdev *sd, 1187 struct v4l2_subdev_frame_interval *ival) 1188 { 1189 struct v4l2_fract *tpf = &ival->interval; 1190 struct ov7670_info *info = to_state(sd); 1191 1192 1193 return info->devtype->set_framerate(sd, tpf); 1194 } 1195 1196 1197 /* 1198 * Frame intervals. Since frame rates are controlled with the clock 1199 * divider, we can only do 30/n for integer n values. So no continuous 1200 * or stepwise options. Here we just pick a handful of logical values. 1201 */ 1202 1203 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 }; 1204 1205 static int ov7670_enum_frame_interval(struct v4l2_subdev *sd, 1206 struct v4l2_subdev_state *sd_state, 1207 struct v4l2_subdev_frame_interval_enum *fie) 1208 { 1209 struct ov7670_info *info = to_state(sd); 1210 unsigned int n_win_sizes = info->devtype->n_win_sizes; 1211 int i; 1212 1213 if (fie->pad) 1214 return -EINVAL; 1215 if (fie->index >= ARRAY_SIZE(ov7670_frame_rates)) 1216 return -EINVAL; 1217 1218 /* 1219 * Check if the width/height is valid. 1220 * 1221 * If a minimum width/height was requested, filter out the capture 1222 * windows that fall outside that. 1223 */ 1224 for (i = 0; i < n_win_sizes; i++) { 1225 struct ov7670_win_size *win = &info->devtype->win_sizes[i]; 1226 1227 if (info->min_width && win->width < info->min_width) 1228 continue; 1229 if (info->min_height && win->height < info->min_height) 1230 continue; 1231 if (fie->width == win->width && fie->height == win->height) 1232 break; 1233 } 1234 if (i == n_win_sizes) 1235 return -EINVAL; 1236 fie->interval.numerator = 1; 1237 fie->interval.denominator = ov7670_frame_rates[fie->index]; 1238 return 0; 1239 } 1240 1241 /* 1242 * Frame size enumeration 1243 */ 1244 static int ov7670_enum_frame_size(struct v4l2_subdev *sd, 1245 struct v4l2_subdev_state *sd_state, 1246 struct v4l2_subdev_frame_size_enum *fse) 1247 { 1248 struct ov7670_info *info = to_state(sd); 1249 int i; 1250 int num_valid = -1; 1251 __u32 index = fse->index; 1252 unsigned int n_win_sizes = info->devtype->n_win_sizes; 1253 1254 if (fse->pad) 1255 return -EINVAL; 1256 1257 /* 1258 * If a minimum width/height was requested, filter out the capture 1259 * windows that fall outside that. 1260 */ 1261 for (i = 0; i < n_win_sizes; i++) { 1262 struct ov7670_win_size *win = &info->devtype->win_sizes[i]; 1263 1264 if (info->min_width && win->width < info->min_width) 1265 continue; 1266 if (info->min_height && win->height < info->min_height) 1267 continue; 1268 if (index == ++num_valid) { 1269 fse->min_width = fse->max_width = win->width; 1270 fse->min_height = fse->max_height = win->height; 1271 return 0; 1272 } 1273 } 1274 1275 return -EINVAL; 1276 } 1277 1278 /* 1279 * Code for dealing with controls. 1280 */ 1281 1282 static int ov7670_store_cmatrix(struct v4l2_subdev *sd, 1283 int matrix[CMATRIX_LEN]) 1284 { 1285 int i, ret; 1286 unsigned char signbits = 0; 1287 1288 /* 1289 * Weird crap seems to exist in the upper part of 1290 * the sign bits register, so let's preserve it. 1291 */ 1292 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits); 1293 signbits &= 0xc0; 1294 1295 for (i = 0; i < CMATRIX_LEN; i++) { 1296 unsigned char raw; 1297 1298 if (matrix[i] < 0) { 1299 signbits |= (1 << i); 1300 if (matrix[i] < -255) 1301 raw = 0xff; 1302 else 1303 raw = (-1 * matrix[i]) & 0xff; 1304 } else { 1305 if (matrix[i] > 255) 1306 raw = 0xff; 1307 else 1308 raw = matrix[i] & 0xff; 1309 } 1310 ret = ov7670_write(sd, REG_CMATRIX_BASE + i, raw); 1311 if (ret) 1312 return ret; 1313 } 1314 return ov7670_write(sd, REG_CMATRIX_SIGN, signbits); 1315 } 1316 1317 1318 /* 1319 * Hue also requires messing with the color matrix. It also requires 1320 * trig functions, which tend not to be well supported in the kernel. 