1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. 4 * Copyright (C) 2014-2017 Mentor Graphics Inc. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/clk-provider.h> 9 #include <linux/clkdev.h> 10 #include <linux/ctype.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/of_device.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/slab.h> 20 #include <linux/types.h> 21 #include <media/v4l2-async.h> 22 #include <media/v4l2-ctrls.h> 23 #include <media/v4l2-device.h> 24 #include <media/v4l2-event.h> 25 #include <media/v4l2-fwnode.h> 26 #include <media/v4l2-subdev.h> 27 28 /* min/typical/max system clock (xclk) frequencies */ 29 #define OV5640_XCLK_MIN 6000000 30 #define OV5640_XCLK_MAX 54000000 31 32 #define OV5640_DEFAULT_SLAVE_ID 0x3c 33 34 #define OV5640_REG_SYS_RESET02 0x3002 35 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 36 #define OV5640_REG_SYS_CTRL0 0x3008 37 #define OV5640_REG_CHIP_ID 0x300a 38 #define OV5640_REG_IO_MIPI_CTRL00 0x300e 39 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 40 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 41 #define OV5640_REG_PAD_OUTPUT00 0x3019 42 #define OV5640_REG_SYSTEM_CONTROL1 0x302e 43 #define OV5640_REG_SC_PLL_CTRL0 0x3034 44 #define OV5640_REG_SC_PLL_CTRL1 0x3035 45 #define OV5640_REG_SC_PLL_CTRL2 0x3036 46 #define OV5640_REG_SC_PLL_CTRL3 0x3037 47 #define OV5640_REG_SLAVE_ID 0x3100 48 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 49 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 50 #define OV5640_REG_AWB_R_GAIN 0x3400 51 #define OV5640_REG_AWB_G_GAIN 0x3402 52 #define OV5640_REG_AWB_B_GAIN 0x3404 53 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 54 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 55 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 56 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 57 #define OV5640_REG_AEC_PK_MANUAL 0x3503 58 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a 59 #define OV5640_REG_AEC_PK_VTS 0x350c 60 #define OV5640_REG_TIMING_DVPHO 0x3808 61 #define OV5640_REG_TIMING_DVPVO 0x380a 62 #define OV5640_REG_TIMING_HTS 0x380c 63 #define OV5640_REG_TIMING_VTS 0x380e 64 #define OV5640_REG_TIMING_TC_REG20 0x3820 65 #define OV5640_REG_TIMING_TC_REG21 0x3821 66 #define OV5640_REG_AEC_CTRL00 0x3a00 67 #define OV5640_REG_AEC_B50_STEP 0x3a08 68 #define OV5640_REG_AEC_B60_STEP 0x3a0a 69 #define OV5640_REG_AEC_CTRL0D 0x3a0d 70 #define OV5640_REG_AEC_CTRL0E 0x3a0e 71 #define OV5640_REG_AEC_CTRL0F 0x3a0f 72 #define OV5640_REG_AEC_CTRL10 0x3a10 73 #define OV5640_REG_AEC_CTRL11 0x3a11 74 #define OV5640_REG_AEC_CTRL1B 0x3a1b 75 #define OV5640_REG_AEC_CTRL1E 0x3a1e 76 #define OV5640_REG_AEC_CTRL1F 0x3a1f 77 #define OV5640_REG_HZ5060_CTRL00 0x3c00 78 #define OV5640_REG_HZ5060_CTRL01 0x3c01 79 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c 80 #define OV5640_REG_FRAME_CTRL01 0x4202 81 #define OV5640_REG_FORMAT_CONTROL00 0x4300 82 #define OV5640_REG_VFIFO_HSIZE 0x4602 83 #define OV5640_REG_VFIFO_VSIZE 0x4604 84 #define OV5640_REG_JPG_MODE_SELECT 0x4713 85 #define OV5640_REG_POLARITY_CTRL00 0x4740 86 #define OV5640_REG_MIPI_CTRL00 0x4800 87 #define OV5640_REG_DEBUG_MODE 0x4814 88 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f 89 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d 90 #define OV5640_REG_SDE_CTRL0 0x5580 91 #define OV5640_REG_SDE_CTRL1 0x5581 92 #define OV5640_REG_SDE_CTRL3 0x5583 93 #define OV5640_REG_SDE_CTRL4 0x5584 94 #define OV5640_REG_SDE_CTRL5 0x5585 95 #define OV5640_REG_AVG_READOUT 0x56a1 96 97 enum ov5640_mode_id { 98 OV5640_MODE_QCIF_176_144 = 0, 99 OV5640_MODE_QVGA_320_240, 100 OV5640_MODE_VGA_640_480, 101 OV5640_MODE_NTSC_720_480, 102 OV5640_MODE_PAL_720_576, 103 OV5640_MODE_XGA_1024_768, 104 OV5640_MODE_720P_1280_720, 105 OV5640_MODE_1080P_1920_1080, 106 OV5640_MODE_QSXGA_2592_1944, 107 OV5640_NUM_MODES, 108 }; 109 110 enum ov5640_frame_rate { 111 OV5640_15_FPS = 0, 112 OV5640_30_FPS, 113 OV5640_60_FPS, 114 OV5640_NUM_FRAMERATES, 115 }; 116 117 enum ov5640_format_mux { 118 OV5640_FMT_MUX_YUV422 = 0, 119 OV5640_FMT_MUX_RGB, 120 OV5640_FMT_MUX_DITHER, 121 OV5640_FMT_MUX_RAW_DPC, 122 OV5640_FMT_MUX_SNR_RAW, 123 OV5640_FMT_MUX_RAW_CIP, 124 }; 125 126 struct ov5640_pixfmt { 127 u32 code; 128 u32 colorspace; 129 }; 130 131 static const struct ov5640_pixfmt ov5640_formats[] = { 132 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, }, 133 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, }, 134 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, }, 135 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, }, 136 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, }, 137 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, }, 138 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, }, 139 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, }, 140 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, }, 141 }; 142 143 /* 144 * FIXME: remove this when a subdev API becomes available 145 * to set the MIPI CSI-2 virtual channel. 146 */ 147 static unsigned int virtual_channel; 148 module_param(virtual_channel, uint, 0444); 149 MODULE_PARM_DESC(virtual_channel, 150 "MIPI CSI-2 virtual channel (0..3), default 0"); 151 152 static const int ov5640_framerates[] = { 153 [OV5640_15_FPS] = 15, 154 [OV5640_30_FPS] = 30, 155 [OV5640_60_FPS] = 60, 156 }; 157 158 /* regulator supplies */ 159 static const char * const ov5640_supply_name[] = { 160 "DOVDD", /* Digital I/O (1.8V) supply */ 161 "AVDD", /* Analog (2.8V) supply */ 162 "DVDD", /* Digital Core (1.5V) supply */ 163 }; 164 165 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) 166 167 /* 168 * Image size under 1280 * 960 are SUBSAMPLING 169 * Image size upper 1280 * 960 are SCALING 170 */ 171 enum ov5640_downsize_mode { 172 SUBSAMPLING, 173 SCALING, 174 }; 175 176 struct reg_value { 177 u16 reg_addr; 178 u8 val; 179 u8 mask; 180 u32 delay_ms; 181 }; 182 183 struct ov5640_mode_info { 184 enum ov5640_mode_id id; 185 enum ov5640_downsize_mode dn_mode; 186 u32 hact; 187 u32 htot; 188 u32 vact; 189 u32 vtot; 190 const struct reg_value *reg_data; 191 u32 reg_data_size; 192 u32 max_fps; 193 }; 194 195 struct ov5640_ctrls { 196 struct v4l2_ctrl_handler handler; 197 struct v4l2_ctrl *pixel_rate; 198 struct { 199 struct v4l2_ctrl *auto_exp; 200 struct v4l2_ctrl *exposure; 201 }; 202 struct { 203 struct v4l2_ctrl *auto_wb; 204 struct v4l2_ctrl *blue_balance; 205 struct v4l2_ctrl *red_balance; 206 }; 207 struct { 208 struct v4l2_ctrl *auto_gain; 209 struct v4l2_ctrl *gain; 210 }; 211 struct v4l2_ctrl *brightness; 212 struct v4l2_ctrl *light_freq; 213 struct v4l2_ctrl *saturation; 214 struct v4l2_ctrl *contrast; 215 struct v4l2_ctrl *hue; 216 struct v4l2_ctrl *test_pattern; 217 struct v4l2_ctrl *hflip; 218 struct v4l2_ctrl *vflip; 219 }; 220 221 struct ov5640_dev { 222 struct i2c_client *i2c_client; 223 struct v4l2_subdev sd; 224 struct media_pad pad; 225 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ 226 struct clk *xclk; /* system clock to OV5640 */ 227 u32 xclk_freq; 228 229 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; 230 struct gpio_desc *reset_gpio; 231 struct gpio_desc *pwdn_gpio; 232 bool upside_down; 233 234 /* lock to protect all members below */ 235 struct mutex lock; 236 237 int power_count; 238 239 struct v4l2_mbus_framefmt fmt; 240 bool pending_fmt_change; 241 242 const struct ov5640_mode_info *current_mode; 243 const struct ov5640_mode_info *last_mode; 244 enum ov5640_frame_rate current_fr; 245 struct v4l2_fract frame_interval; 246 247 struct ov5640_ctrls ctrls; 248 249 u32 prev_sysclk, prev_hts; 250 u32 ae_low, ae_high, ae_target; 251 252 bool pending_mode_change; 253 bool streaming; 254 }; 255 256 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) 257 { 258 return container_of(sd, struct ov5640_dev, sd); 259 } 260 261 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 262 { 263 return &container_of(ctrl->handler, struct ov5640_dev, 264 ctrls.handler)->sd; 265 } 266 267 /* 268 * FIXME: all of these register tables are likely filled with 269 * entries that set the register to their power-on default values, 270 * and which are otherwise not touched by this driver. Those entries 271 * should be identified and removed to speed register load time 272 * over i2c. 273 */ 274 /* YUV422 UYVY VGA@30fps */ 275 static const struct reg_value ov5640_init_setting_30fps_VGA[] = { 276 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0}, 277 {0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0}, 278 {0x3630, 0x36, 0, 0}, 279 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, 280 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, 281 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, 282 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, 283 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, 284 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, 285 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, 286 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, 287 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, 288 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, 289 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, 290 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 291 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, 292 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 293 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 294 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 295 {0x3810, 0x00, 0, 0}, 296 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 297 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 298 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 299 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 300 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 301 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 302 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, 303 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, 304 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, 305 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0}, 306 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 307 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0}, 308 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, 309 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, 310 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, 311 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, 312 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, 313 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, 314 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, 315 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, 316 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, 317 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, 318 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, 319 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, 320 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, 321 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, 322 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, 323 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, 324 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, 325 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, 326 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, 327 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, 328 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, 329 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, 330 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, 