xref: /openbmc/linux/drivers/media/i2c/ov5640.c (revision 99a15348)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright (C) 2014-2017 Mentor Graphics Inc.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/clkdev.h>
10 #include <linux/ctype.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <media/v4l2-async.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-event.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-subdev.h>
27 
28 /* min/typical/max system clock (xclk) frequencies */
29 #define OV5640_XCLK_MIN  6000000
30 #define OV5640_XCLK_MAX 54000000
31 
32 #define OV5640_DEFAULT_SLAVE_ID 0x3c
33 
34 #define OV5640_REG_SYS_RESET02		0x3002
35 #define OV5640_REG_SYS_CLOCK_ENABLE02	0x3006
36 #define OV5640_REG_SYS_CTRL0		0x3008
37 #define OV5640_REG_SYS_CTRL0_SW_PWDN	0x42
38 #define OV5640_REG_SYS_CTRL0_SW_PWUP	0x02
39 #define OV5640_REG_CHIP_ID		0x300a
40 #define OV5640_REG_IO_MIPI_CTRL00	0x300e
41 #define OV5640_REG_PAD_OUTPUT_ENABLE01	0x3017
42 #define OV5640_REG_PAD_OUTPUT_ENABLE02	0x3018
43 #define OV5640_REG_PAD_OUTPUT00		0x3019
44 #define OV5640_REG_SYSTEM_CONTROL1	0x302e
45 #define OV5640_REG_SC_PLL_CTRL0		0x3034
46 #define OV5640_REG_SC_PLL_CTRL1		0x3035
47 #define OV5640_REG_SC_PLL_CTRL2		0x3036
48 #define OV5640_REG_SC_PLL_CTRL3		0x3037
49 #define OV5640_REG_SLAVE_ID		0x3100
50 #define OV5640_REG_SCCB_SYS_CTRL1	0x3103
51 #define OV5640_REG_SYS_ROOT_DIVIDER	0x3108
52 #define OV5640_REG_AWB_R_GAIN		0x3400
53 #define OV5640_REG_AWB_G_GAIN		0x3402
54 #define OV5640_REG_AWB_B_GAIN		0x3404
55 #define OV5640_REG_AWB_MANUAL_CTRL	0x3406
56 #define OV5640_REG_AEC_PK_EXPOSURE_HI	0x3500
57 #define OV5640_REG_AEC_PK_EXPOSURE_MED	0x3501
58 #define OV5640_REG_AEC_PK_EXPOSURE_LO	0x3502
59 #define OV5640_REG_AEC_PK_MANUAL	0x3503
60 #define OV5640_REG_AEC_PK_REAL_GAIN	0x350a
61 #define OV5640_REG_AEC_PK_VTS		0x350c
62 #define OV5640_REG_TIMING_DVPHO		0x3808
63 #define OV5640_REG_TIMING_DVPVO		0x380a
64 #define OV5640_REG_TIMING_HTS		0x380c
65 #define OV5640_REG_TIMING_VTS		0x380e
66 #define OV5640_REG_TIMING_TC_REG20	0x3820
67 #define OV5640_REG_TIMING_TC_REG21	0x3821
68 #define OV5640_REG_AEC_CTRL00		0x3a00
69 #define OV5640_REG_AEC_B50_STEP		0x3a08
70 #define OV5640_REG_AEC_B60_STEP		0x3a0a
71 #define OV5640_REG_AEC_CTRL0D		0x3a0d
72 #define OV5640_REG_AEC_CTRL0E		0x3a0e
73 #define OV5640_REG_AEC_CTRL0F		0x3a0f
74 #define OV5640_REG_AEC_CTRL10		0x3a10
75 #define OV5640_REG_AEC_CTRL11		0x3a11
76 #define OV5640_REG_AEC_CTRL1B		0x3a1b
77 #define OV5640_REG_AEC_CTRL1E		0x3a1e
78 #define OV5640_REG_AEC_CTRL1F		0x3a1f
79 #define OV5640_REG_HZ5060_CTRL00	0x3c00
80 #define OV5640_REG_HZ5060_CTRL01	0x3c01
81 #define OV5640_REG_SIGMADELTA_CTRL0C	0x3c0c
82 #define OV5640_REG_FRAME_CTRL01		0x4202
83 #define OV5640_REG_FORMAT_CONTROL00	0x4300
84 #define OV5640_REG_VFIFO_HSIZE		0x4602
85 #define OV5640_REG_VFIFO_VSIZE		0x4604
86 #define OV5640_REG_JPG_MODE_SELECT	0x4713
87 #define OV5640_REG_CCIR656_CTRL00	0x4730
88 #define OV5640_REG_POLARITY_CTRL00	0x4740
89 #define OV5640_REG_MIPI_CTRL00		0x4800
90 #define OV5640_REG_DEBUG_MODE		0x4814
91 #define OV5640_REG_ISP_FORMAT_MUX_CTRL	0x501f
92 #define OV5640_REG_PRE_ISP_TEST_SET1	0x503d
93 #define OV5640_REG_SDE_CTRL0		0x5580
94 #define OV5640_REG_SDE_CTRL1		0x5581
95 #define OV5640_REG_SDE_CTRL3		0x5583
96 #define OV5640_REG_SDE_CTRL4		0x5584
97 #define OV5640_REG_SDE_CTRL5		0x5585
98 #define OV5640_REG_AVG_READOUT		0x56a1
99 
100 enum ov5640_mode_id {
101 	OV5640_MODE_QQVGA_160_120 = 0,
102 	OV5640_MODE_QCIF_176_144,
103 	OV5640_MODE_QVGA_320_240,
104 	OV5640_MODE_VGA_640_480,
105 	OV5640_MODE_NTSC_720_480,
106 	OV5640_MODE_PAL_720_576,
107 	OV5640_MODE_XGA_1024_768,
108 	OV5640_MODE_720P_1280_720,
109 	OV5640_MODE_1080P_1920_1080,
110 	OV5640_MODE_QSXGA_2592_1944,
111 	OV5640_NUM_MODES,
112 };
113 
114 enum ov5640_frame_rate {
115 	OV5640_15_FPS = 0,
116 	OV5640_30_FPS,
117 	OV5640_60_FPS,
118 	OV5640_NUM_FRAMERATES,
119 };
120 
121 enum ov5640_format_mux {
122 	OV5640_FMT_MUX_YUV422 = 0,
123 	OV5640_FMT_MUX_RGB,
124 	OV5640_FMT_MUX_DITHER,
125 	OV5640_FMT_MUX_RAW_DPC,
126 	OV5640_FMT_MUX_SNR_RAW,
127 	OV5640_FMT_MUX_RAW_CIP,
128 };
129 
130 struct ov5640_pixfmt {
131 	u32 code;
132 	u32 colorspace;
133 };
134 
135 static const struct ov5640_pixfmt ov5640_formats[] = {
136 	{ MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
137 	{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
138 	{ MEDIA_BUS_FMT_UYVY8_1X16, V4L2_COLORSPACE_SRGB, },
139 	{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
140 	{ MEDIA_BUS_FMT_YUYV8_1X16, V4L2_COLORSPACE_SRGB, },
141 	{ MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
142 	{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
143 	{ MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
144 	{ MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
145 	{ MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
146 	{ MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
147 };
148 
149 /*
150  * FIXME: remove this when a subdev API becomes available
151  * to set the MIPI CSI-2 virtual channel.
152  */
153 static unsigned int virtual_channel;
154 module_param(virtual_channel, uint, 0444);
155 MODULE_PARM_DESC(virtual_channel,
156 		 "MIPI CSI-2 virtual channel (0..3), default 0");
157 
158 static const int ov5640_framerates[] = {
159 	[OV5640_15_FPS] = 15,
160 	[OV5640_30_FPS] = 30,
161 	[OV5640_60_FPS] = 60,
162 };
163 
164 /* regulator supplies */
165 static const char * const ov5640_supply_name[] = {
166 	"DOVDD", /* Digital I/O (1.8V) supply */
167 	"AVDD",  /* Analog (2.8V) supply */
168 	"DVDD",  /* Digital Core (1.5V) supply */
169 };
170 
171 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
172 
173 /*
174  * Image size under 1280 * 960 are SUBSAMPLING
175  * Image size upper 1280 * 960 are SCALING
176  */
177 enum ov5640_downsize_mode {
178 	SUBSAMPLING,
179 	SCALING,
180 };
181 
182 struct reg_value {
183 	u16 reg_addr;
184 	u8 val;
185 	u8 mask;
186 	u32 delay_ms;
187 };
188 
189 struct ov5640_mode_info {
190 	enum ov5640_mode_id id;
191 	enum ov5640_downsize_mode dn_mode;
192 	u32 hact;
193 	u32 htot;
194 	u32 vact;
195 	u32 vtot;
196 	const struct reg_value *reg_data;
197 	u32 reg_data_size;
198 	u32 max_fps;
199 };
200 
201 struct ov5640_ctrls {
202 	struct v4l2_ctrl_handler handler;
203 	struct v4l2_ctrl *pixel_rate;
204 	struct {
205 		struct v4l2_ctrl *auto_exp;
206 		struct v4l2_ctrl *exposure;
207 	};
208 	struct {
209 		struct v4l2_ctrl *auto_wb;
210 		struct v4l2_ctrl *blue_balance;
211 		struct v4l2_ctrl *red_balance;
212 	};
213 	struct {
214 		struct v4l2_ctrl *auto_gain;
215 		struct v4l2_ctrl *gain;
216 	};
217 	struct v4l2_ctrl *brightness;
218 	struct v4l2_ctrl *light_freq;
219 	struct v4l2_ctrl *saturation;
220 	struct v4l2_ctrl *contrast;
221 	struct v4l2_ctrl *hue;
222 	struct v4l2_ctrl *test_pattern;
223 	struct v4l2_ctrl *hflip;
224 	struct v4l2_ctrl *vflip;
225 };
226 
227 struct ov5640_dev {
228 	struct i2c_client *i2c_client;
229 	struct v4l2_subdev sd;
230 	struct media_pad pad;
231 	struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
232 	struct clk *xclk; /* system clock to OV5640 */
233 	u32 xclk_freq;
234 
235 	struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
236 	struct gpio_desc *reset_gpio;
237 	struct gpio_desc *pwdn_gpio;
238 	bool   upside_down;
239 
240 	/* lock to protect all members below */
241 	struct mutex lock;
242 
243 	int power_count;
244 
245 	struct v4l2_mbus_framefmt fmt;
246 	bool pending_fmt_change;
247 
248 	const struct ov5640_mode_info *current_mode;
249 	const struct ov5640_mode_info *last_mode;
250 	enum ov5640_frame_rate current_fr;
251 	struct v4l2_fract frame_interval;
252 
253 	struct ov5640_ctrls ctrls;
254 
255 	u32 prev_sysclk, prev_hts;
256 	u32 ae_low, ae_high, ae_target;
257 
258 	bool pending_mode_change;
259 	bool streaming;
260 };
261 
262 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
263 {
264 	return container_of(sd, struct ov5640_dev, sd);
265 }
266 
267 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
268 {
269 	return &container_of(ctrl->handler, struct ov5640_dev,
270 			     ctrls.handler)->sd;
271 }
272 
273 /*
274  * FIXME: all of these register tables are likely filled with
275  * entries that set the register to their power-on default values,
276  * and which are otherwise not touched by this driver. Those entries
277  * should be identified and removed to speed register load time
278  * over i2c.
