1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. 4 * Copyright (C) 2014-2017 Mentor Graphics Inc. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/clk-provider.h> 9 #include <linux/clkdev.h> 10 #include <linux/ctype.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/of_device.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/slab.h> 20 #include <linux/types.h> 21 #include <media/v4l2-async.h> 22 #include <media/v4l2-ctrls.h> 23 #include <media/v4l2-device.h> 24 #include <media/v4l2-event.h> 25 #include <media/v4l2-fwnode.h> 26 #include <media/v4l2-subdev.h> 27 28 /* min/typical/max system clock (xclk) frequencies */ 29 #define OV5640_XCLK_MIN 6000000 30 #define OV5640_XCLK_MAX 54000000 31 32 #define OV5640_DEFAULT_SLAVE_ID 0x3c 33 34 #define OV5640_REG_SYS_RESET02 0x3002 35 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 36 #define OV5640_REG_SYS_CTRL0 0x3008 37 #define OV5640_REG_CHIP_ID 0x300a 38 #define OV5640_REG_IO_MIPI_CTRL00 0x300e 39 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 40 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 41 #define OV5640_REG_PAD_OUTPUT00 0x3019 42 #define OV5640_REG_SYSTEM_CONTROL1 0x302e 43 #define OV5640_REG_SC_PLL_CTRL0 0x3034 44 #define OV5640_REG_SC_PLL_CTRL1 0x3035 45 #define OV5640_REG_SC_PLL_CTRL2 0x3036 46 #define OV5640_REG_SC_PLL_CTRL3 0x3037 47 #define OV5640_REG_SLAVE_ID 0x3100 48 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 49 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 50 #define OV5640_REG_AWB_R_GAIN 0x3400 51 #define OV5640_REG_AWB_G_GAIN 0x3402 52 #define OV5640_REG_AWB_B_GAIN 0x3404 53 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 54 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 55 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 56 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 57 #define OV5640_REG_AEC_PK_MANUAL 0x3503 58 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a 59 #define OV5640_REG_AEC_PK_VTS 0x350c 60 #define OV5640_REG_TIMING_DVPHO 0x3808 61 #define OV5640_REG_TIMING_DVPVO 0x380a 62 #define OV5640_REG_TIMING_HTS 0x380c 63 #define OV5640_REG_TIMING_VTS 0x380e 64 #define OV5640_REG_TIMING_TC_REG20 0x3820 65 #define OV5640_REG_TIMING_TC_REG21 0x3821 66 #define OV5640_REG_AEC_CTRL00 0x3a00 67 #define OV5640_REG_AEC_B50_STEP 0x3a08 68 #define OV5640_REG_AEC_B60_STEP 0x3a0a 69 #define OV5640_REG_AEC_CTRL0D 0x3a0d 70 #define OV5640_REG_AEC_CTRL0E 0x3a0e 71 #define OV5640_REG_AEC_CTRL0F 0x3a0f 72 #define OV5640_REG_AEC_CTRL10 0x3a10 73 #define OV5640_REG_AEC_CTRL11 0x3a11 74 #define OV5640_REG_AEC_CTRL1B 0x3a1b 75 #define OV5640_REG_AEC_CTRL1E 0x3a1e 76 #define OV5640_REG_AEC_CTRL1F 0x3a1f 77 #define OV5640_REG_HZ5060_CTRL00 0x3c00 78 #define OV5640_REG_HZ5060_CTRL01 0x3c01 79 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c 80 #define OV5640_REG_FRAME_CTRL01 0x4202 81 #define OV5640_REG_FORMAT_CONTROL00 0x4300 82 #define OV5640_REG_VFIFO_HSIZE 0x4602 83 #define OV5640_REG_VFIFO_VSIZE 0x4604 84 #define OV5640_REG_JPG_MODE_SELECT 0x4713 85 #define OV5640_REG_POLARITY_CTRL00 0x4740 86 #define OV5640_REG_MIPI_CTRL00 0x4800 87 #define OV5640_REG_DEBUG_MODE 0x4814 88 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f 89 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d 90 #define OV5640_REG_SDE_CTRL0 0x5580 91 #define OV5640_REG_SDE_CTRL1 0x5581 92 #define OV5640_REG_SDE_CTRL3 0x5583 93 #define OV5640_REG_SDE_CTRL4 0x5584 94 #define OV5640_REG_SDE_CTRL5 0x5585 95 #define OV5640_REG_AVG_READOUT 0x56a1 96 97 enum ov5640_mode_id { 98 OV5640_MODE_QCIF_176_144 = 0, 99 OV5640_MODE_QVGA_320_240, 100 OV5640_MODE_VGA_640_480, 101 OV5640_MODE_NTSC_720_480, 102 OV5640_MODE_PAL_720_576, 103 OV5640_MODE_XGA_1024_768, 104 OV5640_MODE_720P_1280_720, 105 OV5640_MODE_1080P_1920_1080, 106 OV5640_MODE_QSXGA_2592_1944, 107 OV5640_NUM_MODES, 108 }; 109 110 enum ov5640_frame_rate { 111 OV5640_15_FPS = 0, 112 OV5640_30_FPS, 113 OV5640_60_FPS, 114 OV5640_NUM_FRAMERATES, 115 }; 116 117 enum ov5640_format_mux { 118 OV5640_FMT_MUX_YUV422 = 0, 119 OV5640_FMT_MUX_RGB, 120 OV5640_FMT_MUX_DITHER, 121 OV5640_FMT_MUX_RAW_DPC, 122 OV5640_FMT_MUX_SNR_RAW, 123 OV5640_FMT_MUX_RAW_CIP, 124 }; 125 126 struct ov5640_pixfmt { 127 u32 code; 128 u32 colorspace; 129 }; 130 131 static const struct ov5640_pixfmt ov5640_formats[] = { 132 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, }, 133 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, }, 134 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, }, 135 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, }, 136 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, }, 137 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, }, 138 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, }, 139 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, }, 140 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, }, 141 }; 142 143 /* 144 * FIXME: remove this when a subdev API becomes available 145 * to set the MIPI CSI-2 virtual channel. 146 */ 147 static unsigned int virtual_channel; 148 module_param(virtual_channel, uint, 0444); 149 MODULE_PARM_DESC(virtual_channel, 150 "MIPI CSI-2 virtual channel (0..3), default 0"); 151 152 static const int ov5640_framerates[] = { 153 [OV5640_15_FPS] = 15, 154 [OV5640_30_FPS] = 30, 155 [OV5640_60_FPS] = 60, 156 }; 157 158 /* regulator supplies */ 159 static const char * const ov5640_supply_name[] = { 160 "DOVDD", /* Digital I/O (1.8V) supply */ 161 "AVDD", /* Analog (2.8V) supply */ 162 "DVDD", /* Digital Core (1.5V) supply */ 163 }; 164 165 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) 166 167 /* 168 * Image size under 1280 * 960 are SUBSAMPLING 169 * Image size upper 1280 * 960 are SCALING 170 */ 171 enum ov5640_downsize_mode { 172 SUBSAMPLING, 173 SCALING, 174 }; 175 176 struct reg_value { 177 u16 reg_addr; 178 u8 val; 179 u8 mask; 180 u32 delay_ms; 181 }; 182 183 struct ov5640_mode_info { 184 enum ov5640_mode_id id; 185 enum ov5640_downsize_mode dn_mode; 186 u32 hact; 187 u32 htot; 188 u32 vact; 189 u32 vtot; 190 const struct reg_value *reg_data; 191 u32 reg_data_size; 192 }; 193 194 struct ov5640_ctrls { 195 struct v4l2_ctrl_handler handler; 196 struct { 197 struct v4l2_ctrl *auto_exp; 198 struct v4l2_ctrl *exposure; 199 }; 200 struct { 201 struct v4l2_ctrl *auto_wb; 202 struct v4l2_ctrl *blue_balance; 203 struct v4l2_ctrl *red_balance; 204 }; 205 struct { 206 struct v4l2_ctrl *auto_gain; 207 struct v4l2_ctrl *gain; 208 }; 209 struct v4l2_ctrl *brightness; 210 struct v4l2_ctrl *light_freq; 211 struct v4l2_ctrl *saturation; 212 struct v4l2_ctrl *contrast; 213 struct v4l2_ctrl *hue; 214 struct v4l2_ctrl *test_pattern; 215 struct v4l2_ctrl *hflip; 216 struct v4l2_ctrl *vflip; 217 }; 218 219 struct ov5640_dev { 220 struct i2c_client *i2c_client; 221 struct v4l2_subdev sd; 222 struct media_pad pad; 223 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ 224 struct clk *xclk; /* system clock to OV5640 */ 225 u32 xclk_freq; 226 227 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; 228 struct gpio_desc *reset_gpio; 229 struct gpio_desc *pwdn_gpio; 230 bool upside_down; 231 232 /* lock to protect all members below */ 233 struct mutex lock; 234 235 int power_count; 236 237 struct v4l2_mbus_framefmt fmt; 238 bool pending_fmt_change; 239 240 const struct ov5640_mode_info *current_mode; 241 const struct ov5640_mode_info *last_mode; 242 enum ov5640_frame_rate current_fr; 243 struct v4l2_fract frame_interval; 244 245 struct ov5640_ctrls ctrls; 246 247 u32 prev_sysclk, prev_hts; 248 u32 ae_low, ae_high, ae_target; 249 250 bool pending_mode_change; 251 bool streaming; 252 }; 253 254 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) 255 { 256 return container_of(sd, struct ov5640_dev, sd); 257 } 258 259 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 260 { 261 return &container_of(ctrl->handler, struct ov5640_dev, 262 ctrls.handler)->sd; 263 } 264 265 /* 266 * FIXME: all of these register tables are likely filled with 267 * entries that set the register to their power-on default values, 268 * and which are otherwise not touched by this driver. Those entries 269 * should be identified and removed to speed register load time 270 * over i2c. 271 */ 272 /* YUV422 UYVY VGA@30fps */ 273 static const struct reg_value ov5640_init_setting_30fps_VGA[] = { 274 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0}, 275 {0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0}, 276 {0x3630, 0x36, 0, 0}, 277 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, 278 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, 279 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, 280 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, 281 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, 282 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, 283 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, 284 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, 285 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, 286 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, 287 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, 288 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 289 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, 290 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 291 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 292 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 293 {0x3810, 0x00, 0, 0}, 294 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 295 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 296 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 297 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 298 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 299 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 300 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, 301 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, 302 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, 303 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0}, 304 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 305 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0}, 306 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, 307 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, 308 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, 309 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, 310 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, 311 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, 312 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, 313 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, 314 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, 315 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, 316 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, 317 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, 318 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, 319 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, 320 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, 321 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, 322 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, 323 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, 324 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, 325 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, 326 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, 327 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, 