1 /* 2 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. 3 * Copyright (C) 2014-2017 Mentor Graphics Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 */ 10 11 #include <linux/clk.h> 12 #include <linux/clk-provider.h> 13 #include <linux/clkdev.h> 14 #include <linux/ctype.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/gpio/consumer.h> 18 #include <linux/i2c.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/of_device.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <media/v4l2-async.h> 26 #include <media/v4l2-ctrls.h> 27 #include <media/v4l2-device.h> 28 #include <media/v4l2-event.h> 29 #include <media/v4l2-fwnode.h> 30 #include <media/v4l2-subdev.h> 31 32 /* min/typical/max system clock (xclk) frequencies */ 33 #define OV5640_XCLK_MIN 6000000 34 #define OV5640_XCLK_MAX 54000000 35 36 #define OV5640_DEFAULT_SLAVE_ID 0x3c 37 38 #define OV5640_REG_SYS_RESET02 0x3002 39 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 40 #define OV5640_REG_SYS_CTRL0 0x3008 41 #define OV5640_REG_CHIP_ID 0x300a 42 #define OV5640_REG_IO_MIPI_CTRL00 0x300e 43 #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 44 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 45 #define OV5640_REG_PAD_OUTPUT00 0x3019 46 #define OV5640_REG_SYSTEM_CONTROL1 0x302e 47 #define OV5640_REG_SC_PLL_CTRL0 0x3034 48 #define OV5640_REG_SC_PLL_CTRL1 0x3035 49 #define OV5640_REG_SC_PLL_CTRL2 0x3036 50 #define OV5640_REG_SC_PLL_CTRL3 0x3037 51 #define OV5640_REG_SLAVE_ID 0x3100 52 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 53 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 54 #define OV5640_REG_AWB_R_GAIN 0x3400 55 #define OV5640_REG_AWB_G_GAIN 0x3402 56 #define OV5640_REG_AWB_B_GAIN 0x3404 57 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 58 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 59 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 60 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 61 #define OV5640_REG_AEC_PK_MANUAL 0x3503 62 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a 63 #define OV5640_REG_AEC_PK_VTS 0x350c 64 #define OV5640_REG_TIMING_DVPHO 0x3808 65 #define OV5640_REG_TIMING_DVPVO 0x380a 66 #define OV5640_REG_TIMING_HTS 0x380c 67 #define OV5640_REG_TIMING_VTS 0x380e 68 #define OV5640_REG_TIMING_TC_REG20 0x3820 69 #define OV5640_REG_TIMING_TC_REG21 0x3821 70 #define OV5640_REG_AEC_CTRL00 0x3a00 71 #define OV5640_REG_AEC_B50_STEP 0x3a08 72 #define OV5640_REG_AEC_B60_STEP 0x3a0a 73 #define OV5640_REG_AEC_CTRL0D 0x3a0d 74 #define OV5640_REG_AEC_CTRL0E 0x3a0e 75 #define OV5640_REG_AEC_CTRL0F 0x3a0f 76 #define OV5640_REG_AEC_CTRL10 0x3a10 77 #define OV5640_REG_AEC_CTRL11 0x3a11 78 #define OV5640_REG_AEC_CTRL1B 0x3a1b 79 #define OV5640_REG_AEC_CTRL1E 0x3a1e 80 #define OV5640_REG_AEC_CTRL1F 0x3a1f 81 #define OV5640_REG_HZ5060_CTRL00 0x3c00 82 #define OV5640_REG_HZ5060_CTRL01 0x3c01 83 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c 84 #define OV5640_REG_FRAME_CTRL01 0x4202 85 #define OV5640_REG_FORMAT_CONTROL00 0x4300 86 #define OV5640_REG_VFIFO_HSIZE 0x4602 87 #define OV5640_REG_VFIFO_VSIZE 0x4604 88 #define OV5640_REG_JPG_MODE_SELECT 0x4713 89 #define OV5640_REG_POLARITY_CTRL00 0x4740 90 #define OV5640_REG_MIPI_CTRL00 0x4800 91 #define OV5640_REG_DEBUG_MODE 0x4814 92 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f 93 #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d 94 #define OV5640_REG_SDE_CTRL0 0x5580 95 #define OV5640_REG_SDE_CTRL1 0x5581 96 #define OV5640_REG_SDE_CTRL3 0x5583 97 #define OV5640_REG_SDE_CTRL4 0x5584 98 #define OV5640_REG_SDE_CTRL5 0x5585 99 #define OV5640_REG_AVG_READOUT 0x56a1 100 101 enum ov5640_mode_id { 102 OV5640_MODE_QCIF_176_144 = 0, 103 OV5640_MODE_QVGA_320_240, 104 OV5640_MODE_VGA_640_480, 105 OV5640_MODE_NTSC_720_480, 106 OV5640_MODE_PAL_720_576, 107 OV5640_MODE_XGA_1024_768, 108 OV5640_MODE_720P_1280_720, 109 OV5640_MODE_1080P_1920_1080, 110 OV5640_MODE_QSXGA_2592_1944, 111 OV5640_NUM_MODES, 112 }; 113 114 enum ov5640_frame_rate { 115 OV5640_15_FPS = 0, 116 OV5640_30_FPS, 117 OV5640_60_FPS, 118 OV5640_NUM_FRAMERATES, 119 }; 120 121 enum ov5640_format_mux { 122 OV5640_FMT_MUX_YUV422 = 0, 123 OV5640_FMT_MUX_RGB, 124 OV5640_FMT_MUX_DITHER, 125 OV5640_FMT_MUX_RAW_DPC, 126 OV5640_FMT_MUX_SNR_RAW, 127 OV5640_FMT_MUX_RAW_CIP, 128 }; 129 130 struct ov5640_pixfmt { 131 u32 code; 132 u32 colorspace; 133 }; 134 135 static const struct ov5640_pixfmt ov5640_formats[] = { 136 { MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, }, 137 { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, }, 138 { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, }, 139 { MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, }, 140 { MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, }, 141 { MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, }, 142 { MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, }, 143 { MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, }, 144 { MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, }, 145 }; 146 147 /* 148 * FIXME: remove this when a subdev API becomes available 149 * to set the MIPI CSI-2 virtual channel. 150 */ 151 static unsigned int virtual_channel; 152 module_param(virtual_channel, uint, 0444); 153 MODULE_PARM_DESC(virtual_channel, 154 "MIPI CSI-2 virtual channel (0..3), default 0"); 155 156 static const int ov5640_framerates[] = { 157 [OV5640_15_FPS] = 15, 158 [OV5640_30_FPS] = 30, 159 [OV5640_60_FPS] = 60, 160 }; 161 162 /* regulator supplies */ 163 static const char * const ov5640_supply_name[] = { 164 "DOVDD", /* Digital I/O (1.8V) supply */ 165 "DVDD", /* Digital Core (1.5V) supply */ 166 "AVDD", /* Analog (2.8V) supply */ 167 }; 168 169 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) 170 171 /* 172 * Image size under 1280 * 960 are SUBSAMPLING 173 * Image size upper 1280 * 960 are SCALING 174 */ 175 enum ov5640_downsize_mode { 176 SUBSAMPLING, 177 SCALING, 178 }; 179 180 struct reg_value { 181 u16 reg_addr; 182 u8 val; 183 u8 mask; 184 u32 delay_ms; 185 }; 186 187 struct ov5640_mode_info { 188 enum ov5640_mode_id id; 189 enum ov5640_downsize_mode dn_mode; 190 u32 hact; 191 u32 htot; 192 u32 vact; 193 u32 vtot; 194 const struct reg_value *reg_data; 195 u32 reg_data_size; 196 }; 197 198 struct ov5640_ctrls { 199 struct v4l2_ctrl_handler handler; 200 struct { 201 struct v4l2_ctrl *auto_exp; 202 struct v4l2_ctrl *exposure; 203 }; 204 struct { 205 struct v4l2_ctrl *auto_wb; 206 struct v4l2_ctrl *blue_balance; 207 struct v4l2_ctrl *red_balance; 208 }; 209 struct { 210 struct v4l2_ctrl *auto_gain; 211 struct v4l2_ctrl *gain; 212 }; 213 struct v4l2_ctrl *brightness; 214 struct v4l2_ctrl *light_freq; 215 struct v4l2_ctrl *saturation; 216 struct v4l2_ctrl *contrast; 217 struct v4l2_ctrl *hue; 218 struct v4l2_ctrl *test_pattern; 219 struct v4l2_ctrl *hflip; 220 struct v4l2_ctrl *vflip; 221 }; 222 223 struct ov5640_dev { 224 struct i2c_client *i2c_client; 225 struct v4l2_subdev sd; 226 struct media_pad pad; 227 struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ 228 struct clk *xclk; /* system clock to OV5640 */ 229 u32 xclk_freq; 230 231 struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; 232 struct gpio_desc *reset_gpio; 233 struct gpio_desc *pwdn_gpio; 234 bool upside_down; 235 236 /* lock to protect all members below */ 237 struct mutex lock; 238 239 int power_count; 240 241 struct v4l2_mbus_framefmt fmt; 242 bool pending_fmt_change; 243 244 const struct ov5640_mode_info *current_mode; 245 const struct ov5640_mode_info *last_mode; 246 enum ov5640_frame_rate current_fr; 247 struct v4l2_fract frame_interval; 248 249 struct ov5640_ctrls ctrls; 250 251 u32 prev_sysclk, prev_hts; 252 u32 ae_low, ae_high, ae_target; 253 254 bool pending_mode_change; 255 bool streaming; 256 }; 257 258 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) 259 { 260 return container_of(sd, struct ov5640_dev, sd); 261 } 262 263 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) 264 { 265 return &container_of(ctrl->handler, struct ov5640_dev, 266 ctrls.handler)->sd; 267 } 268 269 /* 270 * FIXME: all of these register tables are likely filled with 271 * entries that set the register to their power-on default values, 272 * and which are otherwise not touched by this driver. Those entries 273 * should be identified and removed to speed register load time 274 * over i2c. 275 */ 276 /* YUV422 UYVY VGA@30fps */ 277 static const struct reg_value ov5640_init_setting_30fps_VGA[] = { 278 {0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0}, 279 {0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0}, 280 {0x3630, 0x36, 0, 0}, 281 {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, 282 {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, 283 {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, 284 {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, 285 {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, 286 {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, 287 {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, 288 {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, 289 {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, 290 {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, 291 {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, 292 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 293 {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, 294 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 295 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 296 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 297 {0x3810, 0x00, 0, 0}, 298 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 299 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 300 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 301 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 302 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 303 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 304 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, 305 {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, 306 {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, 307 {0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0}, 308 {0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 309 {0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0}, 310 {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, 311 {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, 312 {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, 313 {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, 314 {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, 315 {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, 316 {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, 317 {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, 318 {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, 319 {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, 320 {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, 321 {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, 322 {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, 323 {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, 324 {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, 325 {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, 326 {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, 327 {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, 328 {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, 329 {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, 330 {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, 331 {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, 332 {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, 333 {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, 334 {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, 335 {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, 336 {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, 337 {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, 338 {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, 339 {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, 340 {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, 341 {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, 342 {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, 343 {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, 344 {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, 345 {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, 346 {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, 347 {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, 348 {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, 349 {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, 350 {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, 351 {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, 352 {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, 353 {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, 354 {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, 355 {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, 356 {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, 357 {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, 358 {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, 359 {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, 360 }; 361 362 static const struct reg_value ov5640_setting_VGA_640_480[] = { 363 {0x3c07, 0x08, 0, 0}, 364 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 365 {0x3814, 0x31, 0, 0}, 366 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 367 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 368 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 369 {0x3810, 0x00, 0, 0}, 370 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 371 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 372 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 373 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 374 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 375 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 376 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 377 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 378 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 379 }; 380 381 static const struct reg_value ov5640_setting_XGA_1024_768[] = { 382 {0x3c07, 0x08, 0, 0}, 383 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 384 {0x3814, 0x31, 0, 0}, 385 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 386 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 387 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 388 {0x3810, 0x00, 0, 0}, 389 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 390 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 391 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 392 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 393 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 394 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 395 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 396 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 397 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 398 }; 399 400 static const struct reg_value ov5640_setting_QVGA_320_240[] = { 401 {0x3c07, 0x08, 0, 0}, 402 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 403 {0x3814, 0x31, 0, 0}, 404 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 405 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 406 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 407 {0x3810, 0x00, 0, 0}, 408 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 409 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 410 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 411 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 412 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 413 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 414 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 415 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 416 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 417 }; 418 419 static const struct reg_value ov5640_setting_QCIF_176_144[] = { 420 {0x3c07, 0x08, 0, 0}, 421 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 422 {0x3814, 0x31, 0, 0}, 423 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 424 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 425 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 426 {0x3810, 0x00, 0, 0}, 427 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 428 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 429 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 430 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 431 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 432 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 433 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 434 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 435 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 436 }; 437 438 static const struct reg_value ov5640_setting_NTSC_720_480[] = { 439 {0x3c07, 0x08, 0, 0}, 440 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 441 {0x3814, 0x31, 0, 0}, 442 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 443 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 444 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 445 {0x3810, 0x00, 0, 0}, 446 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0}, 447 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 448 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 449 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 450 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 451 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 452 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 453 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 454 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 455 }; 456 457 static const struct reg_value ov5640_setting_PAL_720_576[] = { 458 {0x3c07, 0x08, 0, 0}, 459 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 460 {0x3814, 0x31, 0, 0}, 461 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 462 {0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0}, 463 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0}, 464 {0x3810, 0x00, 0, 0}, 465 {0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0}, 466 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 467 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, 468 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 469 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 470 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 471 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 472 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 473 {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, 474 }; 475 476 static const struct reg_value ov5640_setting_720P_1280_720[] = { 477 {0x3c07, 0x07, 0, 0}, 478 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 479 {0x3814, 0x31, 0, 0}, 480 {0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 481 {0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0}, 482 {0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0}, 483 {0x3810, 0x00, 0, 0}, 484 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 485 {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, 486 {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, 487 {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, 488 {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, 489 {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, 490 {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, 491 {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, 492 {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, 493 }; 494 495 static const struct reg_value ov5640_setting_1080P_1920_1080[] = { 496 {0x3008, 0x42, 0, 0}, 497 {0x3c07, 0x08, 0, 0}, 498 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 499 {0x3814, 0x11, 0, 0}, 500 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 501 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 502 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 503 {0x3810, 0x00, 0, 0}, 504 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 505 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 506 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 507 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 508 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 509 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 510 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 511 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 512 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, 513 {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, 514 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 515 {0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0}, 516 {0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0}, 517 {0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0}, 518 {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, 519 {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, 520 {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, 521 {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, 522 {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0}, 523 {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, 524 {0x4005, 0x1a, 0, 0}, {0x3008, 0x02, 0, 0}, 525 }; 526 527 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { 528 {0x3c07, 0x08, 0, 0}, 529 {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, 530 {0x3814, 0x11, 0, 0}, 531 {0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0}, 532 {0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0}, 533 {0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0}, 534 {0x3810, 0x00, 0, 0}, 535 {0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0}, 536 {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, 537 {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, 538 {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, 539 {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, 540 {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, 541 {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, 542 {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, 543 {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, 544 }; 545 546 /* power-on sensor init reg table */ 547 static const struct ov5640_mode_info ov5640_mode_init_data = { 548 0, SUBSAMPLING, 640, 1896, 480, 984, 549 ov5640_init_setting_30fps_VGA, 550 ARRAY_SIZE(ov5640_init_setting_30fps_VGA), 551 }; 552 553 static const struct ov5640_mode_info 554 ov5640_mode_data[OV5640_NUM_MODES] = { 555 {OV5640_MODE_QCIF_176_144, SUBSAMPLING, 556 176, 1896, 144, 984, 557 ov5640_setting_QCIF_176_144, 558 ARRAY_SIZE(ov5640_setting_QCIF_176_144)}, 559 {OV5640_MODE_QVGA_320_240, SUBSAMPLING, 560 320, 1896, 240, 984, 561 ov5640_setting_QVGA_320_240, 562 ARRAY_SIZE(ov5640_setting_QVGA_320_240)}, 