279  */
280 /* YUV422 UYVY VGA@30fps */
281 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
282 	{0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
283 	{0x3103, 0x03, 0, 0}, {0x3630, 0x36, 0, 0},
284 	{0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
285 	{0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
286 	{0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
287 	{0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
288 	{0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
289 	{0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
290 	{0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
291 	{0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
292 	{0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
293 	{0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
294 	{0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
295 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
296 	{0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
297 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
298 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
299 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
300 	{0x3810, 0x00, 0, 0},
301 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
302 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
303 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
304 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
305 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
306 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
307 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
308 	{0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
309 	{0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
310 	{0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
311 	{0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
312 	{0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
313 	{0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
314 	{0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
315 	{0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
316 	{0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
317 	{0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
318 	{0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
319 	{0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
320 	{0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
321 	{0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
322 	{0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
323 	{0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
324 	{0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
325 	{0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
326 	{0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
327 	{0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
328 	{0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
329 	{0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
330 	{0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
331 	{0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
332 	{0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
333 	{0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
334 	{0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
335 	{0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
336 	{0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
337 	{0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
338 	{0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
339 	{0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
340 	{0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
341 	{0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
342 	{0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
343 	{0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
344 	{0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
345 	{0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
346 	{0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
347 	{0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
348 	{0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
349 	{0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
350 	{0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
351 	{0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
352 	{0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
353 	{0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
354 	{0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
355 	{0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
356 	{0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
357 	{0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
358 	{0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
359 	{0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
360 	{0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
361 	{0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
362 	{0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
363 };
364 
365 static const struct reg_value ov5640_setting_VGA_640_480[] = {
366 	{0x3c07, 0x08, 0, 0},
367 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
368 	{0x3814, 0x31, 0, 0},
369 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
370 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
371 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
372 	{0x3810, 0x00, 0, 0},
373 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
374 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
375 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
376 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
377 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
378 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
379 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
380 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
381 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
382 };
383 
384 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
385 	{0x3c07, 0x08, 0, 0},
386 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
387 	{0x3814, 0x31, 0, 0},
388 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
389 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
390 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
391 	{0x3810, 0x00, 0, 0},
392 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
393 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
394 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
395 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
396 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
397 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
398 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
399 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
400 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
401 };
402 
403 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
404 	{0x3c07, 0x08, 0, 0},
405 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
406 	{0x3814, 0x31, 0, 0},
407 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
408 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
409 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
410 	{0x3810, 0x00, 0, 0},
411 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
412 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
413 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
414 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
415 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
416 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
417 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
418 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
419 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
420 };
421 
422 static const struct reg_value ov5640_setting_QQVGA_160_120[] = {
423 	{0x3c07, 0x08, 0, 0},
424 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
425 	{0x3814, 0x31, 0, 0},
426 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
427 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
428 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
429 	{0x3810, 0x00, 0, 0},
430 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
431 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
432 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
433 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
434 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
435 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
436 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
437 	{0x4407, 0x04, 0, 0}, {0x5001, 0xa3, 0, 0},
438 };
439 
440 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
441 	{0x3c07, 0x08, 0, 0},
442 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
443 	{0x3814, 0x31, 0, 0},
444 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
445 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
446 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
447 	{0x3810, 0x00, 0, 0},
448 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
449 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
450 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
451 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
452 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
453 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
454 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
455 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
456 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
457 };
458 
459 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
460 	{0x3c07, 0x08, 0, 0},
461 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
462 	{0x3814, 0x31, 0, 0},
463 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
464 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
465 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
466 	{0x3810, 0x00, 0, 0},
467 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
468 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
469 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
470 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
471 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
472 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
473 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
474 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
475 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
476 };
477 
478 static const struct reg_value ov5640_setting_PAL_720_576[] = {
479 	{0x3c07, 0x08, 0, 0},
480 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
481 	{0x3814, 0x31, 0, 0},
482 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
483 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
484 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
485 	{0x3810, 0x00, 0, 0},
486 	{0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
487 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
488 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
489 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
490 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
491 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
492 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
493 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
494 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
495 };
496 
497 static const struct reg_value ov5640_setting_720P_1280_720[] = {
498 	{0x3c07, 0x07, 0, 0},
499 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
500 	{0x3814, 0x31, 0, 0},
501 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
502 	{0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
503 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
504 	{0x3810, 0x00, 0, 0},
505 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
506 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
507 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
508 	{0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
509 	{0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
510 	{0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
511 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
512 	{0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
513 	{0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
514 };
515 
516 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
517 	{0x3c07, 0x08, 0, 0},
518 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
519 	{0x3814, 0x11, 0, 0},
520 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
521 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
522 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
523 	{0x3810, 0x00, 0, 0},
524 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
525 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
526 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
527 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
528 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
529 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
530 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
531 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
532 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
533 	{0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
534 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
535 	{0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
536 	{0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
537 	{0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
538 	{0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
539 	{0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
540 	{0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
541 	{0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
542 	{0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
543 	{0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
544 	{0x4005, 0x1a, 0, 0},
545 };
546 
547 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
548 	{0x3c07, 0x08, 0, 0},
549 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
550 	{0x3814, 0x11, 0, 0},
551 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
552 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
553 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
554 	{0x3810, 0x00, 0, 0},
555 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
556 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
557 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
558 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
559 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
560 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
561 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
562 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
563 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
564 };
565 
566 /* power-on sensor init reg table */
567 static const struct ov5640_mode_info ov5640_mode_init_data = {
568 	0, SUBSAMPLING, 640, 1896, 480, 984,
569 	ov5640_init_setting_30fps_VGA,
570 	ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
571 	OV5640_30_FPS,
572 };
573 
574 static const struct ov5640_mode_info
575 ov5640_mode_data[OV5640_NUM_MODES] = {
576 	{OV5640_MODE_QQVGA_160_120, SUBSAMPLING,
577 	 160, 1896, 120, 984,
578 	 ov5640_setting_QQVGA_160_120,
579 	 ARRAY_SIZE(ov5640_setting_QQVGA_160_120),
580 	 OV5640_30_FPS},
581 	{OV5640_MODE_QCIF_176_144, SUBSAMPLING,
582 	 176, 1896, 144, 984,
583 	 ov5640_setting_QCIF_176_144,
584 	 ARRAY_SIZE(ov5640_setting_QCIF_176_144),
585 	 OV5640_30_FPS},
586 	{OV5640_MODE_QVGA_320_240, SUBSAMPLING,
587 	 320, 1896, 240, 984,
588 	 ov5640_setting_QVGA_320_240,
589 	 ARRAY_SIZE(ov5640_setting_QVGA_320_240),
590 	 OV5640_30_FPS},
591 	{OV5640_MODE_VGA_640_480, SUBSAMPLING,
592 	 640, 1896, 480, 1080,
593 	 ov5640_setting_VGA_640_480,
594 	 ARRAY_SIZE(ov5640_setting_VGA_640_480),
595 	 OV5640_60_FPS},
596 	{OV5640_MODE_NTSC_720_480, SUBSAMPLING,
597 	 720, 1896, 480, 984,
598 	 ov5640_setting_NTSC_720_480,
599 	 ARRAY_SIZE(ov5640_setting_NTSC_720_480),
600 	OV5640_30_FPS},
601 	{OV5640_MODE_PAL_720_576, SUBSAMPLING,
602 	 720, 1896, 576, 984,
603 	 ov5640_setting_PAL_720_576,
604 	 ARRAY_SIZE(ov5640_setting_PAL_720_576),
605 	 OV5640_30_FPS},
606 	{OV5640_MODE_XGA_1024_768, SUBSAMPLING,
607 	 1024, 1896, 768, 1080,
608 	 ov5640_setting_XGA_1024_768,
609 	 ARRAY_SIZE(ov5640_setting_XGA_1024_768),
610 	 OV5640_30_FPS},
611 	{OV5640_MODE_720P_1280_720, SUBSAMPLING,
612 	 1280, 1892, 720, 740,
613 	 ov5640_setting_720P_1280_720,
614 	 ARRAY_SIZE(ov5640_setting_720P_1280_720),
615 	 OV5640_30_FPS},
616 	{OV5640_MODE_1080P_1920_1080, SCALING,
617 	 1920, 2500, 1080, 1120,
618 	 ov5640_setting_1080P_1920_1080,
619 	 ARRAY_SIZE(ov5640_setting_1080P_1920_1080),
620 	 OV5640_30_FPS},
621 	{OV5640_MODE_QSXGA_2592_1944, SCALING,
622 	 2592, 2844, 1944, 1968,
623 	 ov5640_setting_QSXGA_2592_1944,
624 	 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944),
625 	 OV5640_15_FPS},
626 };
627 
628 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
629 {
630 	struct i2c_client *client = sensor->i2c_client;
631 	struct i2c_msg msg;
632 	u8 buf[3];
633 	int ret;
634 
635 	if (client->addr == OV5640_DEFAULT_SLAVE_ID)
636 		return 0;
637 
638 	buf[0] = OV5640_REG_SLAVE_ID >> 8;
639 	buf[1] = OV5640_REG_SLAVE_ID & 0xff;
640 	buf[2] = client->addr << 1;
641 
642 	msg.addr = OV5640_DEFAULT_SLAVE_ID;
643 	msg.flags = 0;
644 	msg.buf = buf;
645 	msg.len = sizeof(buf);
646 
647 	ret = i2c_transfer(client->adapter, &msg, 1);
648 	if (ret < 0) {
649 		dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
650 		return ret;
651 	}
652 
653 	return 0;
654 }
655 
656 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
657 {
658 	struct i2c_client *client = sensor->i2c_client;
659 	struct i2c_msg msg;
660 	u8 buf[3];
661 	int ret;
662 
663 	buf[0] = reg >> 8;
664 	buf[1] = reg & 0xff;
665 	buf[2] = val;
666 
667 	msg.addr = client->addr;
668 	msg.flags = client->flags;
669 	msg.buf = buf;
670 	msg.len = sizeof(buf);
671 
672 	ret = i2c_transfer(client->adapter, &msg, 1);
673 	if (ret < 0) {
674 		dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
675 			__func__, reg, val);
676 		return ret;
677 	}
678 
679 	return 0;
680 }
681 
682 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
683 {
684 	struct i2c_client *client = sensor->i2c_client;
685 	struct i2c_msg msg[2];
686 	u8 buf[2];
687 	int ret;
688 
689 	buf[0] = reg >> 8;
690 	buf[1] = reg & 0xff;
691 
692 	msg[0].addr = client->addr;
693 	msg[0].flags = client->flags;
694 	msg[0].buf = buf;
695 	msg[0].len = sizeof(buf);
696 
697 	msg[1].addr = client->addr;
698 	msg[1].flags = client->flags | I2C_M_RD;
699 	msg[1].buf = buf;
700 	msg[1].len = 1;
701 
702 	ret = i2c_transfer(client->adapter, msg, 2);
703 	if (ret < 0) {
704 		dev_err(&client->dev, "%s: error: reg=%x\n",
705 			__func__, reg);
706 		return ret;
707 	}
708 
709 	*val = buf[0];
710 	return 0;
711 }
712 
713 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
714 {
715 	u8 hi, lo;
716 	int ret;
717 
718 	ret = ov5640_read_reg(sensor, reg, &hi);
719 	if (ret)
720 		return ret;
721 	ret = ov5640_read_reg(sensor, reg + 1, &lo);
722 	if (ret)
723 		return ret;
724 
725 	*val = ((u16)hi << 8) | (u16)lo;
726 	return 0;
727 }
728 
729 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
730 {
731 	int ret;
732 
733 	ret = ov5640_write_reg(sensor, reg, val >> 8);
734 	if (ret)
735 		return ret;
736 
737 	return ov5640_write_reg(sensor, reg + 1, val & 0xff);
738 }
739 
740 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
741 			  u8 mask, u8 val)
742 {
743 	u8 readval;
744 	int ret;
745 
746 	ret = ov5640_read_reg(sensor, reg, &readval);
747 	if (ret)
748 		return ret;
749 
750 	readval &= ~mask;
751 	val &= mask;
752 	val |= readval;
753 
754 	return ov5640_write_reg(sensor, reg, val);
755 }
756 
757 /*
758  * After trying the various combinations, reading various
759  * documentations spread around the net, and from the various
760  * feedback, the clock tree is probably as follows:
761  *
762  *   +--------------+
763  *   |  Ext. Clock  |
764  *   +-+------------+
765  *     |  +----------+
766  *     +->|   PLL1   | - reg 0x3036, for the multiplier
767  *        +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
768  *          |  +--------------+
769  *          +->| System Clock |  - reg 0x3035, bits 4-7
770  *             +-+------------+
771  *               |  +--------------+
772  *               +->| MIPI Divider | - reg 0x3035, bits 0-3
773  *               |  +-+------------+
774  *               |    +----------------> MIPI SCLK
775  *               |    +  +-----+
776  *               |    +->| / 2 |-------> MIPI BIT CLK
777  *               |       +-----+
778  *               |  +--------------+
779  *               +->| PLL Root Div | - reg 0x3037, bit 4
780  *                  +-+------------+
781  *                    |  +---------+
782  *                    +->| Bit Div | - reg 0x3034, bits 0-3
783  *                       +-+-------+
784  *                         |  +-------------+
785  *                         +->| SCLK Div    | - reg 0x3108, bits 0-1
786  *                         |  +-+-----------+
787  *                         |    +---------------> SCLK
788  *                         |  +-------------+
789  *                         +->| SCLK 2X Div | - reg 0x3108, bits 2-3
790  *                         |  +-+-----------+
791  *                         |    +---------------> SCLK 2X
792  *                         |  +-------------+
793  *                         +->| PCLK Div    | - reg 0x3108, bits 4-5
794  *                            ++------------+
795  *                             +  +-----------+
796  *                             +->|   P_DIV   | - reg 0x3035, bits 0-3
797  *                                +-----+-----+
798  *                                       +------------> PCLK
799  *
800  * This is deviating from the datasheet at least for the register
801  * 0x3108, since it's said here that the PCLK would be clocked from
802  * the PLL.