328 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, 329 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, 330 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, 331 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, 332 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, 333 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, 334 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, 335 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, 336 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, 337 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, 338 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, 339 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, 340 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, 341 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, 342 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, 343 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, 344 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, 345 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, 346 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, 347 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, 348 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, 349 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, 350 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, 351 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, 352 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, 353 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, 354 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, 355 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, 356 }; 357 358 static const struct reg_value ov5640_setting_VGA_640_480[] = { 359 {0x3c07, 0x08, 0, 0}, 360 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 361 {0x3814, 0x31, 0, 0}, 362 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 363 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 364 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 365 {0x3810, 0x00, 0, 0}, 366 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 367 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 368 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 369 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 370 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 371 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 372 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 373 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 374 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 375 }; 376 377 static const struct reg_value ov5640_setting_XGA_1024_768[] = { 378 {0x3c07, 0x08, 0, 0}, 379 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 380 {0x3814, 0x31, 0, 0}, 381 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 382 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 383 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 384 {0x3810, 0x00, 0, 0}, 385 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 386 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 387 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 388 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 389 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 390 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 391 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 392 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 393 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 394 }; 395 396 static const struct reg_value ov5640_setting_QVGA_320_240[] = { 397 {0x3c07, 0x08, 0, 0}, 398 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 399 {0x3814, 0x31, 0, 0}, 400 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 401 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 402 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 403 {0x3810, 0x00, 0, 0}, 404 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 405 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 406 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 407 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 408 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 409 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 410 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 411 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 412 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 413 }; 414 415 static const struct reg_value ov5640_setting_QCIF_176_144[] = { 416 {0x3c07, 0x08, 0, 0}, 417 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 418 {0x3814, 0x31, 0, 0}, 419 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 420 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 421 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 422 {0x3810, 0x00, 0, 0}, 423 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 424 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 425 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 426 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 427 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 428 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 429 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 430 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 431 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 432 }; 433 434 static const struct reg_value ov5640_setting_NTSC_720_480[] = { 435 {0x3c07, 0x08, 0, 0}, 436 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 437 {0x3814, 0x31, 0, 0}, 438 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 439 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 440 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 441 {0x3810, 0x00, 0, 0}, 442 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0}, 443 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 444 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 445 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 446 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 447 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 448 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 449 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 450 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 451 }; 452 453 static const struct reg_value ov5640_setting_PAL_720_576[] = { 454 {0x3c07, 0x08, 0, 0}, 455 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 456 {0x3814, 0x31, 0, 0}, 457 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 458 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 459 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 460 {0x3810, 0x00, 0, 0}, 461 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 462 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 463 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 464 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 465 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 466 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 467 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 468 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 469 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 470 }; 471 472 static const struct reg_value ov5640_setting_720P_1280_720[] = { 473 {0x3c07, 0x07, 0, 0}, 474 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 475 {0x3814, 0x31, 0, 0}, 476 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 477 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0}, 478 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0}, 479 {0x3810, 0x00, 0, 0}, 480 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 481 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 482 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, 483 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, 484 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, 485 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, 486 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 487 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, 488 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, 489 }; 490 491 static const struct reg_value ov5640_setting_1080P_1920_1080[] = { 492 {0x3008, 0x42, 0, 0}, 493 {0x3c07, 0x08, 0, 0}, 494 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 495 {0x3814, 0x11, 0, 0}, 496 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 497 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 498 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 499 {0x3810, 0x00, 0, 0}, 500 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 501 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 502 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 503 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 504 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 505 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 506 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 507 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 508 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, 509 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, 510 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 511 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0}, 512 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0}, 513 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0}, 514 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, 515 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, 516 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, 517 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, 518 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0}, 519 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, 520 {0x4005, 0x1a, 0, 0}, {0x3008, 0x02, 0, 0}, 521 }; 522 523 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { 524 {0x3c07, 0x08, 0, 0}, 525 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 526 {0x3814, 0x11, 0, 0}, 527 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 528 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 529 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 530 {0x3810, 0x00, 0, 0}, 531 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 532 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 533 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 534 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 535 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 536 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 537 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 538 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 539 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, 540 }; 541 542 /* power-on sensor init reg table */ 543 static const struct ov5640_mode_info ov5640_mode_init_data = { 544 0, SUBSAMPLING, 640, 1896, 480, 984, 545 ov5640_init_setting_30fps_VGA, 546 ARRAY_SIZE(ov5640_init_setting_30fps_VGA), 547 }; 548 549 static const struct ov5640_mode_info 550 ov5640_mode_data[OV5640_NUM_MODES] = { 551 {OV5640_MODE_QCIF_176_144, SUBSAMPLING, 552 176, 1896, 144, 984, 553 ov5640_setting_QCIF_176_144, 554 ARRAY_SIZE(ov5640_setting_QCIF_176_144)}, 555 {OV5640_MODE_QVGA_320_240, SUBSAMPLING, 556 320, 1896, 240, 984, 557 ov5640_setting_QVGA_320_240, 558 ARRAY_SIZE(ov5640_setting_QVGA_320_240)}, 559 {OV5640_MODE_VGA_640_480, SUBSAMPLING, 560 640, 1896, 480, 1080, 561 ov5640_setting_VGA_640_480, 562 ARRAY_SIZE(ov5640_setting_VGA_640_480)}, 563 {OV5640_MODE_NTSC_720_480, SUBSAMPLING, 564 720, 