563 {OV5640_MODE_VGA_640_480, SUBSAMPLING, 564 640, 1896, 480, 1080, 565 ov5640_setting_VGA_640_480, 566 ARRAY_SIZE(ov5640_setting_VGA_640_480)}, 567 {OV5640_MODE_NTSC_720_480, SUBSAMPLING, 568 720, 1896, 480, 984, 569 ov5640_setting_NTSC_720_480, 570 ARRAY_SIZE(ov5640_setting_NTSC_720_480)}, 571 {OV5640_MODE_PAL_720_576, SUBSAMPLING, 572 720, 1896, 576, 984, 573 ov5640_setting_PAL_720_576, 574 ARRAY_SIZE(ov5640_setting_PAL_720_576)}, 575 {OV5640_MODE_XGA_1024_768, SUBSAMPLING, 576 1024, 1896, 768, 1080, 577 ov5640_setting_XGA_1024_768, 578 ARRAY_SIZE(ov5640_setting_XGA_1024_768)}, 579 {OV5640_MODE_720P_1280_720, SUBSAMPLING, 580 1280, 1892, 720, 740, 581 ov5640_setting_720P_1280_720, 582 ARRAY_SIZE(ov5640_setting_720P_1280_720)}, 583 {OV5640_MODE_1080P_1920_1080, SCALING, 584 1920, 2500, 1080, 1120, 585 ov5640_setting_1080P_1920_1080, 586 ARRAY_SIZE(ov5640_setting_1080P_1920_1080)}, 587 {OV5640_MODE_QSXGA_2592_1944, SCALING, 588 2592, 2844, 1944, 1968, 589 ov5640_setting_QSXGA_2592_1944, 590 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944)}, 591 }; 592 593 static int ov5640_init_slave_id(struct ov5640_dev *sensor) 594 { 595 struct i2c_client *client = sensor->i2c_client; 596 struct i2c_msg msg; 597 u8 buf[3]; 598 int ret; 599 600 if (client->addr == OV5640_DEFAULT_SLAVE_ID) 601 return 0; 602 603 buf[0] = OV5640_REG_SLAVE_ID >> 8; 604 buf[1] = OV5640_REG_SLAVE_ID & 0xff; 605 buf[2] = client->addr << 1; 606 607 msg.addr = OV5640_DEFAULT_SLAVE_ID; 608 msg.flags = 0; 609 msg.buf = buf; 610 msg.len = sizeof(buf); 611 612 ret = i2c_transfer(client->adapter, &msg, 1); 613 if (ret < 0) { 614 dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); 615 return ret; 616 } 617 618 return 0; 619 } 620 621 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) 622 { 623 struct i2c_client *client = sensor->i2c_client; 624 struct i2c_msg msg; 625 u8 buf[3]; 626 int ret; 627 628 buf[0] = reg >> 8; 629 buf[1] = reg & 0xff; 630 buf[2] = val; 631 632 msg.addr = client->addr; 633 msg.flags = client->flags; 634 msg.buf = buf; 635 msg.len = sizeof(buf); 636 637 ret = i2c_transfer(client->adapter, &msg, 1); 638 if (ret < 0) { 639 dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", 640 __func__, reg, val); 641 return ret; 642 } 643 644 return 0; 645 } 646 647 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) 648 { 649 struct i2c_client *client = sensor->i2c_client; 650 struct i2c_msg msg[2]; 651 u8 buf[2]; 652 int ret; 653 654 buf[0] = reg >> 8; 655 buf[1] = reg & 0xff; 656 657 msg[0].addr = client->addr; 658 msg[0].flags = client->flags; 659 msg[0].buf = buf; 660 msg[0].len = sizeof(buf); 661 662 msg[1].addr = client->addr; 663 msg[1].flags = client->flags | I2C_M_RD; 664 msg[1].buf = buf; 665 msg[1].len = 1; 666 667 ret = i2c_transfer(client->adapter, msg, 2); 668 if (ret < 0) { 669 dev_err(&client->dev, "%s: error: reg=%x\n", 670 __func__, reg); 671 return ret; 672 } 673 674 *val = buf[0]; 675 return 0; 676 } 677 678 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) 679 { 680 u8 hi, lo; 681 int ret; 682 683 ret = ov5640_read_reg(sensor, reg, &hi); 684 if (ret) 685 return ret; 686 ret = ov5640_read_reg(sensor, reg + 1, &lo); 687 if (ret) 688 return ret; 689 690 *val = ((u16)hi << 8) | (u16)lo; 691 return 0; 692 } 693 694 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) 695 { 696 int ret; 697 698 ret = ov5640_write_reg(sensor, reg, val >> 8); 699 if (ret) 700 return ret; 701 702 return ov5640_write_reg(sensor, reg + 1, val & 0xff); 703 } 704 705 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, 706 u8 mask, u8 val) 707 { 708 u8 readval; 709 int ret; 710 711 ret = ov5640_read_reg(sensor, reg, &readval); 712 if (ret) 713 return ret; 714 715 readval &= ~mask; 716 val &= mask; 717 val |= readval; 718 719 return ov5640_write_reg(sensor, reg, val); 720 } 721 722 /* 723 * After trying the various combinations, reading various 724 * documentations spread around the net, and from the various 725 * feedback, the clock tree is probably as follows: 726 * 727 * +--------------+ 728 * | Ext. Clock | 729 * +-+------------+ 730 * | +----------+ 731 * +->| PLL1 | - reg 0x3036, for the multiplier 732 * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider 733 * | +--------------+ 734 * +->| System Clock | - reg 0x3035, bits 4-7 735 * +-+------------+ 736 * | +--------------+ 737 * +->| MIPI Divider | - reg 0x3035, bits 0-3 738 * | +-+------------+ 739 * | +----------------> MIPI SCLK 740 * | + +-----+ 741 * | +->| / 2 |-------> MIPI BIT CLK 742 * | +-----+ 743 * | +--------------+ 744 * +->| PLL Root Div | - reg 0x3037, bit 4 745 * +-+------------+ 746 * | +---------+ 747 * +->| Bit Div | - reg 0x3035, bits 0-3 748 * +-+-------+ 749 * | +-------------+ 750 * +->| SCLK Div | - reg 0x3108, bits 0-1 751 * | +-+-----------+ 752 * | +---------------> SCLK 753 * | +-------------+ 754 * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 755 * | +-+-----------+ 756 * | +---------------> SCLK 2X 757 * | +-------------+ 758 * +->| PCLK Div | - reg 0x3108, bits 4-5 759 * ++------------+ 760 * + +-----------+ 761 * +->| P_DIV | - reg 0x3035, bits 0-3 762 * +-----+-----+ 763 * +------------> PCLK 764 * 765 * This is deviating from the datasheet at least for the register 766 * 0x3108, since it's said here that the PCLK would be clocked from 767 * the PLL. 768 * 769 * There seems to be also (unverified) constraints: 770 * - the PLL pre-divider output rate should be in the 4-27MHz range 771 * - the PLL multiplier output rate should be in the 500-1000MHz range 772 * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG 773 * 774 * In the two latter cases, these constraints are met since our 775 * factors are hardcoded. If we were to change that, we would need to 776 * take this into account. The only varying parts are the PLL 777 * multiplier and the system clock divider, which are shared between 778 * all these clocks so won't cause any issue. 779 */ 780 781 /* 782 * This is supposed to be ranging from 1 to 8, but the value is always 783 * set to 3 in the vendor kernels. 784 */ 785 #define OV5640_PLL_PREDIV 3 786 787 #define OV5640_PLL_MULT_MIN 4 788 #define OV5640_PLL_MULT_MAX 252 789 790 /* 791 * This is supposed to be ranging from 1 to 16, but the value is 792 * always set to either 1 or 2 in the vendor kernels. 793 */ 794 #define OV5640_SYSDIV_MIN 1 795 #define OV5640_SYSDIV_MAX 16 796 797 /* 798 * Hardcode these values for scaler and non-scaler modes. 799 * FIXME: to be re-calcualted for 1 data lanes setups 800 */ 801 #define OV5640_MIPI_DIV_PCLK 2 802 #define OV5640_MIPI_DIV_SCLK 1 803 804 /* 805 * This is supposed to be ranging from 1 to 2, but the value is always 806 * set to 2 in the vendor kernels. 807 */ 808 #define OV5640_PLL_ROOT_DIV 2 809 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) 810 811 /* 812 * We only supports 8-bit formats at the moment 813 */ 814 #define OV5640_BIT_DIV 2 815 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 816 817 /* 818 * This is supposed to be ranging from 1 to 8, but the value is always 819 * set to 2 in the vendor kernels. 820 */ 821 #define OV5640_SCLK_ROOT_DIV 2 822 823 /* 824 * This is hardcoded so that the consistency is maintained between SCLK and 825 * SCLK 2x. 826 */ 827 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) 828 829 /* 830 * This is supposed to be ranging from 1 to 8, but the value is always 831 * set to 1 in the vendor kernels. 832 */ 833 #define OV5640_PCLK_ROOT_DIV 1 834 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 835 836 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, 837 u8 pll_prediv, u8 pll_mult, 838 u8 sysdiv) 839 { 840 unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; 841 842 /* PLL1 output cannot exceed 1GHz. */ 843 if (sysclk / 1000000 > 1000) 844 return 0; 845 846 return sysclk / sysdiv; 847 } 848 849 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, 850 unsigned long rate, 851 u8 *pll_prediv, u8 *pll_mult, 852 u8 *sysdiv) 853 { 854 unsigned long best = ~0; 855 u8 best_sysdiv = 1, best_mult = 1; 856 u8 _sysdiv, _pll_mult; 857 858 for (_sysdiv = OV5640_SYSDIV_MIN; 859 _sysdiv <= OV5640_SYSDIV_MAX; 860 _sysdiv++) { 861 for (_pll_mult = OV5640_PLL_MULT_MIN; 862 _pll_mult <= OV5640_PLL_MULT_MAX; 863 _pll_mult++) { 864 unsigned long _rate; 865 866 /* 867 * The PLL multiplier cannot be odd if above 868 * 127. 869 */ 870 if (_pll_mult > 127 && (_pll_mult % 2)) 871 continue; 872 873 _rate = ov5640_compute_sys_clk(sensor, 874 OV5640_PLL_PREDIV, 875 _pll_mult, _sysdiv); 876 877 /* 878 * We have reached the maximum allowed PLL1 output, 879 * increase sysdiv. 880 */ 881 if (!rate) 882 break; 883 884 /* 885 * Prefer rates above the expected clock rate than 886 * below, even if that means being less precise. 887 */ 888 if (_rate < rate) 889 continue; 890 891 if (abs(rate - _rate) < abs(rate - best)) { 892 best = _rate; 893 best_sysdiv = _sysdiv; 894 best_mult = _pll_mult; 895 } 896 897 if (_rate == rate) 898 goto out; 899 } 900 } 901 902 out: 903 *sysdiv = best_sysdiv; 904 *pll_prediv = OV5640_PLL_PREDIV; 905 *pll_mult = best_mult; 906 907 return best; 908 } 909 910 /* 911 * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values 912 * for the MIPI CSI-2 output. 913 * 914 * @rate: The requested bandwidth per lane in bytes per second. 915 * 'Bandwidth Per Lane' is calculated as: 916 * bpl = HTOT * VTOT * FPS * bpp / num_lanes; 917 * 918 * This function use the requested bandwidth to calculate: 919 * - sample_rate = bpl / (bpp / num_lanes); 920 * = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes); 921 * 922 * - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR) 923 * 924 * with these fixed parameters: 925 * PLL_RDIV = 2; 926 * BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5); 927 * PCLK_DIV = 1; 928 * 929 * The MIPI clock generation differs for modes that use the scaler and modes 930 * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI 931 * BIT CLk, and thus: 932 * 933 * - mipi_sclk = bpl / MIPI_DIV / 2; 934 * MIPI_DIV = 1; 935 * 936 * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated 937 * from the pixel clock, and thus: 938 * 939 * - sample_rate = bpl / (bpp / num_lanes); 940 * = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes); 941 * = bpl / (4 * MIPI_DIV / num_lanes); 942 * - MIPI_DIV = bpp / (4 * num_lanes); 943 * 944 * FIXME: this have been tested with 16bpp and 2 lanes setup only. 945 * MIPI_DIV is fixed to value 2, but it -might- be changed according to the 946 * above formula for setups with 1 lane or image formats with different bpp. 947 * 948 * FIXME: this deviates from the sensor manual documentation which is quite 949 * thin on the MIPI clock tree generation part. 950 */ 951 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor, 952 unsigned long rate) 953 { 954 const struct ov5640_mode_info *mode = sensor->current_mode; 955 u8 prediv, mult, sysdiv; 956 u8 mipi_div; 957 int ret; 958 959 /* 960 * 1280x720 is reported to use 'SUBSAMPLING' only, 961 * but according to the sensor manual it goes through the 962 * scaler before subsampling. 