1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. 4 * Copyright (C) 2014-2017 Mentor Graphics Inc. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/clk-provider.h> 9 #include <linux/clkdev.h> 10 #include <linux/ctype.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/of_device.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/slab.h> 20 #include <linux/types.h> 21 #include <media/v4l2-async.h> 22 #include <media/v4l2-ctrls.h> 23 #include <media/v4l2-device.h> 24 #include <media/v4l2-event.h> 25 #include <media/v4l2-fwnode.h> 26 #include <media/v4l2-subdev.h> 27 28 /* min/typical/max system clock (xclk) frequencies */ 29 #define OV5640_XCLK_MIN 6000000 30 #define OV5640_XCLK_MAX 54000000 31 32 #define OV5640_DEFAULT_SLAVE_ID 0x3c 33 34 #define OV5640_REG_SYS_RESET02 0x3002 35 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 36 #define OV5640_REG_SYS_CTRL0 0x3008 37 #define OV5640_REG_SYS_CTRL0_SW_PWDN 0x42 38 #define OV5640_REG_SYS_CTRL0_SW_PWUP 0x02 39 #define OV5640_REG_CHIP_ID 0x300a 40 #define OV5640_REG_IO_MIPI_CTRL00 0x300e 41 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 42 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 43 #define OV5640_REG_PAD_OUTPUT00 0x3019 44 #define OV5640_REG_SYSTEM_CONTROL1 0x302e 45 #define OV5640_REG_SC_PLL_CTRL0 0x3034 46 #define OV5640_REG_SC_PLL_CTRL1 0x3035 47 #define OV5640_REG_SC_PLL_CTRL2 0x3036 48 #define OV5640_REG_SC_PLL_CTRL3 0x3037 49 #define OV5640_REG_SLAVE_ID 0x3100 50 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 51 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 52 #define OV5640_REG_AWB_R_GAIN 0x3400 53 #define OV5640_REG_AWB_G_GAIN 0x3402 54 #define OV5640_REG_AWB_B_GAIN 0x3404 55 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 56 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 57 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 58 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 59 #define OV5640_REG_AEC_PK_MANUAL 0x3503 60 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a 61 #define OV5640_REG_AEC_PK_VTS 0x350c 62 #define OV5640_REG_TIMING_DVPHO 0x3808 63 #define OV5640_REG_TIMING_DVPVO 0x380a 64 #define OV5640_REG_TIMING_HTS 0x380c 65 #define OV5640_REG_TIMING_VTS 0x380e 66 #define OV5640_REG_TIMING_TC_REG20 0x3820 67 #define OV5640_REG_TIMING_TC_REG21 0x3821 68 #define OV5640_REG_AEC_CTRL00 0x3a00 69 #define OV5640_REG_AEC_B50_STEP 0x3a08 70 #define OV5640_REG_AEC_B60_STEP 0x3a0a 71 #define OV5640_REG_AEC_CTRL0D 0x3a0d 72 #define OV5640_REG_AEC_CTRL0E 0x3a0e 73 #define OV5640_REG_AEC_CTRL0F 0x3a0f 74 #define OV5640_REG_AEC_CTRL10 0x3a10 75 #define OV5640_REG_AEC_CTRL11 0x3a11 76 #define OV5640_REG_AEC_CTRL1B 0x3a1b 77 #define OV5640_REG_AEC_CTRL1E 0x3a1e 78 #define OV5640_REG_AEC_CTRL1F 0x3a1f 79 #define OV5640_REG_HZ5060_CTRL00 0x3c00 80 #define OV5640_REG_HZ5060_CTRL01 0x3c01 81 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c 82 #define OV5640_REG_FRAME_CTRL01 0x4202 83 #define OV5640_REG_FORMAT_CONTROL00 0x4300 84 #define OV5640_REG_VFIFO_HSIZE 0x4602 85 #define OV5640_REG_VFIFO_VSIZE 0x4604 86 #define OV5640_REG_JPG_MODE_SELECT 0x4713 87 #define OV5640_REG_CCIR656_CTRL00 0x4730 88 #define OV5640_REG_POLARITY_CTRL00 0x4740 89 #define OV5640_REG_MIPI_CTRL00 0x4800 90 #define OV5640_REG_DEBUG_MODE 0x4814 91 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f 92 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d 93 #define OV5640_REG_SDE_CTRL0 0x5580 94 #define OV5640_REG_SDE_CTRL1 0x5581 95 #define OV5640_REG_SDE_CTRL3 0x5583 96 #define OV5640_REG_SDE_CTRL4 0x5584 97 #define OV5640_REG_SDE_CTRL5 0x5585 98 #define OV5640_REG_AVG_READOUT 0x56a1 99 100 enum ov5640_mode_id { 101 OV5640_MODE_QCIF_176_144 = 0, 102 OV5640_MODE_QVGA_320_240, 103 OV5640_MODE_VGA_640_480, 104 OV5640_MODE_NTSC_720_480, 105 OV5640_MODE_PAL_720_576, 106 OV5640_MODE_XGA_1024_768, 107 OV5640_MODE_720P_1280_720, 108 OV5640_MODE_1080P_1920_1080, 109 OV5640_MODE_QSXGA_2592_1944, 110 OV5640_NUM_MODES, 111 }; 112 113 enum ov5640_frame_rate { 114 OV5640_15_FPS = 0, 115 OV5640_30_FPS, 116 OV5640_60_FPS, 117 OV5640_NUM_FRAMERATES, 118 }; 119 120 enum ov5640_format_mux { 121 OV5640_FMT_MUX_YUV422 = 0, 122 OV5640_FMT_MUX_RGB, 123 OV5640_FMT_MUX_DITHER, 124 OV5640_FMT_MUX_RAW_DPC, 125 OV5640_FMT_MUX_SNR_RAW, 126 OV5640_FMT_MUX_RAW_CIP, 127 }; 128 129 struct ov5640_pixfmt { 130 u32 code; 131 u32 colorspace; 132 }; 133 134 static const struct ov5640_pixfmt ov5640_formats[] = { 135 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, }, 136 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, }, 137 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, }, 138 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, }, 139 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, }, 140 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, }, 141 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, }, 142 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, }, 143 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, }, 144 }; 145 146 /* 147 * FIXME: remove this when a subdev API becomes available 148 * to set the MIPI CSI-2 virtual channel. 149 */ 150 static unsigned int virtual_channel; 151 module_param(virtual_channel, uint, 0444); 152 MODULE_PARM_DESC(virtual_channel, 153 "MIPI CSI-2 virtual channel (0..3), default 0"); 154 155 static const int ov5640_framerates[] = { 156 [OV5640_15_FPS] = 15, 157 [OV5640_30_FPS] = 30, 158 [OV5640_60_FPS] = 60, 159 }; 160 161 /* regulator supplies */ 162 static const char * const ov5640_supply_name[] = { 163 "DOVDD", /* Digital I/O (1.8V) supply */ 164 "AVDD", /* Analog (2.8V) supply */ 165 "DVDD", /* Digital Core (1.5V) supply */ 166 }; 167 168 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) 169 170 /* 171 * Image size under 1280 * 960 are SUBSAMPLING 172 * Image size upper 1280 * 960 are SCALING 173 */ 174 enum ov5640_downsize_mode { 175 SUBSAMPLING, 176 SCALING, 177 }; 178 179 struct reg_value { 180 u16 reg_addr; 181 u8 val; 182 u8 mask; 183 u32 delay_ms; 184 }; 185 186 struct ov5640_mode_info { 187 enum ov5640_mode_id id; 188 enum ov5640_downsize_mode dn_mode; 189 u32 hact; 190 u32 htot; 191 u32 vact; 192 u32 vtot; 193 const struct reg_value *reg_data; 194 u32 reg_data_size; 195 u32 max_fps; 196 }; 197 198 struct ov5640_ctrls { 199 struct v4l2_ctrl_handler handler; 200 struct v4l2_ctrl *pixel_rate; 201 struct { 202 struct v4l2_ctrl *auto_exp; 203 struct v4l2_ctrl *exposure; 204 }; 205 struct { 206 struct v4l2_ctrl *auto_wb; 207 struct v4l2_ctrl *blue_balance; 208 struct v4l2_ctrl *red_balance; 209 }; 210 struct { 211 struct v4l2_ctrl *auto_gain; 212 struct v4l2_ctrl *gain; 213 }; 214 struct v4l2_ctrl *brightness; 215 struct v4l2_ctrl *light_freq; 216 struct v4l2_ctrl *saturation; 217 struct v4l2_ctrl *contrast; 218 struct v4l2_ctrl *hue; 219 struct v4l2_ctrl *test_pattern; 220 struct v4l2_ctrl *hflip; 221 struct v4l2_ctrl *vflip; 222 }; 223 224 struct ov5640_dev { 225 struct i2c_client *i2c_client; 226 struct v4l2_subdev sd; 227 struct media_pad pad; 228 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ 229 struct clk *xclk; /* system clock to OV5640 */ 230 u32 xclk_freq; 231 232 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; 233 struct gpio_desc *reset_gpio; 234 struct gpio_desc *pwdn_gpio; 235 bool upside_down; 236 237 /* lock to protect all members below */ 238 struct mutex lock; 239 240 int power_count; 241 242 struct v4l2_mbus_framefmt fmt; 243 bool pending_fmt_change; 244 245 const struct ov5640_mode_info *current_mode; 246 const struct ov5640_mode_info *last_mode; 247 enum ov5640_frame_rate current_fr; 248 struct v4l2_fract frame_interval; 249 250 struct ov5640_ctrls ctrls; 251 252 u32 prev_sysclk, prev_hts; 253 u32 ae_low, ae_high, ae_target; 254 255 bool pending_mode_change; 256 bool streaming; 257 }; 258 259 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) 260 { 261 return container_of(sd, struct ov5640_dev, sd); 262 } 263 264 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 265 { 266 return &container_of(ctrl->handler, struct ov5640_dev, 267 ctrls.handler)->sd; 268 } 269 270 /* 271 * FIXME: all of these register tables are likely filled with 272 * entries that set the register to their power-on default values, 273 * and which are otherwise not touched by this driver. Those entries 274 * should be identified and removed to speed register load time 275 * over i2c. 276 */ 277 /* YUV422 UYVY VGA@30fps */ 278 static const struct reg_value ov5640_init_setting_30fps_VGA[] = { 279 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0}, 280 {0x3103, 0x03, 0, 0}, {0x3630, 0x36, 0, 0}, 281 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, 282 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, 283 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, 284 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, 285 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, 286 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, 287 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, 288 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, 289 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, 290 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, 291 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, 292 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 293 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, 294 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 295 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 296 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 297 {0x3810, 0x00, 0, 0}, 298 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 299 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 300 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 301 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 302 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 303 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 304 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, 305 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, 306 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, 307 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0}, 308 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 309 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0}, 310 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, 311 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, 312 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, 313 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, 314 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, 315 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, 316 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, 317 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, 318 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, 319 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, 320 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, 321 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, 322 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, 323 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, 324 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, 325 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, 326 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, 327 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, 328 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, 329 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, 330 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, 331 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, 332 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, 333 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, 334 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, 