331 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, 332 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, 333 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, 334 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, 335 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, 336 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, 337 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, 338 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, 339 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, 340 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, 341 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, 342 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, 343 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, 344 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, 345 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, 346 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, 347 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, 348 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, 349 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, 350 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, 351 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, 352 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, 353 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, 354 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, 355 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, 356 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, 357 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, 358 }; 359 360 static const struct reg_value ov5640_setting_VGA_640_480[] = { 361 {0x3c07, 0x08, 0, 0}, 362 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 363 {0x3814, 0x31, 0, 0}, 364 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 365 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 366 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 367 {0x3810, 0x00, 0, 0}, 368 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 369 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 370 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 371 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 372 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 373 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 374 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 375 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 376 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 377 }; 378 379 static const struct reg_value ov5640_setting_XGA_1024_768[] = { 380 {0x3c07, 0x08, 0, 0}, 381 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 382 {0x3814, 0x31, 0, 0}, 383 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 384 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 385 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 386 {0x3810, 0x00, 0, 0}, 387 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 388 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 389 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 390 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 391 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 392 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 393 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 394 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 395 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 396 }; 397 398 static const struct reg_value ov5640_setting_QVGA_320_240[] = { 399 {0x3c07, 0x08, 0, 0}, 400 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 401 {0x3814, 0x31, 0, 0}, 402 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 403 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 404 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 405 {0x3810, 0x00, 0, 0}, 406 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 407 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 408 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 409 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 410 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 411 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 412 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 413 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 414 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 415 }; 416 417 static const struct reg_value ov5640_setting_QCIF_176_144[] = { 418 {0x3c07, 0x08, 0, 0}, 419 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 420 {0x3814, 0x31, 0, 0}, 421 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 422 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 423 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 424 {0x3810, 0x00, 0, 0}, 425 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 426 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 427 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 428 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 429 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 430 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 431 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 432 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 433 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 434 }; 435 436 static const struct reg_value ov5640_setting_NTSC_720_480[] = { 437 {0x3c07, 0x08, 0, 0}, 438 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 439 {0x3814, 0x31, 0, 0}, 440 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 441 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 442 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 443 {0x3810, 0x00, 0, 0}, 444 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0}, 445 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 446 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 447 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 448 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 449 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 450 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 451 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 452 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 453 }; 454 455 static const struct reg_value ov5640_setting_PAL_720_576[] = { 456 {0x3c07, 0x08, 0, 0}, 457 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 458 {0x3814, 0x31, 0, 0}, 459 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 460 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 461 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 462 {0x3810, 0x00, 0, 0}, 463 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 464 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 465 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 466 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 467 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 468 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 469 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 470 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 471 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 472 }; 473 474 static const struct reg_value ov5640_setting_720P_1280_720[] = { 475 {0x3c07, 0x07, 0, 0}, 476 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 477 {0x3814, 0x31, 0, 0}, 478 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 479 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0}, 480 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0}, 481 {0x3810, 0x00, 0, 0}, 482 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 483 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 484 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, 485 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, 486 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, 487 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, 488 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 489 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, 490 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, 491 }; 492 493 static const struct reg_value ov5640_setting_1080P_1920_1080[] = { 494 {0x3c07, 0x08, 0, 0}, 495 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 496 {0x3814, 0x11, 0, 0}, 497 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 498 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 499 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 500 {0x3810, 0x00, 0, 0}, 501 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 502 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 503 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 504 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 505 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 506 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 507 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 508 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 509 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, 510 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, 511 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 512 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0}, 513 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0}, 514 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0}, 515 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, 516 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, 517 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, 518 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, 519 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0}, 520 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, 521 {0x4005, 0x1a, 0, 0}, 522 }; 523 524 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { 525 {0x3c07, 0x08, 0, 0}, 526 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 527 {0x3814, 0x11, 0, 0}, 528 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 529 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 530 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 531 {0x3810, 0x00, 0, 0}, 532 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 533 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 534 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 535 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 536 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 537 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 538 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 539 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 540 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, 541 }; 542 543 /* power-on sensor init reg table */ 544 static const struct ov5640_mode_info ov5640_mode_init_data = { 545 0, SUBSAMPLING, 640, 1896, 480, 984, 546 ov5640_init_setting_30fps_VGA, 547 ARRAY_SIZE(ov5640_init_setting_30fps_VGA), 548 OV5640_30_FPS, 549 }; 550 551 static const struct ov5640_mode_info 552 ov5640_mode_data[OV5640_NUM_MODES] = { 553 {OV5640_MODE_QCIF_176_144, SUBSAMPLING, 554 176, 1896, 144, 984, 555 ov5640_setting_QCIF_176_144, 556 ARRAY_SIZE(ov5640_setting_QCIF_176_144), 557 OV5640_30_FPS}, 558 {OV5640_MODE_QVGA_320_240, SUBSAMPLING, 559 320, 1896, 240, 984, 560 ov5640_setting_QVGA_320_240, 561 ARRAY_SIZE(ov5640_setting_QVGA_320_240), 562 OV5640_30_FPS}, 563 {OV5640_MODE_VGA_640_480, SUBSAMPLING, 564 640, 1896, 480, 1080, 565 ov5640_setting_VGA_640_480, 566 ARRAY_SIZE(ov5640_setting_VGA_640_480), 567 OV5640_60_FPS}, 568 {OV5640_MODE_NTSC_720_480, SUBSAMPLING, 569 720, 1896, 480, 984, 570 ov5640_setting_NTSC_720_480, 571 ARRAY_SIZE(ov5640_setting_NTSC_720_480), 572 OV5640_30_FPS}, 573 {OV5640_MODE_PAL_720_576, SUBSAMPLING, 574 720, 1896, 576, 984, 575 ov5640_setting_PAL_720_576, 576 ARRAY_SIZE(ov5640_setting_PAL_720_576), 577 OV5640_30_FPS}, 578 {OV5640_MODE_XGA_1024_768, SUBSAMPLING, 579 1024, 1896, 768, 1080, 580 ov5640_setting_XGA_1024_768, 581 ARRAY_SIZE(ov5640_setting_XGA_1024_768), 582 OV5640_30_FPS}, 583 {OV5640_MODE_720P_1280_720, SUBSAMPLING, 584 1280, 1892, 720, 740, 585 ov5640_setting_720P_1280_720, 586 ARRAY_SIZE(ov5640_setting_720P_1280_720), 587 OV5640_30_FPS}, 588 {OV5640_MODE_1080P_1920_1080, SCALING, 589 1920, 2500, 1080, 1120, 590 ov5640_setting_1080P_1920_1080, 591 ARRAY_SIZE(ov5640_setting_1080P_1920_1080), 592 OV5640_30_FPS}, 593 {OV5640_MODE_QSXGA_2592_1944, SCALING, 594 2592, 2844, 1944, 1968, 595 ov5640_setting_QSXGA_2592_1944, 596 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944), 597 OV5640_15_FPS}, 598 }; 599 600 static int ov5640_init_slave_id(struct ov5640_dev *sensor) 601 { 602 struct i2c_client *client = sensor->i2c_client; 603 struct i2c_msg msg; 604 u8 buf[3]; 605 int ret; 606 607 if (client->addr == OV5640_DEFAULT_SLAVE_ID) 608 return 0; 609 610 buf[0] = OV5640_REG_SLAVE_ID >> 8; 611 buf[1] = OV5640_REG_SLAVE_ID & 0xff; 612 buf[2] = client->addr << 1; 613 614 msg.addr = OV5640_DEFAULT_SLAVE_ID; 615 msg.flags = 0; 616 msg.buf = buf; 617 msg.len = sizeof(buf); 618 619 ret = i2c_transfer(client->adapter, &msg, 1); 620 if (ret < 0) { 621 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); 622 return ret; 623 } 624 625 return 0; 626 } 627 628 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) 629 { 630 struct i2c_client *client = sensor->i2c_client; 631 struct i2c_msg msg; 632 u8 buf[3]; 633 int ret; 634 635 buf[0] = reg >> 8; 636 buf[1] = reg & 0xff; 637 buf[2] = val; 638 639 msg.addr = client->addr; 640 msg.flags = client->flags; 641 msg.buf = buf; 642 msg.len = sizeof(buf); 643 644 ret = i2c_transfer(client->adapter, &msg, 1); 645 if (ret < 0) { 646 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", 647 __func__, reg, val); 648 return ret; 649 } 650 651 return 0; 652 } 653 654 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) 655 { 656 struct i2c_client *client = sensor->i2c_client; 657 struct i2c_msg msg[2]; 658 u8 buf[2]; 659 int ret; 660 661 buf[0] = reg >> 8; 662 buf[1] = reg & 0xff; 663 664 msg[0].addr = client->addr; 665 msg[0].flags = client->flags; 666 msg[0].buf = buf; 667 msg[0].len = sizeof(buf); 668 669 msg[1].addr = client->addr; 670 msg[1].flags = client->flags | I2C_M_RD; 671 msg[1].buf = buf; 672 msg[1].len = 1; 673 674 ret = i2c_transfer(client->adapter, msg, 2); 675 if (ret < 0) { 676 dev_err(&client->dev, "%s: error: reg=%x\n", 677 __func__, reg); 678 return ret; 679 } 680 681 *val = buf[0]; 682 return 0; 683 } 684 685 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) 686 { 687 u8 hi, lo; 688 int ret; 689 690 ret = ov5640_read_reg(sensor, reg, &hi); 691 if (ret) 692 return ret; 693 ret = ov5640_read_reg(sensor, reg + 1, &lo); 694 if (ret) 695 return ret; 696 697 *val = ((u16)hi << 8) | (u16)lo; 698 return 0; 699 } 700 701 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) 702 { 703 int ret; 704 705 ret = ov5640_write_reg(sensor, reg, val >> 8); 706 if (ret) 707 return ret; 708 709 return ov5640_write_reg(sensor, reg + 1, val & 0xff); 710 } 711 712 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, 713 u8 mask, u8 val) 714 { 715 u8 readval; 716 int ret; 717 718 ret = ov5640_read_reg(sensor, reg, &readval); 719 if (ret) 720 return ret; 721 722 readval &= ~mask; 723 val &= mask; 724 val |= readval; 725 726 return ov5640_write_reg(sensor, reg, val); 727 } 728 729 /* 730 * After trying the various combinations, reading various 731 * documentations spread around the net, and from the various 732 * feedback, the clock tree is probably as follows: 733 * 734 * +--------------+ 735 * | Ext. Clock | 736 * +-+------------+ 737 * | +----------+ 738 * +->| PLL1 | - reg 0x3036, for the multiplier 739 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider 740 * | +--------------+ 741 * +->| System Clock | - reg 0x3035, bits 4-7 742 * +-+------------+ 743 * | +--------------+ 744 * +->| MIPI Divider | - reg 0x3035, bits 0-3 745 * | +-+------------+ 746 * | +----------------> MIPI SCLK 747 * | + +-----+ 748 * | +->| / 2 |-------> MIPI BIT CLK 749 * | +-----+ 750 * | +--------------+ 751 * +->| PLL Root Div | - reg 0x3037, bit 4 752 * +-+------------+ 753 * | +---------+ 754 * +->| Bit Div | - reg 0x3035, bits 0-3 755 * +-+-------+ 756 * | +-------------+ 757 * +->| SCLK Div | - reg 0x3108, bits 0-1 758 * | +-+-----------+ 759 * | +---------------> SCLK 760 * | +-------------+ 761 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 762 * | +-+-----------+ 763 * | +---------------> SCLK 2X 764 * | +-------------+ 765 * +->| PCLK Div | - reg 0x3108, bits 4-5 766 * ++------------+ 767 * + +-----------+ 768 * +->| P_DIV | - reg 0x3035, bits 0-3 769 * +-----+-----+ 770 * +------------> PCLK 771 * 772 * This is deviating from the datasheet at least for the register 773 * 0x3108, since it's said here that the PCLK would be clocked from 774 * the PLL. 775 * 776 * There seems to be also (unverified) constraints: 777 * - the PLL pre-divider output rate should be in the 4-27MHz range 778 * - the PLL multiplier output rate should be in the 500-1000MHz range 779 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG 780 * 781 * In the two latter cases, these constraints are met since our 782 * factors are hardcoded. If we were to change that, we would need to 783 * take this into account. The only varying parts are the PLL 784 * multiplier and the system clock divider, which are shared between 785 * all these clocks so won't cause any issue. 786 */ 787 788 /* 789 * This is supposed to be ranging from 1 to 8, but the value is always 790 * set to 3 in the vendor kernels. 791 */ 792 #define OV5640_PLL_PREDIV 3 793 794 #define OV5640_PLL_MULT_MIN 4 795 #define OV5640_PLL_MULT_MAX 252 796 797 /* 798 * This is supposed to be ranging from 1 to 16, but the value is 799 * always set to either 1 or 2 in the vendor kernels. 800 */ 801 #define OV5640_SYSDIV_MIN 1 802 #define OV5640_SYSDIV_MAX 16 803 804 /* 805 * Hardcode these values for scaler and non-scaler modes. 806 * FIXME: to be re-calcualted for 1 data lanes setups 807 */ 808 #define OV5640_MIPI_DIV_PCLK 2 809 #define OV5640_MIPI_DIV_SCLK 1 810 811 /* 812 * This is supposed to be ranging from 1 to 2, but the value is always 813 * set to 2 in the vendor kernels. 814 */ 815 #define OV5640_PLL_ROOT_DIV 2 816 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) 817 818 /* 819 * We only supports 8-bit formats at the moment 820 */ 821 #define OV5640_BIT_DIV 2 822 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 823 824 /* 825 * This is supposed to be ranging from 1 to 8, but the value is always 826 * set to 2 in the vendor kernels. 827 */ 828 #define OV5640_SCLK_ROOT_DIV 2 829 830 /* 831 * This is hardcoded so that the consistency is maintained between SCLK and 832 * SCLK 2x. 833 */ 834 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) 835 836 /* 837 * This is supposed to be ranging from 1 to 8, but the value is always 838 * set to 1 in the vendor kernels. 839 */ 840 #define OV5640_PCLK_ROOT_DIV 1 841 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 842 843 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, 844 u8 pll_prediv, u8 pll_mult, 845 u8 sysdiv) 846 { 847 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; 848 849 /* PLL1 output cannot exceed 1GHz. */ 850 if (sysclk / 1000000 > 1000) 851 return 0; 852 853 return sysclk / sysdiv; 854 } 855 856 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, 857 unsigned long rate, 858 u8 *pll_prediv, u8 *pll_mult, 859 u8 *sysdiv) 860 { 861 unsigned long best = ~0; 862 u8 best_sysdiv = 1, best_mult = 1; 863 u8 _sysdiv, _pll_mult; 864 865 for (_sysdiv = OV5640_SYSDIV_MIN; 866 _sysdiv <= OV5640_SYSDIV_MAX; 867 _sysdiv++) { 868 for (_pll_mult = OV5640_PLL_MULT_MIN; 869 _pll_mult <= OV5640_PLL_MULT_MAX; 870 _pll_mult++) { 871 unsigned long _rate; 872 873 /* 874 * The PLL multiplier cannot be odd if above 875 * 127. 876 */ 877 if (_pll_mult > 127 && (_pll_mult % 2)) 878 continue; 879 880 _rate = ov5640_compute_sys_clk(sensor, 881 OV5640_PLL_PREDIV, 882 _pll_mult, _sysdiv); 883 884 /* 885 * We have reached the maximum allowed PLL1 output, 886 * increase sysdiv. 887 */ 888 if (!_rate) 889 break; 890 891 /* 892 * Prefer rates above the expected clock rate than 893 * below, even if that means being less precise. 894 */ 895 if (_rate < rate) 896 continue; 897 898 if (abs(rate - _rate) < abs(rate - best)) { 899 best = _rate; 900 best_sysdiv = _sysdiv; 901 best_mult = _pll_mult; 902 } 903 904 if (_rate == rate) 905 goto out; 906 } 907 } 908 909 out: 910 *sysdiv = best_sysdiv; 911 *pll_prediv = OV5640_PLL_PREDIV; 912 *pll_mult = best_mult; 913 914 return best; 915 } 916 917 /* 918 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values 919 * for the MIPI CSI-2 output. 920 * 921 * @rate: The requested bandwidth per lane in bytes per second. 922 * 'Bandwidth Per Lane' is calculated as: 923 * bpl = HTOT * VTOT * FPS * bpp / num_lanes; 924 * 925 * This function use the requested bandwidth to calculate: 926 * - sample_rate = bpl / (bpp / num_lanes); 927 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes); 928 * 929 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR) 930 * 931 * with these fixed parameters: 932 * PLL_RDIV = 2; 933 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5); 934 * PCLK_DIV = 1; 935 * 936 * The MIPI clock generation differs for modes that use the scaler and modes 937 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI 938 * BIT CLk, and thus: 939 * 940 * - mipi_sclk = bpl / MIPI_DIV / 2; 941 * MIPI_DIV = 1; 942 * 943 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated 944 * from the pixel clock, and thus: 945 * 946 * - sample_rate = bpl / (bpp / num_lanes); 947 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes); 948 * = bpl / (4 * MIPI_DIV / num_lanes); 949 * - MIPI_DIV = bpp / (4 * num_lanes); 950 * 951 * FIXME: this have been tested with 16bpp and 2 lanes setup only. 952 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the 953 * above formula for setups with 1 lane or image formats with different bpp. 954 * 955 * FIXME: this deviates from the sensor manual documentation which is quite 956 * thin on the MIPI clock tree generation part. 957 */ 958 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor, 959 unsigned long rate) 960 { 961 const struct ov5640_mode_info *mode = sensor->current_mode; 962 u8 prediv, mult, sysdiv; 963 u8 mipi_div; 964 int ret; 965 966 /* 967 * 1280x720 is reported to use 'SUBSAMPLING' only, 968 * but according to the sensor manual it goes through the 969 * scaler before subsampling. 