1321 * So here is a simple table of sine values, 0-90 degrees, in steps 1322 * of five degrees. Values are multiplied by 1000. 1323 * 1324 * The following naive approximate trig functions require an argument 1325 * carefully limited to -180 <= theta <= 180. 1326 */ 1327 #define SIN_STEP 5 1328 static const int ov7670_sin_table[] = { 1329 0, 87, 173, 258, 342, 422, 1330 499, 573, 642, 707, 766, 819, 1331 866, 906, 939, 965, 984, 996, 1332 1000 1333 }; 1334 1335 static int ov7670_sine(int theta) 1336 { 1337 int chs = 1; 1338 int sine; 1339 1340 if (theta < 0) { 1341 theta = -theta; 1342 chs = -1; 1343 } 1344 if (theta <= 90) 1345 sine = ov7670_sin_table[theta/SIN_STEP]; 1346 else { 1347 theta -= 90; 1348 sine = 1000 - ov7670_sin_table[theta/SIN_STEP]; 1349 } 1350 return sine*chs; 1351 } 1352 1353 static int ov7670_cosine(int theta) 1354 { 1355 theta = 90 - theta; 1356 if (theta > 180) 1357 theta -= 360; 1358 else if (theta < -180) 1359 theta += 360; 1360 return ov7670_sine(theta); 1361 } 1362 1363 1364 1365 1366 static void ov7670_calc_cmatrix(struct ov7670_info *info, 1367 int matrix[CMATRIX_LEN], int sat, int hue) 1368 { 1369 int i; 1370 /* 1371 * Apply the current saturation setting first. 1372 */ 1373 for (i = 0; i < CMATRIX_LEN; i++) 1374 matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7; 1375 /* 1376 * Then, if need be, rotate the hue value. 1377 */ 1378 if (hue != 0) { 1379 int sinth, costh, tmpmatrix[CMATRIX_LEN]; 1380 1381 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int)); 1382 sinth = ov7670_sine(hue); 1383 costh = ov7670_cosine(hue); 1384 1385 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000; 1386 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000; 1387 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000; 1388 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000; 1389 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000; 1390 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000; 1391 } 1392 } 1393 1394 1395 1396 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue) 1397 { 1398 struct ov7670_info *info = to_state(sd); 1399 int matrix[CMATRIX_LEN]; 1400 1401 ov7670_calc_cmatrix(info, matrix, sat, hue); 1402 return ov7670_store_cmatrix(sd, matrix); 1403 } 1404 1405 1406 /* 1407 * Some weird registers seem to store values in a sign/magnitude format! 1408 */ 1409 1410 static unsigned char ov7670_abs_to_sm(unsigned char v) 1411 { 1412 if (v > 127) 1413 return v & 0x7f; 1414 return (128 - v) | 0x80; 1415 } 1416 1417 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value) 1418 { 1419 unsigned char com8 = 0, v; 1420 1421 ov7670_read(sd, REG_COM8, &com8); 1422 com8 &= ~COM8_AEC; 1423 ov7670_write(sd, REG_COM8, com8); 1424 v = ov7670_abs_to_sm(value); 1425 return ov7670_write(sd, REG_BRIGHT, v); 1426 } 1427 1428 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value) 1429 { 1430 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value); 1431 } 1432 1433 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value) 1434 { 1435 unsigned char v = 0; 1436 int ret; 1437 1438 ret = ov7670_read(sd, REG_MVFP, &v); 1439 if (ret) 1440 return ret; 1441 if (value) 1442 v |= MVFP_MIRROR; 1443 