803  *
804  * There seems to be also (unverified) constraints:
805  *  - the PLL pre-divider output rate should be in the 4-27MHz range
806  *  - the PLL multiplier output rate should be in the 500-1000MHz range
807  *  - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
808  *
809  * In the two latter cases, these constraints are met since our
810  * factors are hardcoded. If we were to change that, we would need to
811  * take this into account. The only varying parts are the PLL
812  * multiplier and the system clock divider, which are shared between
813  * all these clocks so won't cause any issue.
814  */
815 
816 /*
817  * This is supposed to be ranging from 1 to 8, but the value is always
818  * set to 3 in the vendor kernels.
819  */
820 #define OV5640_PLL_PREDIV	3
821 
822 #define OV5640_PLL_MULT_MIN	4
823 #define OV5640_PLL_MULT_MAX	252
824 
825 /*
826  * This is supposed to be ranging from 1 to 16, but the value is
827  * always set to either 1 or 2 in the vendor kernels.
828  */
829 #define OV5640_SYSDIV_MIN	1
830 #define OV5640_SYSDIV_MAX	16
831 
832 /*
833  * Hardcode these values for scaler and non-scaler modes.
834  * FIXME: to be re-calcualted for 1 data lanes setups
835  */
836 #define OV5640_MIPI_DIV_PCLK	2
837 #define OV5640_MIPI_DIV_SCLK	1
838 
839 /*
840  * This is supposed to be ranging from 1 to 2, but the value is always
841  * set to 2 in the vendor kernels.
842  */
843 #define OV5640_PLL_ROOT_DIV			2
844 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2		BIT(4)
845 
846 /*
847  * We only supports 8-bit formats at the moment
848  */
849 #define OV5640_BIT_DIV				2
850 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT		0x08
851 
852 /*
853  * This is supposed to be ranging from 1 to 8, but the value is always
854  * set to 2 in the vendor kernels.
855  */
856 #define OV5640_SCLK_ROOT_DIV	2
857 
858 /*
859  * This is hardcoded so that the consistency is maintained between SCLK and
860  * SCLK 2x.
861  */
862 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
863 
864 /*
865  * This is supposed to be ranging from 1 to 8, but the value is always
866  * set to 1 in the vendor kernels.
867  */
868 #define OV5640_PCLK_ROOT_DIV			1
869 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS	0x00
870 
871 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
872 					    u8 pll_prediv, u8 pll_mult,
873 					    u8 sysdiv)
874 {
875 	unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
876 
877 	/* PLL1 output cannot exceed 1GHz. */
878 	if (sysclk / 1000000 > 1000)
879 		return 0;
880 
881 	return sysclk / sysdiv;
882 }
883 
884 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
885 					 unsigned long rate,
886 					 u8 *pll_prediv, u8 *pll_mult,
887 					 u8 *sysdiv)
888 {
889 	unsigned long best = ~0;
890 	u8 best_sysdiv = 1, best_mult = 1;
891 	u8 _sysdiv, _pll_mult;
892 
893 	for (_sysdiv = OV5640_SYSDIV_MIN;
894 	     _sysdiv <= OV5640_SYSDIV_MAX;
895 	     _sysdiv++) {
896 		for (_pll_mult = OV5640_PLL_MULT_MIN;
897 		     _pll_mult <= OV5640_PLL_MULT_MAX;
898 		     _pll_mult++) {
899 			unsigned long _rate;
900 
901 			/*
902 			 * The PLL multiplier cannot be odd if above
903 			 * 127.
904 			 */
905 			if (_pll_mult > 127 && (_pll_mult % 2))
906 				continue;
907 
908 			_rate = ov5640_compute_sys_clk(sensor,
909 						       OV5640_PLL_PREDIV,
910 						       _pll_mult, _sysdiv);
911 
912 			/*
913 			 * We have reached the maximum allowed PLL1 output,
914 			 * increase sysdiv.
915 			 */
916 			if (!_rate)
917 				break;
918 
919 			/*
920 			 * Prefer rates above the expected clock rate than
921 			 * below, even if that means being less precise.
922 			 */
923 			if (_rate < rate)
924 				continue;
925 
926 			if (abs(rate - _rate) < abs(rate - best)) {
927 				best = _rate;
928 				best_sysdiv = _sysdiv;
929 				best_mult = _pll_mult;
930 			}
931 
932 			if (_rate == rate)
933 				goto out;
934 		}
935 	}
936 
937 out:
938 	*sysdiv = best_sysdiv;
939 	*pll_prediv = OV5640_PLL_PREDIV;
940 	*pll_mult = best_mult;
941 
942 	return best;
943 }
944 
945 /*
946  * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
947  *			    for the MIPI CSI-2 output.
948  *
949  * @rate: The requested bandwidth per lane in bytes per second.
950  *	  'Bandwidth Per Lane' is calculated as:
951  *	  bpl = HTOT * VTOT * FPS * bpp / num_lanes;
952  *
953  * This function use the requested bandwidth to calculate:
954  * - sample_rate = bpl / (bpp / num_lanes);
955  *	         = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
956  *
957  * - mipi_sclk   = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
958  *
959  * with these fixed parameters:
960  *	PLL_RDIV	= 2;
961  *	BIT_DIVIDER	= 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
962  *	PCLK_DIV	= 1;
963  *
964  * The MIPI clock generation differs for modes that use the scaler and modes
965  * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
966  * BIT CLk, and thus:
967  *
968  * - mipi_sclk = bpl / MIPI_DIV / 2;
969  *   MIPI_DIV = 1;
970  *
971  * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
972  * from the pixel clock, and thus:
973  *
974  * - sample_rate = bpl / (bpp / num_lanes);
975  *	         = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
976  *		 = bpl / (4 * MIPI_DIV / num_lanes);
977  * - MIPI_DIV	 = bpp / (4 * num_lanes);
978  *
979  * FIXME: this have been tested with 16bpp and 2 lanes setup only.
980  * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
981  * above formula for setups with 1 lane or image formats with different bpp.
982  *
983  * FIXME: this deviates from the sensor manual documentation which is quite
984  * thin on the MIPI clock tree generation part.
985  */
986 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
987 				unsigned long rate)
988 {
989 	const struct ov5640_mode_info *mode = sensor->current_mode;
990 	u8 prediv, mult, sysdiv;
991 	u8 mipi_div;
992 	int ret;
993 
994 	/*
995 	 * 1280x720 is reported to use 'SUBSAMPLING' only,
996 	 * but according to the sensor manual it goes through the
997 	 * scaler before subsampling.
998 	 */
999 	if (mode->dn_mode == SCALING ||
1000 	   (mode->id == OV5640_MODE_720P_1280_720))
1001 		mipi_div = OV5640_MIPI_DIV_SCLK;
1002 	else
1003 		mipi_div = OV5640_MIPI_DIV_PCLK;
1004 
1005 	ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
1006 
1007 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1008 			     0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
1009 
1010 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1011 			     0xff, sysdiv << 4 | mipi_div);
1012 	if (ret)
1013 		return ret;
1014 
1015 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
1016 	if (ret)
1017 		return ret;
1018 
1019 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1020 			     0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
1021 	if (ret)
1022 		return ret;
1023 
1024 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
1025 			      0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
1026 }
1027 
1028 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
1029 				      unsigned long rate,
1030 				      u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
1031 				      u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
1032 {
1033 	unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
1034 				OV5640_PCLK_ROOT_DIV;
1035 
1036 	_rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
1037 				    sysdiv);
1038 	*pll_rdiv = OV5640_PLL_ROOT_DIV;
1039 	*bit_div = OV5640_BIT_DIV;
1040 	*pclk_div = OV5640_PCLK_ROOT_DIV;
1041 
1042 	return _rate / *pll_rdiv / *bit_div / *pclk_div;
1043 }
1044 
1045 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1046 {
1047 	u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1048 	int ret;
1049 
1050 	ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1051 			 &bit_div, &pclk_div);
1052 
1053 	if (bit_div == 2)
1054 		bit_div = 8;
1055 
1056 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1057 			     0x0f, bit_div);
1058 	if (ret)
1059 		return ret;
1060 
1061 	/*
1062 	 * We need to set sysdiv according to the clock, and to clear
1063 	 * the MIPI divider.
1064 	 */
1065 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1066 			     0xff, sysdiv << 4);
1067 	if (ret)
1068 		return ret;
1069 
1070 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1071 			     0xff, mult);
1072 	if (ret)
1073 		return ret;
1074 
1075 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1076 			     0x1f, prediv | ((pll_rdiv - 1) << 4));
1077 	if (ret)
1078 		return ret;
1079 
1080 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1081 			      (ilog2(pclk_div) << 4));
1082 }
1083 
1084 /* set JPEG framing sizes */
1085 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1086 				   const struct ov5640_mode_info *mode)
1087 {
1088 	int ret;
1089 
1090 	/*
1091 	 * compression mode 3 timing
1092 	 *
1093 	 * Data is transmitted with programmable width (VFIFO_HSIZE).
1094 	 * No padding done. Last line may have less data. Varying
1095 	 * number of lines per frame, depending on amount of data.
1096 	 */
1097 	ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1098 	if (ret < 0)
1099 		return ret;
1100 
1101 	ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1102 	if (ret < 0)
1103 		return ret;
1104 
1105 	return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1106 }
1107 
1108 /* download ov5640 settings to sensor through i2c */
1109 static int ov5640_set_timings(struct ov5640_dev *sensor,
1110 			      const struct ov5640_mode_info *mode)
1111 {
1112 	int ret;
1113 
1114 	if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1115 		ret = ov5640_set_jpeg_timings(sensor, mode);
1116 		if (ret < 0)
1117 			return ret;
1118 	}
1119 
1120 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1125 	if (ret < 0)
1126 		return ret;
1127 
1128 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1133 }
1134 
1135 static int ov5640_load_regs(struct ov5640_dev *sensor,
1136 			    const struct ov5640_mode_info *mode)
1137 {
1138 	const struct reg_value *regs = mode->reg_data;
1139 	unsigned int i;
1140 	u32 delay_ms;
1141 	u16 reg_addr;
1142 	u8 mask, val;
1143 	int ret = 0;
1144 
1145 	for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1146 		delay_ms = regs->delay_ms;
1147 		reg_addr = regs->reg_addr;
1148 		val = regs->val;
1149 		mask = regs->mask;
1150 
1151 		/* remain in power down mode for DVP */
1152 		if (regs->reg_addr == OV5640_REG_SYS_CTRL0 &&
1153 		    val == OV5640_REG_SYS_CTRL0_SW_PWUP &&
1154 		    sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
1155 			continue;
1156 
1157 		if (mask)
1158 			ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1159 		else
1160 			ret = ov5640_write_reg(sensor, reg_addr, val);
1161 		if (ret)
1162 			break;
1163 
1164 		if (delay_ms)
1165 			usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1166 	}
1167 
1168 	return ov5640_set_timings(sensor, mode);
1169 }
1170 
1171 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1172 {
1173 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1174 			      BIT(0), on ? 0 : BIT(0));
1175 }
1176 
1177 /* read exposure, in number of line periods */
1178 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1179 {
1180 	int exp, ret;
1181 	u8 temp;
1182 
1183 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1184 	if (ret)
1185 		return ret;
1186 	exp = ((int)temp & 0x0f) << 16;
1187 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1188 	if (ret)
1189 		return ret;
1190 	exp |= ((int)temp << 8);
1191 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1192 	if (ret)
1193 		return ret;
1194 	exp |= (int)temp;
1195 
1196 	return exp >> 4;
1197 }
1198 
1199 /* write exposure, given number of line periods */
1200 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1201 {
1202 	int ret;
1203 
1204 	exposure <<= 4;
1205 
1206 	ret = ov5640_write_reg(sensor,
1207 			       OV5640_REG_AEC_PK_EXPOSURE_LO,
1208 			       exposure & 0xff);
1209 	if (ret)
1210 		return ret;
1211 	ret = ov5640_write_reg(sensor,
1212 			       OV5640_REG_AEC_PK_EXPOSURE_MED,
1213 			       (exposure >> 8) & 0xff);
1214 	if (ret)
1215 		return ret;
1216 	return ov5640_write_reg(sensor,
1217 				OV5640_REG_AEC_PK_EXPOSURE_HI,
1218 				(exposure >> 16) & 0x0f);
1219 }
1220 
1221 static int ov5640_get_gain(struct ov5640_dev *sensor)
1222 {
1223 	u16 gain;
1224 	int ret;
1225 
1226 	ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1227 	if (ret)
1228 		return ret;
1229 
1230 	return gain & 0x3ff;
1231 }
1232 
1233 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1234 {
1235 	return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1236 				  (u16)gain & 0x3ff);
1237 }
1238 
1239 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1240 {
1241 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1242 			      BIT(1), on ? 0 : BIT(1));
1243 }
1244 
1245 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1246 {
1247 	return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ?