1896, 480, 984, 565 ov5640_setting_NTSC_720_480, 566 ARRAY_SIZE(ov5640_setting_NTSC_720_480)}, 567 {OV5640_MODE_PAL_720_576, SUBSAMPLING, 568 720, 1896, 576, 984, 569 ov5640_setting_PAL_720_576, 570 ARRAY_SIZE(ov5640_setting_PAL_720_576)}, 571 {OV5640_MODE_XGA_1024_768, SUBSAMPLING, 572 1024, 1896, 768, 1080, 573 ov5640_setting_XGA_1024_768, 574 ARRAY_SIZE(ov5640_setting_XGA_1024_768)}, 575 {OV5640_MODE_720P_1280_720, SUBSAMPLING, 576 1280, 1892, 720, 740, 577 ov5640_setting_720P_1280_720, 578 ARRAY_SIZE(ov5640_setting_720P_1280_720)}, 579 {OV5640_MODE_1080P_1920_1080, SCALING, 580 1920, 2500, 1080, 1120, 581 ov5640_setting_1080P_1920_1080, 582 ARRAY_SIZE(ov5640_setting_1080P_1920_1080)}, 583 {OV5640_MODE_QSXGA_2592_1944, SCALING, 584 2592, 2844, 1944, 1968, 585 ov5640_setting_QSXGA_2592_1944, 586 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944)}, 587 }; 588 589 static int ov5640_init_slave_id(struct ov5640_dev *sensor) 590 { 591 struct i2c_client *client = sensor->i2c_client; 592 struct i2c_msg msg; 593 u8 buf[3]; 594 int ret; 595 596 if (client->addr == OV5640_DEFAULT_SLAVE_ID) 597 return 0; 598 599 buf[0] = OV5640_REG_SLAVE_ID >> 8; 600 buf[1] = OV5640_REG_SLAVE_ID & 0xff; 601 buf[2] = client->addr << 1; 602 603 msg.addr = OV5640_DEFAULT_SLAVE_ID; 604 msg.flags = 0; 605 msg.buf = buf; 606 msg.len = sizeof(buf); 607 608 ret = i2c_transfer(client->adapter, &msg, 1); 609 if (ret < 0) { 610 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); 611 return ret; 612 } 613 614 return 0; 615 } 616 617 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) 618 { 619 struct i2c_client *client = sensor->i2c_client; 620 struct i2c_msg msg; 621 u8 buf[3]; 622 int ret; 623 624 buf[0] = reg >> 8; 625 buf[1] = reg & 0xff; 626 buf[2] = val; 627 628 msg.addr = client->addr; 629 msg.flags = client->flags; 630 msg.buf = buf; 631 msg.len = sizeof(buf); 632 633 ret = i2c_transfer(client->adapter, &msg, 1); 634 if (ret < 0) { 635 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", 636 __func__, reg, val); 637 return ret; 638 } 639 640 return 0; 641 } 642 643 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) 644 { 645 struct i2c_client *client = sensor->i2c_client; 646 struct i2c_msg msg[2]; 647 u8 buf[2]; 648 int ret; 649 650 buf[0] = reg >> 8; 651 buf[1] = reg & 0xff; 652 653 msg[0].addr = client->addr; 654 msg[0].flags = client->flags; 655 msg[0].buf = buf; 656 msg[0].len = sizeof(buf); 657 658 msg[1].addr = client->addr; 659 msg[1].flags = client->flags | I2C_M_RD; 660 msg[1].buf = buf; 661 msg[1].len = 1; 662 663 ret = i2c_transfer(client->adapter, msg, 2); 664 if (ret < 0) { 665 dev_err(&client->dev, "%s: error: reg=%x\n", 666 __func__, reg); 667 return ret; 668 } 669 670 *val = buf[0]; 671 return 0; 672 } 673 674 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) 675 { 676 u8 hi, lo; 677 int ret; 678 679 ret = ov5640_read_reg(sensor, reg, &hi); 680 if (ret) 681 return ret; 682 ret = ov5640_read_reg(sensor, reg + 1, &lo); 683 if (ret) 684 return ret; 685 686 *val = ((u16)hi << 8) | (u16)lo; 687 return 0; 688 } 689 690 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) 691 { 692 int ret; 693 694 ret = ov5640_write_reg(sensor, reg, val >> 8); 695 if (ret) 696 return ret; 697 698 return ov5640_write_reg(sensor, reg + 1, val & 0xff); 699 } 700 701 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, 702 u8 mask, u8 val) 703 { 704 u8 readval; 705 int ret; 706 707 ret = ov5640_read_reg(sensor, reg, &readval); 708 if (ret) 709 return ret; 710 711 readval &= ~mask; 712 val &= mask; 713 val |= readval; 714 715 return ov5640_write_reg(sensor, reg, val); 716 } 717 718 /* 719 * After trying the various combinations, reading various 720 * documentations spread around the net, and from the various 721 * feedback, the clock tree is probably as follows: 722 * 723 * +--------------+ 724 * | Ext. Clock | 725 * +-+------------+ 726 * | +----------+ 727 * +->| PLL1 | - reg 0x3036, for the multiplier 728 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider 729 * | +--------------+ 730 * +->| System Clock | - reg 0x3035, bits 4-7 731 * +-+------------+ 732 * | +--------------+ 733 * +->| MIPI Divider | - reg 0x3035, bits 0-3 734 * | +-+------------+ 735 * | +----------------> MIPI SCLK 736 * | + +-----+ 737 * | +->| / 2 |-------> MIPI BIT CLK 738 * | +-----+ 739 * | +--------------+ 740 * +->| PLL Root Div | - reg 0x3037, bit 4 741 * +-+------------+ 742 * | +---------+ 743 * +->| Bit Div | - reg 0x3035, bits 0-3 744 * +-+-------+ 745 * | +-------------+ 746 * +->| SCLK Div | - reg 0x3108, bits 0-1 747 * | +-+-----------+ 748 * | +---------------> SCLK 749 * | +-------------+ 750 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 751 * | +-+-----------+ 752 * | +---------------> SCLK 2X 753 * | +-------------+ 754 * +->| PCLK Div | - reg 0x3108, bits 4-5 755 * ++------------+ 756 * + +-----------+ 757 * +->| P_DIV | - reg 0x3035, bits 0-3 758 * +-----+-----+ 759 * +------------> PCLK 760 * 761 * This is deviating from the datasheet at least for the register 762 * 0x3108, since it's said here that the PCLK would be clocked from 763 * the PLL. 764 * 765 * There seems to be also (unverified) constraints: 766 * - the PLL pre-divider output rate should be in the 4-27MHz range 767 * - the PLL multiplier output rate should be in the 500-1000MHz range 768 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG 769 * 770 * In the two latter cases, these constraints are met since our 771 * factors are hardcoded. If we were to change that, we would need to 772 * take this into account. The only varying parts are the PLL 773 * multiplier and the system clock divider, which are shared between 774 * all these clocks so won't cause any issue. 775 */ 776 777 /* 778 * This is supposed to be ranging from 1 to 8, but the value is always 779 * set to 3 in the vendor kernels. 780 */ 781 #define OV5640_PLL_PREDIV 3 782 783 #define OV5640_PLL_MULT_MIN 4 784 #define OV5640_PLL_MULT_MAX 252 785 786 /* 787 * This is supposed to be ranging from 1 to 16, but the value is 788 * always set to either 1 or 2 in the vendor kernels. 789 */ 790 #define OV5640_SYSDIV_MIN 1 791 #define OV5640_SYSDIV_MAX 16 792 793 /* 794 * Hardcode these values for scaler and non-scaler modes. 795 * FIXME: to be re-calcualted for 1 data lanes setups 796 */ 797 #define OV5640_MIPI_DIV_PCLK 2 798 #define OV5640_MIPI_DIV_SCLK 1 799 800 /* 801 * This is supposed to be ranging from 1 to 2, but the value is always 802 * set to 2 in the vendor kernels. 803 */ 804 #define OV5640_PLL_ROOT_DIV 2 805 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) 806 807 /* 808 * We only supports 8-bit formats at the moment 809 */ 810 #define OV5640_BIT_DIV 2 811 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 812 813 /* 814 * This is supposed to be ranging from 1 to 8, but the value is always 815 * set to 2 in the vendor kernels. 816 */ 817 #define OV5640_SCLK_ROOT_DIV 2 818 819 /* 820 * This is hardcoded so that the consistency is maintained between SCLK and 821 * SCLK 2x. 822 */ 823 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) 824 825 /* 826 * This is supposed to be ranging from 1 to 8, but the value is always 827 * set to 1 in the vendor kernels. 828 */ 829 #define OV5640_PCLK_ROOT_DIV 1 830 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 831 832 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, 833 u8 pll_prediv, u8 pll_mult, 834 u8 sysdiv) 835 { 836 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; 837 838 /* PLL1 output cannot exceed 1GHz. */ 839 if (sysclk / 1000000 > 1000) 840 return 0; 841 842 return sysclk / sysdiv; 843 } 844 845 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, 846 unsigned long rate, 847 u8 *pll_prediv, u8 *pll_mult, 848 u8 *sysdiv) 849 { 850 unsigned long best = ~0; 851 u8 best_sysdiv = 1, best_mult = 1; 852 u8 _sysdiv, _pll_mult; 853 854 for (_sysdiv = OV5640_SYSDIV_MIN; 855 _sysdiv <= OV5640_SYSDIV_MAX; 856 _sysdiv++) { 857 for (_pll_mult = OV5640_PLL_MULT_MIN; 858 _pll_mult <= OV5640_PLL_MULT_MAX; 859 _pll_mult++) { 860 unsigned long _rate; 861 862 /* 863 * The PLL multiplier cannot be odd if above 864 * 127. 865 */ 866 if (_pll_mult > 127 && (_pll_mult % 2)) 867 continue; 868 869 _rate = ov5640_compute_sys_clk(sensor, 870 OV5640_PLL_PREDIV, 871 _pll_mult, _sysdiv); 872 873 /* 874 * We have reached the maximum allowed PLL1 output, 875 * increase sysdiv. 876 */ 877 if (!rate) 878 break; 879 880 /* 881 * Prefer rates above the expected clock rate than 882 * below, even if that means being less precise. 883 */ 884 if (_rate < rate) 885 continue; 886 887 if (abs(rate - _rate) < abs(rate - best)) { 888 best = _rate; 889 best_sysdiv = _sysdiv; 890 best_mult = _pll_mult; 891 } 892 893 if (_rate == rate) 894 goto out; 895 } 896 } 897 898 out: 899 *sysdiv = best_sysdiv; 900 *pll_prediv = OV5640_PLL_PREDIV; 901 *pll_mult = best_mult; 902 903 return best; 904 } 905 906 /* 907 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values 908 * for the MIPI CSI-2 output. 909 * 910 * @rate: The requested bandwidth per lane in bytes per second. 911 * 'Bandwidth Per Lane' is calculated as: 912 * bpl = HTOT * VTOT * FPS * bpp / num_lanes; 913 * 914 * This function use the requested bandwidth to calculate: 915 * - sample_rate = bpl / (bpp / num_lanes); 916 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes); 917 * 918 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR) 919 * 920 * with these fixed parameters: 921 * PLL_RDIV = 2; 922 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5); 923 * PCLK_DIV = 1; 924 * 925 * The MIPI clock generation differs for modes that use the scaler and modes 926 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI 927 * BIT CLk, and thus: 928 * 929 * - mipi_sclk = bpl / MIPI_DIV / 2; 930 * MIPI_DIV = 1; 931 * 932 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated 933 * from the pixel clock, and thus: 934 * 935 * - sample_rate = bpl / (bpp / num_lanes); 936 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes); 937 * = bpl / (4 * MIPI_DIV / num_lanes); 938 * - MIPI_DIV = bpp / (4 * num_lanes); 939 * 940 * FIXME: this have been tested with 16bpp and 2 lanes setup only. 941 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the 942 * above formula for setups with 1 lane or image formats with different bpp. 943 * 944 * FIXME: this deviates from the sensor manual documentation which is quite 945 * thin on the MIPI clock tree generation part. 946 */ 947 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor, 948 unsigned long rate) 949 { 950 const struct ov5640_mode_info *mode = sensor->current_mode; 951 u8 prediv, mult, sysdiv; 952 u8 mipi_div; 953 int ret; 954 955 /* 956 * 1280x720 is reported to use 'SUBSAMPLING' only, 957 * but according to the sensor manual it goes through the 958 * scaler before subsampling. 