963 */ 964 if (mode->dn_mode == SCALING || 965 (mode->id == OV5640_MODE_720P_1280_720)) 966 mipi_div = OV5640_MIPI_DIV_SCLK; 967 else 968 mipi_div = OV5640_MIPI_DIV_PCLK; 969 970 ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv); 971 972 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 973 0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT); 974 975 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 976 0xff, sysdiv << 4 | mipi_div); 977 if (ret) 978 return ret; 979 980 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); 981 if (ret) 982 return ret; 983 984 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 985 0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv); 986 if (ret) 987 return ret; 988 989 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 990 0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS); 991 } 992 993 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, 994 unsigned long rate, 995 u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, 996 u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) 997 { 998 unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * 999 OV5640_PCLK_ROOT_DIV; 1000 1001 _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, 1002 sysdiv); 1003 *pll_rdiv = OV5640_PLL_ROOT_DIV; 1004 *bit_div = OV5640_BIT_DIV; 1005 *pclk_div = OV5640_PCLK_ROOT_DIV; 1006 1007 return _rate / *pll_rdiv / *bit_div / *pclk_div; 1008 } 1009 1010 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate) 1011 { 1012 u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; 1013 int ret; 1014 1015 ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, 1016 &bit_div, &pclk_div); 1017 1018 if (bit_div == 2) 1019 bit_div = 8; 1020 1021 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 1022 0x0f, bit_div); 1023 if (ret) 1024 return ret; 1025 1026 /* 1027 * We need to set sysdiv according to the clock, and to clear 1028 * the MIPI divider. 1029 */ 1030 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 1031 0xff, sysdiv << 4); 1032 if (ret) 1033 return ret; 1034 1035 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 1036 0xff, mult); 1037 if (ret) 1038 return ret; 1039 1040 ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 1041 0x1f, prediv | ((pll_rdiv - 1) << 4)); 1042 if (ret) 1043 return ret; 1044 1045 return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, 1046 (ilog2(pclk_div) << 4)); 1047 } 1048 1049 /* set JPEG framing sizes */ 1050 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor, 1051 const struct ov5640_mode_info *mode) 1052 { 1053 int ret; 1054 1055 /* 1056 * compression mode 3 timing 1057 * 1058 * Data is transmitted with programmable width (VFIFO_HSIZE). 1059 * No padding done. Last line may have less data. Varying 1060 * number of lines per frame, depending on amount of data. 1061 */ 1062 ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3); 1063 if (ret < 0) 1064 return ret; 1065 1066 ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact); 1067 if (ret < 0) 1068 return ret; 1069 1070 return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact); 1071 } 1072 1073 /* download ov5640 settings to sensor through i2c */ 1074 static int ov5640_set_timings(struct ov5640_dev *sensor, 1075 const struct ov5640_mode_info *mode) 1076 { 1077 int ret; 1078 1079 if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) { 1080 ret = ov5640_set_jpeg_timings(sensor, mode); 1081 if (ret < 0) 1082 return ret; 1083 } 1084 1085 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact); 1086 if (ret < 0) 1087 return ret; 1088 1089 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact); 1090 if (ret < 0) 1091 return ret; 1092 1093 ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot); 1094 if (ret < 0) 1095 return ret; 1096 1097 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot); 1098 } 1099 1100 static int ov5640_load_regs(struct ov5640_dev *sensor, 1101 const struct ov5640_mode_info *mode) 1102 { 1103 const struct reg_value *regs = mode->reg_data; 1104 unsigned int i; 1105 u32 delay_ms; 1106 u16 reg_addr; 1107 u8 mask, val; 1108 int ret = 0; 1109 1110 for (i = 0; i < mode->reg_data_size; ++i, ++regs) { 1111 delay_ms = regs->delay_ms; 1112 reg_addr = regs->reg_addr; 1113 val = regs->val; 1114 mask = regs->mask; 1115 1116 if (mask) 1117 ret = ov5640_mod_reg(sensor, reg_addr, mask, val); 1118 else 1119 ret = ov5640_write_reg(sensor, reg_addr, val); 1120 if (ret) 1121 break; 1122 1123 if (delay_ms) 1124 usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); 1125 } 1126 1127 return ov5640_set_timings(sensor, mode); 1128 } 1129 1130 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) 1131 { 1132 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1133 BIT(0), on ? 0 : BIT(0)); 1134 } 1135 1136 /* read exposure, in number of line periods */ 1137 static int ov5640_get_exposure(struct ov5640_dev *sensor) 1138 { 1139 int exp, ret; 1140 u8 temp; 1141 1142 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); 1143 if (ret) 1144 return ret; 1145 exp = ((int)temp & 0x0f) << 16; 1146 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); 1147 if (ret) 1148 return ret; 1149 exp |= ((int)temp << 8); 1150 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); 1151 if (ret) 1152 return ret; 1153 exp |= (int)temp; 1154 1155 return exp >> 4; 1156 } 1157 1158 /* write exposure, given number of line periods */ 1159 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) 1160 { 1161 int ret; 1162 1163 exposure <<= 4; 1164 1165 ret = ov5640_write_reg(sensor, 1166 OV5640_REG_AEC_PK_EXPOSURE_LO, 1167 exposure & 0xff); 1168 if (ret) 1169 return ret; 1170 ret = ov5640_write_reg(sensor, 1171 OV5640_REG_AEC_PK_EXPOSURE_MED, 1172 (exposure >> 8) & 0xff); 1173 if (ret) 1174 return ret; 1175 return ov5640_write_reg(sensor, 1176 OV5640_REG_AEC_PK_EXPOSURE_HI, 1177 (exposure >> 16) & 0x0f); 1178 } 1179 1180 static int ov5640_get_gain(struct ov5640_dev *sensor) 1181 { 1182 u16 gain; 1183 int ret; 1184 1185 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); 1186 if (ret) 1187 return ret; 1188 1189 return gain & 0x3ff; 1190 } 1191 1192 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) 1193 { 1194 return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, 1195 (u16)gain & 0x3ff); 1196 } 1197 1198 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) 1199 { 1200 return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, 1201 BIT(1), on ? 0 : BIT(1)); 1202 } 1203 1204 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) 1205 { 1206 int ret; 1207 unsigned int flags = sensor->ep.bus.parallel.flags; 1208 u8 pclk_pol = 0; 1209 u8 hsync_pol = 0; 1210 u8 vsync_pol = 0; 1211 1212 /* 1213 * Note about parallel port configuration. 1214 * 1215 * When configured in parallel mode, the OV5640 will 1216 * output 10 bits data on DVP data lines [9:0]. 1217 * If only 8 bits data are wanted, the 8 bits data lines 1218 * of the camera interface must be physically connected 1219 * on the DVP data lines [9:2]. 1220 * 1221 * Control lines polarity can be configured through 1222 * devicetree endpoint control lines properties. 1223 * If no endpoint control lines properties are set, 1224 * polarity will be as below: 1225 * - VSYNC: active high 1226 * - HREF: active low 1227 * - PCLK: active low 1228 */ 1229 1230 if (on) { 1231 /* 1232 * configure parallel port control lines polarity 1233 * 1234 * POLARITY CTRL0 1235 * - [5]: PCLK polarity (0: active low, 1: active high) 1236 * - [1]: HREF polarity (0: active low, 1: active high) 1237 * - [0]: VSYNC polarity (mismatch here between 1238 * datasheet and hardware, 0 is active high 1239 * and 1 is active low...) 1240 */ 1241 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 1242 pclk_pol = 1; 1243 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 1244 hsync_pol = 1; 1245 if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) 1246 vsync_pol = 1; 1247 1248 ret = ov5640_write_reg(sensor, 1249 OV5640_REG_POLARITY_CTRL00, 1250 (pclk_pol << 5) | 1251 (hsync_pol << 1) | 1252 vsync_pol); 1253 1254 if (ret) 1255 return ret; 1256 } 1257 1258 /* 1259 * powerdown MIPI TX/RX PHY & disable MIPI 1260 * 1261 * MIPI CONTROL 00 1262 * 4: PWDN PHY TX 1263 * 3: PWDN PHY RX 1264 * 2: MIPI enable 1265 */ 1266 ret = ov5640_write_reg(sensor, 1267 OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0); 1268 if (ret) 1269 return ret; 1270 1271 /* 1272 * enable VSYNC/HREF/PCLK DVP control lines 1273 * & D[9:6] DVP data lines 1274 * 1275 * PAD OUTPUT ENABLE 01 1276 * - 6: VSYNC output enable 1277 * - 5: HREF output enable 1278 * - 4: PCLK output enable 1279 * - [3:0]: D[9:6] output enable 1280 */ 1281 ret = ov5640_write_reg(sensor, 1282 OV5640_REG_PAD_OUTPUT_ENABLE01, 1283 on ? 0x7f : 0); 1284 if (ret) 1285 return ret; 1286 1287 /* 1288 * enable D[5:0] DVP data lines 1289 * 1290 * PAD OUTPUT ENABLE 02 1291 * - [7:2]: D[5:0] output enable 1292 */ 1293 return ov5640_write_reg(sensor, 1294 OV5640_REG_PAD_OUTPUT_ENABLE02, 1295 on ? 0xfc : 0); 1296 } 1297 1298 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) 1299 { 1300 int ret; 1301 1302 /* 1303 * Enable/disable the MIPI interface 1304 * 1305 * 0x300e = on ? 0x45 : 0x40 1306 * 1307 * FIXME: the sensor manual (version 2.03) reports 1308 * [7:5] = 000 : 1 data lane mode 1309 * [7:5] = 001 : 2 data lanes mode 1310 * But this settings do not work, while the following ones 1311 * have been validated for 2 data lanes mode. 1312 * 1313 * [7:5] = 010 : 2 data lanes mode 1314 * [4] = 0 : Power up MIPI HS Tx 1315 * [3] = 0 : Power up MIPI LS Rx 1316 * [2] = 1/0 : MIPI interface enable/disable 1317 * [1:0] = 01/00: FIXME: 'debug' 1318 */ 1319 ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 1320 on ? 0x45 : 0x40); 1321 if (ret) 1322 return ret; 1323 1324 return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, 1325 on ? 0x00 : 0x0f); 1326 } 1327 1328 static int ov5640_get_sysclk(struct ov5640_dev *sensor) 1329 { 1330 /* calculate sysclk */ 1331 u32 xvclk = sensor->xclk_freq / 10000; 1332 u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; 1333 u32 sclk_rdiv_map[] = {1, 2, 4, 8}; 1334 u32 bit_div2x = 1, sclk_rdiv, sysclk; 1335 u8 temp1, temp2; 1336 int ret; 1337 1338 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); 1339 if (ret) 1340 return ret; 1341 temp2 = temp1 & 0x0f; 1342 if (temp2 == 8 || temp2 == 10) 1343 bit_div2x = temp2 / 2; 1344 1345 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); 1346 if (ret) 1347 return ret; 1348 sysdiv = temp1 >> 4; 1349 if (sysdiv == 0) 1350 sysdiv = 16; 1351 1352 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); 1353 if (ret) 1354 return ret; 1355 multiplier = temp1; 1356 1357 ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); 1358 if (ret) 1359 return ret; 1360 prediv = temp1 & 0x0f; 1361 pll_rdiv = ((temp1 >> 4) & 0x01) + 1; 1362 1363 ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); 1364 if (ret) 1365 return ret; 1366 temp2 = temp1 & 0x03; 1367 sclk_rdiv = sclk_rdiv_map[temp2]; 1368 1369 if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) 1370 return -EINVAL; 1371 1372 VCO = xvclk * multiplier / prediv; 1373 1374 sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; 1375 1376 return sysclk; 1377 } 1378 1379 static int ov5640_set_night_mode(struct ov5640_dev *sensor) 1380 { 1381 /* read HTS from register settings */ 1382 u8 mode; 1383 int ret; 1384 1385 ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); 1386 if (ret) 1387 return ret; 1388 mode &= 0xfb; 1389 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); 1390 } 1391 1392 static int ov5640_get_hts(struct ov5640_dev *sensor) 1393 { 1394 /* read HTS from register settings */ 1395 u16 hts; 1396 int ret; 1397 1398 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); 1399 if (ret) 1400 return ret; 1401 return hts; 1402 } 1403 1404 static int ov5640_get_vts(struct