else 1444 v &= ~MVFP_MIRROR; 1445 msleep(10); /* FIXME */ 1446 return ov7670_write(sd, REG_MVFP, v); 1447 } 1448 1449 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value) 1450 { 1451 unsigned char v = 0; 1452 int ret; 1453 1454 ret = ov7670_read(sd, REG_MVFP, &v); 1455 if (ret) 1456 return ret; 1457 if (value) 1458 v |= MVFP_FLIP; 1459 else 1460 v &= ~MVFP_FLIP; 1461 msleep(10); /* FIXME */ 1462 return ov7670_write(sd, REG_MVFP, v); 1463 } 1464 1465 /* 1466 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes 1467 * the data sheet, the VREF parts should be the most significant, but 1468 * experience shows otherwise. There seems to be little value in 1469 * messing with the VREF bits, so we leave them alone. 1470 */ 1471 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value) 1472 { 1473 int ret; 1474 unsigned char gain; 1475 1476 ret = ov7670_read(sd, REG_GAIN, &gain); 1477 if (ret) 1478 return ret; 1479 *value = gain; 1480 return 0; 1481 } 1482 1483 static int ov7670_s_gain(struct v4l2_subdev *sd, int value) 1484 { 1485 int ret; 1486 unsigned char com8; 1487 1488 ret = ov7670_write(sd, REG_GAIN, value & 0xff); 1489 if (ret) 1490 return ret; 1491 /* Have to turn off AGC as well */ 1492 ret = ov7670_read(sd, REG_COM8, &com8); 1493 if (ret) 1494 return ret; 1495 return ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC); 1496 } 1497 1498 /* 1499 * Tweak autogain. 1500 */ 1501 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value) 1502 { 1503 int ret; 1504 unsigned char com8; 1505 1506 ret = ov7670_read(sd, REG_COM8, &com8); 1507 if (ret == 0) { 1508 if (value) 1509 com8 |= COM8_AGC; 1510 else 1511 com8 &= ~COM8_AGC; 1512 ret = ov7670_write(sd, REG_COM8, com8); 1513 } 1514 return ret; 1515 } 1516 1517 static int ov7670_s_exp(struct v4l2_subdev *sd, int value) 1518 { 1519 int ret; 1520 unsigned char com1, com8, aech, aechh; 1521 1522 ret = ov7670_read(sd, REG_COM1, &com1) + 1523 ov7670_read(sd, REG_COM8, &com8) + 1524 ov7670_read(sd, REG_AECHH, &aechh); 1525 if (ret) 1526 return ret; 1527 1528 com1 = (com1 & 0xfc) | (value & 0x03); 1529 aech = (value >> 2) & 0xff; 1530 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f); 1531 ret = ov7670_write(sd, REG_COM1, com1) + 1532 ov7670_write(sd, REG_AECH, aech) + 1533 ov7670_write(sd, REG_AECHH, aechh); 1534 /* Have to turn off AEC as well */ 1535 if (ret == 0) 1536 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC); 1537 return ret; 1538 } 1539 1540 /* 1541 * Tweak autoexposure. 1542 */ 1543 static int ov7670_s_autoexp(struct v4l2_subdev *sd, 1544 enum v4l2_exposure_auto_type value) 1545 { 1546 int ret; 1547 unsigned char com8; 1548 1549 ret = ov7670_read(sd, REG_COM8, &com8); 1550 if (ret == 0) { 1551 if (value == V4L2_EXPOSURE_AUTO) 1552 com8 |= COM8_AEC; 1553 else 1554 com8 &= ~COM8_AEC; 1555 ret = ov7670_write(sd, REG_COM8, com8); 1556 } 1557 return ret; 1558 } 1559 1560 static const char * const ov7670_test_pattern_menu[] = { 1561 "No test output", 1562 "Shifting \"1\"", 1563 "8-bar color bar", 1564 "Fade to gray color bar", 1565 }; 1566 1567 static int ov7670_s_test_pattern(struct v4l2_subdev *sd, int value) 1568 { 1569 int ret; 1570 1571 ret = ov7670_update_bits(sd, REG_SCALING_XSC, TEST_PATTTERN_0, 1572 value & BIT(0) ? TEST_PATTTERN_0 : 0); 1573 if (ret) 1574 return ret; 1575 1576 return ov7670_update_bits(sd, REG_SCALING_YSC, TEST_PATTTERN_1, 1577 value & BIT(1) ? TEST_PATTTERN_1 : 0); 1578 } 1579 1580 