959 */ 960 if (mode->dn_mode == SCALING || 961 (mode->id == OV5640_MODE_720P_1280_720)) 962 mipi_div = OV5640_MIPI_DIV_SCLK; 963 else 964 mipi_div = OV5640_MIPI_DIV_PCLK; 965 966 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv); 967 968 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 969 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT); 970 971 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 972 0xff, sysdiv << 4 | mipi_div); 973 if (ret) 974 return ret; 975 976 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); 977 if (ret) 978 return ret; 979 980 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 981 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv); 982 if (ret) 983 return ret; 984 985 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 986 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS); 987 } 988 989 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, 990 unsigned long rate, 991 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, 992 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) 993 { 994 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * 995 OV5640_PCLK_ROOT_DIV; 996 997 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, 998 sysdiv); 999 *pll_rdiv = OV5640_PLL_ROOT_DIV; 1000 *bit_div = OV5640_BIT_DIV; 1001 *pclk_div = OV5640_PCLK_ROOT_DIV; 1002 1003 return _rate / *pll_rdiv / *bit_div / *pclk_div; 1004 } 1005 1006 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate) 1007 { 1008 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; 1009 int ret; 1010 1011 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, 1012 &bit_div, &pclk_div); 1013 1014 if (bit_div == 2) 1015 bit_div = 8; 1016 1017 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1018 0x0f, bit_div); 1019 if (ret) 1020 return ret; 1021 1022 /* 1023 * We need to set sysdiv according to the clock, and to clear 1024 * the MIPI divider. 1025 */ 1026 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1027 0xff, sysdiv << 4); 1028 if (ret) 1029 return ret; 1030 1031 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 1032 0xff, mult); 1033 if (ret) 1034 return ret; 1035 1036 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1037 0x1f, prediv | ((pll_rdiv - 1) << 4)); 1038 if (ret) 1039 return ret; 1040 1041 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, 1042 (ilog2(pclk_div) << 4)); 1043 } 1044 1045 /* set JPEG framing sizes */ 1046 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor, 1047 const struct ov5640_mode_info *mode) 1048 { 1049 int ret; 1050 1051 /* 1052 * compression mode 3 timing 1053 * 1054 * Data is transmitted with programmable width (VFIFO_HSIZE). 1055 * No padding done. Last line may have less data. Varying 1056 * number of lines per frame, depending on amount of data. 1057 */ 1058 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3); 1059 if (ret < 0) 1060 return ret; 1061 1062 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact); 1063 if (ret < 0) 1064 return ret; 1065 1066 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact); 1067 } 1068 1069 /* download ov5640 settings to sensor through i2c */ 1070 static int ov5640_set_timings(struct ov5640_dev *sensor, 1071 const struct ov5640_mode_info *mode) 1072 { 1073 int ret; 1074 1075 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) { 1076 ret = ov5640_set_jpeg_timings(sensor, mode); 1077 if (ret < 0) 1078 return ret; 1079 } 1080 1081 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact); 1082 if (ret < 0) 1083 return ret; 1084 1085 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact); 1086 if (ret < 0) 1087 return ret; 1088 1089 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot); 1090 if (ret < 0) 1091 return ret; 1092 1093 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot); 1094 } 1095 1096 static int ov5640_load_regs(struct ov5640_dev *sensor, 1097 const struct ov5640_mode_info *mode) 1098 { 1099 const struct reg_value *regs = mode->reg_data; 1100 unsigned int i; 1101 u32 delay_ms; 1102 u16 reg_addr; 1103 u8 mask, val; 1104 int ret = 0; 1105 1106 for (i = 0; i < mode->reg_data_size; ++i, ++regs) { 1107 delay_ms = regs->delay_ms; 1108 reg_addr = regs->reg_addr; 1109 val = regs->val; 1110 mask = regs->mask; 1111 1112 if (mask) 1113 ret = ov5640_mod_reg(sensor, reg_addr, mask, val); 1114 else 1115 ret = ov5640_write_reg(sensor, reg_addr, val); 1116 if (ret) 1117 break; 1118 1119 if (delay_ms) 1120 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); 1121 } 1122 1123 return ov5640_set_timings(sensor, mode); 1124 } 1125 1126 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) 1127 { 1128 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1129 BIT(0), on ? 0 : BIT(0)); 1130 } 1131 1132 /* read exposure, in number of line periods */ 1133 static int ov5640_get_exposure(struct ov5640_dev *sensor) 1134 { 1135 int exp, ret; 1136 u8 temp; 1137 1138 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); 1139 if (ret) 1140 return ret; 1141 exp = ((int)temp & 0x0f) << 16; 1142 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); 1143 if (ret) 1144 return ret; 1145 exp |= ((int)temp << 8); 1146 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); 1147 if (ret) 1148 return ret; 1149 exp |= (int)temp; 1150 1151 return exp >> 4; 1152 } 1153 1154 /* write exposure, given number of line periods */ 1155 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) 1156 { 1157 int ret; 1158 1159 exposure <<= 4; 1160 1161 ret = ov5640_write_reg(sensor, 1162 OV5640_REG_AEC_PK_EXPOSURE_LO, 1163 exposure & 0xff); 1164 if (ret) 1165 return ret; 1166 ret = ov5640_write_reg(sensor, 1167 OV5640_REG_AEC_PK_EXPOSURE_MED, 1168 (exposure >> 8) & 0xff); 1169 if (ret) 1170 return ret; 1171 return ov5640_write_reg(sensor, 1172 OV5640_REG_AEC_PK_EXPOSURE_HI, 1173 (exposure >> 16) & 0x0f); 1174 } 1175 1176 static int ov5640_get_gain(struct ov5640_dev *sensor) 1177 { 1178 u16 gain; 1179 int ret; 1180 1181 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); 1182 if (ret) 1183 return ret; 1184 1185 return gain & 0x3ff; 1186 } 1187 1188 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) 1189 { 1190 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, 1191 (u16)gain & 0x3ff); 1192 } 1193 1194 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) 1195 { 1196 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1197 BIT(1), on ? 0 : BIT(1)); 1198 } 1199 1200 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) 1201 { 1202 int ret; 1203 unsigned int flags = sensor->ep.bus.parallel.flags; 1204 u8 pclk_pol = 0; 1205 u8 hsync_pol = 0; 1206 u8 vsync_pol = 0; 1207 1208 /* 1209 * Note about parallel port configuration. 1210 * 1211 * When configured in parallel mode, the OV5640 will 1212 * output 10 bits data on DVP data lines [9:0]. 1213 * If only 8 bits data are wanted, the 8 bits data lines 1214 * of the camera interface must be physically connected 1215 * on the DVP data lines [9:2]. 1216 * 1217 * Control lines polarity can be configured through 1218 * devicetree endpoint control lines properties. 1219 * If no endpoint control lines properties are set, 1220 * polarity will be as below: 1221 * - VSYNC: active high 1222 * - HREF: active low 1223 * - PCLK: active low 1224 */ 1225 1226 if (on) { 1227 /* 1228 * configure parallel port control lines polarity 1229 * 1230 * POLARITY CTRL0 1231 * - [5]: PCLK polarity (0: active low, 1: active high) 1232 * - [1]: HREF polarity (0: active low, 1: active high) 1233 * - [0]: VSYNC polarity (mismatch here between 1234 * datasheet and hardware, 0 is active high 1235 * and 1 is active low...) 1236 */ 1237 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 1238 pclk_pol = 1; 1239 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 1240 hsync_pol = 1; 1241 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) 1242 vsync_pol = 1; 1243 1244 ret = ov5640_write_reg(sensor, 1245 OV5640_REG_POLARITY_CTRL00, 1246 (pclk_pol << 5) | 1247 (hsync_pol << 1) | 1248 vsync_pol); 1249 1250 if (ret) 1251 return ret; 1252 } 1253 1254 /* 1255 * powerdown MIPI TX/RX PHY & disable MIPI 1256 * 1257 * MIPI CONTROL 00 1258 * 4: PWDN PHY TX 1259 * 3: PWDN PHY RX 1260 * 2: MIPI enable 1261 */ 1262 ret = ov5640_write_reg(sensor, 1263 OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0); 1264 if (ret) 1265 return ret; 1266 1267 /* 1268 * enable VSYNC/HREF/PCLK DVP control lines 1269 * & D[9:6] DVP data lines 1270 * 1271 * PAD OUTPUT ENABLE 01 1272 * - 6: VSYNC output enable 1273 * - 5: HREF output enable 1274 * - 4: PCLK output enable 1275 * - [3:0]: D[9:6] output enable 1276 */ 1277 ret = ov5640_write_reg(sensor, 1278 OV5640_REG_PAD_OUTPUT_ENABLE01, 1279 on ? 0x7f : 0); 1280 if (ret) 1281 return ret; 1282 1283 /* 1284 * enable D[5:0] DVP data lines 1285 * 1286 * PAD OUTPUT ENABLE 02 1287 * - [7:2]: D[5:0] output enable 1288 */ 1289 return ov5640_write_reg(sensor, 1290 OV5640_REG_PAD_OUTPUT_ENABLE02, 1291 on ? 0xfc : 0); 1292 } 1293 1294 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) 1295 { 1296 int ret; 1297 1298 /* 1299 * Enable/disable the MIPI interface 1300 * 1301 * 0x300e = on ? 0x45 : 0x40 1302 * 1303 * FIXME: the sensor manual (version 2.03) reports 1304 * [7:5] = 000 : 1 data lane mode 1305 * [7:5] = 001 : 2 data lanes mode 1306 * But this settings do not work, while the following ones 1307 * have been validated for 2 data lanes mode. 1308 * 1309 * [7:5] = 010 : 2 data lanes mode 1310 * [4] = 0 : Power up MIPI HS Tx 1311 * [3] = 0 : Power up MIPI LS Rx 1312 * [2] = 1/0 : MIPI interface enable/disable 1313 * [1:0] = 01/00: FIXME: 'debug' 1314 */ 1315 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 1316 on ? 0x45 : 0x40); 1317 if (ret) 1318 return ret; 1319 1320 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, 1321 on ? 0x00 : 0x0f); 1322 } 1323 1324 static int ov5640_get_sysclk(struct ov5640_dev *sensor) 1325 { 1326 /* calculate sysclk */ 1327 u32 xvclk = sensor->xclk_freq / 10000; 1328 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; 1329 u32 sclk_rdiv_map[] = {1, 2, 4, 8}; 1330 u32 bit_div2x = 1, sclk_rdiv, sysclk; 1331 u8 temp1, temp2; 1332 int ret; 1333 1334 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); 1335 if (ret) 1336 return ret; 1337 temp2 = temp1 & 0x0f; 1338 if (temp2 == 8 || temp2 == 10) 1339 bit_div2x = temp2 / 2; 1340 1341 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); 1342 if (ret) 1343 return ret; 1344 sysdiv = temp1 >> 4; 1345 if (sysdiv == 0) 1346 sysdiv = 16; 1347 1348 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); 1349 if (ret) 1350 return ret; 1351 multiplier = temp1; 1352 1353 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); 1354 if (ret) 1355 return ret; 1356 prediv = temp1 & 0x0f; 1357 pll_rdiv = ((temp1 >> 4) & 0x01) + 1; 1358 1359 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); 1360 if (ret) 1361 return ret; 1362 temp2 = temp1 & 0x03; 1363 sclk_rdiv = sclk_rdiv_map[temp2]; 1364 1365 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) 1366 return -EINVAL; 1367 1368 VCO = xvclk * multiplier / prediv; 1369 1370 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; 1371 1372 return sysclk; 1373 } 1374 1375 static int ov5640_set_night_mode(struct ov5640_dev *sensor) 1376 { 1377 /* read HTS from register settings */ 1378 u8 mode; 1379 int ret; 1380 1381 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); 1382 if (ret) 1383 return ret; 1384 mode &= 0xfb; 1385 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); 1386 } 1387 1388 static int ov5640_get_hts(struct ov5640_dev *sensor) 1389 { 1390 /* read HTS from register settings */ 1391 u16 hts; 1392 int ret; 1393 1394 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); 1395 if (ret) 1396 return ret; 1397 return hts; 1398 } 1399 1400 static int ov5640_get_vts(struct ov5640_dev *sensor) 1401 { 1402 u16 vts; 1403 int ret; 1404 1405 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); 1406 if (ret) 1407 return ret; 1408 return vts; 1409 } 1410 1411 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) 