335 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, 336 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, 337 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, 338 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, 339 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, 340 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, 341 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, 342 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, 343 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, 344 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, 345 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, 346 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, 347 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, 348 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, 349 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, 350 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, 351 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, 352 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, 353 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, 354 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, 355 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, 356 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, 357 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, 358 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, 359 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, 360 }; 361 362 static const struct reg_value ov5640_setting_VGA_640_480[] = { 363 {0x3c07, 0x08, 0, 0}, 364 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 365 {0x3814, 0x31, 0, 0}, 366 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 367 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 368 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 369 {0x3810, 0x00, 0, 0}, 370 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 371 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 372 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 373 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 374 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 375 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 376 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 377 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 378 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 379 }; 380 381 static const struct reg_value ov5640_setting_XGA_1024_768[] = { 382 {0x3c07, 0x08, 0, 0}, 383 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 384 {0x3814, 0x31, 0, 0}, 385 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 386 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 387 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 388 {0x3810, 0x00, 0, 0}, 389 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 390 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 391 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 392 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 393 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 394 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 395 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 396 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 397 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 398 }; 399 400 static const struct reg_value ov5640_setting_QVGA_320_240[] = { 401 {0x3c07, 0x08, 0, 0}, 402 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 403 {0x3814, 0x31, 0, 0}, 404 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 405 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 406 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 407 {0x3810, 0x00, 0, 0}, 408 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 409 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 410 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 411 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 412 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 413 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 414 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 415 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 416 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 417 }; 418 419 static const struct reg_value ov5640_setting_QCIF_176_144[] = { 420 {0x3c07, 0x08, 0, 0}, 421 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 422 {0x3814, 0x31, 0, 0}, 423 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 424 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 425 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 426 {0x3810, 0x00, 0, 0}, 427 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 428 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 429 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 430 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 431 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 432 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 433 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 434 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 435 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 436 }; 437 438 static const struct reg_value ov5640_setting_NTSC_720_480[] = { 439 {0x3c07, 0x08, 0, 0}, 440 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 441 {0x3814, 0x31, 0, 0}, 442 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 443 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 444 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 445 {0x3810, 0x00, 0, 0}, 446 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0}, 447 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 448 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 449 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 450 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 451 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 452 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 453 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 454 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 455 }; 456 457 static const struct reg_value ov5640_setting_PAL_720_576[] = { 458 {0x3c07, 0x08, 0, 0}, 459 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 460 {0x3814, 0x31, 0, 0}, 461 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 462 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 463 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 464 {0x3810, 0x00, 0, 0}, 465 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 466 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 467 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 468 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 469 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 470 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 471 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 472 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 473 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 474 }; 475 476 static const struct reg_value ov5640_setting_720P_1280_720[] = { 477 {0x3c07, 0x07, 0, 0}, 478 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 479 {0x3814, 0x31, 0, 0}, 480 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 481 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0}, 482 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0}, 483 {0x3810, 0x00, 0, 0}, 484 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 485 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 486 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, 487 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, 488 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, 489 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, 490 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 491 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, 492 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, 493 }; 494 495 static const struct reg_value ov5640_setting_1080P_1920_1080[] = { 496 {0x3c07, 0x08, 0, 0}, 497 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 498 {0x3814, 0x11, 0, 0}, 499 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 500 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 501 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 502 {0x3810, 0x00, 0, 0}, 503 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 504 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 505 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 506 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 507 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 508 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 509 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 510 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 511 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, 512 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, 513 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 514 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0}, 515 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0}, 516 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0}, 517 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, 518 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, 519 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, 520 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, 521 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0}, 522 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, 523 {0x4005, 0x1a, 0, 0}, 524 }; 525 526 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { 527 {0x3c07, 0x08, 0, 0}, 528 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 529 {0x3814, 0x11, 0, 0}, 530 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 531 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 532 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 533 {0x3810, 0x00, 0, 0}, 534 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 535 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 536 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 537 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 538 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 539 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 540 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 541 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 542 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, 543 }; 544 545 /* power-on sensor init reg table */ 546 static const struct ov5640_mode_info ov5640_mode_init_data = { 547 0, SUBSAMPLING, 640, 1896, 480, 984, 548 ov5640_init_setting_30fps_VGA, 549 ARRAY_SIZE(ov5640_init_setting_30fps_VGA), 550 OV5640_30_FPS, 551 }; 552 553 static const struct ov5640_mode_info 554 ov5640_mode_data[OV5640_NUM_MODES] = { 555 {OV5640_MODE_QCIF_176_144, SUBSAMPLING, 556 176, 1896, 144, 984, 557 ov5640_setting_QCIF_176_144, 558 ARRAY_SIZE(ov5640_setting_QCIF_176_144), 559 OV5640_30_FPS}, 560 {OV5640_MODE_QVGA_320_240, SUBSAMPLING, 561 320, 1896, 240, 984, 562 ov5640_setting_QVGA_320_240, 563 ARRAY_SIZE(ov5640_setting_QVGA_320_240), 564 OV5640_30_FPS}, 565 {OV5640_MODE_VGA_640_480, SUBSAMPLING, 566 640, 1896, 480, 1080, 567 ov5640_setting_VGA_640_480, 568 ARRAY_SIZE(ov5640_setting_VGA_640_480), 569 OV5640_60_FPS}, 570 {OV5640_MODE_NTSC_720_480, SUBSAMPLING, 571 720, 1896, 480, 984, 572 ov5640_setting_NTSC_720_480, 573 ARRAY_SIZE(ov5640_setting_NTSC_720_480), 574 OV5640_30_FPS}, 575 {OV5640_MODE_PAL_720_576, SUBSAMPLING, 576 720, 1896, 576, 984, 577 ov5640_setting_PAL_720_576, 578 ARRAY_SIZE(ov5640_setting_PAL_720_576), 579 OV5640_30_FPS}, 580 {OV5640_MODE_XGA_1024_768, SUBSAMPLING, 581 1024, 1896, 768, 1080, 582 ov5640_setting_XGA_1024_768, 583 ARRAY_SIZE(ov5640_setting_XGA_1024_768), 584 OV5640_30_FPS}, 585 {OV5640_MODE_720P_1280_720, SUBSAMPLING, 586 1280, 1892, 720, 740, 587 ov5640_setting_720P_1280_720, 588 ARRAY_SIZE(ov5640_setting_720P_1280_720), 589 OV5640_30_FPS}, 590 {OV5640_MODE_1080P_1920_1080, SCALING, 591 1920, 2500, 1080, 1120, 592 ov5640_setting_1080P_1920_1080, 593 ARRAY_SIZE(ov5640_setting_1080P_1920_1080), 594 OV5640_30_FPS}, 595 {OV5640_MODE_QSXGA_2592_1944, SCALING, 596 2592, 2844, 1944, 1968, 597 ov5640_setting_QSXGA_2592_1944, 598 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944), 599 OV5640_15_FPS}, 600 }; 601 602 static int ov5640_init_slave_id(struct ov5640_dev *sensor) 603 { 604 struct i2c_client *client = sensor->i2c_client; 605 struct i2c_msg msg; 606 u8 buf[3]; 607 int ret; 608 609 if (client->addr == OV5640_DEFAULT_SLAVE_ID) 610 return 0; 611 612 buf[0] = OV5640_REG_SLAVE_ID >> 8; 613 buf[1] = OV5640_REG_SLAVE_ID & 0xff; 614 buf[2] = client->addr << 1; 615 616 msg.addr = OV5640_DEFAULT_SLAVE_ID; 617 msg.flags = 0; 618 msg.buf = buf; 619 msg.len = sizeof(buf); 620 621 ret = i2c_transfer(client->adapter, &msg, 1); 622 if (ret < 0) { 623 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); 624 return ret; 625 } 626 627 return 0; 628 } 629 630 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) 631 { 632 struct i2c_client *client = sensor->i2c_client; 633 struct i2c_msg msg; 634 u8 buf[3]; 635 int ret; 636 637 buf[0] = reg >> 8; 638 buf[1] = reg & 0xff; 639 buf[2] = val; 640 641 msg.addr = client->addr; 642 msg.flags = client->flags; 643 msg.buf = buf; 644 msg.len = sizeof(buf); 645 646 ret = i2c_transfer(client->adapter, &msg, 1); 647 if (ret < 0) { 648 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", 649 __func__, reg, val); 650 return ret; 651 } 652 653 return 0; 654 } 655 656 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) 657 { 658 struct i2c_client *client = sensor->i2c_client; 659 struct i2c_msg msg[2]; 660 u8 buf[2]; 661 int ret; 662 663 buf[0] = reg >> 8; 664 buf[1] = reg & 0xff; 665 666 msg[0].addr = client->addr; 667 msg[0].flags = client->flags; 668 msg[0].buf = buf; 669 msg[0].len = sizeof(buf); 670 671 msg[1].addr = client->addr; 672 msg[1].flags = client->flags | I2C_M_RD; 673 msg[1].buf = buf; 674 msg[1].len = 1; 675 676 ret = i2c_transfer(client->adapter, msg, 2); 677 if (ret < 0) { 678 dev_err(&client->dev, "%s: error: reg=%x\n", 679 __func__, reg); 680 return ret; 681 } 682 683 *val = buf[0]; 684 return 0; 685 } 686 687 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) 688 { 689 u8 hi, lo; 690 int ret; 691 692 ret = ov5640_read_reg(sensor, reg, &hi); 693 if (ret) 694 return ret; 695 ret = ov5640_read_reg(sensor, reg + 1, &lo); 696 if (ret) 697 return ret; 698 699 *val = ((u16)hi << 8) | (u16)lo; 700 return 0; 701 } 702 703 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) 704 { 705 int ret; 706 707 ret = ov5640_write_reg(sensor, reg, val >> 8); 708 if (ret) 709 return ret; 710 711 return ov5640_write_reg(sensor, reg + 1, val & 0xff); 712 } 713 714 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, 715 u8 mask, u8 val) 716 { 717 u8 readval; 718 int ret; 719 720 ret = ov5640_read_reg(sensor, reg, &readval); 721 if (ret) 722 return ret; 723 724 readval &= ~mask; 725 val &= mask; 726 val |= readval; 727 728 return ov5640_write_reg(sensor, reg, val); 729 } 730 731 /* 732 * After trying the various combinations, reading various 733 * documentations spread around the net, and from the various 734 * feedback, the clock tree is probably as follows: 735 * 736 * +--------------+ 737 * | Ext. Clock | 738 * +-+------------+ 739 * | +----------+ 740 * +->| PLL1 | - reg 0x3036, for the multiplier 741 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider 742 * | +--------------+ 743 * +->| System Clock | - reg 0x3035, bits 4-7 744 * +-+------------+ 745 * | +--------------+ 746 * +->| MIPI Divider | - reg 0x3035, bits 0-3 747 * | +-+------------+ 748 * | +----------------> MIPI SCLK 749 * | + +-----+ 750 * | +->| / 2 |-------> MIPI BIT CLK 751 * | +-----+ 752 * | +--------------+ 753 * +->| PLL Root Div | - reg 0x3037, bit 4 754 * +-+------------+ 755 * | +---------+ 756 * +->| Bit Div | - reg 0x3034, bits 0-3 757 * +-+-------+ 758 * | +-------------+ 759 * +->| SCLK Div | - reg 0x3108, bits 0-1 760 * | +-+-----------+ 761 * | +---------------> SCLK 762 * | +-------------+ 763 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 764 * | +-+-----------+ 765 * | +---------------> SCLK 2X 766 * | +-------------+ 767 * +->| PCLK Div | - reg 0x3108, bits 4-5 768 * ++------------+ 769 * + +-----------+ 770 * +->| P_DIV | - reg 0x3035, bits 0-3 771 * +-----+-----+ 772 * +------------> PCLK 773 * 774 * This is deviating from the datasheet at least for the register 775 * 0x3108, since it's said here that the PCLK would be clocked from 776 * the PLL. 777 * 778 * There seems to be also (unverified) constraints: 779 * - the PLL pre-divider output rate should be in the 4-27MHz range 780 * - the PLL multiplier output rate should be in the 500-1000MHz range 781 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG 782 * 783 * In the two latter cases, these constraints are met since our 784 * factors are hardcoded. If we were to change that, we would need to 785 * take this into account. The only varying parts are the PLL 786 * multiplier and the system clock divider, which are shared between 787 * all these clocks so won't cause any issue. 788 */ 789 790 /* 791 * This is supposed to be ranging from 1 to 8, but the value is always 792 * set to 3 in the vendor kernels. 793 */ 794 #define OV5640_PLL_PREDIV 3 795 796 #define OV5640_PLL_MULT_MIN 4 797 #define OV5640_PLL_MULT_MAX 252 798 799 /* 800 * This is supposed to be ranging from 1 to 16, but the value is 801 * always set to either 1 or 2 in the vendor kernels. 802 */ 803 #define OV5640_SYSDIV_MIN 1 804 #define OV5640_SYSDIV_MAX 16 805 806 /* 807 * Hardcode these values for scaler and non-scaler modes. 808 * FIXME: to be re-calcualted for 1 data lanes setups 809 */ 810 #define OV5640_MIPI_DIV_PCLK 2 811 #define OV5640_MIPI_DIV_SCLK 1 812 813 /* 814 * This is supposed to be ranging from 1 to 2, but the value is always 815 * set to 2 in the vendor kernels. 816 */ 817 #define OV5640_PLL_ROOT_DIV 2 818 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) 819 820 /* 821 * We only supports 8-bit formats at the moment 822 */ 823 #define OV5640_BIT_DIV 2 824 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 825 826 /* 827 * This is supposed to be ranging from 1 to 8, but the value is always 828 * set to 2 in the vendor kernels. 829 */ 830 #define OV5640_SCLK_ROOT_DIV 2 831 832 /* 833 * This is hardcoded so that the consistency is maintained between SCLK and 834 * SCLK 2x. 835 */ 836 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) 837 838 /* 839 * This is supposed to be ranging from 1 to 8, but the value is always 840 * set to 1 in the vendor kernels. 841 */ 842 #define OV5640_PCLK_ROOT_DIV 1 843 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 844 845 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, 846 u8 pll_prediv, u8 pll_mult, 847 u8 sysdiv) 848 { 849 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; 850 851 /* PLL1 output cannot exceed 1GHz. */ 852 if (sysclk / 1000000 > 1000) 853 return 0; 854 855 return sysclk / sysdiv; 856 } 857 858 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, 859 unsigned long rate, 860 u8 *pll_prediv, u8 *pll_mult, 861 u8 *sysdiv) 862 { 863 unsigned long best = ~0; 864 u8 best_sysdiv = 1, best_mult = 1; 865 u8 _sysdiv, _pll_mult; 866 867 for (_sysdiv = OV5640_SYSDIV_MIN; 868 _sysdiv <= OV5640_SYSDIV_MAX; 869 _sysdiv++) { 870 for (_pll_mult = OV5640_PLL_MULT_MIN; 871 _pll_mult <= OV5640_PLL_MULT_MAX; 872 _pll_mult++) { 873 unsigned long _rate; 874 875 /* 876 * The PLL multiplier cannot be odd if above 877 * 127. 878 */ 879 if (_pll_mult > 127 && (_pll_mult % 2)) 880 continue; 881 882 _rate = ov5640_compute_sys_clk(sensor, 883 OV5640_PLL_PREDIV, 884 _pll_mult, _sysdiv); 885 886 /* 887 * We have reached the maximum allowed PLL1 output, 888 * increase sysdiv. 889 */ 890 if (!_rate) 891 break; 892 893 /* 894 * Prefer rates above the expected clock rate than 895 * below, even if that means being less precise. 896 */ 897 if (_rate < rate) 898 continue; 899 900 if (abs(rate - _rate) < abs(rate - best)) { 901 best = _rate; 902 best_sysdiv = _sysdiv; 903 best_mult = _pll_mult; 904 } 905 906 if (_rate == rate) 907 goto out; 908 } 909 } 910 911 out: 912 *sysdiv = best_sysdiv; 913 *pll_prediv = OV5640_PLL_PREDIV; 914 *pll_mult = best_mult; 915 916 return best; 917 } 918 919 /* 920 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values 921 * for the MIPI CSI-2 output. 922 * 923 * @rate: The requested bandwidth per lane in bytes per second. 924 * 'Bandwidth Per Lane' is calculated as: 925 * bpl = HTOT * VTOT * FPS * bpp / num_lanes; 926 * 927 * This function use the requested bandwidth to calculate: 928 * - sample_rate = bpl / (bpp / num_lanes); 929 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes); 930 * 931 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR) 932 * 933 * with these fixed parameters: 934 * PLL_RDIV = 2; 935 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5); 936 * PCLK_DIV = 1; 937 * 938 * The MIPI clock generation differs for modes that use the scaler and modes 939 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI 940 * BIT CLk, and thus: 941 * 942 * - mipi_sclk = bpl / MIPI_DIV / 2; 943 * MIPI_DIV = 1; 944 * 945 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated 946 * from the pixel clock, and thus: 947 * 948 * - sample_rate = bpl / (bpp / num_lanes); 949 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes); 950 * = bpl / (4 * MIPI_DIV / num_lanes); 951 * - MIPI_DIV = bpp / (4 * num_lanes); 952 * 953 * FIXME: this have been tested with 16bpp and 2 lanes setup only. 954 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the 955 * above formula for setups with 1 lane or image formats with different bpp. 956 * 957 * FIXME: this deviates from the sensor manual documentation which is quite 958 * thin on the MIPI clock tree generation part. 959 */ 960 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor, 961 unsigned long rate) 962 { 963 const struct ov5640_mode_info *mode = sensor->current_mode; 964 u8 prediv, mult, sysdiv; 965 u8 mipi_div; 966 int ret; 967 968 /* 969 * 1280x720 is reported to use 'SUBSAMPLING' only, 970 * but according to the sensor manual it goes through the 971 * scaler before subsampling. 972 */ 973 if (mode->dn_mode == SCALING || 974 (mode->id == OV5640_MODE_720P_1280_720)) 975 mipi_div = OV5640_MIPI_DIV_SCLK; 976 else 977 mipi_div = OV5640_MIPI_DIV_PCLK; 978 979 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv); 980 981 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 982 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT); 983 984 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 985 0xff, sysdiv << 4 | mipi_div); 986 if (ret) 987 return ret; 988 989 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); 990 if (ret) 991 return ret; 992 993 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 994 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv); 995 if (ret) 996 return ret; 997 998 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 999 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS); 1000 } 1001 1002 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, 1003 unsigned long rate, 1004 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, 1005 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) 1006 { 1007 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * 1008 OV5640_PCLK_ROOT_DIV; 1009 1010 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, 1011 sysdiv); 1012 *pll_rdiv = OV5640_PLL_ROOT_DIV; 1013 *bit_div = OV5640_BIT_DIV; 1014 *pclk_div = OV5640_PCLK_ROOT_DIV; 1015 1016 return _rate / *pll_rdiv / *bit_div / *pclk_div; 1017 } 1018 1019 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate) 1020 { 1021 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; 1022 int ret; 1023 1024 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, 1025 &bit_div, &pclk_div); 1026 1027 if (bit_div == 2) 1028 bit_div = 8; 1029 1030 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1031 0x0f, bit_div); 1032 if (ret) 1033 return ret; 1034 1035 /* 1036 * We need to set sysdiv according to the clock, and to clear 1037 * the MIPI divider. 