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1581 { 1582 struct v4l2_subdev *sd = to_sd(ctrl); 1583 struct ov7670_info *info = to_state(sd); 1584 1585 switch (ctrl->id) { 1586 case V4L2_CID_AUTOGAIN: 1587 return ov7670_g_gain(sd, &info->gain->val); 1588 } 1589 return -EINVAL; 1590 } 1591 1592 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl) 1593 { 1594 struct v4l2_subdev *sd = to_sd(ctrl); 1595 struct ov7670_info *info = to_state(sd); 1596 1597 switch (ctrl->id) { 1598 case V4L2_CID_BRIGHTNESS: 1599 return ov7670_s_brightness(sd, ctrl->val); 1600 case V4L2_CID_CONTRAST: 1601 return ov7670_s_contrast(sd, ctrl->val); 1602 case V4L2_CID_SATURATION: 1603 return ov7670_s_sat_hue(sd, 1604 info->saturation->val, info->hue->val); 1605 case V4L2_CID_VFLIP: 1606 return ov7670_s_vflip(sd, ctrl->val); 1607 case V4L2_CID_HFLIP: 1608 return ov7670_s_hflip(sd, ctrl->val); 1609 case V4L2_CID_AUTOGAIN: 1610 /* Only set manual gain if auto gain is not explicitly 1611 turned on. */ 1612 if (!ctrl->val) { 1613 /* ov7670_s_gain turns off auto gain */ 1614 return ov7670_s_gain(sd, info->gain->val); 1615 } 1616 return ov7670_s_autogain(sd, ctrl->val); 1617 case V4L2_CID_EXPOSURE_AUTO: 1618 /* Only set manual exposure if auto exposure is not explicitly 1619 turned on. */ 1620 if (ctrl->val == V4L2_EXPOSURE_MANUAL) { 1621 /* ov7670_s_exp turns off auto exposure */ 1622 return ov7670_s_exp(sd, info->exposure->val); 1623 } 1624 return ov7670_s_autoexp(sd, ctrl->val); 1625 case V4L2_CID_TEST_PATTERN: 1626 return ov7670_s_test_pattern(sd, ctrl->val); 1627 } 1628 return -EINVAL; 1629 } 1630 1631 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = { 1632 .s_ctrl = ov7670_s_ctrl, 1633 .g_volatile_ctrl = ov7670_g_volatile_ctrl, 1634 }; 1635 1636 #ifdef CONFIG_VIDEO_ADV_DEBUG 1637 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) 1638 { 1639 unsigned char val = 0; 1640 int ret; 1641 1642 ret = ov7670_read(sd, reg->reg & 0xff, &val); 1643 reg->val = val; 1644 reg->size = 1; 1645 return ret; 1646 } 1647 1648 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) 1649 { 1650 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff); 1651 return 0; 1652 } 1653 #endif 1654 1655 static void ov7670_power_on(struct v4l2_subdev *sd) 1656 { 1657 struct ov7670_info *info = to_state(sd); 1658 1659 if (info->on) 1660 return; 1661 1662 clk_prepare_enable(info->clk); 1663 1664 if (info->pwdn_gpio) 1665 gpiod_set_value(info->pwdn_gpio, 0); 1666 if (info->resetb_gpio) { 1667 gpiod_set_value(info->resetb_gpio, 1); 1668 usleep_range(500, 1000); 1669 gpiod_set_value(info->resetb_gpio, 0); 1670 } 1671 if (info->pwdn_gpio || info->resetb_gpio || info->clk) 1672 usleep_range(3000, 5000); 1673 1674 info->on = true; 1675 } 1676 1677 static void ov7670_power_off(struct v4l2_subdev *sd) 1678 { 1679 struct ov7670_info *info = to_state(sd); 1680 1681 if (!info->on) 1682 return; 1683 1684 clk_disable_unprepare(info->clk); 1685 1686 if (info->pwdn_gpio) 1687 gpiod_set_value(info->pwdn_gpio, 1); 1688 1689 info->on = false; 1690 } 1691 1692 static int ov7670_s_power(struct v4l2_subdev *sd, int on) 1693 { 1694 struct ov7670_info *info = to_state(sd); 1695 1696 if (info->on == on) 1697 return 0; 1698 1699 if (on) { 1700 ov7670_power_on(sd); 1701 ov7670_init(sd, 0); 1702 ov7670_apply_fmt(sd); 1703 ov7675_apply_framerate(sd); 1704 v4l2_ctrl_handler_setup(&info->hdl); 1705 } else { 1706 ov7670_power_off(sd); 1707 } 1708 1709 return 0; 1710 } 1711 1712 static void