970 */ 971 if (mode->dn_mode == SCALING || 972 (mode->id == OV5640_MODE_720P_1280_720)) 973 mipi_div = OV5640_MIPI_DIV_SCLK; 974 else 975 mipi_div = OV5640_MIPI_DIV_PCLK; 976 977 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv); 978 979 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 980 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT); 981 982 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 983 0xff, sysdiv << 4 | mipi_div); 984 if (ret) 985 return ret; 986 987 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); 988 if (ret) 989 return ret; 990 991 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 992 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv); 993 if (ret) 994 return ret; 995 996 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 997 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS); 998 } 999 1000 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, 1001 unsigned long rate, 1002 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, 1003 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) 1004 { 1005 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * 1006 OV5640_PCLK_ROOT_DIV; 1007 1008 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, 1009 sysdiv); 1010 *pll_rdiv = OV5640_PLL_ROOT_DIV; 1011 *bit_div = OV5640_BIT_DIV; 1012 *pclk_div = OV5640_PCLK_ROOT_DIV; 1013 1014 return _rate / *pll_rdiv / *bit_div / *pclk_div; 1015 } 1016 1017 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate) 1018 { 1019 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; 1020 int ret; 1021 1022 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, 1023 &bit_div, &pclk_div); 1024 1025 if (bit_div == 2) 1026 bit_div = 8; 1027 1028 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1029 0x0f, bit_div); 1030 if (ret) 1031 return ret; 1032 1033 /* 1034 * We need to set sysdiv according to the clock, and to clear 1035 * the MIPI divider. 1036 */ 1037 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1038 0xff, sysdiv << 4); 1039 if (ret) 1040 return ret; 1041 1042 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 1043 0xff, mult); 1044 if (ret) 1045 return ret; 1046 1047 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1048 0x1f, prediv | ((pll_rdiv - 1) << 4)); 1049 if (ret) 1050 return ret; 1051 1052 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, 1053 (ilog2(pclk_div) << 4)); 1054 } 1055 1056 /* set JPEG framing sizes */ 1057 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor, 1058 const struct ov5640_mode_info *mode) 1059 { 1060 int ret; 1061 1062 /* 1063 * compression mode 3 timing 1064 * 1065 * Data is transmitted with programmable width (VFIFO_HSIZE). 1066 * No padding done. Last line may have less data. Varying 1067 * number of lines per frame, depending on amount of data. 1068 */ 1069 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3); 1070 if (ret < 0) 1071 return ret; 1072 1073 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact); 1074 if (ret < 0) 1075 return ret; 1076 1077 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact); 1078 } 1079 1080 /* download ov5640 settings to sensor through i2c */ 1081 static int ov5640_set_timings(struct ov5640_dev *sensor, 1082 const struct ov5640_mode_info *mode) 1083 { 1084 int ret; 1085 1086 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) { 1087 ret = ov5640_set_jpeg_timings(sensor, mode); 1088 if (ret < 0) 1089 return ret; 1090 } 1091 1092 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact); 1093 if (ret < 0) 1094 return ret; 1095 1096 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact); 1097 if (ret < 0) 1098 return ret; 1099 1100 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot); 1101 if (ret < 0) 1102 return ret; 1103 1104 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot); 1105 } 1106 1107 static int ov5640_load_regs(struct ov5640_dev *sensor, 1108 const struct ov5640_mode_info *mode) 1109 { 1110 const struct reg_value *regs = mode->reg_data; 1111 unsigned int i; 1112 u32 delay_ms; 1113 u16 reg_addr; 1114 u8 mask, val; 1115 int ret = 0; 1116 1117 for (i = 0; i < mode->reg_data_size; ++i, ++regs) { 1118 delay_ms = regs->delay_ms; 1119 reg_addr = regs->reg_addr; 1120 val = regs->val; 1121 mask = regs->mask; 1122 1123 if (mask) 1124 ret = ov5640_mod_reg(sensor, reg_addr, mask, val); 1125 else 1126 ret = ov5640_write_reg(sensor, reg_addr, val); 1127 if (ret) 1128 break; 1129 1130 if (delay_ms) 1131 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); 1132 } 1133 1134 return ov5640_set_timings(sensor, mode); 1135 } 1136 1137 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) 1138 { 1139 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1140 BIT(0), on ? 0 : BIT(0)); 1141 } 1142 1143 /* read exposure, in number of line periods */ 1144 static int ov5640_get_exposure(struct ov5640_dev *sensor) 1145 { 1146 int exp, ret; 1147 u8 temp; 1148 1149 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); 1150 if (ret) 1151 return ret; 1152 exp = ((int)temp & 0x0f) << 16; 1153 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); 1154 if (ret) 1155 return ret; 1156 exp |= ((int)temp << 8); 1157 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); 1158 if (ret) 1159 return ret; 1160 exp |= (int)temp; 1161 1162 return exp >> 4; 1163 } 1164 1165 /* write exposure, given number of line periods */ 1166 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) 1167 { 1168 int ret; 1169 1170 exposure <<= 4; 1171 1172 ret = ov5640_write_reg(sensor, 1173 OV5640_REG_AEC_PK_EXPOSURE_LO, 1174 exposure & 0xff); 1175 if (ret) 1176 return ret; 1177 ret = ov5640_write_reg(sensor, 1178 OV5640_REG_AEC_PK_EXPOSURE_MED, 1179 (exposure >> 8) & 0xff); 1180 if (ret) 1181 return ret; 1182 return ov5640_write_reg(sensor, 1183 OV5640_REG_AEC_PK_EXPOSURE_HI, 1184 (exposure >> 16) & 0x0f); 1185 } 1186 1187 static int ov5640_get_gain(struct ov5640_dev *sensor) 1188 { 1189 u16 gain; 1190 int ret; 1191 1192 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); 1193 if (ret) 1194 return ret; 1195 1196 return gain & 0x3ff; 1197 } 1198 1199 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) 1200 { 1201 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, 1202 (u16)gain & 0x3ff); 1203 } 1204 1205 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) 1206 { 1207 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1208 BIT(1), on ? 0 : BIT(1)); 1209 } 1210 1211 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) 1212 { 1213 int ret; 1214 unsigned int flags = sensor->ep.bus.parallel.flags; 1215 u8 pclk_pol = 0; 1216 u8 hsync_pol = 0; 1217 u8 vsync_pol = 0; 1218 1219 /* 1220 * Note about parallel port configuration. 1221 * 1222 * When configured in parallel mode, the OV5640 will 1223 * output 10 bits data on DVP data lines [9:0]. 1224 * If only 8 bits data are wanted, the 8 bits data lines 1225 * of the camera interface must be physically connected 1226 * on the DVP data lines [9:2]. 1227 * 1228 * Control lines polarity can be configured through 1229 * devicetree endpoint control lines properties. 1230 * If no endpoint control lines properties are set, 1231 * polarity will be as below: 1232 * - VSYNC: active high 1233 * - HREF: active low 1234 * - PCLK: active low 1235 */ 1236 1237 if (on) { 1238 /* 1239 * configure parallel port control lines polarity 1240 * 1241 * POLARITY CTRL0 1242 * - [5]: PCLK polarity (0: active low, 1: active high) 1243 * - [1]: HREF polarity (0: active low, 1: active high) 1244 * - [0]: VSYNC polarity (mismatch here between 1245 * datasheet and hardware, 0 is active high 1246 * and 1 is active low...) 1247 */ 1248 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 1249 pclk_pol = 1; 1250 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 1251 hsync_pol = 1; 1252 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) 1253 vsync_pol = 1; 1254 1255 ret = ov5640_write_reg(sensor, 1256 OV5640_REG_POLARITY_CTRL00, 1257 (pclk_pol << 5) | 1258 (hsync_pol << 1) | 1259 vsync_pol); 1260 1261 if (ret) 1262 return ret; 1263 } 1264 1265 /* 1266 * powerdown MIPI TX/RX PHY & disable MIPI 1267 * 1268 * MIPI CONTROL 00 1269 * 4: PWDN PHY TX 1270 * 3: PWDN PHY RX 1271 * 2: MIPI enable 1272 */ 1273 ret = ov5640_write_reg(sensor, 1274 OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0); 1275 if (ret) 1276 return ret; 1277 1278 /* 1279 * enable VSYNC/HREF/PCLK DVP control lines 1280 * & D[9:6] DVP data lines 1281 * 1282 * PAD OUTPUT ENABLE 01 1283 * - 6: VSYNC output enable 1284 * - 5: HREF output enable 1285 * - 4: PCLK output enable 1286 * - [3:0]: D[9:6] output enable 1287 */ 1288 ret = ov5640_write_reg(sensor, 1289 OV5640_REG_PAD_OUTPUT_ENABLE01, 1290 on ? 0x7f : 0); 1291 if (ret) 1292 return ret; 1293 1294 /* 1295 * enable D[5:0] DVP data lines 1296 * 1297 * PAD OUTPUT ENABLE 02 1298 * - [7:2]: D[5:0] output enable 1299 */ 1300 return ov5640_write_reg(sensor, 1301 OV5640_REG_PAD_OUTPUT_ENABLE02, 1302 on ? 0xfc : 0); 1303 } 1304 1305 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) 1306 { 1307 int ret; 1308 1309 /* 1310 * Enable/disable the MIPI interface 1311 * 1312 * 0x300e = on ? 0x45 : 0x40 1313 * 1314 * FIXME: the sensor manual (version 2.03) reports 1315 * [7:5] = 000 : 1 data lane mode 1316 * [7:5] = 001 : 2 data lanes mode 1317 * But this settings do not work, while the following ones 1318 * have been validated for 2 data lanes mode. 1319 * 1320 * [7:5] = 010 : 2 data lanes mode 1321 * [4] = 0 : Power up MIPI HS Tx 1322 * [3] = 0 : Power up MIPI LS Rx 1323 * [2] = 1/0 : MIPI interface enable/disable 1324 * [1:0] = 01/00: FIXME: 'debug' 1325 */ 1326 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 1327 on ? 0x45 : 0x40); 1328 if (ret) 1329 return ret; 1330 1331 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, 1332 on ? 0x00 : 0x0f); 1333 } 1334 1335 static int ov5640_get_sysclk(struct ov5640_dev *sensor) 1336 { 1337 /* calculate sysclk */ 1338 u32 xvclk = sensor->xclk_freq / 10000; 1339 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; 1340 u32 sclk_rdiv_map[] = {1, 2, 4, 8}; 1341 u32 bit_div2x = 1, sclk_rdiv, sysclk; 1342 u8 temp1, temp2; 1343 int ret; 1344 1345 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); 1346 if (ret) 1347 return ret; 1348 temp2 = temp1 & 0x0f; 1349 if (temp2 == 8 || temp2 == 10) 1350 bit_div2x = temp2 / 2; 1351 1352 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); 1353 if (ret) 1354 return ret; 1355 sysdiv = temp1 >> 4; 1356 if (sysdiv == 0) 1357 sysdiv = 16; 1358 1359 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); 1360 if (ret) 1361 return ret; 1362 multiplier = temp1; 1363 1364 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); 1365 if (ret) 1366 return ret; 1367 prediv = temp1 & 0x0f; 1368 pll_rdiv = ((temp1 >> 4) & 0x01) + 1; 1369 1370 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); 1371 if (ret) 1372 return ret; 1373 temp2 = temp1 & 0x03; 1374 sclk_rdiv = sclk_rdiv_map[temp2]; 1375 1376 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) 1377 return -EINVAL; 1378 1379 VCO = xvclk * multiplier / prediv; 1380 1381 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; 1382 1383 return sysclk; 1384 } 1385 1386 static int ov5640_set_night_mode(struct ov5640_dev *sensor) 1387 { 1388 /* read HTS from register settings */ 1389 u8 mode; 1390 int ret; 1391 1392 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); 1393 if (ret) 1394 return ret; 1395 mode &= 0xfb; 1396 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); 1397 } 1398 1399 static int ov5640_get_hts(struct ov5640_dev *sensor) 1400 { 1401 /* read HTS from register settings */ 1402 u16 hts; 1403 int ret; 1404 1405 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); 1406 if (ret) 1407 return ret; 1408 return hts; 1409 } 1410 1411 static int ov5640_get_vts(struct ov5640_dev *sensor) 1412 { 1413 u16 vts; 1414 int ret; 1415 1416 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); 1417 if (ret) 1418 return ret; 1419 return vts; 1420 } 1421 1422 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) 1423 { 1424 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); 1425 } 1426 1427 static int ov5640_get_light_freq(struct ov5640_dev *sensor) 1428 { 1429 /* get banding filter value */ 1430 int