1038 */ 1039 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1040 0xff, sysdiv << 4); 1041 if (ret) 1042 return ret; 1043 1044 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 1045 0xff, mult); 1046 if (ret) 1047 return ret; 1048 1049 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1050 0x1f, prediv | ((pll_rdiv - 1) << 4)); 1051 if (ret) 1052 return ret; 1053 1054 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, 1055 (ilog2(pclk_div) << 4)); 1056 } 1057 1058 /* set JPEG framing sizes */ 1059 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor, 1060 const struct ov5640_mode_info *mode) 1061 { 1062 int ret; 1063 1064 /* 1065 * compression mode 3 timing 1066 * 1067 * Data is transmitted with programmable width (VFIFO_HSIZE). 1068 * No padding done. Last line may have less data. Varying 1069 * number of lines per frame, depending on amount of data. 1070 */ 1071 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3); 1072 if (ret < 0) 1073 return ret; 1074 1075 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact); 1076 if (ret < 0) 1077 return ret; 1078 1079 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact); 1080 } 1081 1082 /* download ov5640 settings to sensor through i2c */ 1083 static int ov5640_set_timings(struct ov5640_dev *sensor, 1084 const struct ov5640_mode_info *mode) 1085 { 1086 int ret; 1087 1088 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) { 1089 ret = ov5640_set_jpeg_timings(sensor, mode); 1090 if (ret < 0) 1091 return ret; 1092 } 1093 1094 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact); 1095 if (ret < 0) 1096 return ret; 1097 1098 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact); 1099 if (ret < 0) 1100 return ret; 1101 1102 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot); 1103 if (ret < 0) 1104 return ret; 1105 1106 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot); 1107 } 1108 1109 static int ov5640_load_regs(struct ov5640_dev *sensor, 1110 const struct ov5640_mode_info *mode) 1111 { 1112 const struct reg_value *regs = mode->reg_data; 1113 unsigned int i; 1114 u32 delay_ms; 1115 u16 reg_addr; 1116 u8 mask, val; 1117 int ret = 0; 1118 1119 for (i = 0; i < mode->reg_data_size; ++i, ++regs) { 1120 delay_ms = regs->delay_ms; 1121 reg_addr = regs->reg_addr; 1122 val = regs->val; 1123 mask = regs->mask; 1124 1125 /* remain in power down mode for DVP */ 1126 if (regs->reg_addr == OV5640_REG_SYS_CTRL0 && 1127 val == OV5640_REG_SYS_CTRL0_SW_PWUP && 1128 sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) 1129 continue; 1130 1131 if (mask) 1132 ret = ov5640_mod_reg(sensor, reg_addr, mask, val); 1133 else 1134 ret = ov5640_write_reg(sensor, reg_addr, val); 1135 if (ret) 1136 break; 1137 1138 if (delay_ms) 1139 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); 1140 } 1141 1142 return ov5640_set_timings(sensor, mode); 1143 } 1144 1145 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) 1146 { 1147 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1148 BIT(0), on ? 0 : BIT(0)); 1149 } 1150 1151 /* read exposure, in number of line periods */ 1152 static int ov5640_get_exposure(struct ov5640_dev *sensor) 1153 { 1154 int exp, ret; 1155 u8 temp; 1156 1157 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); 1158 if (ret) 1159 return ret; 1160 exp = ((int)temp & 0x0f) << 16; 1161 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); 1162 if (ret) 1163 return ret; 1164 exp |= ((int)temp << 8); 1165 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); 1166 if (ret) 1167 return ret; 1168 exp |= (int)temp; 1169 1170 return exp >> 4; 1171 } 1172 1173 /* write exposure, given number of line periods */ 1174 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) 1175 { 1176 int ret; 1177 1178 exposure <<= 4; 1179 1180 ret = ov5640_write_reg(sensor, 1181 OV5640_REG_AEC_PK_EXPOSURE_LO, 1182 exposure & 0xff); 1183 if (ret) 1184 return ret; 1185 ret = ov5640_write_reg(sensor, 1186 OV5640_REG_AEC_PK_EXPOSURE_MED, 1187 (exposure >> 8) & 0xff); 1188 if (ret) 1189 return ret; 1190 return ov5640_write_reg(sensor, 1191 OV5640_REG_AEC_PK_EXPOSURE_HI, 1192 (exposure >> 16) & 0x0f); 1193 } 1194 1195 static int ov5640_get_gain(struct ov5640_dev *sensor) 1196 { 1197 u16 gain; 1198 int ret; 1199 1200 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); 1201 if (ret) 1202 return ret; 1203 1204 return gain & 0x3ff; 1205 } 1206 1207 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) 1208 { 1209 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, 1210 (u16)gain & 0x3ff); 1211 } 1212 1213 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) 1214 { 1215 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1216 BIT(1), on ? 0 : BIT(1)); 1217 } 1218 1219 static int ov5640_set_stream_bt656(struct ov5640_dev *sensor, bool on) 1220 { 1221 int ret; 1222 1223 ret = ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 1224 on ? 0x1 : 0x00); 1225 if (ret) 1226 return ret; 1227 1228 return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ? 1229 OV5640_REG_SYS_CTRL0_SW_PWUP : 1230 OV5640_REG_SYS_CTRL0_SW_PWDN); 1231 } 1232 1233 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) 1234 { 1235 return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ? 1236 OV5640_REG_SYS_CTRL0_SW_PWUP : 1237 OV5640_REG_SYS_CTRL0_SW_PWDN); 1238 } 1239 1240 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) 1241 { 1242 int ret; 1243 1244 /* 1245 * Enable/disable the MIPI interface 1246 * 1247 * 0x300e = on ? 0x45 : 0x40 1248 * 1249 * FIXME: the sensor manual (version 2.03) reports 1250 * [7:5] = 000 : 1 data lane mode 1251 * [7:5] = 001 : 2 data lanes mode 1252 * But this settings do not work, while the following ones 1253 * have been validated for 2 data lanes mode. 1254 * 1255 * [7:5] = 010 : 2 data lanes mode 1256 * [4] = 0 : Power up MIPI HS Tx 1257 * [3] = 0 : Power up MIPI LS Rx 1258 * [2] = 1/0 : MIPI interface enable/disable 1259 * [1:0] = 01/00: FIXME: 'debug' 1260 */ 1261 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 1262 on ? 0x45 : 0x40); 1263 if (ret) 1264 return ret; 1265 1266 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, 1267 on ? 0x00 : 0x0f); 1268 } 1269 1270 static int ov5640_get_sysclk(struct ov5640_dev *sensor) 1271 { 1272 /* calculate sysclk */ 1273 u32 xvclk = sensor->xclk_freq / 10000; 1274 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; 1275 u32 sclk_rdiv_map[] = {1, 2, 4, 8}; 1276 u32 bit_div2x = 1, sclk_rdiv, sysclk; 1277 u8 temp1, temp2; 1278 int ret; 1279 1280 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); 1281 if (ret) 1282 return ret; 1283 temp2 = temp1 & 0x0f; 1284 if (temp2 == 8 || temp2 == 10) 1285 bit_div2x = temp2 / 2; 1286 1287 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); 1288 if (ret) 1289 return ret; 1290 sysdiv = temp1 >> 4; 1291 if (sysdiv == 0) 1292 sysdiv = 16; 1293 1294 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); 1295 if (ret) 1296 return ret; 1297 multiplier = temp1; 1298 1299 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); 1300 if (ret) 1301 return ret; 1302 prediv = temp1 & 0x0f; 1303 pll_rdiv = ((temp1 >> 4) & 0x01) + 1; 1304 1305 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); 1306 if (ret) 1307 return ret; 1308 temp2 = temp1 & 0x03; 1309 sclk_rdiv = sclk_rdiv_map[temp2]; 1310 1311 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) 1312 return -EINVAL; 1313 1314 VCO = xvclk * multiplier / prediv; 1315 1316 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; 1317 1318 return sysclk; 1319 } 1320 1321 static int ov5640_set_night_mode(struct ov5640_dev *sensor) 1322 { 1323 /* read HTS from register settings */ 1324 u8 mode; 1325 int ret; 1326 1327 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); 1328 if (ret) 1329 return ret; 1330 mode &= 0xfb; 1331 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); 1332 } 1333 1334 static int ov5640_get_hts(struct ov5640_dev *sensor) 1335 { 1336 /* read HTS from register settings */ 1337 u16 hts; 1338 int ret; 1339 1340 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); 1341 if (ret) 1342 return ret; 1343 return hts; 1344 } 1345 1346 static int ov5640_get_vts(struct ov5640_dev *sensor) 1347 { 1348 u16 vts; 1349 int ret; 1350 1351 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); 1352 if (ret) 1353 return ret; 1354 return vts; 1355 } 1356 1357 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) 1358 { 1359 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); 1360 } 1361 1362 static int ov5640_get_light_freq(struct ov5640_dev *sensor) 1363 { 1364 /* get banding filter value */ 1365 int ret, light_freq = 0; 1366 u8 temp, temp1; 1367 1368 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); 1369 if (ret) 1370 return ret; 1371 1372 if (temp & 0x80) { 1373 /* manual */ 1374 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, 1375 &temp1); 1376 if (ret) 1377 return ret; 1378 if (temp1 & 0x04) { 1379 /* 50Hz */ 1380 light_freq = 50; 1381 } else { 1382 /* 60Hz */ 1383 light_freq = 60; 1384 } 1385 } else { 1386 /* auto */ 1387 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, 1388 &temp1); 1389 if (ret) 1390 return ret; 1391 1392 if (temp1 & 0x01) { 1393 /* 50Hz */ 1394 light_freq = 50; 1395 } else { 1396 /* 60Hz */ 1397 } 1398 } 1399 1400 return light_freq; 1401 } 1402 1403 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) 1404 { 1405 u32 band_step60, max_band60, band_step50, max_band50, prev_vts; 1406 int ret; 1407 1408 /* read preview PCLK */ 1409 ret = ov5640_get_sysclk(sensor); 1410 if (ret < 0) 1411 return ret; 1412 if (ret == 0) 1413 return -EINVAL; 1414 sensor->prev_sysclk = ret; 1415 /* read preview HTS */ 1416 ret = ov5640_get_hts(sensor); 1417 if (ret < 0) 1418 return ret; 1419 if (ret == 0) 1420 return -EINVAL; 1421 sensor->prev_hts = ret; 1422 1423 /* read preview VTS */ 1424 ret = ov5640_get_vts(sensor); 1425 if (ret < 0) 1426 return ret; 1427 prev_vts = ret; 1428 1429 /* calculate banding filter */ 1430 /* 60Hz */ 1431 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; 1432 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); 1433 if (ret) 1434 return ret; 1435 if (!band_step60) 1436 return -EINVAL; 1437 max_band60 = (int)((prev_vts - 4) / band_step60); 1438 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); 1439 if (ret) 1440 return ret; 1441 1442 /* 50Hz */ 1443 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; 1444 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); 1445 if (ret) 1446 return ret; 1447 if (!band_step50) 1448 return -EINVAL; 1449 max_band50 = (int)((prev_vts - 4) / band_step50); 1450 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); 1451 } 1452 1453 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) 1454 { 1455 /* stable in high */ 1456 u32 fast_high, fast_low; 1457 int ret; 1458 1459 sensor->ae_low = target * 23 / 25; /* 0.92 */ 1460 sensor->ae_high = target * 27 / 25; /* 1.08 */ 1461 1462 fast_high = sensor->ae_high << 1; 1463 if (fast_high > 255) 1464 fast_high = 255; 1465 1466 fast_low = sensor->ae_low >> 1; 1467 1468 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); 1469 if (ret) 1470 return ret; 1471 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); 1472 if (ret) 1473 return ret; 1474 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); 1475 if (ret) 1476 return ret; 1477 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); 1478 if (ret) 1479 return ret; 1480 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); 1481 if (ret) 1482 return ret; 1483 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); 1484 } 1485 1486 static int ov5640_get_binning(struct ov5640_dev *sensor) 1487 { 1488 u8 temp; 1489 int ret; 1490 1491 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); 1492 if (ret) 1493 return ret; 1494 1495 return temp & BIT(0); 1496 } 1497 1498 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) 1499 { 1500 int ret; 1501 1502 /* 1503 * TIMING TC REG21: 1504 * - [0]: Horizontal binning enable 1505 */ 1506 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 1507 BIT(0), enable ? BIT(0) : 0); 1508 if (ret) 1509 return ret; 1510 /* 1511 * TIMING TC REG20: 1512 * - [0]: Undocumented, but hardcoded init sequences 1513 * are always setting REG21/REG20 bit 0 to same value... 