ov5640_dev *sensor) 1405 { 1406 u16 vts; 1407 int ret; 1408 1409 ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); 1410 if (ret) 1411 return ret; 1412 return vts; 1413 } 1414 1415 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) 1416 { 1417 return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); 1418 } 1419 1420 static int ov5640_get_light_freq(struct ov5640_dev *sensor) 1421 { 1422 /* get banding filter value */ 1423 int ret, light_freq = 0; 1424 u8 temp, temp1; 1425 1426 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); 1427 if (ret) 1428 return ret; 1429 1430 if (temp & 0x80) { 1431 /* manual */ 1432 ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, 1433 &temp1); 1434 if (ret) 1435 return ret; 1436 if (temp1 & 0x04) { 1437 /* 50Hz */ 1438 light_freq = 50; 1439 } else { 1440 /* 60Hz */ 1441 light_freq = 60; 1442 } 1443 } else { 1444 /* auto */ 1445 ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, 1446 &temp1); 1447 if (ret) 1448 return ret; 1449 1450 if (temp1 & 0x01) { 1451 /* 50Hz */ 1452 light_freq = 50; 1453 } else { 1454 /* 60Hz */ 1455 } 1456 } 1457 1458 return light_freq; 1459 } 1460 1461 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) 1462 { 1463 u32 band_step60, max_band60, band_step50, max_band50, prev_vts; 1464 int ret; 1465 1466 /* read preview PCLK */ 1467 ret = ov5640_get_sysclk(sensor); 1468 if (ret < 0) 1469 return ret; 1470 if (ret == 0) 1471 return -EINVAL; 1472 sensor->prev_sysclk = ret; 1473 /* read preview HTS */ 1474 ret = ov5640_get_hts(sensor); 1475 if (ret < 0) 1476 return ret; 1477 if (ret == 0) 1478 return -EINVAL; 1479 sensor->prev_hts = ret; 1480 1481 /* read preview VTS */ 1482 ret = ov5640_get_vts(sensor); 1483 if (ret < 0) 1484 return ret; 1485 prev_vts = ret; 1486 1487 /* calculate banding filter */ 1488 /* 60Hz */ 1489 band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; 1490 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); 1491 if (ret) 1492 return ret; 1493 if (!band_step60) 1494 return -EINVAL; 1495 max_band60 = (int)((prev_vts - 4) / band_step60); 1496 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); 1497 if (ret) 1498 return ret; 1499 1500 /* 50Hz */ 1501 band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; 1502 ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); 1503 if (ret) 1504 return ret; 1505 if (!band_step50) 1506 return -EINVAL; 1507 max_band50 = (int)((prev_vts - 4) / band_step50); 1508 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); 1509 } 1510 1511 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) 1512 { 1513 /* stable in high */ 1514 u32 fast_high, fast_low; 1515 int ret; 1516 1517 sensor->ae_low = target * 23 / 25; /* 0.92 */ 1518 sensor->ae_high = target * 27 / 25; /* 1.08 */ 1519 1520 fast_high = sensor->ae_high << 1; 1521 if (fast_high > 255) 1522 fast_high = 255; 1523 1524 fast_low = sensor->ae_low >> 1; 1525 1526 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); 1527 if (ret) 1528 return ret; 1529 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); 1530 if (ret) 1531 return ret; 1532 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); 1533 if (ret) 1534 return ret; 1535 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); 1536 if (ret) 1537 return ret; 1538 ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); 1539 if (ret) 1540 return ret; 1541 return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); 1542 } 1543 1544 static int ov5640_get_binning(struct ov5640_dev *sensor) 1545 { 1546 u8 temp; 1547 int ret; 1548 1549 ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); 1550 if (ret) 1551 return ret; 1552 1553 return temp & BIT(0); 1554 } 1555 1556 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) 1557 { 1558 int ret; 1559 1560 /* 1561 * TIMING TC REG21: 1562 * - [0]: Horizontal binning enable 1563 */ 1564 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 1565 BIT(0), enable ? BIT(0) : 0); 1566 if (ret) 1567 return ret; 1568 /* 1569 * TIMING TC REG20: 1570 * - [0]: Undocumented, but hardcoded init sequences 1571 * are always setting REG21/REG20 bit 0 to same value... 1572 */ 1573 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 1574 BIT(0), enable ? BIT(0) : 0); 1575 } 1576 1577 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) 1578 { 1579 struct i2c_client *client = sensor->i2c_client; 1580 u8 temp, channel = virtual_channel; 1581 int ret; 1582 1583 if (channel > 3) { 1584 dev_err(&client->dev, 1585 "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", 1586 __func__, channel); 1587 return -EINVAL; 1588 } 1589 1590 ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); 1591 if (ret) 1592 return ret; 1593 temp &= ~(3 << 6); 1594 temp |= (channel << 6); 1595 return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); 1596 } 1597 1598 static const struct ov5640_mode_info * 1599 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr, 1600 int width, int height, bool nearest) 1601 { 1602 const struct ov5640_mode_info *mode; 1603 1604 mode = v4l2_find_nearest_size(ov5640_mode_data, 1605 ARRAY_SIZE(ov5640_mode_data), 1606 hact, vact, 1607 width, height); 1608 1609 if (!mode || 1610 (!nearest && (mode->hact != width || mode->vact != height))) 1611 return NULL; 1612 1613 /* Only 640x480 can operate at 60fps (for now) */ 1614 if (fr == OV5640_60_FPS && 1615 !(mode->hact == 640 && mode->vact == 480)) 1616 return NULL; 1617 1618 return mode; 1619 } 1620 1621 /* 1622 * sensor changes between scaling and subsampling, go through 1623 * exposure calculation 1624 */ 1625 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, 1626 const struct ov5640_mode_info *mode) 1627 { 1628 u32 prev_shutter, prev_gain16; 1629 u32 cap_shutter, cap_gain16; 1630 u32 cap_sysclk, cap_hts, cap_vts; 1631 u32 light_freq, cap_bandfilt, cap_maxband; 1632 u32 cap_gain16_shutter; 1633 u8 average; 1634 int ret; 1635 1636 if (!mode->reg_data) 1637 return -EINVAL; 1638 1639 /* read preview shutter */ 1640 ret = ov5640_get_exposure(sensor); 1641 if (ret < 0) 1642 return ret; 1643 prev_shutter = ret; 1644 ret = ov5640_get_binning(sensor); 1645 if (ret < 0) 1646 return ret; 1647 if (ret && mode->id != OV5640_MODE_720P_1280_720 && 1648 mode->id != OV5640_MODE_1080P_1920_1080) 1649 prev_shutter *= 2; 1650 1651 /* read preview gain */ 1652 ret = ov5640_get_gain(sensor); 1653 if (ret < 0) 1654 return ret; 1655 prev_gain16 = ret; 1656 1657 /* get average */ 1658 ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); 1659 if (ret) 1660 return ret; 1661 1662 /* turn off night mode for capture */ 1663 ret = ov5640_set_night_mode(sensor); 1664 if (ret < 0) 1665 return ret; 1666 1667 /* Write capture setting */ 1668 ret = ov5640_load_regs(sensor, mode); 1669 if (ret < 0) 1670 return ret; 1671 1672 /* read capture VTS */ 1673 ret = ov5640_get_vts(sensor); 1674 if (ret < 0) 1675 return ret; 1676 cap_vts = ret; 1677 ret = ov5640_get_hts(sensor); 1678 if (ret < 0) 1679 return ret; 1680 if (ret == 0) 1681 return -EINVAL; 1682 cap_hts = ret; 1683 1684 ret = ov5640_get_sysclk(sensor); 1685 if (ret < 0) 1686 return ret; 1687 if (ret == 0) 1688 return -EINVAL; 1689 cap_sysclk = ret; 1690 1691 /* calculate capture banding filter */ 1692 ret = ov5640_get_light_freq(sensor); 1693 if (ret < 0) 1694 return ret; 1695 light_freq = ret; 1696 1697 if (light_freq == 60) { 1698 /* 60Hz */ 1699 cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; 1700 } else { 1701 /* 50Hz */ 1702 cap_bandfilt = cap_sysclk * 100 / cap_hts; 1703 } 1704 1705 if (!sensor->prev_sysclk) { 1706 ret = ov5640_get_sysclk(sensor); 1707 if (ret < 0) 1708 return ret; 1709 if (ret == 0) 1710 return -EINVAL; 1711 sensor->prev_sysclk = ret; 1712 } 1713 1714 if (!cap_bandfilt) 1715 return -EINVAL; 1716 1717 cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); 1718 1719 /* calculate capture shutter/gain16 */ 1720 if (average > sensor->ae_low && average < sensor->ae_high) { 1721 /* in stable range */ 1722 cap_gain16_shutter = 1723 prev_gain16 * prev_shutter * 1724 cap_sysclk / sensor->prev_sysclk * 1725 sensor->prev_hts / cap_hts * 1726 sensor->ae_target / average; 1727 } else { 1728 cap_gain16_shutter = 1729 prev_gain16 * prev_shutter * 1730 cap_sysclk / sensor->prev_sysclk * 1731 sensor->prev_hts / cap_hts; 1732 } 1733 1734 /* gain to shutter */ 1735 if (cap_gain16_shutter < (cap_bandfilt * 16)) { 1736 /* shutter < 1/100 */ 1737 cap_shutter = cap_gain16_shutter / 16; 1738 if (cap_shutter < 1) 1739 cap_shutter = 1; 1740 1741 cap_gain16 = cap_gain16_shutter / cap_shutter; 1742 if (cap_gain16 < 16) 1743 cap_gain16 = 16; 1744 } else { 1745 if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { 1746 /* exposure reach max */ 1747 cap_shutter = cap_bandfilt * cap_maxband; 1748 if (!cap_shutter) 1749 return -EINVAL; 1750 1751 cap_gain16 = cap_gain16_shutter / cap_shutter; 1752 } else { 1753 /* 1/100 < (cap_shutter = n/100) =< max */ 1754 cap_shutter = 1755 ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) 1756 * cap_bandfilt; 1757 if (!cap_shutter) 1758 return -EINVAL; 1759 1760 cap_gain16 = cap_gain16_shutter / cap_shutter; 1761 } 1762 } 1763 1764 /* set capture gain */ 1765 ret = ov5640_set_gain(sensor, cap_gain16); 1766 if (ret) 1767 return ret; 1768 1769 /* write capture shutter */ 1770 if (cap_shutter > (cap_vts - 4)) { 1771 cap_vts = cap_shutter + 4; 1772 ret = ov5640_set_vts(sensor, cap_vts); 1773 if (ret < 0) 1774 return ret; 1775 } 1776 1777 /* set exposure */ 1778 return ov5640_set_exposure(sensor, cap_shutter); 1779 } 1780 1781 /* 1782 * if sensor changes inside scaling or subsampling 1783 * change mode directly 1784 */ 1785 static int ov5640_set_mode_direct(struct ov5640_dev *sensor, 1786 const struct ov5640_mode_info *mode) 1787 { 1788 if (!mode->reg_data) 1789 return -EINVAL; 1790 1791 /* Write capture setting */ 1792 return ov5640_load_regs(sensor, mode); 1793 } 1794 1795 static int ov5640_set_mode(struct ov5640_dev *sensor) 1796 { 1797 const struct ov5640_mode_info *mode = sensor->current_mode; 1798 const struct ov5640_mode_info *orig_mode = sensor->last_mode; 1799 enum ov5640_downsize_mode dn_mode, orig_dn_mode; 1800 bool auto_gain = sensor->ctrls.auto_gain->val == 1; 1801 bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; 1802 unsigned long rate; 1803 int ret; 1804 1805 dn_mode = mode->dn_mode; 1806 orig_dn_mode = orig_mode->dn_mode; 1807 1808 /* auto gain and exposure must be turned off when changing modes */ 1809 if (auto_gain) { 1810 ret = ov5640_set_autogain(sensor, false); 1811 if (ret) 1812 return ret; 1813 } 1814 1815 if (auto_exp) { 1816 ret = ov5640_set_autoexposure(sensor, false); 1817 if (ret) 1818 goto restore_auto_gain; 1819 } 1820 1821 /* 1822 * All the formats we support have 16 bits per pixel, seems to require 1823 * the same rate than YUV, so we can just use 16 bpp all the time. 1824 */ 1825 rate = mode->vtot * mode->htot * 16; 1826 rate *= ov5640_framerates[sensor->current_fr]; 1827 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 1828 rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes; 1829 ret = ov5640_set_mipi_pclk(sensor, rate); 1830 } else { 1831 rate = rate / sensor->ep.bus.parallel.bus_width; 1832 ret = ov5640_set_dvp_pclk(sensor, rate); 1833 } 1834 1835 if (ret < 0) 1836 return 0; 1837 1838 if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || 1839 (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { 1840 /* 1841 * change between subsampling and scaling 1842 * go through exposure calculation 1843 */ 1844 