1412 { 1413 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); 1414 } 1415 1416 static int ov5640_get_light_freq(struct ov5640_dev *sensor) 1417 { 1418 /* get banding filter value */ 1419 int ret, light_freq = 0; 1420 u8 temp, temp1; 1421 1422 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); 1423 if (ret) 1424 return ret; 1425 1426 if (temp & 0x80) { 1427 /* manual */ 1428 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, 1429 &temp1); 1430 if (ret) 1431 return ret; 1432 if (temp1 & 0x04) { 1433 /* 50Hz */ 1434 light_freq = 50; 1435 } else { 1436 /* 60Hz */ 1437 light_freq = 60; 1438 } 1439 } else { 1440 /* auto */ 1441 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, 1442 &temp1); 1443 if (ret) 1444 return ret; 1445 1446 if (temp1 & 0x01) { 1447 /* 50Hz */ 1448 light_freq = 50; 1449 } else { 1450 /* 60Hz */ 1451 } 1452 } 1453 1454 return light_freq; 1455 } 1456 1457 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) 1458 { 1459 u32 band_step60, max_band60, band_step50, max_band50, prev_vts; 1460 int ret; 1461 1462 /* read preview PCLK */ 1463 ret = ov5640_get_sysclk(sensor); 1464 if (ret < 0) 1465 return ret; 1466 if (ret == 0) 1467 return -EINVAL; 1468 sensor->prev_sysclk = ret; 1469 /* read preview HTS */ 1470 ret = ov5640_get_hts(sensor); 1471 if (ret < 0) 1472 return ret; 1473 if (ret == 0) 1474 return -EINVAL; 1475 sensor->prev_hts = ret; 1476 1477 /* read preview VTS */ 1478 ret = ov5640_get_vts(sensor); 1479 if (ret < 0) 1480 return ret; 1481 prev_vts = ret; 1482 1483 /* calculate banding filter */ 1484 /* 60Hz */ 1485 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; 1486 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); 1487 if (ret) 1488 return ret; 1489 if (!band_step60) 1490 return -EINVAL; 1491 max_band60 = (int)((prev_vts - 4) / band_step60); 1492 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); 1493 if (ret) 1494 return ret; 1495 1496 /* 50Hz */ 1497 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; 1498 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); 1499 if (ret) 1500 return ret; 1501 if (!band_step50) 1502 return -EINVAL; 1503 max_band50 = (int)((prev_vts - 4) / band_step50); 1504 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); 1505 } 1506 1507 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) 1508 { 1509 /* stable in high */ 1510 u32 fast_high, fast_low; 1511 int ret; 1512 1513 sensor->ae_low = target * 23 / 25; /* 0.92 */ 1514 sensor->ae_high = target * 27 / 25; /* 1.08 */ 1515 1516 fast_high = sensor->ae_high << 1; 1517 if (fast_high > 255) 1518 fast_high = 255; 1519 1520 fast_low = sensor->ae_low >> 1; 1521 1522 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); 1523 if (ret) 1524 return ret; 1525 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); 1526 if (ret) 1527 return ret; 1528 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); 1529 if (ret) 1530 return ret; 1531 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); 1532 if (ret) 1533 return ret; 1534 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); 1535 if (ret) 1536 return ret; 1537 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); 1538 } 1539 1540 static int ov5640_get_binning(struct ov5640_dev *sensor) 1541 { 1542 u8 temp; 1543 int ret; 1544 1545 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); 1546 if (ret) 1547 return ret; 1548 1549 return temp & BIT(0); 1550 } 1551 1552 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) 1553 { 1554 int ret; 1555 1556 /* 1557 * TIMING TC REG21: 1558 * - [0]: Horizontal binning enable 1559 */ 1560 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 1561 BIT(0), enable ? BIT(0) : 0); 1562 if (ret) 1563 return ret; 1564 /* 1565 * TIMING TC REG20: 1566 * - [0]: Undocumented, but hardcoded init sequences 1567 * are always setting REG21/REG20 bit 0 to same value... 1568 */ 1569 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 1570 BIT(0), enable ? BIT(0) : 0); 1571 } 1572 1573 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) 1574 { 1575 struct i2c_client *client = sensor->i2c_client; 1576 u8 temp, channel = virtual_channel; 1577 int ret; 1578 1579 if (channel > 3) { 1580 dev_err(&client->dev, 1581 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", 1582 __func__, channel); 1583 return -EINVAL; 1584 } 1585 1586 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); 1587 if (ret) 1588 return ret; 1589 temp &= ~(3 << 6); 1590 temp |= (channel << 6); 1591 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); 1592 } 1593 1594 static const struct ov5640_mode_info * 1595 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr, 1596 int width, int height, bool nearest) 1597 { 1598 const struct ov5640_mode_info *mode; 1599 1600 mode = v4l2_find_nearest_size(ov5640_mode_data, 1601 ARRAY_SIZE(ov5640_mode_data), 1602 hact, vact, 1603 width, height); 1604 1605 if (!mode || 1606 (!nearest && (mode->hact != width || mode->vact != height))) 1607 return NULL; 1608 1609 /* Only 640x480 can operate at 60fps (for now) */ 1610 if (fr == OV5640_60_FPS && 1611 !(mode->hact == 640 && mode->vact == 480)) 1612 return NULL; 1613 1614 return mode; 1615 } 1616 1617 /* 1618 * sensor changes between scaling and subsampling, go through 1619 * exposure calculation 1620 */ 1621 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, 1622 const struct ov5640_mode_info *mode) 1623 { 1624 u32 prev_shutter, prev_gain16; 1625 u32 cap_shutter, cap_gain16; 1626 u32 cap_sysclk, cap_hts, cap_vts; 1627 u32 light_freq, cap_bandfilt, cap_maxband; 1628 u32 cap_gain16_shutter; 1629 u8 average; 1630 int ret; 1631 1632 if (!mode->reg_data) 1633 return -EINVAL; 1634 1635 /* read preview shutter */ 1636 ret = ov5640_get_exposure(sensor); 1637 if (ret < 0) 1638 return ret; 1639 prev_shutter = ret; 1640 ret = ov5640_get_binning(sensor); 1641 if (ret < 0) 1642 return ret; 1643 if (ret && mode->id != OV5640_MODE_720P_1280_720 && 1644 mode->id != OV5640_MODE_1080P_1920_1080) 1645 prev_shutter *= 2; 1646 1647 /* read preview gain */ 1648 ret = ov5640_get_gain(sensor); 1649 if (ret < 0) 1650 return ret; 1651 prev_gain16 = ret; 1652 1653 /* get average */ 1654 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); 1655 if (ret) 1656 return ret; 1657 1658 /* turn off night mode for capture */ 1659 ret = ov5640_set_night_mode(sensor); 1660 if (ret < 0) 1661 return ret; 1662 1663 /* Write capture setting */ 1664 ret = ov5640_load_regs(sensor, mode); 1665 if (ret < 0) 1666 return ret; 1667 1668 /* read capture VTS */ 1669 ret = ov5640_get_vts(sensor); 1670 if (ret < 0) 1671 return ret; 1672 cap_vts = ret; 1673 ret = ov5640_get_hts(sensor); 1674 if (ret < 0) 1675 return ret; 1676 if (ret == 0) 1677 return -EINVAL; 1678 cap_hts = ret; 1679 1680 ret = ov5640_get_sysclk(sensor); 1681 if (ret < 0) 1682 return ret; 1683 if (ret == 0) 1684 return -EINVAL; 1685 cap_sysclk = ret; 1686 1687 /* calculate capture banding filter */ 1688 ret = ov5640_get_light_freq(sensor); 1689 if (ret < 0) 1690 return ret; 1691 light_freq = ret; 1692 1693 if (light_freq == 60) { 1694 /* 60Hz */ 1695 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; 1696 } else { 1697 /* 50Hz */ 1698 cap_bandfilt = cap_sysclk * 100 / cap_hts; 1699 } 1700 1701 if (!sensor->prev_sysclk) { 1702 ret = ov5640_get_sysclk(sensor); 1703 if (ret < 0) 1704 return ret; 1705 if (ret == 0) 1706 return -EINVAL; 1707 sensor->prev_sysclk = ret; 1708 } 1709 1710 if (!cap_bandfilt) 1711 return -EINVAL; 1712 1713 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); 1714 1715 /* calculate capture shutter/gain16 */ 1716 if (average > sensor->ae_low && average < sensor->ae_high) { 1717 /* in stable range */ 1718 cap_gain16_shutter = 1719 prev_gain16 * prev_shutter * 1720 cap_sysclk / sensor->prev_sysclk * 1721 sensor->prev_hts / cap_hts * 1722 sensor->ae_target / average; 1723 } else { 1724 cap_gain16_shutter = 1725 prev_gain16 * prev_shutter * 1726 cap_sysclk / sensor->prev_sysclk * 1727 sensor->prev_hts / cap_hts; 1728 } 1729 1730 /* gain to shutter */ 1731 if (cap_gain16_shutter < (cap_bandfilt * 16)) { 1732 /* shutter < 1/100 */ 1733 cap_shutter = cap_gain16_shutter / 16; 1734 if (cap_shutter < 1) 1735 cap_shutter = 1; 1736 1737 cap_gain16 = cap_gain16_shutter / cap_shutter; 1738 if (cap_gain16 < 16) 1739 cap_gain16 = 16; 1740 } else { 1741 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { 1742 /* exposure reach max */ 1743 cap_shutter = cap_bandfilt * cap_maxband; 1744 if (!cap_shutter) 1745 return -EINVAL; 1746 1747 cap_gain16 = cap_gain16_shutter / cap_shutter; 1748 } else { 1749 /* 1/100 < (cap_shutter = n/100) =< max */ 1750 cap_shutter = 1751 ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) 1752 * cap_bandfilt; 1753 if (!cap_shutter) 1754 return -EINVAL; 1755 1756 cap_gain16 = cap_gain16_shutter / cap_shutter; 1757 } 1758 } 1759 1760 /* set capture gain */ 1761 ret = ov5640_set_gain(sensor, cap_gain16); 1762 if (ret) 1763 return ret; 1764 1765 /* write capture shutter */ 1766 if (cap_shutter > (cap_vts - 4)) { 1767 cap_vts = cap_shutter + 4; 1768 ret = ov5640_set_vts(sensor, cap_vts); 1769 if (ret < 0) 1770 return ret; 1771 } 1772 1773 /* set exposure */ 1774 return ov5640_set_exposure(sensor, cap_shutter); 1775 } 1776 1777 /* 1778 * if sensor changes inside scaling or subsampling 1779 * change mode directly 1780 */ 1781 static int ov5640_set_mode_direct(struct ov5640_dev *sensor, 1782 const struct ov5640_mode_info *mode) 1783 { 1784 if (!mode->reg_data) 1785 return -EINVAL; 1786 1787 /* Write capture setting */ 1788 return ov5640_load_regs(sensor, mode); 1789 } 1790 1791 static int ov5640_set_mode(struct ov5640_dev *sensor) 1792 { 1793 const struct ov5640_mode_info *mode = sensor->current_mode; 1794 const struct ov5640_mode_info *orig_mode = sensor->last_mode; 1795 enum ov5640_downsize_mode dn_mode, orig_dn_mode; 1796 bool auto_gain = sensor->ctrls.auto_gain->val == 1; 1797 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; 1798 unsigned long rate; 1799 int ret; 1800 1801 dn_mode = mode->dn_mode; 1802 orig_dn_mode = orig_mode->dn_mode; 1803 1804 /* auto gain and exposure must be turned off when changing modes */ 1805 if (auto_gain) { 1806 ret = ov5640_set_autogain(sensor, false); 1807 if (ret) 1808 return ret; 1809 } 1810 1811 if (auto_exp) { 1812 ret = ov5640_set_autoexposure(sensor, false); 1813 if (ret) 1814 goto restore_auto_gain; 1815 } 1816 1817 /* 1818 * All the formats we support have 16 bits per pixel, seems to require 1819 * the same rate than YUV, so we can just use 16 bpp all the time. 1820 */ 1821 rate = mode->vtot * mode->htot * 16; 1822 rate *= ov5640_framerates[sensor->current_fr]; 1823 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 1824 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes; 1825 ret = ov5640_set_mipi_pclk(sensor, rate); 1826 } else { 1827 rate = rate / sensor->ep.bus.parallel.bus_width; 1828 ret = ov5640_set_dvp_pclk(sensor, rate); 1829 } 1830 1831 if (ret < 0) 1832 return 0; 1833 1834 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || 1835 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { 1836 /* 1837 * change between subsampling and scaling 1838 * go through exposure calculation 1839 */ 1840 ret = ov5640_set_mode_exposure_calc(sensor, mode); 1841 } else { 1842 /* 1843 * change inside subsampling or scaling 1844 * download firmware directly 1845 */ 1846 ret = ov5640_set_mode_direct(sensor, mode); 1847 } 1848 