1514 */ 1515 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 1516 BIT(0), enable ? BIT(0) : 0); 1517 } 1518 1519 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) 1520 { 1521 struct i2c_client *client = sensor->i2c_client; 1522 u8 temp, channel = virtual_channel; 1523 int ret; 1524 1525 if (channel > 3) { 1526 dev_err(&client->dev, 1527 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", 1528 __func__, channel); 1529 return -EINVAL; 1530 } 1531 1532 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); 1533 if (ret) 1534 return ret; 1535 temp &= ~(3 << 6); 1536 temp |= (channel << 6); 1537 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); 1538 } 1539 1540 static const struct ov5640_mode_info * 1541 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr, 1542 int width, int height, bool nearest) 1543 { 1544 const struct ov5640_mode_info *mode; 1545 1546 mode = v4l2_find_nearest_size(ov5640_mode_data, 1547 ARRAY_SIZE(ov5640_mode_data), 1548 hact, vact, 1549 width, height); 1550 1551 if (!mode || 1552 (!nearest && (mode->hact != width || mode->vact != height))) 1553 return NULL; 1554 1555 /* Check to see if the current mode exceeds the max frame rate */ 1556 if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps]) 1557 return NULL; 1558 1559 return mode; 1560 } 1561 1562 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor) 1563 { 1564 u64 rate; 1565 1566 rate = sensor->current_mode->vtot * sensor->current_mode->htot; 1567 rate *= ov5640_framerates[sensor->current_fr]; 1568 1569 return rate; 1570 } 1571 1572 /* 1573 * sensor changes between scaling and subsampling, go through 1574 * exposure calculation 1575 */ 1576 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, 1577 const struct ov5640_mode_info *mode) 1578 { 1579 u32 prev_shutter, prev_gain16; 1580 u32 cap_shutter, cap_gain16; 1581 u32 cap_sysclk, cap_hts, cap_vts; 1582 u32 light_freq, cap_bandfilt, cap_maxband; 1583 u32 cap_gain16_shutter; 1584 u8 average; 1585 int ret; 1586 1587 if (!mode->reg_data) 1588 return -EINVAL; 1589 1590 /* read preview shutter */ 1591 ret = ov5640_get_exposure(sensor); 1592 if (ret < 0) 1593 return ret; 1594 prev_shutter = ret; 1595 ret = ov5640_get_binning(sensor); 1596 if (ret < 0) 1597 return ret; 1598 if (ret && mode->id != OV5640_MODE_720P_1280_720 && 1599 mode->id != OV5640_MODE_1080P_1920_1080) 1600 prev_shutter *= 2; 1601 1602 /* read preview gain */ 1603 ret = ov5640_get_gain(sensor); 1604 if (ret < 0) 1605 return ret; 1606 prev_gain16 = ret; 1607 1608 /* get average */ 1609 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); 1610 if (ret) 1611 return ret; 1612 1613 /* turn off night mode for capture */ 1614 ret = ov5640_set_night_mode(sensor); 1615 if (ret < 0) 1616 return ret; 1617 1618 /* Write capture setting */ 1619 ret = ov5640_load_regs(sensor, mode); 1620 if (ret < 0) 1621 return ret; 1622 1623 /* read capture VTS */ 1624 ret = ov5640_get_vts(sensor); 1625 if (ret < 0) 1626 return ret; 1627 cap_vts = ret; 1628 ret = ov5640_get_hts(sensor); 1629 if (ret < 0) 1630 return ret; 1631 if (ret == 0) 1632 return -EINVAL; 1633 cap_hts = ret; 1634 1635 ret = ov5640_get_sysclk(sensor); 1636 if (ret < 0) 1637 return ret; 1638 if (ret == 0) 1639 return -EINVAL; 1640 cap_sysclk = ret; 1641 1642 /* calculate capture banding filter */ 1643 ret = ov5640_get_light_freq(sensor); 1644 if (ret < 0) 1645 return ret; 1646 light_freq = ret; 1647 1648 if (light_freq == 60) { 1649 /* 60Hz */ 1650 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; 1651 } else { 1652 /* 50Hz */ 1653 cap_bandfilt = cap_sysclk * 100 / cap_hts; 1654 } 1655 1656 if (!sensor->prev_sysclk) { 1657 ret = ov5640_get_sysclk(sensor); 1658 if (ret < 0) 1659 return ret; 1660 if (ret == 0) 1661 return -EINVAL; 1662 sensor->prev_sysclk = ret; 1663 } 1664 1665 if (!cap_bandfilt) 1666 return -EINVAL; 1667 1668 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); 1669 1670 /* calculate capture shutter/gain16 */ 1671 if (average > sensor->ae_low && average < sensor->ae_high) { 1672 /* in stable range */ 1673 cap_gain16_shutter = 1674 prev_gain16 * prev_shutter * 1675 cap_sysclk / sensor->prev_sysclk * 1676 sensor->prev_hts / cap_hts * 1677 sensor->ae_target / average; 1678 } else { 1679 cap_gain16_shutter = 1680 prev_gain16 * prev_shutter * 1681 cap_sysclk / sensor->prev_sysclk * 1682 sensor->prev_hts / cap_hts; 1683 } 1684 1685 /* gain to shutter */ 1686 if (cap_gain16_shutter < (cap_bandfilt * 16)) { 1687 /* shutter < 1/100 */ 1688 cap_shutter = cap_gain16_shutter / 16; 1689 if (cap_shutter < 1) 1690 cap_shutter = 1; 1691 1692 cap_gain16 = cap_gain16_shutter / cap_shutter; 1693 if (cap_gain16 < 16) 1694 cap_gain16 = 16; 1695 } else { 1696 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { 1697 /* exposure reach max */ 1698 cap_shutter = cap_bandfilt * cap_maxband; 1699 if (!cap_shutter) 1700 return -EINVAL; 1701 1702 cap_gain16 = cap_gain16_shutter / cap_shutter; 1703 } else { 1704 /* 1/100 < (cap_shutter = n/100) =< max */ 1705 cap_shutter = 1706 ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) 1707 * cap_bandfilt; 1708 if (!cap_shutter) 1709 return -EINVAL; 1710 1711 cap_gain16 = cap_gain16_shutter / cap_shutter; 1712 } 1713 } 1714 1715 /* set capture gain */ 1716 ret = ov5640_set_gain(sensor, cap_gain16); 1717 if (ret) 1718 return ret; 1719 1720 /* write capture shutter */ 1721 if (cap_shutter > (cap_vts - 4)) { 1722 cap_vts = cap_shutter + 4; 1723 ret = ov5640_set_vts(sensor, cap_vts); 1724 if (ret < 0) 1725 return ret; 1726 } 1727 1728 /* set exposure */ 1729 return ov5640_set_exposure(sensor, cap_shutter); 1730 } 1731 1732 /* 1733 * if sensor changes inside scaling or subsampling 1734 * change mode directly 1735 */ 1736 static int ov5640_set_mode_direct(struct ov5640_dev *sensor, 1737 const struct ov5640_mode_info *mode) 1738 { 1739 if (!mode->reg_data) 1740 return -EINVAL; 1741 1742 /* Write capture setting */ 1743 return ov5640_load_regs(sensor, mode); 1744 } 1745 1746 static int ov5640_set_mode(struct ov5640_dev *sensor) 1747 { 1748 const struct ov5640_mode_info *mode = sensor->current_mode; 1749 const struct ov5640_mode_info *orig_mode = sensor->last_mode; 1750 enum ov5640_downsize_mode dn_mode, orig_dn_mode; 1751 bool auto_gain = sensor->ctrls.auto_gain->val == 1; 1752 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; 1753 unsigned long rate; 1754 int ret; 1755 1756 dn_mode = mode->dn_mode; 1757 orig_dn_mode = orig_mode->dn_mode; 1758 1759 /* auto gain and exposure must be turned off when changing modes */ 1760 if (auto_gain) { 1761 ret = ov5640_set_autogain(sensor, false); 1762 if (ret) 1763 return ret; 1764 } 1765 1766 if (auto_exp) { 1767 ret = ov5640_set_autoexposure(sensor, false); 1768 if (ret) 1769 goto restore_auto_gain; 1770 } 1771 1772 /* 1773 * All the formats we support have 16 bits per pixel, seems to require 1774 * the same rate than YUV, so we can just use 16 bpp all the time. 1775 */ 1776 rate = ov5640_calc_pixel_rate(sensor) * 16; 1777 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 1778 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes; 1779 ret = ov5640_set_mipi_pclk(sensor, rate); 1780 } else { 1781 rate = rate / sensor->ep.bus.parallel.bus_width; 1782 ret = ov5640_set_dvp_pclk(sensor, rate); 1783 } 1784 1785 if (ret < 0) 1786 return 0; 1787 1788 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || 1789 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { 1790 /* 1791 * change between subsampling and scaling 1792 * go through exposure calculation 1793 */ 1794 ret = ov5640_set_mode_exposure_calc(sensor, mode); 1795 } else { 1796 /* 1797 * change inside subsampling or scaling 1798 * download firmware directly 1799 */ 1800 ret = ov5640_set_mode_direct(sensor, mode); 1801 } 1802 if (ret < 0) 1803 goto restore_auto_exp_gain; 1804 1805 /* restore auto gain and exposure */ 1806 if (auto_gain) 1807 ov5640_set_autogain(sensor, true); 1808 if (auto_exp) 1809 ov5640_set_autoexposure(sensor, true); 1810 1811 ret = ov5640_set_binning(sensor, dn_mode != SCALING); 1812 if (ret < 0) 1813 return ret; 1814 ret = ov5640_set_ae_target(sensor, sensor->ae_target); 1815 if (ret < 0) 1816 return ret; 1817 ret = ov5640_get_light_freq(sensor); 1818 if (ret < 0) 1819 return ret; 1820 ret = ov5640_set_bandingfilter(sensor); 1821 if (ret < 0) 1822 return ret; 1823 ret = ov5640_set_virtual_channel(sensor); 1824 if (ret < 0) 1825 return ret; 1826 1827 sensor->pending_mode_change = false; 1828 sensor->last_mode = mode; 1829 1830 return 0; 1831 1832 restore_auto_exp_gain: 1833 if (auto_exp) 1834 ov5640_set_autoexposure(sensor, true); 1835 restore_auto_gain: 1836 if (auto_gain) 1837 ov5640_set_autogain(sensor, true); 1838 1839 return ret; 1840 } 1841 1842 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 1843 struct v4l2_mbus_framefmt *format); 1844 1845 /* restore the last set video mode after chip power-on */ 1846 static int ov5640_restore_mode(struct ov5640_dev *sensor) 1847 { 1848 int ret; 1849 1850 /* first load the initial register values */ 1851 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data); 1852 if (ret < 0) 1853 return ret; 1854 sensor->last_mode = &ov5640_mode_init_data; 1855 1856 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, 1857 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | 1858 ilog2(OV5640_SCLK_ROOT_DIV)); 1859 if (ret) 1860 return ret; 1861 1862 /* now restore the last capture mode */ 1863 ret = ov5640_set_mode(sensor); 1864 if (ret < 0) 1865 return ret; 1866 1867 return ov5640_set_framefmt(sensor, &sensor->fmt); 1868 } 1869 1870 static void ov5640_power(struct ov5640_dev *sensor, bool enable) 1871 { 1872 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); 1873 } 1874 1875 static void ov5640_reset(struct ov5640_dev *sensor) 1876 { 1877 if (!sensor->reset_gpio) 1878 return; 1879 1880 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1881 1882 /* camera power cycle */ 1883 ov5640_power(sensor, false); 1884 usleep_range(5000, 10000); 1885 ov5640_power(sensor, true); 1886 usleep_range(5000, 10000); 1887 1888 gpiod_set_value_cansleep(sensor->reset_gpio, 1); 1889 usleep_range(1000, 2000); 1890 1891 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1892 usleep_range(20000, 25000); 1893 } 1894 1895 static int ov5640_set_power_on(struct ov5640_dev *sensor) 1896 { 1897 struct i2c_client *client = sensor->i2c_client; 1898 int ret; 1899 1900 ret = clk_prepare_enable(sensor->xclk); 1901 if (ret) { 1902 dev_err(&client->dev, "%s: failed to enable clock\n", 1903 __func__); 1904 return ret; 1905 } 1906 1907 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, 