1248 				OV5640_REG_SYS_CTRL0_SW_PWUP :
1249 				OV5640_REG_SYS_CTRL0_SW_PWDN);
1250 }
1251 
1252 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1253 {
1254 	int ret;
1255 
1256 	/*
1257 	 * Enable/disable the MIPI interface
1258 	 *
1259 	 * 0x300e = on ? 0x45 : 0x40
1260 	 *
1261 	 * FIXME: the sensor manual (version 2.03) reports
1262 	 * [7:5] = 000  : 1 data lane mode
1263 	 * [7:5] = 001  : 2 data lanes mode
1264 	 * But this settings do not work, while the following ones
1265 	 * have been validated for 2 data lanes mode.
1266 	 *
1267 	 * [7:5] = 010	: 2 data lanes mode
1268 	 * [4] = 0	: Power up MIPI HS Tx
1269 	 * [3] = 0	: Power up MIPI LS Rx
1270 	 * [2] = 1/0	: MIPI interface enable/disable
1271 	 * [1:0] = 01/00: FIXME: 'debug'
1272 	 */
1273 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1274 			       on ? 0x45 : 0x40);
1275 	if (ret)
1276 		return ret;
1277 
1278 	return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1279 				on ? 0x00 : 0x0f);
1280 }
1281 
1282 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1283 {
1284 	 /* calculate sysclk */
1285 	u32 xvclk = sensor->xclk_freq / 10000;
1286 	u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1287 	u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1288 	u32 bit_div2x = 1, sclk_rdiv, sysclk;
1289 	u8 temp1, temp2;
1290 	int ret;
1291 
1292 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1293 	if (ret)
1294 		return ret;
1295 	temp2 = temp1 & 0x0f;
1296 	if (temp2 == 8 || temp2 == 10)
1297 		bit_div2x = temp2 / 2;
1298 
1299 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1300 	if (ret)
1301 		return ret;
1302 	sysdiv = temp1 >> 4;
1303 	if (sysdiv == 0)
1304 		sysdiv = 16;
1305 
1306 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1307 	if (ret)
1308 		return ret;
1309 	multiplier = temp1;
1310 
1311 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1312 	if (ret)
1313 		return ret;
1314 	prediv = temp1 & 0x0f;
1315 	pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1316 
1317 	ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1318 	if (ret)
1319 		return ret;
1320 	temp2 = temp1 & 0x03;
1321 	sclk_rdiv = sclk_rdiv_map[temp2];
1322 
1323 	if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1324 		return -EINVAL;
1325 
1326 	VCO = xvclk * multiplier / prediv;
1327 
1328 	sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1329 
1330 	return sysclk;
1331 }
1332 
1333 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1334 {
1335 	 /* read HTS from register settings */
1336 	u8 mode;
1337 	int ret;
1338 
1339 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1340 	if (ret)
1341 		return ret;
1342 	mode &= 0xfb;
1343 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1344 }
1345 
1346 static int ov5640_get_hts(struct ov5640_dev *sensor)
1347 {
1348 	/* read HTS from register settings */
1349 	u16 hts;
1350 	int ret;
1351 
1352 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1353 	if (ret)
1354 		return ret;
1355 	return hts;
1356 }
1357 
1358 static int ov5640_get_vts(struct ov5640_dev *sensor)
1359 {
1360 	u16 vts;
1361 	int ret;
1362 
1363 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1364 	if (ret)
1365 		return ret;
1366 	return vts;
1367 }
1368 
1369 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1370 {
1371 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1372 }
1373 
1374 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1375 {
1376 	/* get banding filter value */
1377 	int ret, light_freq = 0;
1378 	u8 temp, temp1;
1379 
1380 	ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1381 	if (ret)
1382 		return ret;
1383 
1384 	if (temp & 0x80) {
1385 		/* manual */
1386 		ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1387 				      &temp1);
1388 		if (ret)
1389 			return ret;
1390 		if (temp1 & 0x04) {
1391 			/* 50Hz */
1392 			light_freq = 50;
1393 		} else {
1394 			/* 60Hz */
1395 			light_freq = 60;
1396 		}
1397 	} else {
1398 		/* auto */
1399 		ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1400 				      &temp1);
1401 		if (ret)
1402 			return ret;
1403 
1404 		if (temp1 & 0x01) {
1405 			/* 50Hz */
1406 			light_freq = 50;
1407 		} else {
1408 			/* 60Hz */
1409 		}
1410 	}
1411 
1412 	return light_freq;
1413 }
1414 
1415 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1416 {
1417 	u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1418 	int ret;
1419 
1420 	/* read preview PCLK */
1421 	ret = ov5640_get_sysclk(sensor);
1422 	if (ret < 0)
1423 		return ret;
1424 	if (ret == 0)
1425 		return -EINVAL;
1426 	sensor->prev_sysclk = ret;
1427 	/* read preview HTS */
1428 	ret = ov5640_get_hts(sensor);
1429 	if (ret < 0)
1430 		return ret;
1431 	if (ret == 0)
1432 		return -EINVAL;
1433 	sensor->prev_hts = ret;
1434 
1435 	/* read preview VTS */
1436 	ret = ov5640_get_vts(sensor);
1437 	if (ret < 0)
1438 		return ret;
1439 	prev_vts = ret;
1440 
1441 	/* calculate banding filter */
1442 	/* 60Hz */
1443 	band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1444 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1445 	if (ret)
1446 		return ret;
1447 	if (!band_step60)
1448 		return -EINVAL;
1449 	max_band60 = (int)((prev_vts - 4) / band_step60);
1450 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1451 	if (ret)
1452 		return ret;
1453 
1454 	/* 50Hz */
1455 	band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1456 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1457 	if (ret)
1458 		return ret;
1459 	if (!band_step50)
1460 		return -EINVAL;
1461 	max_band50 = (int)((prev_vts - 4) / band_step50);
1462 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1463 }
1464 
1465 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1466 {
1467 	/* stable in high */
1468 	u32 fast_high, fast_low;
1469 	int ret;
1470 
1471 	sensor->ae_low = target * 23 / 25;	/* 0.92 */
1472 	sensor->ae_high = target * 27 / 25;	/* 1.08 */
1473 
1474 	fast_high = sensor->ae_high << 1;
1475 	if (fast_high > 255)
1476 		fast_high = 255;
1477 
1478 	fast_low = sensor->ae_low >> 1;
1479 
1480 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1481 	if (ret)
1482 		return ret;
1483 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1484 	if (ret)
1485 		return ret;
1486 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1487 	if (ret)
1488 		return ret;
1489 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1490 	if (ret)
1491 		return ret;
1492 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1493 	if (ret)
1494 		return ret;
1495 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1496 }
1497 
1498 static int ov5640_get_binning(struct ov5640_dev *sensor)
1499 {
1500 	u8 temp;
1501 	int ret;
1502 
1503 	ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1504 	if (ret)
1505 		return ret;
1506 
1507 	return temp & BIT(0);
1508 }
1509 
1510 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1511 {
1512 	int ret;
1513 
1514 	/*
1515 	 * TIMING TC REG21:
1516 	 * - [0]:	Horizontal binning enable
1517 	 */
1518 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1519 			     BIT(0), enable ? BIT(0) : 0);
1520 	if (ret)
1521 		return ret;
1522 	/*
1523 	 * TIMING TC REG20:
1524 	 * - [0]:	Undocumented, but hardcoded init sequences
1525 	 *		are always setting REG21/REG20 bit 0 to same value...