ret = ov5640_set_mode_exposure_calc(sensor, mode); 1845 } else { 1846 /* 1847 * change inside subsampling or scaling 1848 * download firmware directly 1849 */ 1850 ret = ov5640_set_mode_direct(sensor, mode); 1851 } 1852 if (ret < 0) 1853 goto restore_auto_exp_gain; 1854 1855 /* restore auto gain and exposure */ 1856 if (auto_gain) 1857 ov5640_set_autogain(sensor, true); 1858 if (auto_exp) 1859 ov5640_set_autoexposure(sensor, true); 1860 1861 ret = ov5640_set_binning(sensor, dn_mode != SCALING); 1862 if (ret < 0) 1863 return ret; 1864 ret = ov5640_set_ae_target(sensor, sensor->ae_target); 1865 if (ret < 0) 1866 return ret; 1867 ret = ov5640_get_light_freq(sensor); 1868 if (ret < 0) 1869 return ret; 1870 ret = ov5640_set_bandingfilter(sensor); 1871 if (ret < 0) 1872 return ret; 1873 ret = ov5640_set_virtual_channel(sensor); 1874 if (ret < 0) 1875 return ret; 1876 1877 sensor->pending_mode_change = false; 1878 sensor->last_mode = mode; 1879 1880 return 0; 1881 1882 restore_auto_exp_gain: 1883 if (auto_exp) 1884 ov5640_set_autoexposure(sensor, true); 1885 restore_auto_gain: 1886 if (auto_gain) 1887 ov5640_set_autogain(sensor, true); 1888 1889 return ret; 1890 } 1891 1892 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 1893 struct v4l2_mbus_framefmt *format); 1894 1895 /* restore the last set video mode after chip power-on */ 1896 static int ov5640_restore_mode(struct ov5640_dev *sensor) 1897 { 1898 int ret; 1899 1900 /* first load the initial register values */ 1901 ret = ov5640_load_regs(sensor, &ov5640_mode_init_data); 1902 if (ret < 0) 1903 return ret; 1904 sensor->last_mode = &ov5640_mode_init_data; 1905 1906 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, 1907 (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | 1908 ilog2(OV5640_SCLK_ROOT_DIV)); 1909 if (ret) 1910 return ret; 1911 1912 /* now restore the last capture mode */ 1913 ret = ov5640_set_mode(sensor); 1914 if (ret < 0) 1915 return ret; 1916 1917 return ov5640_set_framefmt(sensor, &sensor->fmt); 1918 } 1919 1920 static void ov5640_power(struct ov5640_dev *sensor, bool enable) 1921 { 1922 gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); 1923 } 1924 1925 static void ov5640_reset(struct ov5640_dev *sensor) 1926 { 1927 if (!sensor->reset_gpio) 1928 return; 1929 1930 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1931 1932 /* camera power cycle */ 1933 ov5640_power(sensor, false); 1934 usleep_range(5000, 10000); 1935 ov5640_power(sensor, true); 1936 usleep_range(5000, 10000); 1937 1938 gpiod_set_value_cansleep(sensor->reset_gpio, 1); 1939 usleep_range(1000, 2000); 1940 1941 gpiod_set_value_cansleep(sensor->reset_gpio, 0); 1942 usleep_range(20000, 25000); 1943 } 1944 1945 static int ov5640_set_power_on(struct ov5640_dev *sensor) 1946 { 1947 struct i2c_client *client = sensor->i2c_client; 1948 int ret; 1949 1950 ret = clk_prepare_enable(sensor->xclk); 1951 if (ret) { 1952 dev_err(&client->dev, "%s: failed to enable clock\n", 1953 __func__); 1954 return ret; 1955 } 1956 1957 ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, 1958 sensor->supplies); 1959 if (ret) { 1960 dev_err(&client->dev, "%s: failed to enable regulators\n", 1961 __func__); 1962 goto xclk_off; 1963 } 1964 1965 ov5640_reset(sensor); 1966 ov5640_power(sensor, true); 1967 1968 ret = ov5640_init_slave_id(sensor); 1969 if (ret) 1970 goto power_off; 1971 1972 return 0; 1973 1974 power_off: 1975 ov5640_power(sensor, false); 1976 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1977 xclk_off: 1978 clk_disable_unprepare(sensor->xclk); 1979 return ret; 1980 } 1981 1982 static void ov5640_set_power_off(struct ov5640_dev *sensor) 1983 { 1984 ov5640_power(sensor, false); 1985 regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); 1986 clk_disable_unprepare(sensor->xclk); 1987 } 1988 1989 static int ov5640_set_power(struct ov5640_dev *sensor, bool on) 1990 { 1991 int ret = 0; 1992 1993 if (on) { 1994 ret = ov5640_set_power_on(sensor); 1995 if (ret) 1996 return ret; 1997 1998 ret = ov5640_restore_mode(sensor); 1999 if (ret) 2000 goto power_off; 2001 2002 /* We're done here for DVP bus, while CSI-2 needs setup. */ 2003 if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY) 2004 return 0; 2005 2006 /* 2007 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode 2008 * 2009 * 0x300e = 0x40 2010 * [7:5] = 010 : 2 data lanes mode (see FIXME note in 2011 * "ov5640_set_stream_mipi()") 2012 * [4] = 0 : Power up MIPI HS Tx 2013 * [3] = 0 : Power up MIPI LS Rx 2014 * [2] = 0 : MIPI interface disabled 2015 */ 2016 ret = ov5640_write_reg(sensor, 2017 OV5640_REG_IO_MIPI_CTRL00, 0x40); 2018 if (ret) 2019 goto power_off; 2020 2021 /* 2022 * Gate clock and set LP11 in 'no packets mode' (idle) 2023 * 2024 * 0x4800 = 0x24 2025 * [5] = 1 : Gate clock when 'no packets' 2026 * [2] = 1 : MIPI bus in LP11 when 'no packets' 2027 */ 2028 ret = ov5640_write_reg(sensor, 2029 OV5640_REG_MIPI_CTRL00, 0x24); 2030 if (ret) 2031 goto power_off; 2032 2033 /* 2034 * Set data lanes and clock in LP11 when 'sleeping' 2035 * 2036 * 0x3019 = 0x70 2037 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' 2038 * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' 2039 * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' 2040 */ 2041 ret = ov5640_write_reg(sensor, 2042 OV5640_REG_PAD_OUTPUT00, 0x70); 2043 if (ret) 2044 goto power_off; 2045 2046 /* Give lanes some time to coax into LP11 state. */ 2047 usleep_range(500, 1000); 2048 2049 } else { 2050 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) { 2051 /* Reset MIPI bus settings to their default values. */ 2052 ov5640_write_reg(sensor, 2053 OV5640_REG_IO_MIPI_CTRL00, 0x58); 2054 ov5640_write_reg(sensor, 2055 OV5640_REG_MIPI_CTRL00, 0x04); 2056 ov5640_write_reg(sensor, 2057 OV5640_REG_PAD_OUTPUT00, 0x00); 2058 } 2059 2060 ov5640_set_power_off(sensor); 2061 } 2062 2063 return 0; 2064 2065 power_off: 2066 ov5640_set_power_off(sensor); 2067 return ret; 2068 } 2069 2070 /* --------------- Subdev Operations --------------- */ 2071 2072 static int ov5640_s_power(struct v4l2_subdev *sd, int on) 2073 { 2074 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2075 int ret = 0; 2076 2077 mutex_lock(&sensor->lock); 2078 2079 /* 2080 * If the power count is modified from 0 to != 0 or from != 0 to 0, 2081 * update the power state. 2082 */ 2083 if (sensor->power_count == !on) { 2084 ret = ov5640_set_power(sensor, !!on); 2085 if (ret) 2086 goto out; 2087 } 2088 2089 /* Update the power count. */ 2090 sensor->power_count += on ? 1 : -1; 2091 WARN_ON(sensor->power_count < 0); 2092 out: 2093 mutex_unlock(&sensor->lock); 2094 2095 if (on && !ret && sensor->power_count == 1) { 2096 /* restore controls */ 2097 ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); 2098 } 2099 2100 return ret; 2101 } 2102 2103 static int ov5640_try_frame_interval(struct ov5640_dev *sensor, 2104 struct v4l2_fract *fi, 2105 u32 width, u32 height) 2106 { 2107 const struct ov5640_mode_info *mode; 2108 enum ov5640_frame_rate rate = OV5640_15_FPS; 2109 int minfps, maxfps, best_fps, fps; 2110 int i; 2111 2112 minfps = ov5640_framerates[OV5640_15_FPS]; 2113 maxfps = ov5640_framerates[OV5640_60_FPS]; 2114 2115 if (fi->numerator == 0) { 2116 fi->denominator = maxfps; 2117 fi->numerator = 1; 2118 rate = OV5640_60_FPS; 2119 goto find_mode; 2120 } 2121 2122 fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), 2123 minfps, maxfps); 2124 2125 best_fps = minfps; 2126 for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { 2127 int curr_fps = ov5640_framerates[i]; 2128 2129 if (abs(curr_fps - fps) < abs(best_fps - fps)) { 2130 best_fps = curr_fps; 2131 rate = i; 2132 } 2133 } 2134 2135 fi->numerator = 1; 2136 fi->denominator = best_fps; 2137 2138 find_mode: 2139 mode = ov5640_find_mode(sensor, rate, width, height, false); 2140 return mode ? rate : -EINVAL; 2141 } 2142 2143 static int ov5640_get_fmt(struct v4l2_subdev *sd, 2144 struct v4l2_subdev_pad_config *cfg, 2145 struct v4l2_subdev_format *format) 2146 { 2147 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2148 struct v4l2_mbus_framefmt *fmt; 2149 2150 if (format->pad != 0) 2151 return -EINVAL; 2152 2153 mutex_lock(&sensor->lock); 2154 2155 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2156 fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg, 2157 format->pad); 2158 else 2159 fmt = &sensor->fmt; 2160 2161 format->format = *fmt; 2162 2163 mutex_unlock(&sensor->lock); 2164 2165 return 0; 2166 } 2167 2168 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, 2169 struct v4l2_mbus_framefmt *fmt, 2170 enum ov5640_frame_rate fr, 2171 const struct ov5640_mode_info **new_mode) 2172 { 2173 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2174 const struct ov5640_mode_info *mode; 2175 int i; 2176 2177 mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true); 2178 if (!mode) 2179 return -EINVAL; 2180 fmt->width = mode->hact; 2181 fmt->height = mode->vact; 2182 2183 if (new_mode) 2184 *new_mode = mode; 2185 2186 for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++) 2187 if (ov5640_formats[i].code == fmt->code) 2188 break; 2189 if (i >= ARRAY_SIZE(ov5640_formats)) 2190 i = 0; 2191 2192 fmt->code = ov5640_formats[i].code; 2193 fmt->colorspace = ov5640_formats[i].colorspace; 2194 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2195 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2196 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2197 2198 return 0; 2199 } 2200 2201 static int ov5640_set_fmt(struct v4l2_subdev *sd, 2202 struct v4l2_subdev_pad_config *cfg, 2203 struct v4l2_subdev_format *format) 2204 { 2205 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2206 const struct ov5640_mode_info *new_mode; 2207 struct v4l2_mbus_framefmt *mbus_fmt = &format->format; 2208 struct v4l2_mbus_framefmt *fmt; 2209 int ret; 2210 2211 if (format->pad != 0) 2212 return -EINVAL; 2213 2214 mutex_lock(&sensor->lock); 2215 2216 if (sensor->streaming) { 2217 ret = -EBUSY; 2218 goto out; 2219 } 2220 2221 ret = ov5640_try_fmt_internal(sd, mbus_fmt, 2222 sensor->current_fr, &new_mode); 2223 if (ret) 2224 goto out; 2225 2226 if (format->which == V4L2_SUBDEV_FORMAT_TRY) 2227 fmt = v4l2_subdev_get_try_format(sd, cfg, 0); 2228 else 2229 fmt = &sensor->fmt; 2230 2231 *fmt = *mbus_fmt; 2232 2233 if (new_mode != sensor->current_mode) { 2234 sensor->current_mode = new_mode; 2235 sensor->pending_mode_change = true; 2236 } 2237 if (mbus_fmt->code != sensor->fmt.code) 2238 sensor->pending_fmt_change = true; 2239 2240 out: 2241 mutex_unlock(&sensor->lock); 2242 return ret; 2243 } 2244 2245 static int ov5640_set_framefmt(struct ov5640_dev *sensor, 2246 struct v4l2_mbus_framefmt *format) 2247 { 2248 int ret = 0; 2249 bool is_jpeg = false; 2250 u8 fmt, mux; 2251 2252 switch (format->code) { 2253 case MEDIA_BUS_FMT_UYVY8_2X8: 2254 /* YUV422, UYVY */ 2255 fmt = 0x3f; 2256 mux = OV5640_FMT_MUX_YUV422; 2257 break; 2258 case MEDIA_BUS_FMT_YUYV8_2X8: 2259 /* YUV422, YUYV */ 2260 fmt = 0x30; 2261 mux = OV5640_FMT_MUX_YUV422; 2262 break; 2263 case MEDIA_BUS_FMT_RGB565_2X8_LE: 2264 /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ 2265 fmt = 0x6F; 2266 mux = OV5640_FMT_MUX_RGB; 2267 break; 2268 case MEDIA_BUS_FMT_RGB565_2X8_BE: 2269 /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ 2270 fmt = 0x61; 2271 mux = OV5640_FMT_MUX_RGB; 2272 break; 2273 case MEDIA_BUS_FMT_JPEG_1X8: 2274 /* YUV422, YUYV */ 2275 fmt = 0x30; 2276 mux = OV5640_FMT_MUX_YUV422; 2277 is_jpeg = true; 2278 break; 2279 case MEDIA_BUS_FMT_SBGGR8_1X8: 2280 /* Raw, BGBG... / GRGR... */ 2281 fmt = 0x00; 2282 mux = OV5640_FMT_MUX_RAW_DPC; 2283 break; 2284 case MEDIA_BUS_FMT_SGBRG8_1X8: 2285 /* Raw bayer, GBGB... / RGRG... */ 2286 fmt = 0x01; 2287 mux = OV5640_FMT_MUX_RAW_DPC; 2288 break; 2289 case MEDIA_BUS_FMT_SGRBG8_1X8: 2290 /* Raw bayer, GRGR... / BGBG... */ 2291 fmt = 0x02; 2292 mux = OV5640_FMT_MUX_RAW_DPC; 2293 break; 2294 case MEDIA_BUS_FMT_SRGGB8_1X8: 2295 /* Raw bayer, RGRG... / GBGB... */ 2296 fmt = 0x03; 2297 mux = OV5640_FMT_MUX_RAW_DPC; 2298 break; 2299 default: 2300 return -EINVAL; 2301 } 2302 2303 /* FORMAT CONTROL00: YUV and RGB formatting */ 2304 ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt); 2305 if (ret) 2306 return ret; 2307 2308 /* FORMAT MUX CONTROL: ISP YUV or RGB */ 2309 ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux); 2310 if (ret) 2311 return ret; 2312 2313 /* 2314 * TIMING TC REG21: 2315 * - [5]: JPEG enable 2316 */ 2317 ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2318 BIT(5), is_jpeg ? BIT(5) : 0); 2319 if (ret) 2320 return ret; 2321 2322 /* 2323 * SYSTEM RESET02: 2324 * - [4]: Reset JFIFO 2325 * - [3]: Reset SFIFO 2326 * - [2]: Reset JPEG 2327 */ 2328 ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, 2329 BIT(4) | BIT(3) | BIT(2), 2330 is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); 2331 if (ret) 2332 return ret; 2333 2334 /* 2335 * CLOCK ENABLE02: 2336 * - [5]: Enable JPEG 2x clock 2337 * - [3]: Enable JPEG clock 2338 */ 2339 return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, 2340 BIT(5) | BIT(3), 2341 is_jpeg ? (BIT(5) | BIT(3)) : 0); 2342 } 2343 2344 /* 2345 * Sensor Controls. 