if (ret < 0) 1849 goto restore_auto_exp_gain; 1850 1851 /* restore auto gain and exposure */ 1852 if (auto_gain) 1853 ov5640_set_autogain(sensor, true); 1854 if (auto_exp) 1855 ov5640_set_autoexposure(sensor, true); 1856 1857 ret = ov5640_set_binning(sensor, dn_mode != SCALING); 1858 if (ret < 0) 1859 return ret; 1860 ret = ov5640_set_ae_target(sensor, sensor->ae_target); 1861 if (ret < 0) 1862 return ret; 1863 ret = ov5640_get_light_freq(sensor); 1864 if (ret < 0) 1865 return ret; 1866 ret = ov5640_set_bandingfilter(sensor); 1867 if (ret < 0) 1868 return ret; 1869 ret = ov5640_set_virtual_channel(sensor); 1870 if (ret < 0) 1871 return ret; 1872 1873 sensor->pending_mode_change = false; 1874 sensor->last_mode = mode; 1875 1876 return 0; 1877 1878 restore_auto_exp_gain: 1879 if (auto_exp) 1880 ov5640_set_autoexposure(sensor, true); 1881 restore_auto_gain: 1882 if (auto_gain) 1883 ov5640_set_autogain(sensor, true); 1884 1885 return ret; 1886 } 1887 1888 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 1889 struct v4l2_mbus_framefmt *format); 1890 1891 /* restore the last set video mode after chip power-on */ 1892 static int ov5640_restore_mode(struct ov5640_dev *sensor) 1893 { 1894 int ret; 1895 1896 /* first load the initial register values */ 1897 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data); 1898 if (ret < 0) 1899 return ret; 1900 sensor->last_mode = &ov5640_mode_init_data; 1901 1902 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, 1903 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | 1904 ilog2(OV5640_SCLK_ROOT_DIV)); 1905 if (ret) 1906 return ret; 1907 1908 /* now restore the last capture mode */ 1909 ret = ov5640_set_mode(sensor); 1910 if (ret < 0) 1911 return ret; 1912 1913 return ov5640_set_framefmt(sensor, &sensor->fmt); 1914 } 1915 1916 static void ov5640_power(struct ov5640_dev *sensor, bool enable) 1917 { 1918 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); 1919 } 1920 1921 static void ov5640_reset(struct ov5640_dev *sensor) 1922 { 1923 if (!sensor->reset_gpio) 1924 return; 1925 1926 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1927 1928 /* camera power cycle */ 1929 ov5640_power(sensor, false); 1930 usleep_range(5000, 10000); 1931 ov5640_power(sensor, true); 1932 usleep_range(5000, 10000); 1933 1934 gpiod_set_value_cansleep(sensor->reset_gpio, 1); 1935 usleep_range(1000, 2000); 1936 1937 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1938 usleep_range(20000, 25000); 1939 } 1940 1941 static int ov5640_set_power_on(struct ov5640_dev *sensor) 1942 { 1943 struct i2c_client *client = sensor->i2c_client; 1944 int ret; 1945 1946 ret = clk_prepare_enable(sensor->xclk); 1947 if (ret) { 1948 dev_err(&client->dev, "%s: failed to enable clock\n", 1949 __func__); 1950 return ret; 1951 } 1952 1953 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, 1954 sensor->supplies); 1955 if (ret) { 1956 dev_err(&client->dev, "%s: failed to enable regulators\n", 1957 __func__); 1958 goto xclk_off; 1959 } 1960 1961 ov5640_reset(sensor); 1962 ov5640_power(sensor, true); 1963 1964 ret = ov5640_init_slave_id(sensor); 1965 if (ret) 1966 goto power_off; 1967 1968 return 0; 1969 1970 power_off: 1971 ov5640_power(sensor, false); 1972 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1973 xclk_off: 1974 clk_disable_unprepare(sensor->xclk); 1975 return ret; 1976 } 1977 1978 static void ov5640_set_power_off(struct ov5640_dev *sensor) 1979 { 1980 ov5640_power(sensor, false); 1981 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1982 clk_disable_unprepare(sensor->xclk); 1983 } 1984 1985 static int ov5640_set_power(struct ov5640_dev *sensor, bool on) 1986 { 1987 int ret = 0; 1988 1989 if (on) { 1990 ret = ov5640_set_power_on(sensor); 1991 if (ret) 1992 return ret; 1993 1994 ret = ov5640_restore_mode(sensor); 1995 if (ret) 1996 goto power_off; 1997 1998 /* We're done here for DVP bus, while CSI-2 needs setup. */ 1999 if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) 2000 return 0; 2001 2002 /* 2003 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode 2004 * 2005 * 0x300e = 0x40 2006 * [7:5] = 010 : 2 data lanes mode (see FIXME note in 2007 * "ov5640_set_stream_mipi()") 2008 * [4] = 0 : Power up MIPI HS Tx 2009 * [3] = 0 : Power up MIPI LS Rx 2010 * [2] = 0 : MIPI interface disabled 2011 */ 2012 ret = ov5640_write_reg(sensor, 2013 OV5640_REG_IO_MIPI_CTRL00, 0x40); 2014 if (ret) 2015 goto power_off; 2016 2017 /* 2018 * Gate clock and set LP11 in 'no packets mode' (idle) 2019 * 2020 * 0x4800 = 0x24 2021 * [5] = 1 : Gate clock when 'no packets' 2022 * [2] = 1 : MIPI bus in LP11 when 'no packets' 2023 */ 2024 ret = ov5640_write_reg(sensor, 2025 OV5640_REG_MIPI_CTRL00, 0x24); 2026 if (ret) 2027 goto power_off; 2028 2029 /* 2030 * Set data lanes and clock in LP11 when 'sleeping' 2031 * 2032 * 0x3019 = 0x70 2033 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' 2034 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' 2035 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' 2036 */ 2037 ret = ov5640_write_reg(sensor, 2038 OV5640_REG_PAD_OUTPUT00, 0x70); 2039 if (ret) 2040 goto power_off; 2041 2042 /* Give lanes some time to coax into LP11 state. */ 2043 usleep_range(500, 1000); 2044 2045 } else { 2046 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 2047 /* Reset MIPI bus settings to their default values. */ 2048 ov5640_write_reg(sensor, 2049 OV5640_REG_IO_MIPI_CTRL00, 0x58); 2050 ov5640_write_reg(sensor, 2051 OV5640_REG_MIPI_CTRL00, 0x04); 2052 ov5640_write_reg(sensor, 2053 OV5640_REG_PAD_OUTPUT00, 0x00); 2054 } 2055 2056 ov5640_set_power_off(sensor); 2057 } 2058 2059 return 0; 2060 2061 power_off: 2062 ov5640_set_power_off(sensor); 2063 return ret; 2064 } 2065 2066 /* --------------- Subdev Operations --------------- */ 2067 2068 static int ov5640_s_power(struct v4l2_subdev *sd, int on) 2069 { 2070 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2071 int ret = 0; 2072 2073 mutex_lock(&sensor->lock); 2074 2075 /* 2076 * If the power count is modified from 0 to != 0 or from != 0 to 0, 2077 * update the power state. 2078 */ 2079 if (sensor->power_count == !on) { 2080 ret = ov5640_set_power(sensor, !!on); 2081 if (ret) 2082 goto out; 2083 } 2084 2085 /* Update the power count. */ 2086 sensor->power_count += on ? 1 : -1; 2087 WARN_ON(sensor->power_count < 0); 2088 out: 2089 mutex_unlock(&sensor->lock); 2090 2091 if (on && !ret && sensor->power_count == 1) { 2092 /* restore controls */ 2093 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); 2094 } 2095 2096 return ret; 2097 } 2098 2099 static int ov5640_try_frame_interval(struct ov5640_dev *sensor, 2100 struct v4l2_fract *fi, 2101 u32 width, u32 height) 2102 { 2103 const struct ov5640_mode_info *mode; 2104 enum ov5640_frame_rate rate = OV5640_15_FPS; 2105 int minfps, maxfps, best_fps, fps; 2106 int i; 2107 2108 minfps = ov5640_framerates[OV5640_15_FPS]; 2109 maxfps = ov5640_framerates[OV5640_60_FPS]; 2110 2111 if (fi->numerator == 0) { 2112 fi->denominator = maxfps; 2113 fi->numerator = 1; 2114 rate = OV5640_60_FPS; 2115 goto find_mode; 2116 } 2117 2118 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), 2119 minfps, maxfps); 2120 2121 best_fps = minfps; 2122 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { 2123 int curr_fps = ov5640_framerates[i]; 2124 2125 if (abs(curr_fps - fps) < abs(best_fps - fps)) { 2126 best_fps = curr_fps; 2127 rate = i; 2128 } 2129 } 2130 2131 fi->numerator = 1; 2132 fi->denominator = best_fps; 2133 2134 find_mode: 2135 mode = ov5640_find_mode(sensor, rate, width, height, false); 2136 return mode ? rate : -EINVAL; 2137 } 2138 2139 static int ov5640_get_fmt(struct v4l2_subdev *sd, 2140 struct v4l2_subdev_pad_config *cfg, 2141 struct v4l2_subdev_format *format) 2142 { 2143 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2144 struct v4l2_mbus_framefmt *fmt; 2145 2146 if (format->pad != 0) 2147 return -EINVAL; 2148 2149 mutex_lock(&sensor->lock); 2150 2151 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2152 fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg, 2153 format->pad); 2154 else 2155 fmt = &sensor->fmt; 2156 2157 format->format = *fmt; 2158 2159 mutex_unlock(&sensor->lock); 2160 2161 return 0; 2162 } 2163 2164 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, 2165 struct v4l2_mbus_framefmt *fmt, 2166 enum ov5640_frame_rate fr, 2167 const struct ov5640_mode_info **new_mode) 2168 { 2169 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2170 const struct ov5640_mode_info *mode; 2171 int i; 2172 2173 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true); 2174 if (!mode) 2175 return -EINVAL; 2176 fmt->width = mode->hact; 2177 fmt->height = mode->vact; 2178 2179 if (new_mode) 2180 *new_mode = mode; 2181 2182 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++) 2183 if (ov5640_formats[i].code == fmt->code) 2184 break; 2185 if (i >= ARRAY_SIZE(ov5640_formats)) 2186 i = 0; 2187 2188 fmt->code = ov5640_formats[i].code; 2189 fmt->colorspace = ov5640_formats[i].colorspace; 2190 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2191 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2192 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2193 2194 return 0; 2195 } 2196 2197 static int ov5640_set_fmt(struct v4l2_subdev *sd, 2198 struct v4l2_subdev_pad_config *cfg, 2199 struct v4l2_subdev_format *format) 2200 { 2201 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2202 const struct ov5640_mode_info *new_mode; 2203 struct v4l2_mbus_framefmt *mbus_fmt = &format->format; 2204 struct v4l2_mbus_framefmt *fmt; 2205 int ret; 2206 2207 if (format->pad != 0) 2208 return -EINVAL; 2209 2210 mutex_lock(&sensor->lock); 2211 2212 if (sensor->streaming) { 2213 ret = -EBUSY; 2214 goto out; 2215 } 2216 2217 ret = ov5640_try_fmt_internal(sd, mbus_fmt, 2218 sensor->current_fr, &new_mode); 2219 if (ret) 2220 goto out; 2221 2222 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2223 fmt = v4l2_subdev_get_try_format(sd, cfg, 0); 2224 else 2225 fmt = &sensor->fmt; 2226 2227 *fmt = *mbus_fmt; 2228 2229 if (new_mode != sensor->current_mode) { 2230 sensor->current_mode = new_mode; 2231 sensor->pending_mode_change = true; 2232 } 2233 if (mbus_fmt->code != sensor->fmt.code) 2234 sensor->pending_fmt_change = true; 2235 2236 out: 2237 mutex_unlock(&sensor->lock); 2238 return ret; 2239 } 2240 2241 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 2242 struct v4l2_mbus_framefmt *format) 2243 { 2244 int ret = 0; 2245 bool is_jpeg = false; 2246 u8 fmt, mux; 2247 2248 switch (format->code) { 2249 case MEDIA_BUS_FMT_UYVY8_2X8: 2250 /* YUV422, UYVY */ 2251 fmt = 0x3f; 2252 mux = OV5640_FMT_MUX_YUV422; 2253 break; 2254 case MEDIA_BUS_FMT_YUYV8_2X8: 2255 /* YUV422, YUYV */ 2256 fmt = 0x30; 2257 mux = OV5640_FMT_MUX_YUV422; 2258 break; 2259 case MEDIA_BUS_FMT_RGB565_2X8_LE: 2260 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ 2261 fmt = 0x6F; 2262 mux = OV5640_FMT_MUX_RGB; 2263 break; 2264 case MEDIA_BUS_FMT_RGB565_2X8_BE: 2265 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ 2266 fmt = 0x61; 2267 mux = OV5640_FMT_MUX_RGB; 2268 break; 2269 case MEDIA_BUS_FMT_JPEG_1X8: 2270 /* YUV422, YUYV */ 2271 fmt = 0x30; 2272 mux = OV5640_FMT_MUX_YUV422; 2273 is_jpeg = true; 2274 break; 2275 case MEDIA_BUS_FMT_SBGGR8_1X8: 2276 /* Raw, BGBG... / GRGR... */ 2277 fmt = 0x00; 2278 mux = OV5640_FMT_MUX_RAW_DPC; 2279 break; 2280 case MEDIA_BUS_FMT_SGBRG8_1X8: 2281 /* Raw bayer, GBGB... / RGRG... */ 2282 fmt = 0x01; 2283 mux = OV5640_FMT_MUX_RAW_DPC; 2284 break; 2285 case MEDIA_BUS_FMT_SGRBG8_1X8: 2286 /* Raw bayer, GRGR... / BGBG... */ 2287 fmt = 0x02; 2288 mux = OV5640_FMT_MUX_RAW_DPC; 2289 break; 2290 case MEDIA_BUS_FMT_SRGGB8_1X8: 2291 /* Raw bayer, RGRG... / GBGB... */ 2292 fmt = 0x03; 2293 mux = OV5640_FMT_MUX_RAW_DPC; 2294 break; 2295 default: 2296 return -EINVAL; 2297 } 2298 2299 /* FORMAT CONTROL00: YUV and RGB formatting */ 2300 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt); 2301 if (ret) 2302 return ret; 2303 2304 /* FORMAT MUX CONTROL: ISP YUV or RGB */ 2305 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux); 2306 if (ret) 2307 return ret; 2308 2309 /* 2310 * TIMING TC REG21: 2311 * - [5]: JPEG enable 2312 */ 2313 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2314 BIT(5), is_jpeg ? BIT(5) : 0); 2315 if (ret) 2316 return ret; 2317 2318 /* 2319 * SYSTEM RESET02: 2320 * - [4]: Reset JFIFO 2321 * - [3]: Reset SFIFO 2322 * - [2]: Reset JPEG 2323 */ 2324 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, 2325 BIT(4) | BIT(3) | BIT(2), 2326 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); 2327 if (ret) 2328 return ret; 2329 2330 /* 2331 * CLOCK ENABLE02: 2332 * - [5]: Enable JPEG 2x clock 2333 * - [3]: Enable JPEG clock 2334 */ 2335 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, 2336 BIT(5) | BIT(3), 2337 is_jpeg ? (BIT(5) | BIT(3)) : 0); 2338 } 2339 2340 /* 2341 * Sensor Controls. 