ret, light_freq = 0; 1431 u8 temp, temp1; 1432 1433 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); 1434 if (ret) 1435 return ret; 1436 1437 if (temp & 0x80) { 1438 /* manual */ 1439 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, 1440 &temp1); 1441 if (ret) 1442 return ret; 1443 if (temp1 & 0x04) { 1444 /* 50Hz */ 1445 light_freq = 50; 1446 } else { 1447 /* 60Hz */ 1448 light_freq = 60; 1449 } 1450 } else { 1451 /* auto */ 1452 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, 1453 &temp1); 1454 if (ret) 1455 return ret; 1456 1457 if (temp1 & 0x01) { 1458 /* 50Hz */ 1459 light_freq = 50; 1460 } else { 1461 /* 60Hz */ 1462 } 1463 } 1464 1465 return light_freq; 1466 } 1467 1468 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) 1469 { 1470 u32 band_step60, max_band60, band_step50, max_band50, prev_vts; 1471 int ret; 1472 1473 /* read preview PCLK */ 1474 ret = ov5640_get_sysclk(sensor); 1475 if (ret < 0) 1476 return ret; 1477 if (ret == 0) 1478 return -EINVAL; 1479 sensor->prev_sysclk = ret; 1480 /* read preview HTS */ 1481 ret = ov5640_get_hts(sensor); 1482 if (ret < 0) 1483 return ret; 1484 if (ret == 0) 1485 return -EINVAL; 1486 sensor->prev_hts = ret; 1487 1488 /* read preview VTS */ 1489 ret = ov5640_get_vts(sensor); 1490 if (ret < 0) 1491 return ret; 1492 prev_vts = ret; 1493 1494 /* calculate banding filter */ 1495 /* 60Hz */ 1496 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; 1497 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); 1498 if (ret) 1499 return ret; 1500 if (!band_step60) 1501 return -EINVAL; 1502 max_band60 = (int)((prev_vts - 4) / band_step60); 1503 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); 1504 if (ret) 1505 return ret; 1506 1507 /* 50Hz */ 1508 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; 1509 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); 1510 if (ret) 1511 return ret; 1512 if (!band_step50) 1513 return -EINVAL; 1514 max_band50 = (int)((prev_vts - 4) / band_step50); 1515 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); 1516 } 1517 1518 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) 1519 { 1520 /* stable in high */ 1521 u32 fast_high, fast_low; 1522 int ret; 1523 1524 sensor->ae_low = target * 23 / 25; /* 0.92 */ 1525 sensor->ae_high = target * 27 / 25; /* 1.08 */ 1526 1527 fast_high = sensor->ae_high << 1; 1528 if (fast_high > 255) 1529 fast_high = 255; 1530 1531 fast_low = sensor->ae_low >> 1; 1532 1533 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); 1534 if (ret) 1535 return ret; 1536 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); 1537 if (ret) 1538 return ret; 1539 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); 1540 if (ret) 1541 return ret; 1542 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); 1543 if (ret) 1544 return ret; 1545 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); 1546 if (ret) 1547 return ret; 1548 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); 1549 } 1550 1551 static int ov5640_get_binning(struct ov5640_dev *sensor) 1552 { 1553 u8 temp; 1554 int ret; 1555 1556 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); 1557 if (ret) 1558 return ret; 1559 1560 return temp & BIT(0); 1561 } 1562 1563 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) 1564 { 1565 int ret; 1566 1567 /* 1568 * TIMING TC REG21: 1569 * - [0]: Horizontal binning enable 1570 */ 1571 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 1572 BIT(0), enable ? BIT(0) : 0); 1573 if (ret) 1574 return ret; 1575 /* 1576 * TIMING TC REG20: 1577 * - [0]: Undocumented, but hardcoded init sequences 1578 * are always setting REG21/REG20 bit 0 to same value... 1579 */ 1580 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 1581 BIT(0), enable ? BIT(0) : 0); 1582 } 1583 1584 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) 1585 { 1586 struct i2c_client *client = sensor->i2c_client; 1587 u8 temp, channel = virtual_channel; 1588 int ret; 1589 1590 if (channel > 3) { 1591 dev_err(&client->dev, 1592 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", 1593 __func__, channel); 1594 return -EINVAL; 1595 } 1596 1597 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); 1598 if (ret) 1599 return ret; 1600 temp &= ~(3 << 6); 1601 temp |= (channel << 6); 1602 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); 1603 } 1604 1605 static const struct ov5640_mode_info * 1606 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr, 1607 int width, int height, bool nearest) 1608 { 1609 const struct ov5640_mode_info *mode; 1610 1611 mode = v4l2_find_nearest_size(ov5640_mode_data, 1612 ARRAY_SIZE(ov5640_mode_data), 1613 hact, vact, 1614 width, height); 1615 1616 if (!mode || 1617 (!nearest && (mode->hact != width || mode->vact != height))) 1618 return NULL; 1619 1620 /* Check to see if the current mode exceeds the max frame rate */ 1621 if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps]) 1622 return NULL; 1623 1624 return mode; 1625 } 1626 1627 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor) 1628 { 1629 u64 rate; 1630 1631 rate = sensor->current_mode->vtot * sensor->current_mode->htot; 1632 rate *= ov5640_framerates[sensor->current_fr]; 1633 1634 return rate; 1635 } 1636 1637 /* 1638 * sensor changes between scaling and subsampling, go through 1639 * exposure calculation 1640 */ 1641 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, 1642 const struct ov5640_mode_info *mode) 1643 { 1644 u32 prev_shutter, prev_gain16; 1645 u32 cap_shutter, cap_gain16; 1646 u32 cap_sysclk, cap_hts, cap_vts; 1647 u32 light_freq, cap_bandfilt, cap_maxband; 1648 u32 cap_gain16_shutter; 1649 u8 average; 1650 int ret; 1651 1652 if (!mode->reg_data) 1653 return -EINVAL; 1654 1655 /* read preview shutter */ 1656 ret = ov5640_get_exposure(sensor); 1657 if (ret < 0) 1658 return ret; 1659 prev_shutter = ret; 1660 ret = ov5640_get_binning(sensor); 1661 if (ret < 0) 1662 return ret; 1663 if (ret && mode->id != OV5640_MODE_720P_1280_720 && 1664 mode->id != OV5640_MODE_1080P_1920_1080) 1665 prev_shutter *= 2; 1666 1667 /* read preview gain */ 1668 ret = ov5640_get_gain(sensor); 1669 if (ret < 0) 1670 return ret; 1671 prev_gain16 = ret; 1672 1673 /* get average */ 1674 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); 1675 if (ret) 1676 return ret; 1677 1678 /* turn off night mode for capture */ 1679 ret = ov5640_set_night_mode(sensor); 1680 if (ret < 0) 1681 return ret; 1682 1683 /* Write capture setting */ 1684 ret = ov5640_load_regs(sensor, mode); 1685 if (ret < 0) 1686 return ret; 1687 1688 /* read capture VTS */ 1689 ret = ov5640_get_vts(sensor); 1690 if (ret < 0) 1691 return ret; 1692 cap_vts = ret; 1693 ret = ov5640_get_hts(sensor); 1694 if (ret < 0) 1695 return ret; 1696 if (ret == 0) 1697 return -EINVAL; 1698 cap_hts = ret; 1699 1700 ret = ov5640_get_sysclk(sensor); 1701 if (ret < 0) 1702 return ret; 1703 if (ret == 0) 1704 return -EINVAL; 1705 cap_sysclk = ret; 1706 1707 /* calculate capture banding filter */ 1708 ret = ov5640_get_light_freq(sensor); 1709 if (ret < 0) 1710 return ret; 1711 light_freq = ret; 1712 1713 if (light_freq == 60) { 1714 /* 60Hz */ 1715 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; 1716 } else { 1717 /* 50Hz */ 1718 cap_bandfilt = cap_sysclk * 100 / cap_hts; 1719 } 1720 1721 if (!sensor->prev_sysclk) { 1722 ret = ov5640_get_sysclk(sensor); 1723 if (ret < 0) 1724 return ret; 1725 if (ret == 0) 1726 return -EINVAL; 1727 sensor->prev_sysclk = ret; 1728 } 1729 1730 if (!cap_bandfilt) 1731 return -EINVAL; 1732 1733 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); 1734 1735 /* calculate capture shutter/gain16 */ 1736 if (average > sensor->ae_low && average < sensor->ae_high) { 1737 /* in stable range */ 1738 cap_gain16_shutter = 1739 prev_gain16 * prev_shutter * 1740 cap_sysclk / sensor->prev_sysclk * 1741 sensor->prev_hts / cap_hts * 1742 sensor->ae_target / average; 1743 } else { 1744 cap_gain16_shutter = 1745 prev_gain16 * prev_shutter * 1746 cap_sysclk / sensor->prev_sysclk * 1747 sensor->prev_hts / cap_hts; 1748 } 1749 1750 /* gain to shutter */ 1751 if (cap_gain16_shutter < (cap_bandfilt * 16)) { 1752 /* shutter < 1/100 */ 1753 cap_shutter = cap_gain16_shutter / 16; 1754 if (cap_shutter < 1) 1755 cap_shutter = 1; 1756 1757 cap_gain16 = cap_gain16_shutter / cap_shutter; 1758 if (cap_gain16 < 16) 1759 cap_gain16 = 16; 1760 } else { 1761 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { 1762 /* exposure reach max */ 1763 cap_shutter = cap_bandfilt * cap_maxband; 1764 if (!cap_shutter) 1765 return -EINVAL; 1766 1767 cap_gain16 = cap_gain16_shutter / cap_shutter; 1768 } else { 1769 /* 1/100 < (cap_shutter = n/100) =< max */ 1770 cap_shutter = 1771 ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) 1772 * cap_bandfilt; 1773 if (!cap_shutter) 1774 return -EINVAL; 1775 1776 cap_gain16 = cap_gain16_shutter / cap_shutter; 1777 } 1778 } 1779 1780 /* set capture gain */ 1781 ret = ov5640_set_gain(sensor, cap_gain16); 1782 if (ret) 1783 return ret; 1784 1785 /* write capture shutter */ 1786 if (cap_shutter > (cap_vts - 4)) { 1787 cap_vts = cap_shutter + 4; 1788 ret = ov5640_set_vts(sensor, cap_vts); 1789 if (ret < 0) 1790 return ret; 1791 } 1792 1793 /* set exposure */ 1794 return ov5640_set_exposure(sensor, cap_shutter); 1795 } 1796 1797 /* 1798 * if sensor changes inside scaling or subsampling 1799 * change mode directly 1800 */ 1801 static int ov5640_set_mode_direct(struct ov5640_dev *sensor, 1802 const struct ov5640_mode_info *mode) 1803 { 1804 if (!mode->reg_data) 1805 return -EINVAL; 1806 1807 /* Write capture setting */ 1808 return ov5640_load_regs(sensor, mode); 1809 } 1810 1811 static int ov5640_set_mode(struct ov5640_dev *sensor) 1812 { 1813 const struct ov5640_mode_info *mode = sensor->current_mode; 1814 const struct ov5640_mode_info *orig_mode = sensor->last_mode; 1815 enum ov5640_downsize_mode dn_mode, orig_dn_mode; 1816 bool auto_gain = sensor->ctrls.auto_gain->val == 1; 1817 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; 1818 unsigned long rate; 1819 int ret; 1820 1821 dn_mode = mode->dn_mode; 1822 orig_dn_mode = orig_mode->dn_mode; 1823 1824 /* auto gain and exposure must be turned off when changing modes */ 1825 if (auto_gain) { 1826 ret = ov5640_set_autogain(sensor, false); 1827 if (ret) 1828 return ret; 1829 } 1830 1831 if (auto_exp) { 1832 ret = ov5640_set_autoexposure(sensor, false); 1833 if (ret) 1834 goto restore_auto_gain; 1835 } 1836 1837 /* 1838 * All the formats we support have 16 bits per pixel, seems to require 1839 * the same rate than YUV, so we can just use 16 bpp all the time. 1840 */ 1841 rate = ov5640_calc_pixel_rate(sensor) * 16; 1842 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 1843 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes; 1844 ret = ov5640_set_mipi_pclk(sensor, rate); 1845 } else { 1846 rate = rate / sensor->ep.bus.parallel.bus_width; 1847 ret = ov5640_set_dvp_pclk(sensor, rate); 1848 } 1849 1850 if (ret < 0) 1851 return 0; 1852 1853 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || 1854 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { 1855 /* 1856 * change between subsampling and scaling 1857 * go through exposure calculation 1858 */ 1859 ret = ov5640_set_mode_exposure_calc(sensor, mode); 1860 } else { 1861 /* 1862 * change inside subsampling or scaling 1863 * download firmware directly 1864 */ 1865 ret = ov5640_set_mode_direct(sensor, mode); 1866 } 1867 if (ret < 0) 1868 goto restore_auto_exp_gain; 1869 1870 /* restore auto gain and exposure */ 1871 if (auto_gain) 