1526 	 */
1527 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1528 			      BIT(0), enable ? BIT(0) : 0);
1529 }
1530 
1531 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1532 {
1533 	struct i2c_client *client = sensor->i2c_client;
1534 	u8 temp, channel = virtual_channel;
1535 	int ret;
1536 
1537 	if (channel > 3) {
1538 		dev_err(&client->dev,
1539 			"%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1540 			__func__, channel);
1541 		return -EINVAL;
1542 	}
1543 
1544 	ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1545 	if (ret)
1546 		return ret;
1547 	temp &= ~(3 << 6);
1548 	temp |= (channel << 6);
1549 	return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1550 }
1551 
1552 static const struct ov5640_mode_info *
1553 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1554 		 int width, int height, bool nearest)
1555 {
1556 	const struct ov5640_mode_info *mode;
1557 
1558 	mode = v4l2_find_nearest_size(ov5640_mode_data,
1559 				      ARRAY_SIZE(ov5640_mode_data),
1560 				      hact, vact,
1561 				      width, height);
1562 
1563 	if (!mode ||
1564 	    (!nearest && (mode->hact != width || mode->vact != height)))
1565 		return NULL;
1566 
1567 	/* Check to see if the current mode exceeds the max frame rate */
1568 	if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps])
1569 		return NULL;
1570 
1571 	return mode;
1572 }
1573 
1574 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor)
1575 {
1576 	u64 rate;
1577 
1578 	rate = sensor->current_mode->vtot * sensor->current_mode->htot;
1579 	rate *= ov5640_framerates[sensor->current_fr];
1580 
1581 	return rate;
1582 }
1583 
1584 /*
1585  * sensor changes between scaling and subsampling, go through
1586  * exposure calculation
1587  */
1588 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1589 					 const struct ov5640_mode_info *mode)
1590 {
1591 	u32 prev_shutter, prev_gain16;
1592 	u32 cap_shutter, cap_gain16;
1593 	u32 cap_sysclk, cap_hts, cap_vts;
1594 	u32 light_freq, cap_bandfilt, cap_maxband;
1595 	u32 cap_gain16_shutter;
1596 	u8 average;
1597 	int ret;
1598 
1599 	if (!mode->reg_data)
1600 		return -EINVAL;
1601 
1602 	/* read preview shutter */
1603 	ret = ov5640_get_exposure(sensor);
1604 	if (ret < 0)
1605 		return ret;
1606 	prev_shutter = ret;
1607 	ret = ov5640_get_binning(sensor);
1608 	if (ret < 0)
1609 		return ret;
1610 	if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1611 	    mode->id != OV5640_MODE_1080P_1920_1080)
1612 		prev_shutter *= 2;
1613 
1614 	/* read preview gain */
1615 	ret = ov5640_get_gain(sensor);
1616 	if (ret < 0)
1617 		return ret;
1618 	prev_gain16 = ret;
1619 
1620 	/* get average */
1621 	ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1622 	if (ret)
1623 		return ret;
1624 
1625 	/* turn off night mode for capture */
1626 	ret = ov5640_set_night_mode(sensor);
1627 	if (ret < 0)
1628 		return ret;
1629 
1630 	/* Write capture setting */
1631 	ret = ov5640_load_regs(sensor, mode);
1632 	if (ret < 0)
1633 		return ret;
1634 
1635 	/* read capture VTS */
1636 	ret = ov5640_get_vts(sensor);
1637 	if (ret < 0)
1638 		return ret;
1639 	cap_vts = ret;
1640 	ret = ov5640_get_hts(sensor);
1641 	if (ret < 0)
1642 		return ret;
1643 	if (ret == 0)
1644 		return -EINVAL;
1645 	cap_hts = ret;
1646 
1647 	ret = ov5640_get_sysclk(sensor);
1648 	if (ret < 0)
1649 		return ret;
1650 	if (ret == 0)
1651 		return -EINVAL;
1652 	cap_sysclk = ret;
1653 
1654 	/* calculate capture banding filter */
1655 	ret = ov5640_get_light_freq(sensor);
1656 	if (ret < 0)
1657 		return ret;
1658 	light_freq = ret;
1659 
1660 	if (light_freq == 60) {
1661 		/* 60Hz */
1662 		cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1663 	} else {
1664 		/* 50Hz */
1665 		cap_bandfilt = cap_sysclk * 100 / cap_hts;
1666 	}
1667 
1668 	if (!sensor->prev_sysclk) {
1669 		ret = ov5640_get_sysclk(sensor);
1670 		if (ret < 0)
1671 			return ret;
1672 		if (ret == 0)
1673 			return -EINVAL;
1674 		sensor->prev_sysclk = ret;
1675 	}
1676 
1677 	if (!cap_bandfilt)
1678 		return -EINVAL;
1679 
1680 	cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1681 
1682 	/* calculate capture shutter/gain16 */
1683 	if (average > sensor->ae_low && average < sensor->ae_high) {
1684 		/* in stable range */
1685 		cap_gain16_shutter =
1686 			prev_gain16 * prev_shutter *
1687 			cap_sysclk / sensor->prev_sysclk *
1688 			sensor->prev_hts / cap_hts *
1689 			sensor->ae_target / average;
1690 	} else {
1691 		cap_gain16_shutter =
1692 			prev_gain16 * prev_shutter *
1693 			cap_sysclk / sensor->prev_sysclk *
1694 			sensor->prev_hts / cap_hts;
1695 	}
1696 
1697 	/* gain to shutter */
1698 	if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1699 		/* shutter < 1/100 */
1700 		cap_shutter = cap_gain16_shutter / 16;
1701 		if (cap_shutter < 1)
1702 			cap_shutter = 1;
1703 
1704 		cap_gain16 = cap_gain16_shutter / cap_shutter;
1705 		if (cap_gain16 < 16)
1706 			cap_gain16 = 16;
1707 	} else {
1708 		if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1709 			/* exposure reach max */
1710 			cap_shutter = cap_bandfilt * cap_maxband;
1711 			if (!cap_shutter)
1712 				return -EINVAL;
1713 
1714 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1715 		} else {
1716 			/* 1/100 < (cap_shutter = n/100) =< max */
1717 			cap_shutter =
1718 				((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1719 				* cap_bandfilt;
1720 			if (!cap_shutter)
1721 				return -EINVAL;
1722 
1723 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1724 		}
1725 	}
1726 
1727 	/* set capture gain */
1728 	ret = ov5640_set_gain(sensor, cap_gain16);
1729 	if (ret)
1730 		return ret;
1731 
1732 	/* write capture shutter */
1733 	if (cap_shutter > (cap_vts - 4)) {
1734 		cap_vts = cap_shutter + 4;
1735 		ret = ov5640_set_vts(sensor, cap_vts);
1736 		if (ret < 0)
1737 			return ret;
1738 	}
1739 
1740 	/* set exposure */
1741 	return ov5640_set_exposure(sensor, cap_shutter);
1742 }
1743 
1744 /*
1745  * if sensor changes inside scaling or subsampling
1746  * change mode directly
1747  */
1748 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1749 				  const struct ov5640_mode_info *mode)
1750 {
1751 	if (!mode->reg_data)
1752 		return -EINVAL;
1753 
1754 	/* Write capture setting */
1755 	return ov5640_load_regs(sensor, mode);
1756 }
1757 
1758 static int ov5640_set_mode(struct ov5640_dev *sensor)
1759 {
1760 	const struct ov5640_mode_info *mode = sensor->current_mode;
1761 	const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1762 	enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1763 	bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1764 	bool auto_exp =  sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1765 	unsigned long rate;
1766 	int ret;
1767 
1768 	dn_mode = mode->dn_mode;
1769 	orig_dn_mode = orig_mode->dn_mode;
1770 
1771 	/* auto gain and exposure must be turned off when changing modes */
1772 	if (auto_gain) {
1773 		ret = ov5640_set_autogain(sensor, false);
1774 		if (ret)
1775 			return ret;
1776 	}
1777 
1778 	if (auto_exp) {
1779 		ret = ov5640_set_autoexposure(sensor, false);
1780 		if (ret)
1781 			goto restore_auto_gain;
1782 	}
1783 
1784 	/*
1785 	 * All the formats we support have 16 bits per pixel, seems to require
1786 	 * the same rate than YUV, so we can just use 16 bpp all the time.
1787 	 */
1788 	rate = ov5640_calc_pixel_rate(sensor) * 16;
1789 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1790 		rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1791 		ret = ov5640_set_mipi_pclk(sensor, rate);
1792 	} else {
1793 		rate = rate / sensor->ep.bus.parallel.bus_width;
1794 		ret = ov5640_set_dvp_pclk(sensor, rate);
1795 	}
1796 
1797 	if (ret < 0)
1798 		return 0;
1799 
1800 	if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1801 	    (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1802 		/*
1803 		 * change between subsampling and scaling
1804 		 * go through exposure calculation
1805 		 */
1806 		ret = ov5640_set_mode_exposure_calc(sensor, mode);
1807 	} else {
1808 		/*
1809 		 * change inside subsampling or scaling
1810 		 * download firmware directly
1811 		 */
1812 		ret = ov5640_set_mode_direct(sensor, mode);
1813 	}
1814 	if (ret < 0)
1815 		goto restore_auto_exp_gain;
1816 
1817 	/* restore auto gain and exposure */
1818 	if (auto_gain)
1819 		ov5640_set_autogain(sensor, true);
1820 	if (auto_exp)
1821 		ov5640_set_autoexposure(sensor, true);
1822 
1823 	ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1824 	if (ret < 0)
1825 		return ret;
1826 	ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1827 	if (ret < 0)
1828 		return ret;
1829 	ret = ov5640_get_light_freq(sensor);
1830 	if (ret < 0)
1831 		return ret;
1832 	ret = ov5640_set_bandingfilter(sensor);
1833 	if (ret < 0)
1834 		return ret;
1835 	ret = ov5640_set_virtual_channel(sensor);
1836 	if (ret < 0)
1837 		return ret;
1838 
1839 	sensor->pending_mode_change = false;
1840 	sensor->last_mode = mode;
1841 
1842 	return 0;
1843 
1844 restore_auto_exp_gain:
1845 	if (auto_exp)
1846 		ov5640_set_autoexposure(sensor, true);
1847 restore_auto_gain:
1848 	if (auto_gain)
1849 		ov5640_set_autogain(sensor, true);
1850 
1851 	return ret;
1852 }
1853 
1854 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1855 			       struct v4l2_mbus_framefmt *format);
1856 
1857 /* restore the last set video mode after chip power-on */
1858 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1859 {
1860 	int ret;
1861 
1862 	/* first load the initial register values */
1863 	ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1864 	if (ret < 0)
1865 		return ret;
1866 	sensor->last_mode = &ov5640_mode_init_data;
1867 
1868 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1869 			     (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1870 			     ilog2(OV5640_SCLK_ROOT_DIV));
1871 	if (ret)
1872 		return ret;
1873 
1874 	/* now restore the last capture mode */
1875 	ret = ov5640_set_mode(sensor);
1876 	if (ret < 0)
1877 		return ret;
1878 
1879 	return ov5640_set_framefmt(sensor, &sensor->fmt);
1880 }
1881 
1882 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1883 {
1884 	gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1885 }
1886 
1887 static void ov5640_reset(struct ov5640_dev *sensor)
1888 {
1889 	if (!sensor->reset_gpio)
1890 		return;
1891 
1892 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1893 
1894 	/* camera power cycle */
1895 	ov5640_power(sensor, false);
1896 	usleep_range(5000, 10000);
1897 	ov5640_power(sensor, true);
1898 	usleep_range(5000, 10000);
1899 
1900 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1901 	usleep_range(1000, 2000);
1902 
1903 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1904 	usleep_range(20000, 25000);
1905 }
1906 
1907 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1908 {
1909 	struct i2c_client *client = sensor->i2c_client;
1910 	int ret;
1911 
1912 	ret = clk_prepare_enable(sensor->xclk);
1913 	if (ret) {
1914 		dev_err(&client->dev, "%s: failed to enable clock\n",
1915 			__func__);
1916 		return ret;
1917 	}
1918 
1919 	ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1920 				    sensor->supplies);
1921 	if (ret) {
1922 		dev_err(&client->dev, "%s: failed to enable regulators\n",
1923 			__func__);
1924 		goto xclk_off;
1925 	}
1926 
1927 	ov5640_reset(sensor);
1928 	ov5640_power(sensor, true);
1929 
1930 	ret = ov5640_init_slave_id(sensor);
1931 	if (ret)
1932 		goto power_off;
1933 
1934 	return 0;
1935 
1936 power_off:
1937 	ov5640_power(sensor, false);
1938 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1939 xclk_off:
1940 	clk_disable_unprepare(sensor->xclk);
1941 	return ret;
1942 }
1943 
1944 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1945 {
1946 	ov5640_power(sensor, false);
1947 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1948 	clk_disable_unprepare(sensor->xclk);
1949 }
1950 
1951 static int ov5640_set_power_mipi(struct ov5640_dev *sensor, bool on)
1952 {
1953 	int ret;
1954 
1955 	if (!on) {
1956 		/* Reset MIPI bus settings to their default values. */
1957 		ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58);
1958 		ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x04);
1959 		ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x00);
1960 		return 0;
1961 	}
1962 
1963 	/*
1964 	 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
1965 	 *
1966 	 * 0x300e = 0x40
1967 	 * [7:5] = 010	: 2 data lanes mode (see FIXME note in
1968 	 *		  "ov5640_set_stream_mipi()")
1969 	 * [4] = 0	: Power up MIPI HS Tx
1970 	 * [3] = 0	: Power up MIPI LS Rx
1971 	 * [2] = 0	: MIPI interface disabled
1972 	 */
1973 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x40);
1974 	if (ret)
1975 		return ret;
1976 
1977 	/*
1978 	 * Gate clock and set LP11 in 'no packets mode' (idle)
1979 	 *
1980 	 * 0x4800 = 0x24
1981 	 * [5] = 1	: Gate clock when 'no packets'
1982 	 * [2] = 1	: MIPI bus in LP11 when 'no packets'
1983 	 */
1984 	ret = ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x24);
1985 	if (ret)
1986 		return ret;
1987 
1988 	/*
1989 	 * Set data lanes and clock in LP11 when 'sleeping'
1990 	 *
1991 	 * 0x3019 = 0x70
1992 	 * [6] = 1	: MIPI data lane 2 in LP11 when 'sleeping'
1993 	 * [5] = 1	: MIPI data lane 1 in LP11 when 'sleeping'
1994 	 * [4] = 1	: MIPI clock lane in LP11 when 'sleeping'
1995 	 */
1996 	ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x70);
1997 	if (ret)
1998 		return ret;
1999 
2000 	/* Give lanes some time to coax into LP11 state. */
2001 	usleep_range(500, 1000);
2002 
2003 	return 0;
2004 }
2005 
2006 static int ov5640_set_power_dvp(struct ov5640_dev *sensor, bool on)
2007 {
2008 	unsigned int flags = sensor->ep.bus.parallel.flags;
2009 	bool bt656 = sensor->ep.bus_type == V4L2_MBUS_BT656;
2010 	u8 polarities = 0;
2011 	int ret;
2012 
2013 	if (!on) {
2014 		/* Reset settings to their default values. */
2015 		ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 0x00);
2016 		ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58);
2017 		ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 0x20);
2018 		ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 0x00);
2019 		ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0x00);
2020 		return 0;
2021 	}
2022 
2023 	/*
2024 	 * Note about parallel port configuration.