ov7670_get_default_format(struct v4l2_subdev *sd, 1713 struct v4l2_mbus_framefmt *format) 1714 { 1715 struct ov7670_info *info = to_state(sd); 1716 1717 format->width = info->devtype->win_sizes[0].width; 1718 format->height = info->devtype->win_sizes[0].height; 1719 format->colorspace = info->fmt->colorspace; 1720 format->code = info->fmt->mbus_code; 1721 format->field = V4L2_FIELD_NONE; 1722 } 1723 1724 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1725 static int ov7670_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) 1726 { 1727 struct v4l2_mbus_framefmt *format = 1728 v4l2_subdev_get_try_format(sd, fh->state, 0); 1729 1730 ov7670_get_default_format(sd, format); 1731 1732 return 0; 1733 } 1734 #endif 1735 1736 /* ----------------------------------------------------------------------- */ 1737 1738 static const struct v4l2_subdev_core_ops ov7670_core_ops = { 1739 .reset = ov7670_reset, 1740 .init = ov7670_init, 1741 .s_power = ov7670_s_power, 1742 .log_status = v4l2_ctrl_subdev_log_status, 1743 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 1744 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 1745 #ifdef CONFIG_VIDEO_ADV_DEBUG 1746 .g_register = ov7670_g_register, 1747 .s_register = ov7670_s_register, 1748 #endif 1749 }; 1750 1751 static const struct v4l2_subdev_video_ops ov7670_video_ops = { 1752 .s_frame_interval = ov7670_s_frame_interval, 1753 .g_frame_interval = ov7670_g_frame_interval, 1754 }; 1755 1756 static const struct v4l2_subdev_pad_ops ov7670_pad_ops = { 1757 .enum_frame_interval = ov7670_enum_frame_interval, 1758 .enum_frame_size = ov7670_enum_frame_size, 1759 .enum_mbus_code = ov7670_enum_mbus_code, 1760 .get_fmt = ov7670_get_fmt, 1761 .set_fmt = ov7670_set_fmt, 1762 }; 1763 1764 static const struct v4l2_subdev_ops ov7670_ops = { 1765 .core = &ov7670_core_ops, 1766 .video = &ov7670_video_ops, 1767 .pad = &ov7670_pad_ops, 1768 }; 1769 1770 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1771 static const struct v4l2_subdev_internal_ops ov7670_subdev_internal_ops = { 1772 .open = ov7670_open, 1773 }; 1774 #endif 1775 1776 /* ----------------------------------------------------------------------- */ 1777 1778 static const struct ov7670_devtype ov7670_devdata[] = { 1779 [MODEL_OV7670] = { 1780 .win_sizes = ov7670_win_sizes, 1781 .n_win_sizes = ARRAY_SIZE(ov7670_win_sizes), 1782 .set_framerate = ov7670_set_framerate_legacy, 1783 .get_framerate = ov7670_get_framerate_legacy, 1784 }, 1785 [MODEL_OV7675] = { 1786 .win_sizes = ov7675_win_sizes, 1787 .n_win_sizes = ARRAY_SIZE(ov7675_win_sizes), 1788 .set_framerate = ov7675_set_framerate, 1789 .get_framerate = ov7675_get_framerate, 1790 }, 1791 }; 1792 1793 static int ov7670_init_gpio(struct i2c_client *client, struct ov7670_info *info) 1794 { 1795 info->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown", 1796 GPIOD_OUT_LOW); 1797 if (IS_ERR(info->pwdn_gpio)) { 1798 dev_info(&client->dev, "can't get %s GPIO\n", "powerdown"); 1799 return PTR_ERR(info->pwdn_gpio); 1800 } 1801 1802 info->resetb_gpio = devm_gpiod_get_optional(&client->dev, "reset", 1803 GPIOD_OUT_LOW); 1804 if (IS_ERR(info->resetb_gpio)) { 1805 dev_info(&client->dev, "can't get %s GPIO\n", "reset"); 1806 return PTR_ERR(info->resetb_gpio); 1807 } 1808 1809 usleep_range(3000, 5000); 1810 1811 return 0; 1812 } 1813 1814 /* 1815 * ov7670_parse_dt() - Parse device tree to collect mbus configuration 1816 * properties 1817 */ 1818 static int ov7670_parse_dt(struct