1872 ov5640_set_autogain(sensor, true); 1873 if (auto_exp) 1874 ov5640_set_autoexposure(sensor, true); 1875 1876 ret = ov5640_set_binning(sensor, dn_mode != SCALING); 1877 if (ret < 0) 1878 return ret; 1879 ret = ov5640_set_ae_target(sensor, sensor->ae_target); 1880 if (ret < 0) 1881 return ret; 1882 ret = ov5640_get_light_freq(sensor); 1883 if (ret < 0) 1884 return ret; 1885 ret = ov5640_set_bandingfilter(sensor); 1886 if (ret < 0) 1887 return ret; 1888 ret = ov5640_set_virtual_channel(sensor); 1889 if (ret < 0) 1890 return ret; 1891 1892 sensor->pending_mode_change = false; 1893 sensor->last_mode = mode; 1894 1895 return 0; 1896 1897 restore_auto_exp_gain: 1898 if (auto_exp) 1899 ov5640_set_autoexposure(sensor, true); 1900 restore_auto_gain: 1901 if (auto_gain) 1902 ov5640_set_autogain(sensor, true); 1903 1904 return ret; 1905 } 1906 1907 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 1908 struct v4l2_mbus_framefmt *format); 1909 1910 /* restore the last set video mode after chip power-on */ 1911 static int ov5640_restore_mode(struct ov5640_dev *sensor) 1912 { 1913 int ret; 1914 1915 /* first load the initial register values */ 1916 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data); 1917 if (ret < 0) 1918 return ret; 1919 sensor->last_mode = &ov5640_mode_init_data; 1920 1921 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, 1922 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | 1923 ilog2(OV5640_SCLK_ROOT_DIV)); 1924 if (ret) 1925 return ret; 1926 1927 /* now restore the last capture mode */ 1928 ret = ov5640_set_mode(sensor); 1929 if (ret < 0) 1930 return ret; 1931 1932 return ov5640_set_framefmt(sensor, &sensor->fmt); 1933 } 1934 1935 static void ov5640_power(struct ov5640_dev *sensor, bool enable) 1936 { 1937 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); 1938 } 1939 1940 static void ov5640_reset(struct ov5640_dev *sensor) 1941 { 1942 if (!sensor->reset_gpio) 1943 return; 1944 1945 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1946 1947 /* camera power cycle */ 1948 ov5640_power(sensor, false); 1949 usleep_range(5000, 10000); 1950 ov5640_power(sensor, true); 1951 usleep_range(5000, 10000); 1952 1953 gpiod_set_value_cansleep(sensor->reset_gpio, 1); 1954 usleep_range(1000, 2000); 1955 1956 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1957 usleep_range(20000, 25000); 1958 } 1959 1960 static int ov5640_set_power_on(struct ov5640_dev *sensor) 1961 { 1962 struct i2c_client *client = sensor->i2c_client; 1963 int ret; 1964 1965 ret = clk_prepare_enable(sensor->xclk); 1966 if (ret) { 1967 dev_err(&client->dev, "%s: failed to enable clock\n", 1968 __func__); 1969 return ret; 1970 } 1971 1972 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, 1973 sensor->supplies); 1974 if (ret) { 1975 dev_err(&client->dev, "%s: failed to enable regulators\n", 1976 __func__); 1977 goto xclk_off; 1978 } 1979 1980 ov5640_reset(sensor); 1981 ov5640_power(sensor, true); 1982 1983 ret = ov5640_init_slave_id(sensor); 1984 if (ret) 1985 goto power_off; 1986 1987 return 0; 1988 1989 power_off: 1990 ov5640_power(sensor, false); 1991 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1992 xclk_off: 1993 clk_disable_unprepare(sensor->xclk); 1994 return ret; 1995 } 1996 1997 static void ov5640_set_power_off(struct ov5640_dev *sensor) 1998 { 1999 ov5640_power(sensor, false); 2000 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 2001 clk_disable_unprepare(sensor->xclk); 2002 } 2003 2004 static int ov5640_set_power(struct ov5640_dev *sensor, bool on) 2005 { 2006 int ret = 0; 2007 2008 if (on) { 2009 ret = ov5640_set_power_on(sensor); 2010 if (ret) 2011 return ret; 2012 2013 ret = ov5640_restore_mode(sensor); 2014 if (ret) 2015 goto power_off; 2016 2017 /* We're done here for DVP bus, while CSI-2 needs setup. */ 2018 if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) 2019 return 0; 2020 2021 /* 2022 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode 2023 * 2024 * 0x300e = 0x40 2025 * [7:5] = 010 : 2 data lanes mode (see FIXME note in 2026 * "ov5640_set_stream_mipi()") 2027 * [4] = 0 : Power up MIPI HS Tx 2028 * [3] = 0 : Power up MIPI LS Rx 2029 * [2] = 0 : MIPI interface disabled 2030 */ 2031 ret = ov5640_write_reg(sensor, 2032 OV5640_REG_IO_MIPI_CTRL00, 0x40); 2033 if (ret) 2034 goto power_off; 2035 2036 /* 2037 * Gate clock and set LP11 in 'no packets mode' (idle) 2038 * 2039 * 0x4800 = 0x24 2040 * [5] = 1 : Gate clock when 'no packets' 2041 * [2] = 1 : MIPI bus in LP11 when 'no packets' 2042 */ 2043 ret = ov5640_write_reg(sensor, 2044 OV5640_REG_MIPI_CTRL00, 0x24); 2045 if (ret) 2046 goto power_off; 2047 2048 /* 2049 * Set data lanes and clock in LP11 when 'sleeping' 2050 * 2051 * 0x3019 = 0x70 2052 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' 2053 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' 2054 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' 2055 */ 2056 ret = ov5640_write_reg(sensor, 2057 OV5640_REG_PAD_OUTPUT00, 0x70); 2058 if (ret) 2059 goto power_off; 2060 2061 /* Give lanes some time to coax into LP11 state. */ 2062 usleep_range(500, 1000); 2063 2064 } else { 2065 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 2066 /* Reset MIPI bus settings to their default values. */ 2067 ov5640_write_reg(sensor, 2068 OV5640_REG_IO_MIPI_CTRL00, 0x58); 2069 ov5640_write_reg(sensor, 2070 OV5640_REG_MIPI_CTRL00, 0x04); 2071 ov5640_write_reg(sensor, 2072 OV5640_REG_PAD_OUTPUT00, 0x00); 2073 } 2074 2075 ov5640_set_power_off(sensor); 2076 } 2077 2078 return 0; 2079 2080 power_off: 2081 ov5640_set_power_off(sensor); 2082 return ret; 2083 } 2084 2085 /* --------------- Subdev Operations --------------- */ 2086 2087 static int ov5640_s_power(struct v4l2_subdev *sd, int on) 2088 { 2089 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2090 int ret = 0; 2091 2092 mutex_lock(&sensor->lock); 2093 2094 /* 2095 * If the power count is modified from 0 to != 0 or from != 0 to 0, 2096 * update the power state. 2097 */ 2098 if (sensor->power_count == !on) { 2099 ret = ov5640_set_power(sensor, !!on); 2100 if (ret) 2101 goto out; 2102 } 2103 2104 /* Update the power count. */ 2105 sensor->power_count += on ? 1 : -1; 2106 WARN_ON(sensor->power_count < 0); 2107 out: 2108 mutex_unlock(&sensor->lock); 2109 2110 if (on && !ret && sensor->power_count == 1) { 2111 /* restore controls */ 2112 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); 2113 } 2114 2115 return ret; 2116 } 2117 2118 static int ov5640_try_frame_interval(struct ov5640_dev *sensor, 2119 struct v4l2_fract *fi, 2120 u32 width, u32 height) 2121 { 2122 const struct ov5640_mode_info *mode; 2123 enum ov5640_frame_rate rate = OV5640_15_FPS; 2124 int minfps, maxfps, best_fps, fps; 2125 int i; 2126 2127 minfps = ov5640_framerates[OV5640_15_FPS]; 2128 maxfps = ov5640_framerates[OV5640_60_FPS]; 2129 2130 if (fi->numerator == 0) { 2131 fi->denominator = maxfps; 2132 fi->numerator = 1; 2133 rate = OV5640_60_FPS; 2134 goto find_mode; 2135 } 2136 2137 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), 2138 minfps, maxfps); 2139 2140 best_fps = minfps; 2141 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { 2142 int curr_fps = ov5640_framerates[i]; 2143 2144 if (abs(curr_fps - fps) < abs(best_fps - fps)) { 2145 best_fps = curr_fps; 2146 rate = i; 2147 } 2148 } 2149 2150 fi->numerator = 1; 2151 fi->denominator = best_fps; 2152 2153 find_mode: 2154 mode = ov5640_find_mode(sensor, rate, width, height, false); 2155 return mode ? rate : -EINVAL; 2156 } 2157 2158 static int ov5640_get_fmt(struct v4l2_subdev *sd, 2159 struct v4l2_subdev_pad_config *cfg, 2160 struct v4l2_subdev_format *format) 2161 { 2162 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2163 struct v4l2_mbus_framefmt *fmt; 2164 2165 if (format->pad != 0) 2166 return -EINVAL; 2167 2168 mutex_lock(&sensor->lock); 2169 2170 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2171 fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg, 2172 format->pad); 2173 else 2174 fmt = &sensor->fmt; 2175 2176 format->format = *fmt; 2177 2178 mutex_unlock(&sensor->lock); 2179 2180 return 0; 2181 } 2182 2183 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, 2184 struct v4l2_mbus_framefmt *fmt, 2185 enum ov5640_frame_rate fr, 2186 const struct ov5640_mode_info **new_mode) 2187 { 2188 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2189 const struct ov5640_mode_info *mode; 2190 int i; 2191 2192 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true); 2193 if (!mode) 2194 return -EINVAL; 2195 fmt->width = mode->hact; 2196 fmt->height = mode->vact; 2197 2198 if (new_mode) 2199 *new_mode = mode; 2200 2201 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++) 2202 if (ov5640_formats[i].code == fmt->code) 2203 break; 2204 if (i >= ARRAY_SIZE(ov5640_formats)) 2205 i = 0; 2206 2207 fmt->code = ov5640_formats[i].code; 2208 fmt->colorspace = ov5640_formats[i].colorspace; 2209 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2210 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2211 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2212 2213 return 0; 2214 } 2215 2216 static int ov5640_set_fmt(struct v4l2_subdev *sd, 2217 struct v4l2_subdev_pad_config *cfg, 2218 struct v4l2_subdev_format *format) 2219 { 2220 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2221 const struct ov5640_mode_info *new_mode; 2222 struct v4l2_mbus_framefmt *mbus_fmt = &format->format; 2223 struct v4l2_mbus_framefmt *fmt; 2224 int ret; 2225 2226 if (format->pad != 0) 2227 return -EINVAL; 2228 2229 mutex_lock(&sensor->lock); 2230 2231 if (sensor->streaming) { 2232 ret = -EBUSY; 2233 goto out; 2234 } 2235 2236 ret = ov5640_try_fmt_internal(sd, mbus_fmt, 2237 sensor->current_fr, &new_mode); 2238 if (ret) 2239 goto out; 2240 2241 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2242 fmt = v4l2_subdev_get_try_format(sd, cfg, 0); 2243 else 2244 fmt = &sensor->fmt; 2245 2246 *fmt = *mbus_fmt; 2247 2248 if (new_mode != sensor->current_mode) { 2249 sensor->current_mode = new_mode; 2250 sensor->pending_mode_change = true; 2251 } 2252 if (mbus_fmt->code != sensor->fmt.code) 2253 sensor->pending_fmt_change = true; 2254 2255 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, 2256 ov5640_calc_pixel_rate(sensor)); 2257 out: 2258 mutex_unlock(&sensor->lock); 2259 return ret; 2260 } 2261 2262 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 2263 struct v4l2_mbus_framefmt *format) 2264 { 2265 int ret = 0; 2266 bool is_jpeg = false; 2267 u8 fmt, mux; 2268 2269 switch (format->code) { 2270 case MEDIA_BUS_FMT_UYVY8_2X8: 2271 /* YUV422, UYVY */ 2272 fmt = 0x3f; 2273 mux = OV5640_FMT_MUX_YUV422; 2274 break; 2275 case MEDIA_BUS_FMT_YUYV8_2X8: 2276 /* YUV422, YUYV */ 2277 fmt = 0x30; 2278 mux = OV5640_FMT_MUX_YUV422; 2279 break; 2280 case MEDIA_BUS_FMT_RGB565_2X8_LE: 2281 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ 2282 fmt = 0x6F; 2283 mux = OV5640_FMT_MUX_RGB; 2284 break; 2285 case MEDIA_BUS_FMT_RGB565_2X8_BE: 2286 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ 2287 fmt = 0x61; 2288 mux = OV5640_FMT_MUX_RGB; 2289 break; 2290 case MEDIA_BUS_FMT_JPEG_1X8: 2291 /* YUV422, YUYV */ 2292 fmt = 0x30; 2293 mux = OV5640_FMT_MUX_YUV422; 2294 is_jpeg = true; 2295 break; 2296 case MEDIA_BUS_FMT_SBGGR8_1X8: 2297 /* Raw, BGBG... / GRGR... */ 2298 fmt = 0x00; 2299 mux = OV5640_FMT_MUX_RAW_DPC; 2300 break; 2301 case MEDIA_BUS_FMT_SGBRG8_1X8: 2302 /* Raw bayer, GBGB... / RGRG... */ 2303 fmt = 0x01; 2304 mux = OV5640_FMT_MUX_RAW_DPC; 2305 break; 2306 case MEDIA_BUS_FMT_SGRBG8_1X8: 2307 /* Raw bayer, GRGR... / BGBG... */ 2308 fmt = 0x02; 2309 mux = OV5640_FMT_MUX_RAW_DPC; 2310 break; 2311 case MEDIA_BUS_FMT_SRGGB8_1X8: 2312 /* Raw bayer, RGRG... / GBGB... */ 2313 fmt = 0x03; 2314 mux = OV5640_FMT_MUX_RAW_DPC; 2315 break; 2316 default: 2317 return -EINVAL; 2318 } 2319 2320 /* FORMAT CONTROL00: YUV and RGB formatting */ 2321 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt); 2322 if (ret) 2323 return ret; 2324 2325 /* FORMAT MUX CONTROL: ISP YUV or RGB */ 2326 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux); 2327 if (ret) 2328 return ret; 2329 2330 /* 2331 * TIMING TC REG21: 2332 * - [5]: JPEG enable 2333 */ 2334 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2335 BIT(5), is_jpeg ? BIT(5) : 0); 2336 if (ret) 2337 return ret; 2338 2339 /* 2340 * SYSTEM RESET02: 2341 * - [4]: Reset JFIFO 2342 * - [3]: Reset SFIFO 2343 * - [2]: Reset JPEG 2344 */ 2345 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, 2346 BIT(4) | BIT(3) | BIT(2), 2347 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); 2348 if (ret) 2349 return ret; 2350 2351 /* 2352 * CLOCK ENABLE02: 2353 * - [5]: Enable JPEG 2x clock 2354 * - [3]: Enable JPEG clock 2355 */ 2356 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, 2357 BIT(5) | BIT(3), 2358 is_jpeg ? (BIT(5) | BIT(3)) : 0); 2359 } 2360 2361 /* 2362 * Sensor Controls. 