1908 sensor->supplies); 1909 if (ret) { 1910 dev_err(&client->dev, "%s: failed to enable regulators\n", 1911 __func__); 1912 goto xclk_off; 1913 } 1914 1915 ov5640_reset(sensor); 1916 ov5640_power(sensor, true); 1917 1918 ret = ov5640_init_slave_id(sensor); 1919 if (ret) 1920 goto power_off; 1921 1922 return 0; 1923 1924 power_off: 1925 ov5640_power(sensor, false); 1926 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1927 xclk_off: 1928 clk_disable_unprepare(sensor->xclk); 1929 return ret; 1930 } 1931 1932 static void ov5640_set_power_off(struct ov5640_dev *sensor) 1933 { 1934 ov5640_power(sensor, false); 1935 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1936 clk_disable_unprepare(sensor->xclk); 1937 } 1938 1939 static int ov5640_set_power_mipi(struct ov5640_dev *sensor, bool on) 1940 { 1941 int ret; 1942 1943 if (!on) { 1944 /* Reset MIPI bus settings to their default values. */ 1945 ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58); 1946 ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x04); 1947 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x00); 1948 return 0; 1949 } 1950 1951 /* 1952 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode 1953 * 1954 * 0x300e = 0x40 1955 * [7:5] = 010 : 2 data lanes mode (see FIXME note in 1956 * "ov5640_set_stream_mipi()") 1957 * [4] = 0 : Power up MIPI HS Tx 1958 * [3] = 0 : Power up MIPI LS Rx 1959 * [2] = 0 : MIPI interface disabled 1960 */ 1961 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x40); 1962 if (ret) 1963 return ret; 1964 1965 /* 1966 * Gate clock and set LP11 in 'no packets mode' (idle) 1967 * 1968 * 0x4800 = 0x24 1969 * [5] = 1 : Gate clock when 'no packets' 1970 * [2] = 1 : MIPI bus in LP11 when 'no packets' 1971 */ 1972 ret = ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x24); 1973 if (ret) 1974 return ret; 1975 1976 /* 1977 * Set data lanes and clock in LP11 when 'sleeping' 1978 * 1979 * 0x3019 = 0x70 1980 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' 1981 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' 1982 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' 1983 */ 1984 ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x70); 1985 if (ret) 1986 return ret; 1987 1988 /* Give lanes some time to coax into LP11 state. */ 1989 usleep_range(500, 1000); 1990 1991 return 0; 1992 } 1993 1994 static int ov5640_set_power_dvp(struct ov5640_dev *sensor, bool on) 1995 { 1996 unsigned int flags = sensor->ep.bus.parallel.flags; 1997 u8 pclk_pol = 0; 1998 u8 hsync_pol = 0; 1999 u8 vsync_pol = 0; 2000 int ret; 2001 2002 if (!on) { 2003 /* Reset settings to their default values. */ 2004 ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58); 2005 ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 0x20); 2006 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 0x00); 2007 ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0x00); 2008 return 0; 2009 } 2010 2011 /* 2012 * Note about parallel port configuration. 2013 * 2014 * When configured in parallel mode, the OV5640 will 2015 * output 10 bits data on DVP data lines [9:0]. 2016 * If only 8 bits data are wanted, the 8 bits data lines 2017 * of the camera interface must be physically connected 2018 * on the DVP data lines [9:2]. 2019 * 2020 * Control lines polarity can be configured through 2021 * devicetree endpoint control lines properties. 2022 * If no endpoint control lines properties are set, 2023 * polarity will be as below: 2024 * - VSYNC: active high 2025 * - HREF: active low 2026 * - PCLK: active low 2027 */ 2028 /* 2029 * configure parallel port control lines polarity 2030 * 2031 * POLARITY CTRL0 2032 * - [5]: PCLK polarity (0: active low, 1: active high) 2033 * - [1]: HREF polarity (0: active low, 1: active high) 2034 * - [0]: VSYNC polarity (mismatch here between 2035 * datasheet and hardware, 0 is active high 2036 * and 1 is active low...) 2037 */ 2038 if (sensor->ep.bus_type == V4L2_MBUS_PARALLEL) { 2039 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 2040 pclk_pol = 1; 2041 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 2042 hsync_pol = 1; 2043 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) 2044 vsync_pol = 1; 2045 2046 ret = ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 2047 (pclk_pol << 5) | (hsync_pol << 1) | 2048 vsync_pol); 2049 2050 if (ret) 2051 return ret; 2052 } 2053 2054 /* 2055 * powerdown MIPI TX/RX PHY & disable MIPI 2056 * 2057 * MIPI CONTROL 00 2058 * 4: PWDN PHY TX 2059 * 3: PWDN PHY RX 2060 * 2: MIPI enable 2061 */ 2062 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x18); 2063 if (ret) 2064 return ret; 2065 2066 /* 2067 * enable VSYNC/HREF/PCLK DVP control lines 2068 * & D[9:6] DVP data lines 2069 * 2070 * PAD OUTPUT ENABLE 01 2071 * - 6: VSYNC output enable 2072 * - 5: HREF output enable 2073 * - 4: PCLK output enable 2074 * - [3:0]: D[9:6] output enable 2075 */ 2076 ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 2077 sensor->ep.bus_type == V4L2_MBUS_PARALLEL ? 2078 0x7f : 0x1f); 2079 if (ret) 2080 return ret; 2081 2082 /* 2083 * enable D[5:0] DVP data lines 2084 * 2085 * PAD OUTPUT ENABLE 02 2086 * - [7:2]: D[5:0] output enable 2087 */ 2088 return ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0xfc); 2089 } 2090 2091 static int ov5640_set_power(struct ov5640_dev *sensor, bool on) 2092 { 2093 int ret = 0; 2094 2095 if (on) { 2096 ret = ov5640_set_power_on(sensor); 2097 if (ret) 2098 return ret; 2099 2100 ret = ov5640_restore_mode(sensor); 2101 if (ret) 2102 goto power_off; 2103 } 2104 2105 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2106 ret = ov5640_set_power_mipi(sensor, on); 2107 else 2108 ret = ov5640_set_power_dvp(sensor, on); 2109 if (ret) 2110 goto power_off; 2111 2112 if (!on) 2113 ov5640_set_power_off(sensor); 2114 2115 return 0; 2116 2117 power_off: 2118 ov5640_set_power_off(sensor); 2119 return ret; 2120 } 2121 2122 /* --------------- Subdev Operations --------------- */ 2123 2124 static int ov5640_s_power(struct v4l2_subdev *sd, int on) 2125 { 2126 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2127 int ret = 0; 2128 2129 mutex_lock(&sensor->lock); 2130 2131 /* 2132 * If the power count is modified from 0 to != 0 or from != 0 to 0, 2133 * update the power state. 2134 */ 2135 if (sensor->power_count == !on) { 2136 ret = ov5640_set_power(sensor, !!on); 2137 if (ret) 2138 goto out; 2139 } 2140 2141 /* Update the power count. */ 2142 sensor->power_count += on ? 1 : -1; 2143 WARN_ON(sensor->power_count < 0); 2144 out: 2145 mutex_unlock(&sensor->lock); 2146 2147 if (on && !ret && sensor->power_count == 1) { 2148 /* restore controls */ 2149 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); 2150 } 2151 2152 return ret; 2153 } 2154 2155 static int ov5640_try_frame_interval(struct ov5640_dev *sensor, 2156 struct v4l2_fract *fi, 2157 u32 width, u32 height) 2158 { 2159 const struct ov5640_mode_info *mode; 2160 enum ov5640_frame_rate rate = OV5640_15_FPS; 2161 int minfps, maxfps, best_fps, fps; 2162 int i; 2163 2164 minfps = ov5640_framerates[OV5640_15_FPS]; 2165 maxfps = ov5640_framerates[OV5640_60_FPS]; 2166 2167 if (fi->numerator == 0) { 2168 fi->denominator = maxfps; 2169 fi->numerator = 1; 2170 rate = OV5640_60_FPS; 2171 goto find_mode; 2172 } 2173 2174 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), 2175 minfps, maxfps); 2176 2177 best_fps = minfps; 2178 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { 2179 int curr_fps = ov5640_framerates[i]; 2180 2181 if (abs(curr_fps - fps) < abs(best_fps - fps)) { 2182 best_fps = curr_fps; 2183 rate = i; 2184 } 2185 } 2186 2187 fi->numerator = 1; 2188 fi->denominator = best_fps; 2189 2190 find_mode: 2191 mode = ov5640_find_mode(sensor, rate, width, height, false); 2192 return mode ? rate : -EINVAL; 2193 } 2194 2195 static int ov5640_get_fmt(struct v4l2_subdev *sd, 2196 struct v4l2_subdev_pad_config *cfg, 2197 struct v4l2_subdev_format *format) 2198 { 2199 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2200 struct v4l2_mbus_framefmt *fmt; 2201 2202 if (format->pad != 0) 2203 return -EINVAL; 2204 2205 mutex_lock(&sensor->lock); 2206 2207 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2208 fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg, 2209 format->pad); 2210 else 2211 fmt = &sensor->fmt; 2212 2213 format->format = *fmt; 2214 2215 mutex_unlock(&sensor->lock); 2216 2217 return 0; 2218 } 2219 2220 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, 2221 struct v4l2_mbus_framefmt *fmt, 2222 enum ov5640_frame_rate fr, 2223 const struct ov5640_mode_info **new_mode) 2224 { 2225 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2226 const struct ov5640_mode_info *mode; 2227 int i; 2228 2229 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true); 2230 if (!mode) 2231 return -EINVAL; 2232 fmt->width = mode->hact; 2233 fmt->height = mode->vact; 2234 2235 if (new_mode) 2236 *new_mode = mode; 2237 2238 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++) 2239 if (ov5640_formats[i].code == fmt->code) 2240 break; 2241 if (i >= ARRAY_SIZE(ov5640_formats)) 2242 i = 0; 2243 2244 fmt->code = ov5640_formats[i].code; 2245 fmt->colorspace = ov5640_formats[i].colorspace; 2246 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2247 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2248 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2249 2250 return 0; 2251 } 2252 2253 static int ov5640_set_fmt(struct v4l2_subdev *sd, 2254 struct v4l2_subdev_pad_config *cfg, 2255 struct v4l2_subdev_format *format) 2256 { 2257 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2258 const struct ov5640_mode_info *new_mode; 2259 struct v4l2_mbus_framefmt *mbus_fmt = &format->format; 2260 struct v4l2_mbus_framefmt *fmt; 2261 int ret; 2262 2263 if (format->pad != 0) 2264 return -EINVAL; 2265 2266 mutex_lock(&sensor->lock); 2267 2268 if (sensor->streaming) { 2269 ret = -EBUSY; 2270 goto out; 2271 } 2272 2273 ret = ov5640_try_fmt_internal(sd, mbus_fmt, 2274 sensor->current_fr, &new_mode); 2275 if (ret) 2276 goto out; 2277 2278 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2279 fmt = v4l2_subdev_get_try_format(sd, cfg, 0); 2280 else 2281 fmt = &sensor->fmt; 2282 2283 *fmt = *mbus_fmt; 2284 2285 if (new_mode != sensor->current_mode) { 2286 sensor->current_mode = new_mode; 2287 sensor->pending_mode_change = true; 2288 } 2289 if (mbus_fmt->code != sensor->fmt.code) 2290 sensor->pending_fmt_change = true; 2291 2292 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, 2293 ov5640_calc_pixel_rate(sensor)); 2294 out: 2295 mutex_unlock(&sensor->lock); 2296 return ret; 2297 } 2298 2299 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 2300 struct v4l2_mbus_framefmt *format) 2301 { 2302 int ret = 0; 2303 bool is_jpeg = false; 2304 u8 fmt, mux; 2305 2306 switch (format->code) { 2307 case MEDIA_BUS_FMT_UYVY8_2X8: 2308 /* YUV422, UYVY */ 2309 fmt = 0x3f; 2310 mux = OV5640_FMT_MUX_YUV422; 2311 break; 2312 case MEDIA_BUS_FMT_YUYV8_2X8: 2313 /* YUV422, YUYV */ 2314 fmt = 0x30; 2315 mux = OV5640_FMT_MUX_YUV422; 2316 break; 2317 case MEDIA_BUS_FMT_RGB565_2X8_LE: 2318 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ 2319 fmt = 0x6F; 2320 mux = OV5640_FMT_MUX_RGB; 2321 break; 2322 case MEDIA_BUS_FMT_RGB565_2X8_BE: 2323 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ 2324 fmt = 0x61; 2325 mux = OV5640_FMT_MUX_RGB; 2326 break; 2327 case MEDIA_BUS_FMT_JPEG_1X8: 2328 /* YUV422, YUYV */ 2329 fmt = 0x30; 2330 mux = OV5640_FMT_MUX_YUV422; 2331 is_jpeg = true; 2332 break; 2333 case MEDIA_BUS_FMT_SBGGR8_1X8: 2334 /* Raw, BGBG... / GRGR... */ 2335 fmt = 0x00; 2336 mux = OV5640_FMT_MUX_RAW_DPC; 2337 break; 2338 case MEDIA_BUS_FMT_SGBRG8_1X8: 2339 /* Raw bayer, GBGB... / RGRG... */ 2340 fmt = 0x01; 2341 mux = OV5640_FMT_MUX_RAW_DPC; 2342 break; 2343 case MEDIA_BUS_FMT_SGRBG8_1X8: 2344 /* Raw bayer, GRGR... / BGBG... */ 2345 fmt = 0x02; 2346 mux = OV5640_FMT_MUX_RAW_DPC; 2347 break; 2348 case MEDIA_BUS_FMT_SRGGB8_1X8: 2349 /* Raw bayer, RGRG... / GBGB... */ 2350 fmt = 0x03; 2351 mux = OV5640_FMT_MUX_RAW_DPC; 2352 break; 2353 default: 2354 return -EINVAL; 2355 } 2356 2357 /* FORMAT CONTROL00: YUV and RGB formatting */ 2358 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt); 2359 if (ret) 2360 return ret; 2361 2362 /* FORMAT MUX CONTROL: ISP YUV or RGB */ 2363 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux); 2364 if (ret) 2365 return ret; 2366 2367 /* 2368 * TIMING TC REG21: 2369 * - [5]: JPEG enable 2370 */ 2371 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2372 BIT(5), is_jpeg ? BIT(5) : 0); 2373 if (ret) 2374 return ret; 2375 2376 /* 2377 * SYSTEM RESET02: 2378 * - [4]: Reset JFIFO 2379 * - [3]: Reset SFIFO 2380 * - [2]: Reset JPEG 2381 */ 2382 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, 2383 BIT(4) | BIT(3) | BIT(2), 2384 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); 2385 if (ret) 2386 return ret; 2387 2388 /* 2389 * CLOCK ENABLE02: 2390 * - [5]: Enable JPEG 2x clock 2391 * - [3]: Enable JPEG clock 2392 */ 2393 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, 2394 BIT(5) | BIT(3), 2395 is_jpeg ? (BIT(5) | BIT(3)) : 0); 2396 } 2397 2398 /* 2399 * Sensor Controls. 