2342 */ 2343 2344 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) 2345 { 2346 int ret; 2347 2348 if (value) { 2349 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2350 BIT(0), BIT(0)); 2351 if (ret) 2352 return ret; 2353 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); 2354 } else { 2355 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); 2356 } 2357 2358 return ret; 2359 } 2360 2361 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) 2362 { 2363 int ret; 2364 2365 if (value) { 2366 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2367 BIT(2), BIT(2)); 2368 if (ret) 2369 return ret; 2370 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, 2371 value & 0xff); 2372 } else { 2373 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); 2374 } 2375 2376 return ret; 2377 } 2378 2379 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) 2380 { 2381 int ret; 2382 2383 if (value) { 2384 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2385 BIT(1), BIT(1)); 2386 if (ret) 2387 return ret; 2388 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, 2389 value & 0xff); 2390 if (ret) 2391 return ret; 2392 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, 2393 value & 0xff); 2394 } else { 2395 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); 2396 } 2397 2398 return ret; 2399 } 2400 2401 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) 2402 { 2403 int ret; 2404 2405 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, 2406 BIT(0), awb ? 0 : 1); 2407 if (ret) 2408 return ret; 2409 2410 if (!awb) { 2411 u16 red = (u16)sensor->ctrls.red_balance->val; 2412 u16 blue = (u16)sensor->ctrls.blue_balance->val; 2413 2414 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); 2415 if (ret) 2416 return ret; 2417 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); 2418 } 2419 2420 return ret; 2421 } 2422 2423 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, 2424 enum v4l2_exposure_auto_type auto_exposure) 2425 { 2426 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2427 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); 2428 int ret = 0; 2429 2430 if (ctrls->auto_exp->is_new) { 2431 ret = ov5640_set_autoexposure(sensor, auto_exp); 2432 if (ret) 2433 return ret; 2434 } 2435 2436 if (!auto_exp && ctrls->exposure->is_new) { 2437 u16 max_exp; 2438 2439 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, 2440 &max_exp); 2441 if (ret) 2442 return ret; 2443 ret = ov5640_get_vts(sensor); 2444 if (ret < 0) 2445 return ret; 2446 max_exp += ret; 2447 ret = 0; 2448 2449 if (ctrls->exposure->val < max_exp) 2450 ret = ov5640_set_exposure(sensor, ctrls->exposure->val); 2451 } 2452 2453 return ret; 2454 } 2455 2456 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) 2457 { 2458 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2459 int ret = 0; 2460 2461 if (ctrls->auto_gain->is_new) { 2462 ret = ov5640_set_autogain(sensor, auto_gain); 2463 if (ret) 2464 return ret; 2465 } 2466 2467 if (!auto_gain && ctrls->gain->is_new) 2468 ret = ov5640_set_gain(sensor, ctrls->gain->val); 2469 2470 return ret; 2471 } 2472 2473 static const char * const test_pattern_menu[] = { 2474 "Disabled", 2475 "Color bars", 2476 "Color bars w/ rolling bar", 2477 "Color squares", 2478 "Color squares w/ rolling bar", 2479 }; 2480 2481 #define OV5640_TEST_ENABLE BIT(7) 2482 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */ 2483 #define OV5640_TEST_TRANSPARENT BIT(5) 2484 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */ 2485 #define OV5640_TEST_BAR_STANDARD (0 << 2) 2486 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2) 2487 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2) 2488 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2) 2489 #define OV5640_TEST_BAR (0 << 0) 2490 #define OV5640_TEST_RANDOM (1 << 0) 2491 #define OV5640_TEST_SQUARE (2 << 0) 2492 #define OV5640_TEST_BLACK (3 << 0) 2493 2494 static const u8 test_pattern_val[] = { 2495 0, 2496 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 | 2497 OV5640_TEST_BAR, 2498 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | 2499 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, 2500 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE, 2501 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE, 2502 }; 2503 2504 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) 2505 { 2506 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, 2507 test_pattern_val[value]); 2508 } 2509 2510 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) 2511 { 2512 int ret; 2513 2514 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), 2515 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 2516 0 : BIT(7)); 2517 if (ret) 2518 return ret; 2519 2520 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), 2521 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? 2522 BIT(2) : 0); 2523 } 2524 2525 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) 2526 { 2527 /* 2528 * If sensor is mounted upside down, mirror logic is inversed. 2529 * 2530 * Sensor is a BSI (Back Side Illuminated) one, 2531 * so image captured is physically mirrored. 2532 * This is why mirror logic is inversed in 2533 * order to cancel this mirror effect. 2534 */ 2535 2536 /* 2537 * TIMING TC REG21: 2538 * - [2]: ISP mirror 2539 * - [1]: Sensor mirror 2540 */ 2541 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2542 BIT(2) | BIT(1), 2543 (!(value ^ sensor->upside_down)) ? 2544 (BIT(2) | BIT(1)) : 0); 2545 } 2546 2547 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) 2548 { 2549 /* If sensor is mounted upside down, flip logic is inversed */ 2550 2551 /* 2552 * TIMING TC REG20: 2553 * - [2]: ISP vflip 2554 * - [1]: Sensor vflip 2555 */ 2556 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 2557 BIT(2) | BIT(1), 2558 (value ^ sensor->upside_down) ? 2559 (BIT(2) | BIT(1)) : 0); 2560 } 2561 2562 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 2563 { 2564 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2565 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2566 int val; 2567 2568 /* v4l2_ctrl_lock() locks our own mutex */ 2569 2570 switch (ctrl->id) { 2571 case V4L2_CID_AUTOGAIN: 2572 val = ov5640_get_gain(sensor); 2573 if (val < 0) 2574 return val; 2575 sensor->ctrls.gain->val = val; 2576 break; 2577 case V4L2_CID_EXPOSURE_AUTO: 2578 val = ov5640_get_exposure(sensor); 2579 if (val < 0) 2580 return val; 2581 sensor->ctrls.exposure->val = val; 2582 break; 2583 } 2584 2585 return 0; 2586 } 2587 2588 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) 2589 { 2590 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2591 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2592 int ret; 2593 2594 /* v4l2_ctrl_lock() locks our own mutex */ 2595 2596 /* 2597 * If the device is not powered up by the host driver do 2598 * not apply any controls to H/W at this time. Instead 2599 * the controls will be restored right after power-up. 2600 */ 2601 if (sensor->power_count == 0) 2602 return 0; 2603 2604 switch (ctrl->id) { 2605 case V4L2_CID_AUTOGAIN: 2606 ret = ov5640_set_ctrl_gain(sensor, ctrl->val); 2607 break; 2608 case V4L2_CID_EXPOSURE_AUTO: 2609 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); 2610 break; 2611 case V4L2_CID_AUTO_WHITE_BALANCE: 2612 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); 2613 break; 2614 case V4L2_CID_HUE: 2615 ret = ov5640_set_ctrl_hue(sensor, ctrl->val); 2616 break; 2617 case V4L2_CID_CONTRAST: 2618 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); 2619 break; 2620 case V4L2_CID_SATURATION: 2621 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); 2622 break; 2623 case V4L2_CID_TEST_PATTERN: 2624 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); 2625 break; 2626 case V4L2_CID_POWER_LINE_FREQUENCY: 2627 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); 2628 break; 2629 case V4L2_CID_HFLIP: 2630 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); 2631 break; 2632 case V4L2_CID_VFLIP: 2633 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); 2634 break; 2635 default: 2636 ret = -EINVAL; 2637 break; 2638 } 2639 2640 return ret; 2641 } 2642 2643 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { 2644 .g_volatile_ctrl = ov5640_g_volatile_ctrl, 2645 .s_ctrl = ov5640_s_ctrl, 2646 }; 2647 2648 static int ov5640_init_controls(struct ov5640_dev *sensor) 2649 { 2650 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; 2651 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2652 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 2653 int ret; 2654 2655 v4l2_ctrl_handler_init(hdl, 32); 2656 2657 /* we can use our own mutex for the ctrl lock */ 2658 hdl->lock = &sensor->lock; 2659 2660 /* Auto/manual white balance */ 2661 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 2662 V4L2_CID_AUTO_WHITE_BALANCE, 2663 0, 1, 1, 1); 2664 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 2665 0, 4095, 1, 0); 2666 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 2667 0, 4095, 1, 0); 2668 /* Auto/manual exposure */ 2669 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 2670 V4L2_CID_EXPOSURE_AUTO, 2671 V4L2_EXPOSURE_MANUAL, 0, 2672 V4L2_EXPOSURE_AUTO); 2673 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 2674 0, 65535, 1, 0); 2675 /* Auto/manual gain */ 2676 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 2677 0, 1, 1, 1); 2678 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 2679 0, 1023, 1, 0); 2680 2681 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 2682 0, 255, 1, 64); 2683 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 2684 0, 359, 1, 0); 2685 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 2686 0, 255, 1, 0); 2687 ctrls->test_pattern = 2688 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 2689 ARRAY_SIZE(test_pattern_menu) - 1, 2690 0, 0, test_pattern_menu); 2691 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 2692 0, 1, 1, 0); 2693 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 