2346 */ 2347 2348 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) 2349 { 2350 int ret; 2351 2352 if (value) { 2353 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2354 BIT(0), BIT(0)); 2355 if (ret) 2356 return ret; 2357 ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); 2358 } else { 2359 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); 2360 } 2361 2362 return ret; 2363 } 2364 2365 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) 2366 { 2367 int ret; 2368 2369 if (value) { 2370 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2371 BIT(2), BIT(2)); 2372 if (ret) 2373 return ret; 2374 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, 2375 value & 0xff); 2376 } else { 2377 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); 2378 } 2379 2380 return ret; 2381 } 2382 2383 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) 2384 { 2385 int ret; 2386 2387 if (value) { 2388 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, 2389 BIT(1), BIT(1)); 2390 if (ret) 2391 return ret; 2392 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, 2393 value & 0xff); 2394 if (ret) 2395 return ret; 2396 ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, 2397 value & 0xff); 2398 } else { 2399 ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); 2400 } 2401 2402 return ret; 2403 } 2404 2405 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) 2406 { 2407 int ret; 2408 2409 ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, 2410 BIT(0), awb ? 0 : 1); 2411 if (ret) 2412 return ret; 2413 2414 if (!awb) { 2415 u16 red = (u16)sensor->ctrls.red_balance->val; 2416 u16 blue = (u16)sensor->ctrls.blue_balance->val; 2417 2418 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); 2419 if (ret) 2420 return ret; 2421 ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); 2422 } 2423 2424 return ret; 2425 } 2426 2427 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, 2428 enum v4l2_exposure_auto_type auto_exposure) 2429 { 2430 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2431 bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); 2432 int ret = 0; 2433 2434 if (ctrls->auto_exp->is_new) { 2435 ret = ov5640_set_autoexposure(sensor, auto_exp); 2436 if (ret) 2437 return ret; 2438 } 2439 2440 if (!auto_exp && ctrls->exposure->is_new) { 2441 u16 max_exp; 2442 2443 ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, 2444 &max_exp); 2445 if (ret) 2446 return ret; 2447 ret = ov5640_get_vts(sensor); 2448 if (ret < 0) 2449 return ret; 2450 max_exp += ret; 2451 ret = 0; 2452 2453 if (ctrls->exposure->val < max_exp) 2454 ret = ov5640_set_exposure(sensor, ctrls->exposure->val); 2455 } 2456 2457 return ret; 2458 } 2459 2460 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) 2461 { 2462 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2463 int ret = 0; 2464 2465 if (ctrls->auto_gain->is_new) { 2466 ret = ov5640_set_autogain(sensor, auto_gain); 2467 if (ret) 2468 return ret; 2469 } 2470 2471 if (!auto_gain && ctrls->gain->is_new) 2472 ret = ov5640_set_gain(sensor, ctrls->gain->val); 2473 2474 return ret; 2475 } 2476 2477 static const char * const test_pattern_menu[] = { 2478 "Disabled", 2479 "Color bars", 2480 "Color bars w/ rolling bar", 2481 "Color squares", 2482 "Color squares w/ rolling bar", 2483 }; 2484 2485 #define OV5640_TEST_ENABLE BIT(7) 2486 #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */ 2487 #define OV5640_TEST_TRANSPARENT BIT(5) 2488 #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */ 2489 #define OV5640_TEST_BAR_STANDARD (0 << 2) 2490 #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2) 2491 #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2) 2492 #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2) 2493 #define OV5640_TEST_BAR (0 << 0) 2494 #define OV5640_TEST_RANDOM (1 << 0) 2495 #define OV5640_TEST_SQUARE (2 << 0) 2496 #define OV5640_TEST_BLACK (3 << 0) 2497 2498 static const u8 test_pattern_val[] = { 2499 0, 2500 OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 | 2501 OV5640_TEST_BAR, 2502 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | 2503 OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, 2504 OV5640_TEST_ENABLE | OV5640_TEST_SQUARE, 2505 OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE, 2506 }; 2507 2508 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) 2509 { 2510 return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, 2511 test_pattern_val[value]); 2512 } 2513 2514 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) 2515 { 2516 int ret; 2517 2518 ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), 2519 (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 2520 0 : BIT(7)); 2521 if (ret) 2522 return ret; 2523 2524 return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), 2525 (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? 2526 BIT(2) : 0); 2527 } 2528 2529 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) 2530 { 2531 /* 2532 * If sensor is mounted upside down, mirror logic is inversed. 2533 * 2534 * Sensor is a BSI (Back Side Illuminated) one, 2535 * so image captured is physically mirrored. 2536 * This is why mirror logic is inversed in 2537 * order to cancel this mirror effect. 2538 */ 2539 2540 /* 2541 * TIMING TC REG21: 2542 * - [2]: ISP mirror 2543 * - [1]: Sensor mirror 2544 */ 2545 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, 2546 BIT(2) | BIT(1), 2547 (!(value ^ sensor->upside_down)) ? 2548 (BIT(2) | BIT(1)) : 0); 2549 } 2550 2551 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) 2552 { 2553 /* If sensor is mounted upside down, flip logic is inversed */ 2554 2555 /* 2556 * TIMING TC REG20: 2557 * - [2]: ISP vflip 2558 * - [1]: Sensor vflip 2559 */ 2560 return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, 2561 BIT(2) | BIT(1), 2562 (value ^ sensor->upside_down) ? 2563 (BIT(2) | BIT(1)) : 0); 2564 } 2565 2566 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 2567 { 2568 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2569 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2570 int val; 2571 2572 /* v4l2_ctrl_lock() locks our own mutex */ 2573 2574 switch (ctrl->id) { 2575 case V4L2_CID_AUTOGAIN: 2576 val = ov5640_get_gain(sensor); 2577 if (val < 0) 2578 return val; 2579 sensor->ctrls.gain->val = val; 2580 break; 2581 case V4L2_CID_EXPOSURE_AUTO: 2582 val = ov5640_get_exposure(sensor); 2583 if (val < 0) 2584 return val; 2585 sensor->ctrls.exposure->val = val; 2586 break; 2587 } 2588 2589 return 0; 2590 } 2591 2592 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) 2593 { 2594 struct v4l2_subdev *sd = ctrl_to_sd(ctrl); 2595 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2596 int ret; 2597 2598 /* v4l2_ctrl_lock() locks our own mutex */ 2599 2600 /* 2601 * If the device is not powered up by the host driver do 2602 * not apply any controls to H/W at this time. Instead 2603 * the controls will be restored right after power-up. 2604 */ 2605 if (sensor->power_count == 0) 2606 return 0; 2607 2608 switch (ctrl->id) { 2609 case V4L2_CID_AUTOGAIN: 2610 ret = ov5640_set_ctrl_gain(sensor, ctrl->val); 2611 break; 2612 case V4L2_CID_EXPOSURE_AUTO: 2613 ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); 2614 break; 2615 case V4L2_CID_AUTO_WHITE_BALANCE: 2616 ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); 2617 break; 2618 case V4L2_CID_HUE: 2619 ret = ov5640_set_ctrl_hue(sensor, ctrl->val); 2620 break; 2621 case V4L2_CID_CONTRAST: 2622 ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); 2623 break; 2624 case V4L2_CID_SATURATION: 2625 ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); 2626 break; 2627 case V4L2_CID_TEST_PATTERN: 2628 ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); 2629 break; 2630 case V4L2_CID_POWER_LINE_FREQUENCY: 2631 ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); 2632 break; 2633 case V4L2_CID_HFLIP: 2634 ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); 2635 break; 2636 case V4L2_CID_VFLIP: 2637 ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); 2638 break; 2639 default: 2640 ret = -EINVAL; 2641 break; 2642 } 2643 2644 return ret; 2645 } 2646 2647 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { 2648 .g_volatile_ctrl = ov5640_g_volatile_ctrl, 2649 .s_ctrl = ov5640_s_ctrl, 2650 }; 2651 2652 static int ov5640_init_controls(struct ov5640_dev *sensor) 2653 { 2654 const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; 2655 struct ov5640_ctrls *ctrls = &sensor->ctrls; 2656 struct v4l2_ctrl_handler *hdl = &ctrls->handler; 2657 int ret; 2658 2659 v4l2_ctrl_handler_init(hdl, 32); 2660 2661 /* we can use our own mutex for the ctrl lock */ 2662 hdl->lock = &sensor->lock; 2663 2664 /* Auto/manual white balance */ 2665 ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, 2666 V4L2_CID_AUTO_WHITE_BALANCE, 2667 0, 1, 1, 1); 2668 ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 2669 0, 4095, 1, 0); 2670 ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 2671 0, 4095, 1, 0); 2672 /* Auto/manual exposure */ 2673 ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, 2674 V4L2_CID_EXPOSURE_AUTO, 2675 V4L2_EXPOSURE_MANUAL, 0, 2676 V4L2_EXPOSURE_AUTO); 2677 ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 2678 0, 65535, 1, 0); 2679 /* Auto/manual gain */ 2680 ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 2681 0, 1, 1, 1); 2682 ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 2683 0, 1023, 1, 0); 2684 2685 ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 2686 0, 255, 1, 64); 2687 ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 2688 0, 359, 1, 0); 2689 ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 2690 0, 255, 1, 0); 2691 ctrls->test_pattern = 2692 v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, 2693 ARRAY_SIZE(test_pattern_menu) - 