2400 */ 2401 2402 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) 2403 { 2404 int ret; 2405 2406 if (value) { 2407 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2408 BIT(0), BIT(0)); 2409 if (ret) 2410 return ret; 2411 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); 2412 } else { 2413 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); 2414 } 2415 2416 return ret; 2417 } 2418 2419 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) 2420 { 2421 int ret; 2422 2423 if (value) { 2424 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2425 BIT(2), BIT(2)); 2426 if (ret) 2427 return ret; 2428 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, 2429 value & 0xff); 2430 } else { 2431 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); 2432 } 2433 2434 return ret; 2435 } 2436 2437 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) 2438 { 2439 int ret; 2440 2441 if (value) { 2442 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2443 BIT(1), BIT(1)); 2444 if (ret) 2445 return ret; 2446 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, 2447 value & 0xff); 2448 if (ret) 2449 return ret; 2450 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, 2451 value & 0xff); 2452 } else { 2453 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); 2454 } 2455 2456 return ret; 2457 } 2458 2459 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) 2460 { 2461 int ret; 2462 2463 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, 2464 BIT(0), awb ? 0 : 1); 2465 if (ret) 2466 return ret; 2467 2468 if (!awb) { 2469 u16 red = (u16)sensor->ctrls.red_balance->val; 2470 u16 blue = (u16)sensor->ctrls.blue_balance->val; 2471 2472 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); 2473 if (ret) 2474 return ret; 2475 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); 2476 } 2477 2478 return ret; 2479 } 2480 2481 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, 2482 enum v4l2_exposure_auto_type auto_exposure) 2483 { 2484 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2485 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); 2486 int ret = 0; 2487 2488 if (ctrls->auto_exp->is_new) { 2489 ret = ov5640_set_autoexposure(sensor, auto_exp); 2490 if (ret) 2491 return ret; 2492 } 2493 2494 if (!auto_exp && ctrls->exposure->is_new) { 2495 u16 max_exp; 2496 2497 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, 2498 &max_exp); 2499 if (ret) 2500 return ret; 2501 ret = ov5640_get_vts(sensor); 2502 if (ret < 0) 2503 return ret; 2504 max_exp += ret; 2505 ret = 0; 2506 2507 if (ctrls->exposure->val < max_exp) 2508 ret = ov5640_set_exposure(sensor, ctrls->exposure->val); 2509 } 2510 2511 return ret; 2512 } 2513 2514 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) 2515 { 2516 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2517 int ret = 0; 2518 2519 if (ctrls->auto_gain->is_new) { 2520 ret = ov5640_set_autogain(sensor, auto_gain); 2521 if (ret) 2522 return ret; 2523 } 2524 2525 if (!auto_gain && ctrls->gain->is_new) 2526 ret = ov5640_set_gain(sensor, ctrls->gain->val); 2527 2528 return ret; 2529 } 2530 2531 static const char * const test_pattern_menu[] = { 2532 "Disabled", 2533 "Color bars", 2534 "Color bars w/ rolling bar", 2535 "Color squares", 2536 "Color squares w/ rolling bar", 2537 }; 2538 2539 #define OV5640_TEST_ENABLE BIT(7) 2540 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */ 2541 #define OV5640_TEST_TRANSPARENT BIT(5) 2542 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */ 2543 #define OV5640_TEST_BAR_STANDARD (0 << 2) 2544 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2) 2545 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2) 2546 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2) 2547 #define OV5640_TEST_BAR (0 << 0) 2548 #define OV5640_TEST_RANDOM (1 << 0) 2549 #define OV5640_TEST_SQUARE (2 << 0) 2550 #define OV5640_TEST_BLACK (3 << 0) 2551 2552 static const u8 test_pattern_val[] = { 2553 0, 2554 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 | 2555 OV5640_TEST_BAR, 2556 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | 2557 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, 2558 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE, 2559 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE, 2560 }; 2561 2562 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) 2563 { 2564 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, 2565 test_pattern_val[value]); 2566 } 2567 2568 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) 2569 { 2570 int ret; 2571 2572 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), 2573 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 2574 0 : BIT(7)); 2575 if (ret) 2576 return ret; 2577 2578 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), 2579 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? 2580 BIT(2) : 0); 2581 } 2582 2583 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) 2584 { 2585 /* 2586 * If sensor is mounted upside down, mirror logic is inversed. 2587 * 2588 * Sensor is a BSI (Back Side Illuminated) one, 2589 * so image captured is physically mirrored. 2590 * This is why mirror logic is inversed in 2591 * order to cancel this mirror effect. 2592 */ 2593 2594 /* 2595 * TIMING TC REG21: 2596 * - [2]: ISP mirror 2597 * - [1]: Sensor mirror 2598 */ 2599 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2600 BIT(2) | BIT(1), 2601 (!(value ^ sensor->upside_down)) ? 2602 (BIT(2) | BIT(1)) : 0); 2603 } 2604 2605 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) 2606 { 2607 /* If sensor is mounted upside down, flip logic is inversed */ 2608 2609 /* 2610 * TIMING TC REG20: 2611 * - [2]: ISP vflip 2612 * - [1]: Sensor vflip 2613 */ 2614 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 2615 BIT(2) | BIT(1), 2616 (value ^ sensor->upside_down) ? 2617 (BIT(2) | BIT(1)) : 0); 2618 } 2619 2620 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 2621 { 2622 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2623 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2624 int val; 2625 2626 /* v4l2_ctrl_lock() locks our own mutex */ 2627 2628 switch (ctrl->id) { 2629 case V4L2_CID_AUTOGAIN: 2630 val = ov5640_get_gain(sensor); 2631 if (val < 0) 2632 return val; 2633 sensor->ctrls.gain->val = val; 2634 break; 2635 case V4L2_CID_EXPOSURE_AUTO: 2636 val = ov5640_get_exposure(sensor); 2637 if (val < 0) 2638 return val; 2639 sensor->ctrls.exposure->val = val; 2640 break; 2641 } 2642 2643 return 0; 2644 } 2645 2646 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) 2647 { 2648 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2649 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2650 int ret; 2651 2652 /* v4l2_ctrl_lock() locks our own mutex */ 2653 2654 /* 2655 * If the device is not powered up by the host driver do 2656 * not apply any controls to H/W at this time. Instead 2657 * the controls will be restored right after power-up. 2658 */ 2659 if (sensor->power_count == 0) 2660 return 0; 2661 2662 switch (ctrl->id) { 2663 case V4L2_CID_AUTOGAIN: 2664 ret = ov5640_set_ctrl_gain(sensor, ctrl->val); 2665 break; 2666 case V4L2_CID_EXPOSURE_AUTO: 2667 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); 2668 break; 2669 case V4L2_CID_AUTO_WHITE_BALANCE: 2670 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); 2671 break; 2672 case V4L2_CID_HUE: 2673 ret = ov5640_set_ctrl_hue(sensor, ctrl->val); 2674 break; 2675 case V4L2_CID_CONTRAST: 2676 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); 2677 break; 2678 case V4L2_CID_SATURATION: 2679 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); 2680 break; 2681 case V4L2_CID_TEST_PATTERN: 2682 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); 2683 break; 2684 case V4L2_CID_POWER_LINE_FREQUENCY: 2685 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); 2686 break; 2687 case V4L2_CID_HFLIP: 2688 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); 2689 break; 2690 case V4L2_CID_VFLIP: 2691 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); 2692 break; 2693 default: 2694 ret = -EINVAL; 2695 break; 2696 } 2697 2698 return ret; 2699 } 2700 2701 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { 2702 .g_volatile_ctrl = ov5640_g_volatile_ctrl, 2703 .s_ctrl = ov5640_s_ctrl, 2704 }; 2705 2706 static int ov5640_init_controls(struct ov5640_dev *sensor) 2707 { 2708 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; 2709 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2710 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 2711 int ret; 2712 2713 v4l2_ctrl_handler_init(hdl, 32); 2714 2715 /* we can use our own mutex for the ctrl lock */ 2716 hdl->lock = &sensor->lock; 2717 2718 /* Clock related controls */ 2719 ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, 2720 0, INT_MAX, 1, 2721 ov5640_calc_pixel_rate(sensor)); 2722 2723 /* Auto/manual white balance */ 2724 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 2725 V4L2_CID_AUTO_WHITE_BALANCE, 2726 0, 1, 1, 1); 2727 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 2728 0, 4095, 1, 0); 2729 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 2730 0, 4095, 1, 0); 2731 /* Auto/manual exposure */ 2732 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 2733 V4L2_CID_EXPOSURE_AUTO, 2734 V4L2_EXPOSURE_MANUAL, 0, 2735 V4L2_EXPOSURE_AUTO); 2736 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 2737 0, 65535, 1, 0); 2738 /* Auto/manual gain */ 2739 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 2740 0, 1, 1, 1); 2741 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 2742 0, 1023, 1, 0); 2743 2744 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 2745 0, 255, 1, 64); 2746 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 2747 0, 359, 1, 0); 2748 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 2749 0, 255, 1, 0); 2750 ctrls->test_pattern = 2751 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 2752 ARRAY_SIZE(test_pattern_menu) - 1, 2753 0, 0, test_pattern_menu); 2754 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 2755 0, 1, 1, 0); 2756 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 2757 0, 1, 1, 0); 2758 2759 ctrls->light_freq = 2760 v4l2_ctrl_new_std_menu(hdl, ops, 2761 V4L2_CID_POWER_LINE_FREQUENCY, 2762 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 2763 