2694 0, 1, 1, 0); 2695 2696 ctrls->light_freq = 2697 v4l2_ctrl_new_std_menu(hdl, ops, 2698 V4L2_CID_POWER_LINE_FREQUENCY, 2699 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 2700 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 2701 2702 if (hdl->error) { 2703 ret = hdl->error; 2704 goto free_ctrls; 2705 } 2706 2707 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 2708 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 2709 2710 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 2711 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 2712 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 2713 2714 sensor->sd.ctrl_handler = hdl; 2715 return 0; 2716 2717 free_ctrls: 2718 v4l2_ctrl_handler_free(hdl); 2719 return ret; 2720 } 2721 2722 static int ov5640_enum_frame_size(struct v4l2_subdev *sd, 2723 struct v4l2_subdev_pad_config *cfg, 2724 struct v4l2_subdev_frame_size_enum *fse) 2725 { 2726 if (fse->pad != 0) 2727 return -EINVAL; 2728 if (fse->index >= OV5640_NUM_MODES) 2729 return -EINVAL; 2730 2731 fse->min_width = 2732 ov5640_mode_data[fse->index].hact; 2733 fse->max_width = fse->min_width; 2734 fse->min_height = 2735 ov5640_mode_data[fse->index].vact; 2736 fse->max_height = fse->min_height; 2737 2738 return 0; 2739 } 2740 2741 static int ov5640_enum_frame_interval( 2742 struct v4l2_subdev *sd, 2743 struct v4l2_subdev_pad_config *cfg, 2744 struct v4l2_subdev_frame_interval_enum *fie) 2745 { 2746 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2747 struct v4l2_fract tpf; 2748 int ret; 2749 2750 if (fie->pad != 0) 2751 return -EINVAL; 2752 if (fie->index >= OV5640_NUM_FRAMERATES) 2753 return -EINVAL; 2754 2755 tpf.numerator = 1; 2756 tpf.denominator = ov5640_framerates[fie->index]; 2757 2758 ret = ov5640_try_frame_interval(sensor, &tpf, 2759 fie->width, fie->height); 2760 if (ret < 0) 2761 return -EINVAL; 2762 2763 fie->interval = tpf; 2764 return 0; 2765 } 2766 2767 static int ov5640_g_frame_interval(struct v4l2_subdev *sd, 2768 struct v4l2_subdev_frame_interval *fi) 2769 { 2770 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2771 2772 mutex_lock(&sensor->lock); 2773 fi->interval = sensor->frame_interval; 2774 mutex_unlock(&sensor->lock); 2775 2776 return 0; 2777 } 2778 2779 static int ov5640_s_frame_interval(struct v4l2_subdev *sd, 2780 struct v4l2_subdev_frame_interval *fi) 2781 { 2782 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2783 const struct ov5640_mode_info *mode; 2784 int frame_rate, ret = 0; 2785 2786 if (fi->pad != 0) 2787 return -EINVAL; 2788 2789 mutex_lock(&sensor->lock); 2790 2791 if (sensor->streaming) { 2792 ret = -EBUSY; 2793 goto out; 2794 } 2795 2796 mode = sensor->current_mode; 2797 2798 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, 2799 mode->hact, mode->vact); 2800 if (frame_rate < 0) { 2801 /* Always return a valid frame interval value */ 2802 fi->interval = sensor->frame_interval; 2803 goto out; 2804 } 2805 2806 mode = ov5640_find_mode(sensor, frame_rate, mode->hact, 2807 mode->vact, true); 2808 if (!mode) { 2809 ret = -EINVAL; 2810 goto out; 2811 } 2812 2813 if (mode != sensor->current_mode || 2814 frame_rate != sensor->current_fr) { 2815 sensor->current_fr = frame_rate; 2816 sensor->frame_interval = fi->interval; 2817 sensor->current_mode = mode; 2818 sensor->pending_mode_change = true; 2819 } 2820 out: 2821 mutex_unlock(&sensor->lock); 2822 return ret; 2823 } 2824 2825 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, 2826 struct v4l2_subdev_pad_config *cfg, 2827 struct v4l2_subdev_mbus_code_enum *code) 2828 { 2829 if (code->pad != 0) 2830 return -EINVAL; 2831 if (code->index >= ARRAY_SIZE(ov5640_formats)) 2832 return -EINVAL; 2833 2834 code->code = ov5640_formats[code->index].code; 2835 return 0; 2836 } 2837 2838 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) 2839 { 2840 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2841 int ret = 0; 2842 2843 mutex_lock(&sensor->lock); 2844 2845 if (sensor->streaming == !enable) { 2846 if (enable && sensor->pending_mode_change) { 2847 ret = ov5640_set_mode(sensor); 2848 if (ret) 2849 goto out; 2850 } 2851 2852 if (enable && sensor->pending_fmt_change) { 2853 ret = ov5640_set_framefmt(sensor, &sensor->fmt); 2854 if (ret) 2855 goto out; 2856 sensor->pending_fmt_change = false; 2857 } 2858 2859 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2860 ret = ov5640_set_stream_mipi(sensor, enable); 2861 else 2862 ret = ov5640_set_stream_dvp(sensor, enable); 2863 2864 if (!ret) 2865 sensor->streaming = enable; 2866 } 2867 out: 2868 mutex_unlock(&sensor->lock); 2869 return ret; 2870 } 2871 2872 static const struct v4l2_subdev_core_ops ov5640_core_ops = { 2873 .s_power = ov5640_s_power, 2874 .log_status = v4l2_ctrl_subdev_log_status, 2875 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 2876 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2877 }; 2878 2879 static const struct v4l2_subdev_video_ops ov5640_video_ops = { 2880 .g_frame_interval = ov5640_g_frame_interval, 2881 .s_frame_interval = ov5640_s_frame_interval, 2882 .s_stream = ov5640_s_stream, 2883 }; 2884 2885 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { 2886 .enum_mbus_code = ov5640_enum_mbus_code, 2887 .get_fmt = ov5640_get_fmt, 2888 .set_fmt = ov5640_set_fmt, 2889 .enum_frame_size = ov5640_enum_frame_size, 2890 .enum_frame_interval = ov5640_enum_frame_interval, 2891 }; 2892 2893 static const struct v4l2_subdev_ops ov5640_subdev_ops = { 2894 .core = &ov5640_core_ops, 2895 .video = &ov5640_video_ops, 2896 .pad = &ov5640_pad_ops, 2897 }; 2898 2899 static int ov5640_get_regulators(struct ov5640_dev *sensor) 2900 { 2901 int i; 2902 2903 for (i = 0; i < OV5640_NUM_SUPPLIES; i++) 2904 sensor->supplies[i].supply = ov5640_supply_name[i]; 2905 2906 return devm_regulator_bulk_get(&sensor->i2c_client->dev, 2907 OV5640_NUM_SUPPLIES, 2908 sensor->supplies); 2909 } 2910 2911 static int ov5640_check_chip_id(struct ov5640_dev *sensor) 2912 { 2913 struct i2c_client *client = sensor->i2c_client; 2914 int ret = 0; 2915 u16 chip_id; 2916 2917 ret = ov5640_set_power_on(sensor); 2918 if (ret) 2919 return ret; 2920 2921 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); 2922 if (ret) { 2923 dev_err(&client->dev, "%s: failed to read chip identifier\n", 2924 __func__); 2925 goto power_off; 2926 } 2927 2928 if (chip_id != 0x5640) { 2929 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", 2930 __func__, chip_id); 2931 ret = -ENXIO; 2932 } 2933 2934 power_off: 2935 ov5640_set_power_off(sensor); 2936 return ret; 2937 } 2938 2939 static int ov5640_probe(struct i2c_client *client) 2940 { 2941 struct device *dev = &client->dev; 2942 struct fwnode_handle *endpoint; 2943 struct ov5640_dev *sensor; 2944 struct v4l2_mbus_framefmt *fmt; 2945 u32 rotation; 2946 int ret; 2947 2948 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); 2949 if (!sensor) 2950 return -ENOMEM; 2951 2952 sensor->i2c_client = client; 2953 2954 /* 2955 * default init sequence initialize sensor to 2956 * YUV422 UYVY VGA@30fps 2957 */ 2958 fmt = &sensor->fmt; 2959 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; 2960 fmt->colorspace = V4L2_COLORSPACE_SRGB; 2961 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2962 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2963 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2964 fmt->width = 640; 2965 fmt->height = 480; 2966 fmt->field = V4L2_FIELD_NONE; 2967 sensor->frame_interval.numerator = 1; 2968 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; 2969 sensor->current_fr = OV5640_30_FPS; 2970 sensor->current_mode = 2971 &ov5640_mode_data[OV5640_MODE_VGA_640_480]; 2972 sensor->last_mode = sensor->current_mode; 2973 2974 sensor->ae_target = 52; 2975 2976 /* optional indication of physical rotation of sensor */ 2977 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation", 2978 &rotation); 2979 if (!ret) { 2980 switch (rotation) { 2981 case 180: 2982 sensor->upside_down = true; 2983 /* fall through */ 2984 case 0: 2985 break; 2986 default: 2987 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n", 2988 rotation); 2989 } 2990 } 2991 2992 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), 2993 NULL); 2994 if (!endpoint) { 2995 dev_err(dev, "endpoint node not found\n"); 2996 return -EINVAL; 2997 } 2998 2999 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); 3000 fwnode_handle_put(endpoint); 3001 if (ret) { 3002 dev_err(dev, "Could not parse endpoint\n"); 3003 return ret; 3004 } 3005 3006 /* get system clock (xclk) */ 3007 sensor->xclk = devm_clk_get(dev, "xclk"); 3008 if (IS_ERR(sensor->xclk)) { 3009 dev_err(dev, "failed to get xclk\n"); 3010 return PTR_ERR(sensor->xclk); 3011 } 3012 3013 sensor->xclk_freq = clk_get_rate(sensor->xclk); 3014 if (sensor->xclk_freq < OV5640_XCLK_MIN || 3015 sensor->xclk_freq > OV5640_XCLK_MAX) { 3016 dev_err(dev, "xclk frequency out of range: %d Hz\n", 3017 sensor->xclk_freq); 3018 return -EINVAL; 3019 } 3020 3021 /* request optional power down pin */ 3022 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", 3023 GPIOD_OUT_HIGH); 3024 if (IS_ERR(sensor->pwdn_gpio)) 3025 return PTR_ERR(sensor->pwdn_gpio); 3026 3027 /* request optional reset pin */ 3028 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", 3029 GPIOD_OUT_HIGH); 3030 if (IS_ERR(sensor->reset_gpio)) 3031 return PTR_ERR(sensor->reset_gpio); 3032 3033 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); 3034 3035 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 3036 V4L2_SUBDEV_FL_HAS_EVENTS; 3037 sensor->pad.flags = MEDIA_PAD_FL_SOURCE; 3038 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 3039 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); 3040 if (ret) 3041 return ret; 3042 3043 ret = ov5640_get_regulators(sensor); 3044 if (ret) 3045 return ret; 3046 3047 mutex_init(&sensor->lock); 3048 3049 ret = ov5640_check_chip_id(sensor); 3050 if (ret) 3051 goto entity_cleanup; 3052 3053 ret = ov5640_init_controls(sensor); 3054 if (ret) 3055 goto entity_cleanup; 3056 3057 ret = v4l2_async_register_subdev_sensor_common(&sensor->sd); 3058 if (ret) 3059 goto free_ctrls; 3060 3061 return 0; 3062 3063 free_ctrls: 3064 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3065 entity_cleanup: 3066 mutex_destroy(&sensor->lock); 3067 media_entity_cleanup(&sensor->sd.entity); 3068 return ret; 3069 } 3070 3071 static int ov5640_remove(struct i2c_client *client) 3072 { 3073 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3074 struct ov5640_dev *sensor = to_ov5640_dev(sd); 3075 3076 v4l2_async_unregister_subdev(&sensor->sd); 3077 mutex_destroy(&sensor->lock); 3078 media_entity_cleanup(&sensor->sd.entity); 3079 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3080 3081 return 0; 3082 } 3083 3084 static const struct i2c_device_id ov5640_id[] = { 3085 {"ov5640", 0}, 3086 {}, 3087 }; 3088 MODULE_DEVICE_TABLE(i2c, ov5640_id); 3089 3090 static const struct of_device_id ov5640_dt_ids[] = { 3091 { .compatible = "ovti,ov5640" }, 3092 { /* sentinel */ } 3093 }; 3094 MODULE_DEVICE_TABLE(of, ov5640_dt_ids); 3095 3096 static struct i2c_driver ov5640_i2c_driver = { 3097 .driver = { 3098 .name = "ov5640", 3099 .of_match_table = ov5640_dt_ids, 3100 }, 3101 .id_table = ov5640_id, 3102 .probe_new = ov5640_probe, 3103 .remove = ov5640_remove, 3104 }; 3105 3106 module_i2c_driver(ov5640_i2c_driver); 3107 3108 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); 3109 MODULE_LICENSE("GPL"); 3110