1, 2694 0, 0, test_pattern_menu); 2695 ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 2696 0, 1, 1, 0); 2697 ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 2698 0, 1, 1, 0); 2699 2700 ctrls->light_freq = 2701 v4l2_ctrl_new_std_menu(hdl, ops, 2702 V4L2_CID_POWER_LINE_FREQUENCY, 2703 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 2704 V4L2_CID_POWER_LINE_FREQUENCY_50HZ); 2705 2706 if (hdl->error) { 2707 ret = hdl->error; 2708 goto free_ctrls; 2709 } 2710 2711 ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; 2712 ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; 2713 2714 v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); 2715 v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); 2716 v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); 2717 2718 sensor->sd.ctrl_handler = hdl; 2719 return 0; 2720 2721 free_ctrls: 2722 v4l2_ctrl_handler_free(hdl); 2723 return ret; 2724 } 2725 2726 static int ov5640_enum_frame_size(struct v4l2_subdev *sd, 2727 struct v4l2_subdev_pad_config *cfg, 2728 struct v4l2_subdev_frame_size_enum *fse) 2729 { 2730 if (fse->pad != 0) 2731 return -EINVAL; 2732 if (fse->index >= OV5640_NUM_MODES) 2733 return -EINVAL; 2734 2735 fse->min_width = 2736 ov5640_mode_data[fse->index].hact; 2737 fse->max_width = fse->min_width; 2738 fse->min_height = 2739 ov5640_mode_data[fse->index].vact; 2740 fse->max_height = fse->min_height; 2741 2742 return 0; 2743 } 2744 2745 static int ov5640_enum_frame_interval( 2746 struct v4l2_subdev *sd, 2747 struct v4l2_subdev_pad_config *cfg, 2748 struct v4l2_subdev_frame_interval_enum *fie) 2749 { 2750 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2751 struct v4l2_fract tpf; 2752 int ret; 2753 2754 if (fie->pad != 0) 2755 return -EINVAL; 2756 if (fie->index >= OV5640_NUM_FRAMERATES) 2757 return -EINVAL; 2758 2759 tpf.numerator = 1; 2760 tpf.denominator = ov5640_framerates[fie->index]; 2761 2762 ret = ov5640_try_frame_interval(sensor, &tpf, 2763 fie->width, fie->height); 2764 if (ret < 0) 2765 return -EINVAL; 2766 2767 fie->interval = tpf; 2768 return 0; 2769 } 2770 2771 static int ov5640_g_frame_interval(struct v4l2_subdev *sd, 2772 struct v4l2_subdev_frame_interval *fi) 2773 { 2774 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2775 2776 mutex_lock(&sensor->lock); 2777 fi->interval = sensor->frame_interval; 2778 mutex_unlock(&sensor->lock); 2779 2780 return 0; 2781 } 2782 2783 static int ov5640_s_frame_interval(struct v4l2_subdev *sd, 2784 struct v4l2_subdev_frame_interval *fi) 2785 { 2786 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2787 const struct ov5640_mode_info *mode; 2788 int frame_rate, ret = 0; 2789 2790 if (fi->pad != 0) 2791 return -EINVAL; 2792 2793 mutex_lock(&sensor->lock); 2794 2795 if (sensor->streaming) { 2796 ret = -EBUSY; 2797 goto out; 2798 } 2799 2800 mode = sensor->current_mode; 2801 2802 frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, 2803 mode->hact, mode->vact); 2804 if (frame_rate < 0) { 2805 /* Always return a valid frame interval value */ 2806 fi->interval = sensor->frame_interval; 2807 goto out; 2808 } 2809 2810 mode = ov5640_find_mode(sensor, frame_rate, mode->hact, 2811 mode->vact, true); 2812 if (!mode) { 2813 ret = -EINVAL; 2814 goto out; 2815 } 2816 2817 if (mode != sensor->current_mode || 2818 frame_rate != sensor->current_fr) { 2819 sensor->current_fr = frame_rate; 2820 sensor->frame_interval = fi->interval; 2821 sensor->current_mode = mode; 2822 sensor->pending_mode_change = true; 2823 } 2824 out: 2825 mutex_unlock(&sensor->lock); 2826 return ret; 2827 } 2828 2829 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, 2830 struct v4l2_subdev_pad_config *cfg, 2831 struct v4l2_subdev_mbus_code_enum *code) 2832 { 2833 if (code->pad != 0) 2834 return -EINVAL; 2835 if (code->index >= ARRAY_SIZE(ov5640_formats)) 2836 return -EINVAL; 2837 2838 code->code = ov5640_formats[code->index].code; 2839 return 0; 2840 } 2841 2842 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) 2843 { 2844 struct ov5640_dev *sensor = to_ov5640_dev(sd); 2845 int ret = 0; 2846 2847 mutex_lock(&sensor->lock); 2848 2849 if (sensor->streaming == !enable) { 2850 if (enable && sensor->pending_mode_change) { 2851 ret = ov5640_set_mode(sensor); 2852 if (ret) 2853 goto out; 2854 } 2855 2856 if (enable && sensor->pending_fmt_change) { 2857 ret = ov5640_set_framefmt(sensor, &sensor->fmt); 2858 if (ret) 2859 goto out; 2860 sensor->pending_fmt_change = false; 2861 } 2862 2863 if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) 2864 ret = ov5640_set_stream_mipi(sensor, enable); 2865 else 2866 ret = ov5640_set_stream_dvp(sensor, enable); 2867 2868 if (!ret) 2869 sensor->streaming = enable; 2870 } 2871 out: 2872 mutex_unlock(&sensor->lock); 2873 return ret; 2874 } 2875 2876 static const struct v4l2_subdev_core_ops ov5640_core_ops = { 2877 .s_power = ov5640_s_power, 2878 .log_status = v4l2_ctrl_subdev_log_status, 2879 .subscribe_event = v4l2_ctrl_subdev_subscribe_event, 2880 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2881 }; 2882 2883 static const struct v4l2_subdev_video_ops ov5640_video_ops = { 2884 .g_frame_interval = ov5640_g_frame_interval, 2885 .s_frame_interval = ov5640_s_frame_interval, 2886 .s_stream = ov5640_s_stream, 2887 }; 2888 2889 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { 2890 .enum_mbus_code = ov5640_enum_mbus_code, 2891 .get_fmt = ov5640_get_fmt, 2892 .set_fmt = ov5640_set_fmt, 2893 .enum_frame_size = ov5640_enum_frame_size, 2894 .enum_frame_interval = ov5640_enum_frame_interval, 2895 }; 2896 2897 static const struct v4l2_subdev_ops ov5640_subdev_ops = { 2898 .core = &ov5640_core_ops, 2899 .video = &ov5640_video_ops, 2900 .pad = &ov5640_pad_ops, 2901 }; 2902 2903 static int ov5640_get_regulators(struct ov5640_dev *sensor) 2904 { 2905 int i; 2906 2907 for (i = 0; i < OV5640_NUM_SUPPLIES; i++) 2908 sensor->supplies[i].supply = ov5640_supply_name[i]; 2909 2910 return devm_regulator_bulk_get(&sensor->i2c_client->dev, 2911 OV5640_NUM_SUPPLIES, 2912 sensor->supplies); 2913 } 2914 2915 static int ov5640_check_chip_id(struct ov5640_dev *sensor) 2916 { 2917 struct i2c_client *client = sensor->i2c_client; 2918 int ret = 0; 2919 u16 chip_id; 2920 2921 ret = ov5640_set_power_on(sensor); 2922 if (ret) 2923 return ret; 2924 2925 ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); 2926 if (ret) { 2927 dev_err(&client->dev, "%s: failed to read chip identifier\n", 2928 __func__); 2929 goto power_off; 2930 } 2931 2932 if (chip_id != 0x5640) { 2933 dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", 2934 __func__, chip_id); 2935 ret = -ENXIO; 2936 } 2937 2938 power_off: 2939 ov5640_set_power_off(sensor); 2940 return ret; 2941 } 2942 2943 static int ov5640_probe(struct i2c_client *client, 2944 const struct i2c_device_id *id) 2945 { 2946 struct device *dev = &client->dev; 2947 struct fwnode_handle *endpoint; 2948 struct ov5640_dev *sensor; 2949 struct v4l2_mbus_framefmt *fmt; 2950 u32 rotation; 2951 int ret; 2952 2953 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); 2954 if (!sensor) 2955 return -ENOMEM; 2956 2957 sensor->i2c_client = client; 2958 2959 /* 2960 * default init sequence initialize sensor to 2961 * YUV422 UYVY VGA@30fps 2962 */ 2963 fmt = &sensor->fmt; 2964 fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; 2965 fmt->colorspace = V4L2_COLORSPACE_SRGB; 2966 fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); 2967 fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; 2968 fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); 2969 fmt->width = 640; 2970 fmt->height = 480; 2971 fmt->field = V4L2_FIELD_NONE; 2972 sensor->frame_interval.numerator = 1; 2973 sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; 2974 sensor->current_fr = OV5640_30_FPS; 2975 sensor->current_mode = 2976 &ov5640_mode_data[OV5640_MODE_VGA_640_480]; 2977 sensor->last_mode = sensor->current_mode; 2978 2979 sensor->ae_target = 52; 2980 2981 /* optional indication of physical rotation of sensor */ 2982 ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation", 2983 &rotation); 2984 if (!ret) { 2985 switch (rotation) { 2986 case 180: 2987 sensor->upside_down = true; 2988 /* fall through */ 2989 case 0: 2990 break; 2991 default: 2992 dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n", 2993 rotation); 2994 } 2995 } 2996 2997 endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), 2998 NULL); 2999 if (!endpoint) { 3000 dev_err(dev, "endpoint node not found\n"); 3001 return -EINVAL; 3002 } 3003 3004 ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); 3005 fwnode_handle_put(endpoint); 3006 if (ret) { 3007 dev_err(dev, "Could not parse endpoint\n"); 3008 return ret; 3009 } 3010 3011 /* get system clock (xclk) */ 3012 sensor->xclk = devm_clk_get(dev, "xclk"); 3013 if (IS_ERR(sensor->xclk)) { 3014 dev_err(dev, "failed to get xclk\n"); 3015 return PTR_ERR(sensor->xclk); 3016 } 3017 3018 sensor->xclk_freq = clk_get_rate(sensor->xclk); 3019 if (sensor->xclk_freq < OV5640_XCLK_MIN || 3020 sensor->xclk_freq > OV5640_XCLK_MAX) { 3021 dev_err(dev, "xclk frequency out of range: %d Hz\n", 3022 sensor->xclk_freq); 3023 return -EINVAL; 3024 } 3025 3026 /* request optional power down pin */ 3027 sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", 3028 GPIOD_OUT_HIGH); 3029 /* request optional reset pin */ 3030 sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", 3031 GPIOD_OUT_HIGH); 3032 3033 v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); 3034 3035 sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | 3036 V4L2_SUBDEV_FL_HAS_EVENTS; 3037 sensor->pad.flags = MEDIA_PAD_FL_SOURCE; 3038 sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; 3039 ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); 3040 if (ret) 3041 return ret; 3042 3043 ret = ov5640_get_regulators(sensor); 3044 if (ret) 3045 return ret; 3046 3047 mutex_init(&sensor->lock); 3048 3049 ret = ov5640_check_chip_id(sensor); 3050 if (ret) 3051 goto entity_cleanup; 3052 3053 ret = ov5640_init_controls(sensor); 3054 if (ret) 3055 goto entity_cleanup; 3056 3057 ret = v4l2_async_register_subdev(&sensor->sd); 3058 if (ret) 3059 goto free_ctrls; 3060 3061 return 0; 3062 3063 free_ctrls: 3064 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3065 entity_cleanup: 3066 mutex_destroy(&sensor->lock); 3067 media_entity_cleanup(&sensor->sd.entity); 3068 return ret; 3069 } 3070 3071 static int ov5640_remove(struct i2c_client *client) 3072 { 3073 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3074 struct ov5640_dev *sensor = to_ov5640_dev(sd); 3075 3076 v4l2_async_unregister_subdev(&sensor->sd); 3077 mutex_destroy(&sensor->lock); 3078 media_entity_cleanup(&sensor->sd.entity); 3079 v4l2_ctrl_handler_free(&sensor->ctrls.handler); 3080 3081 return 0; 3082 } 3083 3084 static const struct i2c_device_id ov5640_id[] = { 3085 {"ov5640", 0}, 3086 {}, 3087 }; 3088 MODULE_DEVICE_TABLE(i2c, ov5640_id); 3089 3090 static const struct of_device_id ov5640_dt_ids[] = { 3091 { .compatible = "ovti,ov5640" }, 3092 { /* sentinel */ } 3093 }; 3094 MODULE_DEVICE_TABLE(of, ov5640_dt_ids); 3095 3096 static struct i2c_driver ov5640_i2c_driver = { 3097 .driver = { 3098 .name = "ov5640", 3099 .of_match_table = ov5640_dt_ids, 3100 }, 3101 .id_table = ov5640_id, 3102 .probe = ov5640_probe, 3103 .remove = ov5640_remove, 3104 }; 3105 3106 module_i2c_driver(ov5640_i2c_driver); 3107 3108 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); 3109 MODULE_LICENSE("GPL"); 3110