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 2764 2765 if (hdl->error) { 2766 ret = hdl->error; 2767 goto free_ctrls; 2768 } 2769 2770 ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY; 2771 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 2772 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 2773 2774 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 2775 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 2776 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 2777 2778 sensor->sd.ctrl_handler = hdl; 2779 return 0; 2780 2781 free_ctrls: 2782 v4l2_ctrl_handler_free(hdl); 2783 return ret; 2784 } 2785 2786 static int ov5640_enum_frame_size(struct v4l2_subdev *sd, 2787 struct v4l2_subdev_pad_config *cfg, 2788 struct v4l2_subdev_frame_size_enum *fse) 2789 { 2790 if (fse->pad != 0) 2791 return -EINVAL; 2792 if (fse->index >= OV5640_NUM_MODES) 2793 return -EINVAL; 2794 2795 fse->min_width = 2796 ov5640_mode_data[fse->index].hact; 2797 fse->max_width = fse->min_width; 2798 fse->min_height = 2799 ov5640_mode_data[fse->index].vact; 2800 fse->max_height = fse->min_height; 2801 2802 return 0; 2803 } 2804 2805 static int ov5640_enum_frame_interval( 2806 struct v4l2_subdev *sd, 2807 struct v4l2_subdev_pad_config *cfg, 2808 struct v4l2_subdev_frame_interval_enum *fie) 2809 { 2810 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2811 struct v4l2_fract tpf; 2812 int ret; 2813 2814 if (fie->pad != 0) 2815 return -EINVAL; 2816 if (fie->index >= OV5640_NUM_FRAMERATES) 2817 return -EINVAL; 2818 2819 tpf.numerator = 1; 2820 tpf.denominator = ov5640_framerates[fie->index]; 2821 2822 ret = ov5640_try_frame_interval(sensor, &tpf, 2823 fie->width, fie->height); 2824 if (ret < 0) 2825 return -EINVAL; 2826 2827 fie->interval = tpf; 2828 return 0; 2829 } 2830 2831 static int ov5640_g_frame_interval(struct v4l2_subdev *sd, 2832 struct v4l2_subdev_frame_interval *fi) 2833 { 2834 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2835 2836 mutex_lock(&sensor->lock); 2837 fi->interval = sensor->frame_interval; 2838 mutex_unlock(&sensor->lock); 2839 2840 return 0; 2841 } 2842 2843 static int ov5640_s_frame_interval(struct v4l2_subdev *sd, 2844 struct v4l2_subdev_frame_interval *fi) 2845 { 2846 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2847 const struct ov5640_mode_info *mode; 2848 int frame_rate, ret = 0; 2849 2850 if (fi->pad != 0) 2851 return -EINVAL; 2852 2853 mutex_lock(&sensor->lock); 2854 2855 if (sensor->streaming) { 2856 ret = -EBUSY; 2857 goto out; 2858 } 2859 2860 mode = sensor->current_mode; 2861 2862 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, 2863 mode->hact, mode->vact); 2864 if (frame_rate < 0) { 2865 /* Always return a valid frame interval value */ 2866 fi->interval = sensor->frame_interval; 2867 goto out; 2868 } 2869 2870 mode = ov5640_find_mode(sensor, frame_rate, mode->hact, 2871 mode->vact, true); 2872 if (!mode) { 2873 ret = -EINVAL; 2874 goto out; 2875 } 2876 2877 if (mode != sensor->current_mode || 2878 frame_rate != sensor->current_fr) { 2879 sensor->current_fr = frame_rate; 2880 sensor->frame_interval = fi->interval; 2881 sensor->current_mode = mode; 2882 sensor->pending_mode_change = true; 2883 2884 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, 2885 ov5640_calc_pixel_rate(sensor)); 2886 } 2887 out: 2888 mutex_unlock(&sensor->lock); 2889 return ret; 2890 } 2891 2892 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, 2893 struct v4l2_subdev_pad_config *cfg, 2894 struct v4l2_subdev_mbus_code_enum *code) 2895 { 2896 if (code->pad != 0) 2897 return -EINVAL; 2898 if (code->index >= ARRAY_SIZE(ov5640_formats)) 2899 return -EINVAL; 2900 2901 code->code = ov5640_formats[code->index].code; 2902 return 0; 2903 } 2904 2905 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) 2906 { 2907 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2908 int ret = 0; 2909 2910 mutex_lock(&sensor->lock); 2911 2912 if (sensor->streaming == !enable) { 2913 if (enable && sensor->pending_mode_change) { 2914 ret = ov5640_set_mode(sensor); 2915 if (ret) 2916 goto out; 2917 } 2918 2919 if (enable && sensor->pending_fmt_change) { 2920 ret = ov5640_set_framefmt(sensor, &sensor->fmt); 2921 if (ret) 2922 goto out; 2923 sensor->pending_fmt_change = false; 2924 } 2925 2926 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2927 ret = ov5640_set_stream_mipi(sensor, enable); 2928 else if (sensor->ep.bus_type == V4L2_MBUS_BT656) 2929 ret = ov5640_set_stream_bt656(sensor, enable); 2930 else 2931 ret = ov5640_set_stream_dvp(sensor, enable); 2932 2933 if (!ret) 2934 sensor->streaming = enable; 2935 } 2936 out: 2937 mutex_unlock(&sensor->lock); 2938 return ret; 2939 } 2940 2941 static const struct v4l2_subdev_core_ops ov5640_core_ops = { 2942 .s_power = ov5640_s_power, 2943 .log_status = v4l2_ctrl_subdev_log_status, 2944 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 2945 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2946 }; 2947 2948 static const struct v4l2_subdev_video_ops ov5640_video_ops = { 2949 .g_frame_interval = ov5640_g_frame_interval, 2950 .s_frame_interval = ov5640_s_frame_interval, 2951 .s_stream = ov5640_s_stream, 2952 }; 2953 2954 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { 2955 .enum_mbus_code = ov5640_enum_mbus_code, 2956 .get_fmt = ov5640_get_fmt, 2957 .set_fmt = ov5640_set_fmt, 2958 .enum_frame_size = ov5640_enum_frame_size, 2959 .enum_frame_interval = ov5640_enum_frame_interval, 2960 }; 2961 2962 static const struct v4l2_subdev_ops ov5640_subdev_ops = { 2963 .core = &ov5640_core_ops, 2964 .video = &ov5640_video_ops, 2965 .pad = &ov5640_pad_ops, 2966 }; 2967 2968 static int ov5640_get_regulators(struct ov5640_dev *sensor) 2969 { 2970 int i; 2971 2972 for (i = 0; i < OV5640_NUM_SUPPLIES; i++) 2973 sensor->supplies[i].supply = ov5640_supply_name[i]; 2974 2975 return devm_regulator_bulk_get(&sensor->i2c_client->dev, 2976 OV5640_NUM_SUPPLIES, 2977 sensor->supplies); 2978 } 2979 2980 static int ov5640_check_chip_id(struct ov5640_dev *sensor) 2981 { 2982 struct i2c_client *client = sensor->i2c_client; 2983 int ret = 0; 2984 u16 chip_id; 2985 2986 ret = ov5640_set_power_on(sensor); 2987 if (ret) 2988 return ret; 2989 2990 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); 2991 if (ret) { 2992 dev_err(&client->dev, "%s: failed to read chip identifier\n", 2993 __func__); 2994 goto power_off; 2995 } 2996 2997 if (chip_id != 0x5640) { 2998 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", 2999 __func__, chip_id); 3000 ret = -ENXIO; 3001 } 3002 3003 power_off: 3004 ov5640_set_power_off(sensor); 3005 return ret; 3006 } 3007 3008 static int ov5640_probe(struct i2c_client *client) 3009 { 3010 struct device *dev = &client->dev; 3011 struct fwnode_handle *endpoint; 3012 struct ov5640_dev *sensor; 3013 struct v4l2_mbus_framefmt *fmt; 3014 u32 rotation; 3015 int ret; 3016 3017 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); 3018 if (!sensor) 3019 return -ENOMEM; 3020 3021 sensor->i2c_client = client; 3022 3023 /* 3024 * default init sequence initialize sensor to 3025 * YUV422 UYVY VGA@30fps 3026 */ 3027 fmt = &sensor->fmt; 3028 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; 3029 fmt->colorspace = V4L2_COLORSPACE_SRGB; 3030 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 3031 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 3032 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 3033 fmt->width = 640; 3034 fmt->height = 480; 3035 fmt->field = V4L2_FIELD_NONE; 3036 sensor->frame_interval.numerator = 1; 3037 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; 3038 sensor->current_fr = OV5640_30_FPS; 3039 sensor->current_mode = 3040 &ov5640_mode_data[OV5640_MODE_VGA_640_480]; 3041 sensor->last_mode = sensor->current_mode; 3042 3043 sensor->ae_target = 52; 3044 3045 /* optional indication of physical rotation of sensor */ 3046 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation", 3047 &rotation); 3048 if (!ret) { 3049 switch (rotation) { 3050 case 180: 3051 sensor->upside_down = true; 3052 fallthrough; 3053 case 0: 3054 break; 3055 default: 3056 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n", 3057 rotation); 3058 } 3059 } 3060 3061 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), 3062 NULL); 3063 if (!endpoint) { 3064 dev_err(dev, "endpoint node not found\n"); 3065 return -EINVAL; 3066 } 3067 3068 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); 3069 fwnode_handle_put(endpoint); 3070 if (ret) { 3071 dev_err(dev, "Could not parse endpoint\n"); 3072 return ret; 3073 } 3074 3075 if (sensor->ep.bus_type != V4L2_MBUS_PARALLEL && 3076 sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY && 3077 sensor->ep.bus_type != V4L2_MBUS_BT656) { 3078 dev_err(dev, "Unsupported bus type %d\n", sensor->ep.bus_type); 3079 return -EINVAL; 3080 } 3081 3082 /* get system clock (xclk) */ 3083 sensor->xclk = devm_clk_get(dev, "xclk"); 3084 if (IS_ERR(sensor->xclk)) { 3085 dev_err(dev, "failed to get xclk\n"); 3086 return PTR_ERR(sensor->xclk); 3087 } 3088 3089 sensor->xclk_freq = clk_get_rate(sensor->xclk); 3090 if (sensor->xclk_freq < OV5640_XCLK_MIN || 3091 sensor->xclk_freq > OV5640_XCLK_MAX) { 3092 dev_err(dev, "xclk frequency out of range: %d Hz\n", 3093 sensor->xclk_freq); 3094 return -EINVAL; 3095 } 3096 3097 /* request optional power down pin */ 3098 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", 3099 GPIOD_OUT_HIGH); 3100 if (IS_ERR(sensor->pwdn_gpio)) 3101 return PTR_ERR(sensor->pwdn_gpio); 3102 3103 /* request optional reset pin */ 3104 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", 3105 GPIOD_OUT_HIGH); 3106 if (IS_ERR(sensor->reset_gpio)) 3107 return PTR_ERR(sensor->reset_gpio); 3108 3109 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); 3110 3111 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 3112 V4L2_SUBDEV_FL_HAS_EVENTS; 3113 sensor->pad.flags = MEDIA_PAD_FL_SOURCE; 3114 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 3115 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); 3116 if (ret) 3117 return ret; 3118 3119 ret = ov5640_get_regulators(sensor); 3120 if (ret) 3121 return ret; 3122 3123 mutex_init(&sensor->lock); 3124 3125 ret = ov5640_check_chip_id(sensor); 3126 if (ret) 3127 goto entity_cleanup; 3128 3129 ret = ov5640_init_controls(sensor); 3130 if (ret) 3131 goto entity_cleanup; 3132 3133 ret = v4l2_async_register_subdev_sensor_common(&sensor->sd); 3134 if (ret) 3135 goto free_ctrls; 3136 3137 return 0; 3138 3139 free_ctrls: 3140 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3141 entity_cleanup: 3142 media_entity_cleanup(&sensor->sd.entity); 3143 mutex_destroy(&sensor->lock); 3144 return ret; 3145 } 3146 3147 static int ov5640_remove(struct i2c_client *client) 3148 { 3149 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3150 struct ov5640_dev *sensor = to_ov5640_dev(sd); 3151 3152 v4l2_async_unregister_subdev(&sensor->sd); 3153 media_entity_cleanup(&sensor->sd.entity); 3154 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3155 mutex_destroy(&sensor->lock); 3156 3157 return 0; 3158 } 3159 3160 static const struct i2c_device_id ov5640_id[] = { 3161 {"ov5640", 0}, 3162 {}, 3163 }; 3164 MODULE_DEVICE_TABLE(i2c, ov5640_id); 3165 3166 static const struct of_device_id ov5640_dt_ids[] = { 3167 { .compatible = "ovti,ov5640" }, 3168 { /* sentinel */ } 3169 }; 3170 MODULE_DEVICE_TABLE(of, ov5640_dt_ids); 3171 3172 static struct i2c_driver ov5640_i2c_driver = { 3173 .driver = { 3174 .name = "ov5640", 3175 .of_match_table = ov5640_dt_ids, 3176 }, 3177 .id_table = ov5640_id, 3178 .probe_new = ov5640_probe, 3179 .remove = ov5640_remove, 3180 }; 3181 3182 module_i2c_driver(ov5640_i2c_driver); 3183 3184 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); 3185 MODULE_LICENSE("GPL"); 3186