2363 */ 2364 2365 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) 2366 { 2367 int ret; 2368 2369 if (value) { 2370 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2371 BIT(0), BIT(0)); 2372 if (ret) 2373 return ret; 2374 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); 2375 } else { 2376 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); 2377 } 2378 2379 return ret; 2380 } 2381 2382 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) 2383 { 2384 int ret; 2385 2386 if (value) { 2387 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2388 BIT(2), BIT(2)); 2389 if (ret) 2390 return ret; 2391 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, 2392 value & 0xff); 2393 } else { 2394 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); 2395 } 2396 2397 return ret; 2398 } 2399 2400 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) 2401 { 2402 int ret; 2403 2404 if (value) { 2405 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2406 BIT(1), BIT(1)); 2407 if (ret) 2408 return ret; 2409 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, 2410 value & 0xff); 2411 if (ret) 2412 return ret; 2413 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, 2414 value & 0xff); 2415 } else { 2416 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); 2417 } 2418 2419 return ret; 2420 } 2421 2422 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) 2423 { 2424 int ret; 2425 2426 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, 2427 BIT(0), awb ? 0 : 1); 2428 if (ret) 2429 return ret; 2430 2431 if (!awb) { 2432 u16 red = (u16)sensor->ctrls.red_balance->val; 2433 u16 blue = (u16)sensor->ctrls.blue_balance->val; 2434 2435 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); 2436 if (ret) 2437 return ret; 2438 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); 2439 } 2440 2441 return ret; 2442 } 2443 2444 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, 2445 enum v4l2_exposure_auto_type auto_exposure) 2446 { 2447 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2448 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); 2449 int ret = 0; 2450 2451 if (ctrls->auto_exp->is_new) { 2452 ret = ov5640_set_autoexposure(sensor, auto_exp); 2453 if (ret) 2454 return ret; 2455 } 2456 2457 if (!auto_exp && ctrls->exposure->is_new) { 2458 u16 max_exp; 2459 2460 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, 2461 &max_exp); 2462 if (ret) 2463 return ret; 2464 ret = ov5640_get_vts(sensor); 2465 if (ret < 0) 2466 return ret; 2467 max_exp += ret; 2468 ret = 0; 2469 2470 if (ctrls->exposure->val < max_exp) 2471 ret = ov5640_set_exposure(sensor, ctrls->exposure->val); 2472 } 2473 2474 return ret; 2475 } 2476 2477 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) 2478 { 2479 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2480 int ret = 0; 2481 2482 if (ctrls->auto_gain->is_new) { 2483 ret = ov5640_set_autogain(sensor, auto_gain); 2484 if (ret) 2485 return ret; 2486 } 2487 2488 if (!auto_gain && ctrls->gain->is_new) 2489 ret = ov5640_set_gain(sensor, ctrls->gain->val); 2490 2491 return ret; 2492 } 2493 2494 static const char * const test_pattern_menu[] = { 2495 "Disabled", 2496 "Color bars", 2497 "Color bars w/ rolling bar", 2498 "Color squares", 2499 "Color squares w/ rolling bar", 2500 }; 2501 2502 #define OV5640_TEST_ENABLE BIT(7) 2503 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */ 2504 #define OV5640_TEST_TRANSPARENT BIT(5) 2505 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */ 2506 #define OV5640_TEST_BAR_STANDARD (0 << 2) 2507 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2) 2508 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2) 2509 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2) 2510 #define OV5640_TEST_BAR (0 << 0) 2511 #define OV5640_TEST_RANDOM (1 << 0) 2512 #define OV5640_TEST_SQUARE (2 << 0) 2513 #define OV5640_TEST_BLACK (3 << 0) 2514 2515 static const u8 test_pattern_val[] = { 2516 0, 2517 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 | 2518 OV5640_TEST_BAR, 2519 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | 2520 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, 2521 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE, 2522 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE, 2523 }; 2524 2525 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) 2526 { 2527 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, 2528 test_pattern_val[value]); 2529 } 2530 2531 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) 2532 { 2533 int ret; 2534 2535 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), 2536 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 2537 0 : BIT(7)); 2538 if (ret) 2539 return ret; 2540 2541 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), 2542 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? 2543 BIT(2) : 0); 2544 } 2545 2546 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) 2547 { 2548 /* 2549 * If sensor is mounted upside down, mirror logic is inversed. 2550 * 2551 * Sensor is a BSI (Back Side Illuminated) one, 2552 * so image captured is physically mirrored. 2553 * This is why mirror logic is inversed in 2554 * order to cancel this mirror effect. 2555 */ 2556 2557 /* 2558 * TIMING TC REG21: 2559 * - [2]: ISP mirror 2560 * - [1]: Sensor mirror 2561 */ 2562 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2563 BIT(2) | BIT(1), 2564 (!(value ^ sensor->upside_down)) ? 2565 (BIT(2) | BIT(1)) : 0); 2566 } 2567 2568 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) 2569 { 2570 /* If sensor is mounted upside down, flip logic is inversed */ 2571 2572 /* 2573 * TIMING TC REG20: 2574 * - [2]: ISP vflip 2575 * - [1]: Sensor vflip 2576 */ 2577 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 2578 BIT(2) | BIT(1), 2579 (value ^ sensor->upside_down) ? 2580 (BIT(2) | BIT(1)) : 0); 2581 } 2582 2583 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 2584 { 2585 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2586 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2587 int val; 2588 2589 /* v4l2_ctrl_lock() locks our own mutex */ 2590 2591 switch (ctrl->id) { 2592 case V4L2_CID_AUTOGAIN: 2593 val = ov5640_get_gain(sensor); 2594 if (val < 0) 2595 return val; 2596 sensor->ctrls.gain->val = val; 2597 break; 2598 case V4L2_CID_EXPOSURE_AUTO: 2599 val = ov5640_get_exposure(sensor); 2600 if (val < 0) 2601 return val; 2602 sensor->ctrls.exposure->val = val; 2603 break; 2604 } 2605 2606 return 0; 2607 } 2608 2609 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) 2610 { 2611 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2612 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2613 int ret; 2614 2615 /* v4l2_ctrl_lock() locks our own mutex */ 2616 2617 /* 2618 * If the device is not powered up by the host driver do 2619 * not apply any controls to H/W at this time. Instead 2620 * the controls will be restored right after power-up. 2621 */ 2622 if (sensor->power_count == 0) 2623 return 0; 2624 2625 switch (ctrl->id) { 2626 case V4L2_CID_AUTOGAIN: 2627 ret = ov5640_set_ctrl_gain(sensor, ctrl->val); 2628 break; 2629 case V4L2_CID_EXPOSURE_AUTO: 2630 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); 2631 break; 2632 case V4L2_CID_AUTO_WHITE_BALANCE: 2633 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); 2634 break; 2635 case V4L2_CID_HUE: 2636 ret = ov5640_set_ctrl_hue(sensor, ctrl->val); 2637 break; 2638 case V4L2_CID_CONTRAST: 2639 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); 2640 break; 2641 case V4L2_CID_SATURATION: 2642 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); 2643 break; 2644 case V4L2_CID_TEST_PATTERN: 2645 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); 2646 break; 2647 case V4L2_CID_POWER_LINE_FREQUENCY: 2648 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); 2649 break; 2650 case V4L2_CID_HFLIP: 2651 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); 2652 break; 2653 case V4L2_CID_VFLIP: 2654 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); 2655 break; 2656 default: 2657 ret = -EINVAL; 2658 break; 2659 } 2660 2661 return ret; 2662 } 2663 2664 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { 2665 .g_volatile_ctrl = ov5640_g_volatile_ctrl, 2666 .s_ctrl = ov5640_s_ctrl, 2667 }; 2668 2669 static int ov5640_init_controls(struct ov5640_dev *sensor) 2670 { 2671 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; 2672 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2673 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 2674 int ret; 2675 2676 v4l2_ctrl_handler_init(hdl, 32); 2677 2678 /* we can use our own mutex for the ctrl lock */ 2679 hdl->lock = &sensor->lock; 2680 2681 /* Clock related controls */ 2682 ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, 2683 0, INT_MAX, 1, 2684 ov5640_calc_pixel_rate(sensor)); 2685 2686 /* Auto/manual white balance */ 2687 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 2688 V4L2_CID_AUTO_WHITE_BALANCE, 2689 0, 1, 1, 1); 2690 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 2691 0, 4095, 1, 0); 2692 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 2693 0, 4095, 1, 0); 2694 /* Auto/manual exposure */ 2695 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 2696 V4L2_CID_EXPOSURE_AUTO, 2697 V4L2_EXPOSURE_MANUAL, 0, 2698 V4L2_EXPOSURE_AUTO); 2699 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 2700 0, 65535, 1, 0); 2701 /* Auto/manual gain */ 2702 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 2703 0, 1, 1, 1); 2704 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 2705 0, 1023, 1, 0); 2706 2707 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 2708 0, 255, 1, 64); 2709 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 2710 0, 359, 1, 0); 2711 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 2712 0, 255, 1, 0); 2713 ctrls->test_pattern = 2714 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 2715 ARRAY_SIZE(test_pattern_menu) - 1, 2716 0, 0, test_pattern_menu); 2717 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 2718 0, 1, 1, 0); 2719 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 2720 0, 1, 1, 0); 2721 2722 ctrls->light_freq = 2723 