2025 	 *
2026 	 * When configured in parallel mode, the OV5640 will
2027 	 * output 10 bits data on DVP data lines [9:0].
2028 	 * If only 8 bits data are wanted, the 8 bits data lines
2029 	 * of the camera interface must be physically connected
2030 	 * on the DVP data lines [9:2].
2031 	 *
2032 	 * Control lines polarity can be configured through
2033 	 * devicetree endpoint control lines properties.
2034 	 * If no endpoint control lines properties are set,
2035 	 * polarity will be as below:
2036 	 * - VSYNC:	active high
2037 	 * - HREF:	active low
2038 	 * - PCLK:	active low
2039 	 *
2040 	 * VSYNC & HREF are not configured if BT656 bus mode is selected
2041 	 */
2042 
2043 	/*
2044 	 * BT656 embedded synchronization configuration
2045 	 *
2046 	 * CCIR656 CTRL00
2047 	 * - [7]:	SYNC code selection (0: auto generate sync code,
2048 	 *		1: sync code from regs 0x4732-0x4735)
2049 	 * - [6]:	f value in CCIR656 SYNC code when fixed f value
2050 	 * - [5]:	Fixed f value
2051 	 * - [4:3]:	Blank toggle data options (00: data=1'h040/1'h200,
2052 	 *		01: data from regs 0x4736-0x4738, 10: always keep 0)
2053 	 * - [1]:	Clip data disable
2054 	 * - [0]:	CCIR656 mode enable
2055 	 *
2056 	 * Default CCIR656 SAV/EAV mode with default codes
2057 	 * SAV=0xff000080 & EAV=0xff00009d is enabled here with settings:
2058 	 * - CCIR656 mode enable
2059 	 * - auto generation of sync codes
2060 	 * - blank toggle data 1'h040/1'h200
2061 	 * - clip reserved data (0x00 & 0xff changed to 0x01 & 0xfe)
2062 	 */
2063 	ret = ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00,
2064 			       bt656 ? 0x01 : 0x00);
2065 	if (ret)
2066 		return ret;
2067 
2068 	/*
2069 	 * configure parallel port control lines polarity
2070 	 *
2071 	 * POLARITY CTRL0
2072 	 * - [5]:	PCLK polarity (0: active low, 1: active high)
2073 	 * - [1]:	HREF polarity (0: active low, 1: active high)
2074 	 * - [0]:	VSYNC polarity (mismatch here between
2075 	 *		datasheet and hardware, 0 is active high
2076 	 *		and 1 is active low...)
2077 	 */
2078 	if (!bt656) {
2079 		if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2080 			polarities |= BIT(1);
2081 		if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
2082 			polarities |= BIT(0);
2083 	}
2084 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2085 		polarities |= BIT(5);
2086 
2087 	ret = ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, polarities);
2088 	if (ret)
2089 		return ret;
2090 
2091 	/*
2092 	 * powerdown MIPI TX/RX PHY & enable DVP
2093 	 *
2094 	 * MIPI CONTROL 00
2095 	 * [4] = 1	: Power down MIPI HS Tx
2096 	 * [3] = 1	: Power down MIPI LS Rx
2097 	 * [2] = 0	: DVP enable (MIPI disable)
2098 	 */
2099 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x18);
2100 	if (ret)
2101 		return ret;
2102 
2103 	/*
2104 	 * enable VSYNC/HREF/PCLK DVP control lines
2105 	 * & D[9:6] DVP data lines
2106 	 *
2107 	 * PAD OUTPUT ENABLE 01
2108 	 * - 6:		VSYNC output enable
2109 	 * - 5:		HREF output enable
2110 	 * - 4:		PCLK output enable
2111 	 * - [3:0]:	D[9:6] output enable
2112 	 */
2113 	ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01,
2114 			       bt656 ? 0x1f : 0x7f);
2115 	if (ret)
2116 		return ret;
2117 
2118 	/*
2119 	 * enable D[5:0] DVP data lines
2120 	 *
2121 	 * PAD OUTPUT ENABLE 02
2122 	 * - [7:2]:	D[5:0] output enable
2123 	 */
2124 	return ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0xfc);
2125 }
2126 
2127 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
2128 {
2129 	int ret = 0;
2130 
2131 	if (on) {
2132 		ret = ov5640_set_power_on(sensor);
2133 		if (ret)
2134 			return ret;
2135 
2136 		ret = ov5640_restore_mode(sensor);
2137 		if (ret)
2138 			goto power_off;
2139 	}
2140 
2141 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2142 		ret = ov5640_set_power_mipi(sensor, on);
2143 	else
2144 		ret = ov5640_set_power_dvp(sensor, on);
2145 	if (ret)
2146 		goto power_off;
2147 
2148 	if (!on)
2149 		ov5640_set_power_off(sensor);
2150 
2151 	return 0;
2152 
2153 power_off:
2154 	ov5640_set_power_off(sensor);
2155 	return ret;
2156 }
2157 
2158 /* --------------- Subdev Operations --------------- */
2159 
2160 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2161 {
2162 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2163 	int ret = 0;
2164 
2165 	mutex_lock(&sensor->lock);
2166 
2167 	/*
2168 	 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2169 	 * update the power state.
2170 	 */
2171 	if (sensor->power_count == !on) {
2172 		ret = ov5640_set_power(sensor, !!on);
2173 		if (ret)
2174 			goto out;
2175 	}
2176 
2177 	/* Update the power count. */
2178 	sensor->power_count += on ? 1 : -1;
2179 	WARN_ON(sensor->power_count < 0);
2180 out:
2181 	mutex_unlock(&sensor->lock);
2182 
2183 	if (on && !ret && sensor->power_count == 1) {
2184 		/* restore controls */
2185 		ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2192 				     struct v4l2_fract *fi,
2193 				     u32 width, u32 height)
2194 {
2195 	const struct ov5640_mode_info *mode;
2196 	enum ov5640_frame_rate rate = OV5640_15_FPS;
2197 	int minfps, maxfps, best_fps, fps;
2198 	int i;
2199 
2200 	minfps = ov5640_framerates[OV5640_15_FPS];
2201 	maxfps = ov5640_framerates[OV5640_60_FPS];
2202 
2203 	if (fi->numerator == 0) {
2204 		fi->denominator = maxfps;
2205 		fi->numerator = 1;
2206 		rate = OV5640_60_FPS;
2207 		goto find_mode;
2208 	}
2209 
2210 	fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2211 			minfps, maxfps);
2212 
2213 	best_fps = minfps;
2214 	for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2215 		int curr_fps = ov5640_framerates[i];
2216 
2217 		if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2218 			best_fps = curr_fps;
2219 			rate = i;
2220 		}
2221 	}
2222 
2223 	fi->numerator = 1;
2224 	fi->denominator = best_fps;
2225 
2226 find_mode:
2227 	mode = ov5640_find_mode(sensor, rate, width, height, false);
2228 	return mode ? rate : -EINVAL;
2229 }
2230 
2231 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2232 			  struct v4l2_subdev_state *sd_state,
2233 			  struct v4l2_subdev_format *format)
2234 {
2235 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2236 	struct v4l2_mbus_framefmt *fmt;
2237 
2238 	if (format->pad != 0)
2239 		return -EINVAL;
2240 
2241 	mutex_lock(&sensor->lock);
2242 
2243 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2244 		fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state,
2245 						 format->pad);
2246 	else
2247 		fmt = &sensor->fmt;
2248 
2249 	format->format = *fmt;
2250 
2251 	mutex_unlock(&sensor->lock);
2252 
2253 	return 0;
2254 }
2255 
2256 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2257 				   struct v4l2_mbus_framefmt *fmt,
2258 				   enum ov5640_frame_rate fr,
2259 				   const struct ov5640_mode_info **new_mode)
2260 {
2261 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2262 	const struct ov5640_mode_info *mode;
2263 	int i;
2264 
2265 	mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2266 	if (!mode)
2267 		return -EINVAL;
2268 	fmt->width = mode->hact;
2269 	fmt->height = mode->vact;
2270 
2271 	if (new_mode)
2272 		*new_mode = mode;
2273 
2274 	for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2275 		if (ov5640_formats[i].code == fmt->code)
2276 			break;
2277 	if (i >= ARRAY_SIZE(ov5640_formats))
2278 		i = 0;
2279 
2280 	fmt->code = ov5640_formats[i].code;
2281 	fmt->colorspace = ov5640_formats[i].colorspace;
2282 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2283 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2284 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2285 
2286 	return 0;
2287 }
2288 
2289 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2290 			  struct v4l2_subdev_state *sd_state,
2291 			  struct v4l2_subdev_format *format)
2292 {
2293 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2294 	const struct ov5640_mode_info *new_mode;
2295 	struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2296 	int ret;
2297 
2298 	if (format->pad != 0)
2299 		return -EINVAL;
2300 
2301 	mutex_lock(&sensor->lock);
2302 
2303 	if (sensor->streaming) {
2304 		ret = -EBUSY;
2305 		goto out;
2306 	}
2307 
2308 	ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2309 				      sensor->current_fr, &new_mode);
2310 	if (ret)
2311 		goto out;
2312 
2313 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
2314 		*v4l2_subdev_get_try_format(sd, sd_state, 0) = *mbus_fmt;
2315 		goto out;
2316 	}
2317 
2318 	if (new_mode != sensor->current_mode) {
2319 		sensor->current_mode = new_mode;
2320 		sensor->pending_mode_change = true;
2321 	}
2322 	if (mbus_fmt->code != sensor->fmt.code)
2323 		sensor->pending_fmt_change = true;
2324 
2325 	/* update format even if code is unchanged, resolution might change */
2326 	sensor->fmt = *mbus_fmt;
2327 
2328 	__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2329 				 ov5640_calc_pixel_rate(sensor));
2330 out:
2331 	mutex_unlock(&sensor->lock);
2332 	return ret;
2333 }
2334 
2335 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2336 			       struct v4l2_mbus_framefmt *format)
2337 {
2338 	int ret = 0;
2339 	bool is_jpeg = false;
2340 	u8 fmt, mux;
2341 
2342 	switch (format->code) {
2343 	case MEDIA_BUS_FMT_UYVY8_1X16:
2344 	case MEDIA_BUS_FMT_UYVY8_2X8:
2345 		/* YUV422, UYVY */
2346 		fmt = 0x3f;
2347 		mux = OV5640_FMT_MUX_YUV422;
2348 		break;
2349 	case MEDIA_BUS_FMT_YUYV8_1X16:
2350 	case MEDIA_BUS_FMT_YUYV8_2X8:
2351 		/* YUV422, YUYV */
2352 		fmt = 0x30;
2353 		mux = OV5640_FMT_MUX_YUV422;
2354 		break;
2355 	case MEDIA_BUS_FMT_RGB565_2X8_LE:
2356 		/* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2357 		fmt = 0x6F;
2358 		mux = OV5640_FMT_MUX_RGB;
2359 		break;
2360 	case MEDIA_BUS_FMT_RGB565_2X8_BE:
2361 		/* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2362 		fmt = 0x61;
2363 		mux = OV5640_FMT_MUX_RGB;
2364 		break;
2365 	case MEDIA_BUS_FMT_JPEG_1X8:
2366 		/* YUV422, YUYV */
2367 		fmt = 0x30;
2368 		mux = OV5640_FMT_MUX_YUV422;
2369 		is_jpeg = true;
2370 		break;
2371 	case MEDIA_BUS_FMT_SBGGR8_1X8:
2372 		/* Raw, BGBG... / GRGR... */
2373 		fmt = 0x00;
2374 		mux = OV5640_FMT_MUX_RAW_DPC;
2375 		break;
2376 	case MEDIA_BUS_FMT_SGBRG8_1X8:
2377 		/* Raw bayer, GBGB... / RGRG... */
2378 		fmt = 0x01;
2379 		mux = OV5640_FMT_MUX_RAW_DPC;
2380 		break;
2381 	case MEDIA_BUS_FMT_SGRBG8_1X8:
2382 		/* Raw bayer, GRGR... / BGBG... */
2383 		fmt = 0x02;
2384 		mux = OV5640_FMT_MUX_RAW_DPC;
2385 		break;
2386 	case MEDIA_BUS_FMT_SRGGB8_1X8:
2387 		/* Raw bayer, RGRG... / GBGB... */
2388 		fmt = 0x03;
2389 		mux = OV5640_FMT_MUX_RAW_DPC;
2390 		break;
2391 	default:
2392 		return -EINVAL;
2393 	}
2394 
2395 	/* FORMAT CONTROL00: YUV and RGB formatting */
2396 	ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2397 	if (ret)
2398 		return ret;
2399 
2400 	/* FORMAT MUX CONTROL: ISP YUV or RGB */
2401 	ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2402 	if (ret)
2403 		return ret;
2404 
2405 	/*
2406 	 * TIMING TC REG21:
2407 	 * - [5]:	JPEG enable
2408 	 */
2409 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2410 			     BIT(5), is_jpeg ? BIT(5) : 0);
2411 	if (ret)
2412 		return ret;
2413 
2414 	/*
2415 	 * SYSTEM RESET02:
2416 	 * - [4]:	Reset JFIFO
2417 	 * - [3]:	Reset SFIFO
2418 	 * - [2]:	Reset JPEG
2419 	 */
2420 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2421 			     BIT(4) | BIT(3) | BIT(2),
2422 			     is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2423 	if (ret)
2424 		return ret;
2425 
2426 	/*
2427 	 * CLOCK ENABLE02:
2428 	 * - [5]:	Enable JPEG 2x clock
2429 	 * - [3]:	Enable JPEG clock
2430 	 */
2431 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2432 			      BIT(5) | BIT(3),
2433 			      is_jpeg ? (BIT(5) | BIT(3)) : 0);
2434 }
2435 
2436 /*
2437  * Sensor Controls.