device *dev, 1819 struct ov7670_info *info) 1820 { 1821 struct fwnode_handle *fwnode = dev_fwnode(dev); 1822 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 }; 1823 struct fwnode_handle *ep; 1824 int ret; 1825 1826 if (!fwnode) 1827 return -EINVAL; 1828 1829 info->pclk_hb_disable = false; 1830 if (fwnode_property_present(fwnode, "ov7670,pclk-hb-disable")) 1831 info->pclk_hb_disable = true; 1832 1833 ep = fwnode_graph_get_next_endpoint(fwnode, NULL); 1834 if (!ep) 1835 return -EINVAL; 1836 1837 ret = v4l2_fwnode_endpoint_parse(ep, &bus_cfg); 1838 fwnode_handle_put(ep); 1839 if (ret) 1840 return ret; 1841 1842 if (bus_cfg.bus_type != V4L2_MBUS_PARALLEL) { 1843 dev_err(dev, "Unsupported media bus type\n"); 1844 return ret; 1845 } 1846 info->mbus_config = bus_cfg.bus.parallel.flags; 1847 1848 return 0; 1849 } 1850 1851 static int ov7670_probe(struct i2c_client *client, 1852 const struct i2c_device_id *id) 1853 { 1854 struct v4l2_fract tpf; 1855 struct v4l2_subdev *sd; 1856 struct ov7670_info *info; 1857 int ret; 1858 1859 info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL); 1860 if (info == NULL) 1861 return -ENOMEM; 1862 sd = &info->sd; 1863 v4l2_i2c_subdev_init(sd, client, &ov7670_ops); 1864 1865 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API 1866 sd->internal_ops = &ov7670_subdev_internal_ops; 1867 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 1868 #endif 1869 1870 info->clock_speed = 30; /* default: a guess */ 1871 1872 if (dev_fwnode(&client->dev)) { 1873 ret = ov7670_parse_dt(&client->dev, info); 1874 if (ret) 1875 return ret; 1876 1877 } else if (client->dev.platform_data) { 1878 struct ov7670_config *config = client->dev.platform_data; 1879 1880 /* 1881 * Must apply configuration before initializing device, because it 1882 * selects I/O method. 1883 */ 1884 info->min_width = config->min_width; 1885 info->min_height = config->min_height; 1886 info->use_smbus = config->use_smbus; 1887 1888 if (config->clock_speed) 1889 info->clock_speed = config->clock_speed; 1890 1891 if (config->pll_bypass) 1892 info->pll_bypass = true; 1893 1894 if (config->pclk_hb_disable) 1895 info->pclk_hb_disable = true; 1896 } 1897 1898 info->clk = devm_clk_get(&client->dev, "xclk"); /* optional */ 1899 if (IS_ERR(info->clk)) { 1900 ret = PTR_ERR(info->clk); 1901 if (ret == -ENOENT) 1902 info->clk = NULL; 1903 else 1904 return ret; 1905 } 1906 1907 ret = ov7670_init_gpio(client, info); 1908 if (ret) 1909 return ret; 1910 1911 ov7670_power_on(sd); 1912 1913 if (info->clk) { 1914 info->clock_speed = clk_get_rate(info->clk) / 1000000; 1915 if (info->clock_speed < 10 || info->clock_speed > 48) { 1916 ret = -EINVAL; 1917 goto power_off; 1918 } 1919 } 1920 1921 /* Make sure it's an ov7670 */ 1922 ret = ov7670_detect(sd); 1923 if (ret) { 1924 v4l_dbg(1, debug, client, 1925 "chip found @ 0x%x (%s) is not an ov7670 chip.\n", 1926 client->addr << 1, client->adapter->name); 1927 goto power_off; 1928 } 1929 v4l_info(client, "chip found @ 0x%02x (%s)\n", 1930 client->addr << 1, client->adapter->name); 1931 1932 info->devtype = &ov7670_devdata[id->driver_data]; 1933 info->fmt = &ov7670_formats[0]; 1934 info->wsize = &info->devtype->win_sizes[0]; 1935 1936 ov7670_get_default_format(sd, &info->format); 1937 1938 info->clkrc = 0; 1939 1940 /* Set default frame rate to 30 fps */ 1941 tpf.numerator = 1; 1942 tpf.denominator = 30; 1943 info->devtype->set_framerate(sd, &tpf); 1944 1945 v4l2_ctrl_handler_init(&info->hdl, 