v4l2_ctrl_new_std_menu(hdl, ops, 2724 V4L2_CID_POWER_LINE_FREQUENCY, 2725 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 2726 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 2727 2728 if (hdl->error) { 2729 ret = hdl->error; 2730 goto free_ctrls; 2731 } 2732 2733 ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY; 2734 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 2735 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 2736 2737 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 2738 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 2739 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 2740 2741 sensor->sd.ctrl_handler = hdl; 2742 return 0; 2743 2744 free_ctrls: 2745 v4l2_ctrl_handler_free(hdl); 2746 return ret; 2747 } 2748 2749 static int ov5640_enum_frame_size(struct v4l2_subdev *sd, 2750 struct v4l2_subdev_pad_config *cfg, 2751 struct v4l2_subdev_frame_size_enum *fse) 2752 { 2753 if (fse->pad != 0) 2754 return -EINVAL; 2755 if (fse->index >= OV5640_NUM_MODES) 2756 return -EINVAL; 2757 2758 fse->min_width = 2759 ov5640_mode_data[fse->index].hact; 2760 fse->max_width = fse->min_width; 2761 fse->min_height = 2762 ov5640_mode_data[fse->index].vact; 2763 fse->max_height = fse->min_height; 2764 2765 return 0; 2766 } 2767 2768 static int ov5640_enum_frame_interval( 2769 struct v4l2_subdev *sd, 2770 struct v4l2_subdev_pad_config *cfg, 2771 struct v4l2_subdev_frame_interval_enum *fie) 2772 { 2773 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2774 struct v4l2_fract tpf; 2775 int ret; 2776 2777 if (fie->pad != 0) 2778 return -EINVAL; 2779 if (fie->index >= OV5640_NUM_FRAMERATES) 2780 return -EINVAL; 2781 2782 tpf.numerator = 1; 2783 tpf.denominator = ov5640_framerates[fie->index]; 2784 2785 ret = ov5640_try_frame_interval(sensor, &tpf, 2786 fie->width, fie->height); 2787 if (ret < 0) 2788 return -EINVAL; 2789 2790 fie->interval = tpf; 2791 return 0; 2792 } 2793 2794 static int ov5640_g_frame_interval(struct v4l2_subdev *sd, 2795 struct v4l2_subdev_frame_interval *fi) 2796 { 2797 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2798 2799 mutex_lock(&sensor->lock); 2800 fi->interval = sensor->frame_interval; 2801 mutex_unlock(&sensor->lock); 2802 2803 return 0; 2804 } 2805 2806 static int ov5640_s_frame_interval(struct v4l2_subdev *sd, 2807 struct v4l2_subdev_frame_interval *fi) 2808 { 2809 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2810 const struct ov5640_mode_info *mode; 2811 int frame_rate, ret = 0; 2812 2813 if (fi->pad != 0) 2814 return -EINVAL; 2815 2816 mutex_lock(&sensor->lock); 2817 2818 if (sensor->streaming) { 2819 ret = -EBUSY; 2820 goto out; 2821 } 2822 2823 mode = sensor->current_mode; 2824 2825 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, 2826 mode->hact, mode->vact); 2827 if (frame_rate < 0) { 2828 /* Always return a valid frame interval value */ 2829 fi->interval = sensor->frame_interval; 2830 goto out; 2831 } 2832 2833 mode = ov5640_find_mode(sensor, frame_rate, mode->hact, 2834 mode->vact, true); 2835 if (!mode) { 2836 ret = -EINVAL; 2837 goto out; 2838 } 2839 2840 if (mode != sensor->current_mode || 2841 frame_rate != sensor->current_fr) { 2842 sensor->current_fr = frame_rate; 2843 sensor->frame_interval = fi->interval; 2844 sensor->current_mode = mode; 2845 sensor->pending_mode_change = true; 2846 2847 __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, 2848 ov5640_calc_pixel_rate(sensor)); 2849 } 2850 out: 2851 mutex_unlock(&sensor->lock); 2852 return ret; 2853 } 2854 2855 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, 2856 struct v4l2_subdev_pad_config *cfg, 2857 struct v4l2_subdev_mbus_code_enum *code) 2858 { 2859 if (code->pad != 0) 2860 return -EINVAL; 2861 if (code->index >= ARRAY_SIZE(ov5640_formats)) 2862 return -EINVAL; 2863 2864 code->code = ov5640_formats[code->index].code; 2865 return 0; 2866 } 2867 2868 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) 2869 { 2870 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2871 int ret = 0; 2872 2873 mutex_lock(&sensor->lock); 2874 2875 if (sensor->streaming == !enable) { 2876 if (enable && sensor->pending_mode_change) { 2877 ret = ov5640_set_mode(sensor); 2878 if (ret) 2879 goto out; 2880 } 2881 2882 if (enable && sensor->pending_fmt_change) { 2883 ret = ov5640_set_framefmt(sensor, &sensor->fmt); 2884 if (ret) 2885 goto out; 2886 sensor->pending_fmt_change = false; 2887 } 2888 2889 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2890 ret = ov5640_set_stream_mipi(sensor, enable); 2891 else 2892 ret = ov5640_set_stream_dvp(sensor, enable); 2893 2894 if (!ret) 2895 sensor->streaming = enable; 2896 } 2897 out: 2898 mutex_unlock(&sensor->lock); 2899 return ret; 2900 } 2901 2902 static const struct v4l2_subdev_core_ops ov5640_core_ops = { 2903 .s_power = ov5640_s_power, 2904 .log_status = v4l2_ctrl_subdev_log_status, 2905 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 2906 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2907 }; 2908 2909 static const struct v4l2_subdev_video_ops ov5640_video_ops = { 2910 .g_frame_interval = ov5640_g_frame_interval, 2911 .s_frame_interval = ov5640_s_frame_interval, 2912 .s_stream = ov5640_s_stream, 2913 }; 2914 2915 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { 2916 .enum_mbus_code = ov5640_enum_mbus_code, 2917 .get_fmt = ov5640_get_fmt, 2918 .set_fmt = ov5640_set_fmt, 2919 .enum_frame_size = ov5640_enum_frame_size, 2920 .enum_frame_interval = ov5640_enum_frame_interval, 2921 }; 2922 2923 static const struct v4l2_subdev_ops ov5640_subdev_ops = { 2924 .core = &ov5640_core_ops, 2925 .video = &ov5640_video_ops, 2926 .pad = &ov5640_pad_ops, 2927 }; 2928 2929 static int ov5640_get_regulators(struct ov5640_dev *sensor) 2930 { 2931 int i; 2932 2933 for (i = 0; i < OV5640_NUM_SUPPLIES; i++) 2934 sensor->supplies[i].supply = ov5640_supply_name[i]; 2935 2936 return devm_regulator_bulk_get(&sensor->i2c_client->dev, 2937 OV5640_NUM_SUPPLIES, 2938 sensor->supplies); 2939 } 2940 2941 static int ov5640_check_chip_id(struct ov5640_dev *sensor) 2942 { 2943 struct i2c_client *client = sensor->i2c_client; 2944 int ret = 0; 2945 u16 chip_id; 2946 2947 ret = ov5640_set_power_on(sensor); 2948 if (ret) 2949 return ret; 2950 2951 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); 2952 if (ret) { 2953 dev_err(&client->dev, "%s: failed to read chip identifier\n", 2954 __func__); 2955 goto power_off; 2956 } 2957 2958 if (chip_id != 0x5640) { 2959 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", 2960 __func__, chip_id); 2961 ret = -ENXIO; 2962 } 2963 2964 power_off: 2965 ov5640_set_power_off(sensor); 2966 return ret; 2967 } 2968 2969 static int ov5640_probe(struct i2c_client *client) 2970 { 2971 struct device *dev = &client->dev; 2972 struct fwnode_handle *endpoint; 2973 struct ov5640_dev *sensor; 2974 struct v4l2_mbus_framefmt *fmt; 2975 u32 rotation; 2976 int ret; 2977 2978 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); 2979 if (!sensor) 2980 return -ENOMEM; 2981 2982 sensor->i2c_client = client; 2983 2984 /* 2985 * default init sequence initialize sensor to 2986 * YUV422 UYVY VGA@30fps 2987 */ 2988 fmt = &sensor->fmt; 2989 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; 2990 fmt->colorspace = V4L2_COLORSPACE_SRGB; 2991 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2992 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2993 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2994 fmt->width = 640; 2995 fmt->height = 480; 2996 fmt->field = V4L2_FIELD_NONE; 2997 sensor->frame_interval.numerator = 1; 2998 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; 2999 sensor->current_fr = OV5640_30_FPS; 3000 sensor->current_mode = 3001 &ov5640_mode_data[OV5640_MODE_VGA_640_480]; 3002 sensor->last_mode = sensor->current_mode; 3003 3004 sensor->ae_target = 52; 3005 3006 /* optional indication of physical rotation of sensor */ 3007 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation", 3008 &rotation); 3009 if (!ret) { 3010 switch (rotation) { 3011 case 180: 3012 sensor->upside_down = true; 3013 /* fall through */ 3014 case 0: 3015 break; 3016 default: 3017 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n", 3018 rotation); 3019 } 3020 } 3021 3022 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), 3023 NULL); 3024 if (!endpoint) { 3025 dev_err(dev, "endpoint node not found\n"); 3026 return -EINVAL; 3027 } 3028 3029 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); 3030 fwnode_handle_put(endpoint); 3031 if (ret) { 3032 dev_err(dev, "Could not parse endpoint\n"); 3033 return ret; 3034 } 3035 3036 /* get system clock (xclk) */ 3037 sensor->xclk = devm_clk_get(dev, "xclk"); 3038 if (IS_ERR(sensor->xclk)) { 3039 dev_err(dev, "failed to get xclk\n"); 3040 return PTR_ERR(sensor->xclk); 3041 } 3042 3043 sensor->xclk_freq = clk_get_rate(sensor->xclk); 3044 if (sensor->xclk_freq < OV5640_XCLK_MIN || 3045 sensor->xclk_freq > OV5640_XCLK_MAX) { 3046 dev_err(dev, "xclk frequency out of range: %d Hz\n", 3047 sensor->xclk_freq); 3048 return -EINVAL; 3049 } 3050 3051 /* request optional power down pin */ 3052 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", 3053 GPIOD_OUT_HIGH); 3054 if (IS_ERR(sensor->pwdn_gpio)) 3055 return PTR_ERR(sensor->pwdn_gpio); 3056 3057 /* request optional reset pin */ 3058 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", 3059 GPIOD_OUT_HIGH); 3060 if (IS_ERR(sensor->reset_gpio)) 3061 return PTR_ERR(sensor->reset_gpio); 3062 3063 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); 3064 3065 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 3066 V4L2_SUBDEV_FL_HAS_EVENTS; 3067 sensor->pad.flags = MEDIA_PAD_FL_SOURCE; 3068 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 3069 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); 3070 if (ret) 3071 return ret; 3072 3073 ret = ov5640_get_regulators(sensor); 3074 if (ret) 3075 return ret; 3076 3077 mutex_init(&sensor->lock); 3078 3079 ret = ov5640_check_chip_id(sensor); 3080 if (ret) 3081 goto entity_cleanup; 3082 3083 ret = ov5640_init_controls(sensor); 3084 if (ret) 3085 goto entity_cleanup; 3086 3087 ret = v4l2_async_register_subdev_sensor_common(&sensor->sd); 3088 if (ret) 3089 goto free_ctrls; 3090 3091 return 0; 3092 3093 free_ctrls: 3094 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3095 entity_cleanup: 3096 media_entity_cleanup(&sensor->sd.entity); 3097 mutex_destroy(&sensor->lock); 3098 return ret; 3099 } 3100 3101 static int ov5640_remove(struct i2c_client *client) 3102 { 3103 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3104 struct ov5640_dev *sensor = to_ov5640_dev(sd); 3105 3106 v4l2_async_unregister_subdev(&sensor->sd); 3107 media_entity_cleanup(&sensor->sd.entity); 3108 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3109 mutex_destroy(&sensor->lock); 3110 3111 return 0; 3112 } 3113 3114 static const struct i2c_device_id ov5640_id[] = { 3115 {"ov5640", 0}, 3116 {}, 3117 }; 3118 MODULE_DEVICE_TABLE(i2c, ov5640_id); 3119 3120 static const struct of_device_id ov5640_dt_ids[] = { 3121 { .compatible = "ovti,ov5640" }, 3122 { /* sentinel */ } 3123 }; 3124 MODULE_DEVICE_TABLE(of, ov5640_dt_ids); 3125 3126 static struct i2c_driver ov5640_i2c_driver = { 3127 .driver = { 3128 .name = "ov5640", 3129 .of_match_table = ov5640_dt_ids, 3130 }, 3131 .id_table = ov5640_id, 3132 .probe_new = ov5640_probe, 3133 .remove = ov5640_remove, 3134 }; 3135 3136 module_i2c_driver(ov5640_i2c_driver); 3137 3138 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); 3139 MODULE_LICENSE("GPL"); 3140