2438  */
2439 
2440 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2441 {
2442 	int ret;
2443 
2444 	if (value) {
2445 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2446 				     BIT(0), BIT(0));
2447 		if (ret)
2448 			return ret;
2449 		ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2450 	} else {
2451 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2452 	}
2453 
2454 	return ret;
2455 }
2456 
2457 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2458 {
2459 	int ret;
2460 
2461 	if (value) {
2462 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2463 				     BIT(2), BIT(2));
2464 		if (ret)
2465 			return ret;
2466 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2467 				       value & 0xff);
2468 	} else {
2469 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2470 	}
2471 
2472 	return ret;
2473 }
2474 
2475 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2476 {
2477 	int ret;
2478 
2479 	if (value) {
2480 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2481 				     BIT(1), BIT(1));
2482 		if (ret)
2483 			return ret;
2484 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2485 				       value & 0xff);
2486 		if (ret)
2487 			return ret;
2488 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2489 				       value & 0xff);
2490 	} else {
2491 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2492 	}
2493 
2494 	return ret;
2495 }
2496 
2497 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2498 {
2499 	int ret;
2500 
2501 	ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2502 			     BIT(0), awb ? 0 : 1);
2503 	if (ret)
2504 		return ret;
2505 
2506 	if (!awb) {
2507 		u16 red = (u16)sensor->ctrls.red_balance->val;
2508 		u16 blue = (u16)sensor->ctrls.blue_balance->val;
2509 
2510 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2511 		if (ret)
2512 			return ret;
2513 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2520 				    enum v4l2_exposure_auto_type auto_exposure)
2521 {
2522 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2523 	bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2524 	int ret = 0;
2525 
2526 	if (ctrls->auto_exp->is_new) {
2527 		ret = ov5640_set_autoexposure(sensor, auto_exp);
2528 		if (ret)
2529 			return ret;
2530 	}
2531 
2532 	if (!auto_exp && ctrls->exposure->is_new) {
2533 		u16 max_exp;
2534 
2535 		ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2536 					&max_exp);
2537 		if (ret)
2538 			return ret;
2539 		ret = ov5640_get_vts(sensor);
2540 		if (ret < 0)
2541 			return ret;
2542 		max_exp += ret;
2543 		ret = 0;
2544 
2545 		if (ctrls->exposure->val < max_exp)
2546 			ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2547 	}
2548 
2549 	return ret;
2550 }
2551 
2552 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2553 {
2554 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2555 	int ret = 0;
2556 
2557 	if (ctrls->auto_gain->is_new) {
2558 		ret = ov5640_set_autogain(sensor, auto_gain);
2559 		if (ret)
2560 			return ret;
2561 	}
2562 
2563 	if (!auto_gain && ctrls->gain->is_new)
2564 		ret = ov5640_set_gain(sensor, ctrls->gain->val);
2565 
2566 	return ret;
2567 }
2568 
2569 static const char * const test_pattern_menu[] = {
2570 	"Disabled",
2571 	"Color bars",
2572 	"Color bars w/ rolling bar",
2573 	"Color squares",
2574 	"Color squares w/ rolling bar",
2575 };
2576 
2577 #define OV5640_TEST_ENABLE		BIT(7)
2578 #define OV5640_TEST_ROLLING		BIT(6)	/* rolling horizontal bar */
2579 #define OV5640_TEST_TRANSPARENT		BIT(5)
2580 #define OV5640_TEST_SQUARE_BW		BIT(4)	/* black & white squares */
2581 #define OV5640_TEST_BAR_STANDARD	(0 << 2)
2582 #define OV5640_TEST_BAR_VERT_CHANGE_1	(1 << 2)
2583 #define OV5640_TEST_BAR_HOR_CHANGE	(2 << 2)
2584 #define OV5640_TEST_BAR_VERT_CHANGE_2	(3 << 2)
2585 #define OV5640_TEST_BAR			(0 << 0)
2586 #define OV5640_TEST_RANDOM		(1 << 0)
2587 #define OV5640_TEST_SQUARE		(2 << 0)
2588 #define OV5640_TEST_BLACK		(3 << 0)
2589 
2590 static const u8 test_pattern_val[] = {
2591 	0,
2592 	OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2593 		OV5640_TEST_BAR,
2594 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2595 		OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2596 	OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2597 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2598 };
2599 
2600 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2601 {
2602 	return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2603 				test_pattern_val[value]);
2604 }
2605 
2606 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2607 {
2608 	int ret;
2609 
2610 	ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2611 			     (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2612 			     0 : BIT(7));
2613 	if (ret)
2614 		return ret;
2615 
2616 	return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2617 			      (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2618 			      BIT(2) : 0);
2619 }
2620 
2621 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2622 {
2623 	/*
2624 	 * If sensor is mounted upside down, mirror logic is inversed.
2625 	 *
2626 	 * Sensor is a BSI (Back Side Illuminated) one,
2627 	 * so image captured is physically mirrored.
2628 	 * This is why mirror logic is inversed in
2629 	 * order to cancel this mirror effect.
2630 	 */
2631 
2632 	/*
2633 	 * TIMING TC REG21:
2634 	 * - [2]:	ISP mirror
2635 	 * - [1]:	Sensor mirror
2636 	 */
2637 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2638 			      BIT(2) | BIT(1),
2639 			      (!(value ^ sensor->upside_down)) ?
2640 			      (BIT(2) | BIT(1)) : 0);
2641 }
2642 
2643 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2644 {
2645 	/* If sensor is mounted upside down, flip logic is inversed */
2646 
2647 	/*
2648 	 * TIMING TC REG20:
2649 	 * - [2]:	ISP vflip
2650 	 * - [1]:	Sensor vflip
2651 	 */
2652 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2653 			      BIT(2) | BIT(1),
2654 			      (value ^ sensor->upside_down) ?
2655 			      (BIT(2) | BIT(1)) : 0);
2656 }
2657 
2658 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2659 {
2660 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2661 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2662 	int val;
2663 
2664 	/* v4l2_ctrl_lock() locks our own mutex */
2665 
2666 	switch (ctrl->id) {
2667 	case V4L2_CID_AUTOGAIN:
2668 		val = ov5640_get_gain(sensor);
2669 		if (val < 0)
2670 			return val;
2671 		sensor->ctrls.gain->val = val;
2672 		break;
2673 	case V4L2_CID_EXPOSURE_AUTO:
2674 		val = ov5640_get_exposure(sensor);
2675 		if (val < 0)
2676 			return val;
2677 		sensor->ctrls.exposure->val = val;
2678 		break;
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2685 {
2686 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2687 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2688 	int ret;
2689 
2690 	/* v4l2_ctrl_lock() locks our own mutex */
2691 
2692 	/*
2693 	 * If the device is not powered up by the host driver do
2694 	 * not apply any controls to H/W at this time. Instead
2695 	 * the controls will be restored right after power-up.
2696 	 */
2697 	if (sensor->power_count == 0)
2698 		return 0;
2699 
2700 	switch (ctrl->id) {
2701 	case V4L2_CID_AUTOGAIN:
2702 		ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2703 		break;
2704 	case V4L2_CID_EXPOSURE_AUTO:
2705 		ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2706 		break;
2707 	case V4L2_CID_AUTO_WHITE_BALANCE:
2708 		ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2709 		break;
2710 	case V4L2_CID_HUE:
2711 		ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2712 		break;
2713 	case V4L2_CID_CONTRAST:
2714 		ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2715 		break;
2716 	case V4L2_CID_SATURATION:
2717 		ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2718 		break;
2719 	case V4L2_CID_TEST_PATTERN:
2720 		ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2721 		break;
2722 	case V4L2_CID_POWER_LINE_FREQUENCY:
2723 		ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2724 		break;
2725 	case V4L2_CID_HFLIP:
2726 		ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2727 		break;
2728 	case V4L2_CID_VFLIP:
2729 		ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2730 		break;
2731 	default:
2732 		ret = -EINVAL;
2733 		break;
2734 	}
2735 
2736 	return ret;
2737 }
2738 
2739 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2740 	.g_volatile_ctrl = ov5640_g_volatile_ctrl,
2741 	.s_ctrl = ov5640_s_ctrl,
2742 };
2743 
2744 static int ov5640_init_controls(struct ov5640_dev *sensor)
2745 {
2746 	const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2747 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2748 	struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2749 	int ret;
2750 
2751 	v4l2_ctrl_handler_init(hdl, 32);
2752 
2753 	/* we can use our own mutex for the ctrl lock */
2754 	hdl->lock = &sensor->lock;
2755 
2756 	/* Clock related controls */
2757 	ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
2758 					      0, INT_MAX, 1,
2759 					      ov5640_calc_pixel_rate(sensor));
2760 
2761 	/* Auto/manual white balance */
2762 	ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2763 					   V4L2_CID_AUTO_WHITE_BALANCE,
2764 					   0, 1, 1, 1);
2765 	ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2766 						0, 4095, 1, 0);
2767 	ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2768 					       0, 4095, 1, 0);
2769 	/* Auto/manual exposure */
2770 	ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2771 						 V4L2_CID_EXPOSURE_AUTO,
2772 						 V4L2_EXPOSURE_MANUAL, 0,
2773 						 V4L2_EXPOSURE_AUTO);
2774 	ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2775 					    0, 65535, 1, 0);
2776 	/* Auto/manual gain */
2777 	ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2778 					     0, 1, 1, 1);
2779 	ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2780 					0, 1023, 1, 0);
2781 
2782 	ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2783 					      0, 255, 1, 64);
2784 	ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2785 				       0, 359, 1, 0);
2786 	ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2787 					    0, 255, 1, 0);
2788 	ctrls->test_pattern =
2789 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2790 					     ARRAY_SIZE(test_pattern_menu) - 1,
2791 					     0, 0, test_pattern_menu);
2792 	ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2793 					 0, 1, 1, 0);
2794 	ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2795 					 0, 1, 1, 0);
2796 
2797 	ctrls->light_freq =
2798 		v4l2_ctrl_new_std_menu(hdl, ops,
2799 				       V4L2_CID_POWER_LINE_FREQUENCY,
2800 				       V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2801 				       V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2802 
2803 	if (hdl->error) {
2804 		ret = hdl->error;
2805 		goto free_ctrls;
2806 	}
2807 
2808 	ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY;
2809 	ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2810 	ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2811 
2812 	v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2813 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2814 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2815 
2816 	sensor->sd.ctrl_handler = hdl;
2817 	return 0;
2818 
2819 free_ctrls:
2820 	v4l2_ctrl_handler_free(hdl);
2821 	return ret;
2822 }
2823 
2824 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2825 				  struct v4l2_subdev_state *sd_state,