10); 1946 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1947 V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); 1948 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1949 V4L2_CID_CONTRAST, 0, 127, 1, 64); 1950 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1951 V4L2_CID_VFLIP, 0, 1, 1, 0); 1952 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1953 V4L2_CID_HFLIP, 0, 1, 1, 0); 1954 info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1955 V4L2_CID_SATURATION, 0, 256, 1, 128); 1956 info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1957 V4L2_CID_HUE, -180, 180, 5, 0); 1958 info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1959 V4L2_CID_GAIN, 0, 255, 1, 128); 1960 info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1961 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1962 info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, 1963 V4L2_CID_EXPOSURE, 0, 65535, 1, 500); 1964 info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops, 1965 V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, 1966 V4L2_EXPOSURE_AUTO); 1967 v4l2_ctrl_new_std_menu_items(&info->hdl, &ov7670_ctrl_ops, 1968 V4L2_CID_TEST_PATTERN, 1969 ARRAY_SIZE(ov7670_test_pattern_menu) - 1, 0, 0, 1970 ov7670_test_pattern_menu); 1971 sd->ctrl_handler = &info->hdl; 1972 if (info->hdl.error) { 1973 ret = info->hdl.error; 1974 1975 goto hdl_free; 1976 } 1977 /* 1978 * We have checked empirically that hw allows to read back the gain 1979 * value chosen by auto gain but that's not the case for auto exposure. 1980 */ 1981 v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true); 1982 v4l2_ctrl_auto_cluster(2, &info->auto_exposure, 1983 V4L2_EXPOSURE_MANUAL, false); 1984 v4l2_ctrl_cluster(2, &info->saturation); 1985 1986 #if defined(CONFIG_MEDIA_CONTROLLER) 1987 info->pad.flags = MEDIA_PAD_FL_SOURCE; 1988 info->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 1989 ret = media_entity_pads_init(&info->sd.entity, 1, &info->pad); 1990 if (ret < 0) 1991 goto hdl_free; 1992 #endif 1993 1994 v4l2_ctrl_handler_setup(&info->hdl); 1995 1996 ret = v4l2_async_register_subdev(&info->sd); 1997 if (ret < 0) 1998 goto entity_cleanup; 1999 2000 ov7670_power_off(sd); 2001 return 0; 2002 2003 entity_cleanup: 2004 media_entity_cleanup(&info->sd.entity); 2005 hdl_free: 2006 v4l2_ctrl_handler_free(&info->hdl); 2007 power_off: 2008 ov7670_power_off(sd); 2009 return ret; 2010 } 2011 2012 static int ov7670_remove(struct i2c_client *client) 2013 { 2014 struct v4l2_subdev *sd = i2c_get_clientdata(client); 2015 struct ov7670_info *info = to_state(sd); 2016 2017 v4l2_async_unregister_subdev(sd); 2018 v4l2_ctrl_handler_free(&info->hdl); 2019 media_entity_cleanup(&info->sd.entity); 2020 return 0; 2021 } 2022 2023 static const struct i2c_device_id ov7670_id[] = { 2024 { "ov7670", MODEL_OV7670 }, 2025 { "ov7675", MODEL_OV7675 }, 2026 { } 2027 }; 2028 MODULE_DEVICE_TABLE(i2c, ov7670_id); 2029 2030 #if IS_ENABLED(CONFIG_OF) 2031 static const struct of_device_id ov7670_of_match[] = { 2032 { .compatible = "ovti,ov7670", }, 2033 { /* sentinel */ }, 2034 }; 2035 MODULE_DEVICE_TABLE(of, ov7670_of_match); 2036 #endif 2037 2038 static struct i2c_driver ov7670_driver = { 2039 .driver = { 2040 .name = "ov7670", 2041 .of_match_table = of_match_ptr(ov7670_of_match), 2042 }, 2043 .probe = ov7670_probe, 2044 .remove = ov7670_remove, 2045 .id_table = ov7670_id, 2046 }; 2047 2048 module_i2c_driver(ov7670_driver); 2049