2826 				  struct v4l2_subdev_frame_size_enum *fse)
2827 {
2828 	if (fse->pad != 0)
2829 		return -EINVAL;
2830 	if (fse->index >= OV5640_NUM_MODES)
2831 		return -EINVAL;
2832 
2833 	fse->min_width =
2834 		ov5640_mode_data[fse->index].hact;
2835 	fse->max_width = fse->min_width;
2836 	fse->min_height =
2837 		ov5640_mode_data[fse->index].vact;
2838 	fse->max_height = fse->min_height;
2839 
2840 	return 0;
2841 }
2842 
2843 static int ov5640_enum_frame_interval(
2844 	struct v4l2_subdev *sd,
2845 	struct v4l2_subdev_state *sd_state,
2846 	struct v4l2_subdev_frame_interval_enum *fie)
2847 {
2848 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2849 	struct v4l2_fract tpf;
2850 	int ret;
2851 
2852 	if (fie->pad != 0)
2853 		return -EINVAL;
2854 	if (fie->index >= OV5640_NUM_FRAMERATES)
2855 		return -EINVAL;
2856 
2857 	tpf.numerator = 1;
2858 	tpf.denominator = ov5640_framerates[fie->index];
2859 
2860 	ret = ov5640_try_frame_interval(sensor, &tpf,
2861 					fie->width, fie->height);
2862 	if (ret < 0)
2863 		return -EINVAL;
2864 
2865 	fie->interval = tpf;
2866 	return 0;
2867 }
2868 
2869 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2870 				   struct v4l2_subdev_frame_interval *fi)
2871 {
2872 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2873 
2874 	mutex_lock(&sensor->lock);
2875 	fi->interval = sensor->frame_interval;
2876 	mutex_unlock(&sensor->lock);
2877 
2878 	return 0;
2879 }
2880 
2881 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2882 				   struct v4l2_subdev_frame_interval *fi)
2883 {
2884 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2885 	const struct ov5640_mode_info *mode;
2886 	int frame_rate, ret = 0;
2887 
2888 	if (fi->pad != 0)
2889 		return -EINVAL;
2890 
2891 	mutex_lock(&sensor->lock);
2892 
2893 	if (sensor->streaming) {
2894 		ret = -EBUSY;
2895 		goto out;
2896 	}
2897 
2898 	mode = sensor->current_mode;
2899 
2900 	frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2901 					       mode->hact, mode->vact);
2902 	if (frame_rate < 0) {
2903 		/* Always return a valid frame interval value */
2904 		fi->interval = sensor->frame_interval;
2905 		goto out;
2906 	}
2907 
2908 	mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2909 				mode->vact, true);
2910 	if (!mode) {
2911 		ret = -EINVAL;
2912 		goto out;
2913 	}
2914 
2915 	if (mode != sensor->current_mode ||
2916 	    frame_rate != sensor->current_fr) {
2917 		sensor->current_fr = frame_rate;
2918 		sensor->frame_interval = fi->interval;
2919 		sensor->current_mode = mode;
2920 		sensor->pending_mode_change = true;
2921 
2922 		__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2923 					 ov5640_calc_pixel_rate(sensor));
2924 	}
2925 out:
2926 	mutex_unlock(&sensor->lock);
2927 	return ret;
2928 }
2929 
2930 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2931 				 struct v4l2_subdev_state *sd_state,
2932 				 struct v4l2_subdev_mbus_code_enum *code)
2933 {
2934 	if (code->pad != 0)
2935 		return -EINVAL;
2936 	if (code->index >= ARRAY_SIZE(ov5640_formats))
2937 		return -EINVAL;
2938 
2939 	code->code = ov5640_formats[code->index].code;
2940 	return 0;
2941 }
2942 
2943 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2944 {
2945 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2946 	int ret = 0;
2947 
2948 	mutex_lock(&sensor->lock);
2949 
2950 	if (sensor->streaming == !enable) {
2951 		if (enable && sensor->pending_mode_change) {
2952 			ret = ov5640_set_mode(sensor);
2953 			if (ret)
2954 				goto out;
2955 		}
2956 
2957 		if (enable && sensor->pending_fmt_change) {
2958 			ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2959 			if (ret)
2960 				goto out;
2961 			sensor->pending_fmt_change = false;
2962 		}
2963 
2964 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2965 			ret = ov5640_set_stream_mipi(sensor, enable);
2966 		else
2967 			ret = ov5640_set_stream_dvp(sensor, enable);
2968 
2969 		if (!ret)
2970 			sensor->streaming = enable;
2971 	}
2972 out:
2973 	mutex_unlock(&sensor->lock);
2974 	return ret;
2975 }
2976 
2977 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2978 	.s_power = ov5640_s_power,
2979 	.log_status = v4l2_ctrl_subdev_log_status,
2980 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2981 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2982 };
2983 
2984 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2985 	.g_frame_interval = ov5640_g_frame_interval,
2986 	.s_frame_interval = ov5640_s_frame_interval,
2987 	.s_stream = ov5640_s_stream,
2988 };
2989 
2990 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2991 	.enum_mbus_code = ov5640_enum_mbus_code,
2992 	.get_fmt = ov5640_get_fmt,
2993 	.set_fmt = ov5640_set_fmt,
2994 	.enum_frame_size = ov5640_enum_frame_size,
2995 	.enum_frame_interval = ov5640_enum_frame_interval,
2996 };
2997 
2998 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2999 	.core = &ov5640_core_ops,
3000 	.video = &ov5640_video_ops,
3001 	.pad = &ov5640_pad_ops,
3002 };
3003 
3004 static int ov5640_get_regulators(struct ov5640_dev *sensor)
3005 {
3006 	int i;
3007 
3008 	for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
3009 		sensor->supplies[i].supply = ov5640_supply_name[i];
3010 
3011 	return devm_regulator_bulk_get(&sensor->i2c_client->dev,
3012 				       OV5640_NUM_SUPPLIES,
3013 				       sensor->supplies);
3014 }
3015 
3016 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
3017 {
3018 	struct i2c_client *client = sensor->i2c_client;
3019 	int ret = 0;
3020 	u16 chip_id;
3021 
3022 	ret = ov5640_set_power_on(sensor);
3023 	if (ret)
3024 		return ret;
3025 
3026 	ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
3027 	if (ret) {
3028 		dev_err(&client->dev, "%s: failed to read chip identifier\n",
3029 			__func__);
3030 		goto power_off;
3031 	}
3032 
3033 	if (chip_id != 0x5640) {
3034 		dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
3035 			__func__, chip_id);
3036 		ret = -ENXIO;
3037 	}
3038 
3039 power_off:
3040 	ov5640_set_power_off(sensor);
3041 	return ret;
3042 }
3043 
3044 static int ov5640_probe(struct i2c_client *client)
3045 {
3046 	struct device *dev = &client->dev;
3047 	struct fwnode_handle *endpoint;
3048 	struct ov5640_dev *sensor;
3049 	struct v4l2_mbus_framefmt *fmt;
3050 	u32 rotation;
3051 	int ret;
3052 
3053 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
3054 	if (!sensor)
3055 		return -ENOMEM;
3056 
3057 	sensor->i2c_client = client;
3058 
3059 	/*
3060 	 * default init sequence initialize sensor to
3061 	 * YUV422 UYVY VGA@30fps
3062 	 */
3063 	fmt = &sensor->fmt;
3064 	fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
3065 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
3066 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
3067 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
3068 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
3069 	fmt->width = 640;
3070 	fmt->height = 480;
3071 	fmt->field = V4L2_FIELD_NONE;
3072 	sensor->frame_interval.numerator = 1;
3073 	sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
3074 	sensor->current_fr = OV5640_30_FPS;
3075 	sensor->current_mode =
3076 		&ov5640_mode_data[OV5640_MODE_VGA_640_480];
3077 	sensor->last_mode = sensor->current_mode;
3078 
3079 	sensor->ae_target = 52;
3080 
3081 	/* optional indication of physical rotation of sensor */
3082 	ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
3083 				       &rotation);
3084 	if (!ret) {
3085 		switch (rotation) {
3086 		case 180:
3087 			sensor->upside_down = true;
3088 			fallthrough;
3089 		case 0:
3090 			break;
3091 		default:
3092 			dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
3093 				 rotation);
3094 		}
3095 	}
3096 
3097 	endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
3098 						  NULL);
3099 	if (!endpoint) {
3100 		dev_err(dev, "endpoint node not found\n");
3101 		return -EINVAL;
3102 	}
3103 
3104 	ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3105 	fwnode_handle_put(endpoint);
3106 	if (ret) {
3107 		dev_err(dev, "Could not parse endpoint\n");
3108 		return ret;
3109 	}
3110 
3111 	if (sensor->ep.bus_type != V4L2_MBUS_PARALLEL &&
3112 	    sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY &&
3113 	    sensor->ep.bus_type != V4L2_MBUS_BT656) {
3114 		dev_err(dev, "Unsupported bus type %d\n", sensor->ep.bus_type);
3115 		return -EINVAL;
3116 	}
3117 
3118 	/* get system clock (xclk) */
3119 	sensor->xclk = devm_clk_get(dev, "xclk");
3120 	if (IS_ERR(sensor->xclk)) {
3121 		dev_err(dev, "failed to get xclk\n");
3122 		return PTR_ERR(sensor->xclk);
3123 	}
3124 
3125 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
3126 	if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3127 	    sensor->xclk_freq > OV5640_XCLK_MAX) {
3128 		dev_err(dev, "xclk frequency out of range: %d Hz\n",
3129 			sensor->xclk_freq);
3130 		return -EINVAL;
3131 	}
3132 
3133 	/* request optional power down pin */
3134 	sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3135 						    GPIOD_OUT_HIGH);
3136 	if (IS_ERR(sensor->pwdn_gpio))
3137 		return PTR_ERR(sensor->pwdn_gpio);
3138 
3139 	/* request optional reset pin */
3140 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3141 						     GPIOD_OUT_HIGH);
3142 	if (IS_ERR(sensor->reset_gpio))
3143 		return PTR_ERR(sensor->reset_gpio);
3144 
3145 	v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3146 
3147 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3148 			    V4L2_SUBDEV_FL_HAS_EVENTS;
3149 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3150 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3151 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3152 	if (ret)
3153 		return ret;
3154 
3155 	ret = ov5640_get_regulators(sensor);
3156 	if (ret)
3157 		return ret;
3158 
3159 	mutex_init(&sensor->lock);
3160 
3161 	ret = ov5640_check_chip_id(sensor);
3162 	if (ret)
3163 		goto entity_cleanup;
3164 
3165 	ret = ov5640_init_controls(sensor);
3166 	if (ret)
3167 		goto entity_cleanup;
3168 
3169 	ret = v4l2_async_register_subdev_sensor(&sensor->sd);
3170 	if (ret)
3171 		goto free_ctrls;
3172 
3173 	return 0;
3174 
3175 free_ctrls:
3176 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3177 entity_cleanup:
3178 	media_entity_cleanup(&sensor->sd.entity);
3179 	mutex_destroy(&sensor->lock);
3180 	return ret;
3181 }
3182 
3183 static int ov5640_remove(struct i2c_client *client)
3184 {
3185 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3186 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
3187 
3188 	v4l2_async_unregister_subdev(&sensor->sd);
3189 	media_entity_cleanup(&sensor->sd.entity);
3190 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3191 	mutex_destroy(&sensor->lock);
3192 
3193 	return 0;
3194 }
3195 
3196 static const struct i2c_device_id ov5640_id[] = {
3197 	{"ov5640", 0},
3198 	{},
3199 };
3200 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3201 
3202 static const struct of_device_id ov5640_dt_ids[] = {
3203 	{ .compatible = "ovti,ov5640" },
3204 	{ /* sentinel */ }
3205 };
3206 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3207 
3208 static struct i2c_driver ov5640_i2c_driver = {
3209 	.driver = {
3210 		.name  = "ov5640",
3211 		.of_match_table	= ov5640_dt_ids,
3212 	},
3213 	.id_table = ov5640_id,
3214 	.probe_new = ov5640_probe,
3215 	.remove   = ov5640_remove,
3216 };
3217 
3218 module_i2c_driver(ov5640_i2c_driver);
3219 
3220 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3221 MODULE_LICENSE("GPL");
3222