xref: /openbmc/linux/drivers/media/i2c/ov5640.c (revision 25a3d6ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright (C) 2014-2017 Mentor Graphics Inc.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/clkdev.h>
10 #include <linux/ctype.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <media/v4l2-async.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-event.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-subdev.h>
27 
28 /* min/typical/max system clock (xclk) frequencies */
29 #define OV5640_XCLK_MIN  6000000
30 #define OV5640_XCLK_MAX 54000000
31 
32 #define OV5640_DEFAULT_SLAVE_ID 0x3c
33 
34 #define OV5640_REG_SYS_RESET02		0x3002
35 #define OV5640_REG_SYS_CLOCK_ENABLE02	0x3006
36 #define OV5640_REG_SYS_CTRL0		0x3008
37 #define OV5640_REG_CHIP_ID		0x300a
38 #define OV5640_REG_IO_MIPI_CTRL00	0x300e
39 #define OV5640_REG_PAD_OUTPUT_ENABLE01	0x3017
40 #define OV5640_REG_PAD_OUTPUT_ENABLE02	0x3018
41 #define OV5640_REG_PAD_OUTPUT00		0x3019
42 #define OV5640_REG_SYSTEM_CONTROL1	0x302e
43 #define OV5640_REG_SC_PLL_CTRL0		0x3034
44 #define OV5640_REG_SC_PLL_CTRL1		0x3035
45 #define OV5640_REG_SC_PLL_CTRL2		0x3036
46 #define OV5640_REG_SC_PLL_CTRL3		0x3037
47 #define OV5640_REG_SLAVE_ID		0x3100
48 #define OV5640_REG_SCCB_SYS_CTRL1	0x3103
49 #define OV5640_REG_SYS_ROOT_DIVIDER	0x3108
50 #define OV5640_REG_AWB_R_GAIN		0x3400
51 #define OV5640_REG_AWB_G_GAIN		0x3402
52 #define OV5640_REG_AWB_B_GAIN		0x3404
53 #define OV5640_REG_AWB_MANUAL_CTRL	0x3406
54 #define OV5640_REG_AEC_PK_EXPOSURE_HI	0x3500
55 #define OV5640_REG_AEC_PK_EXPOSURE_MED	0x3501
56 #define OV5640_REG_AEC_PK_EXPOSURE_LO	0x3502
57 #define OV5640_REG_AEC_PK_MANUAL	0x3503
58 #define OV5640_REG_AEC_PK_REAL_GAIN	0x350a
59 #define OV5640_REG_AEC_PK_VTS		0x350c
60 #define OV5640_REG_TIMING_DVPHO		0x3808
61 #define OV5640_REG_TIMING_DVPVO		0x380a
62 #define OV5640_REG_TIMING_HTS		0x380c
63 #define OV5640_REG_TIMING_VTS		0x380e
64 #define OV5640_REG_TIMING_TC_REG20	0x3820
65 #define OV5640_REG_TIMING_TC_REG21	0x3821
66 #define OV5640_REG_AEC_CTRL00		0x3a00
67 #define OV5640_REG_AEC_B50_STEP		0x3a08
68 #define OV5640_REG_AEC_B60_STEP		0x3a0a
69 #define OV5640_REG_AEC_CTRL0D		0x3a0d
70 #define OV5640_REG_AEC_CTRL0E		0x3a0e
71 #define OV5640_REG_AEC_CTRL0F		0x3a0f
72 #define OV5640_REG_AEC_CTRL10		0x3a10
73 #define OV5640_REG_AEC_CTRL11		0x3a11
74 #define OV5640_REG_AEC_CTRL1B		0x3a1b
75 #define OV5640_REG_AEC_CTRL1E		0x3a1e
76 #define OV5640_REG_AEC_CTRL1F		0x3a1f
77 #define OV5640_REG_HZ5060_CTRL00	0x3c00
78 #define OV5640_REG_HZ5060_CTRL01	0x3c01
79 #define OV5640_REG_SIGMADELTA_CTRL0C	0x3c0c
80 #define OV5640_REG_FRAME_CTRL01		0x4202
81 #define OV5640_REG_FORMAT_CONTROL00	0x4300
82 #define OV5640_REG_VFIFO_HSIZE		0x4602
83 #define OV5640_REG_VFIFO_VSIZE		0x4604
84 #define OV5640_REG_JPG_MODE_SELECT	0x4713
85 #define OV5640_REG_POLARITY_CTRL00	0x4740
86 #define OV5640_REG_MIPI_CTRL00		0x4800
87 #define OV5640_REG_DEBUG_MODE		0x4814
88 #define OV5640_REG_ISP_FORMAT_MUX_CTRL	0x501f
89 #define OV5640_REG_PRE_ISP_TEST_SET1	0x503d
90 #define OV5640_REG_SDE_CTRL0		0x5580
91 #define OV5640_REG_SDE_CTRL1		0x5581
92 #define OV5640_REG_SDE_CTRL3		0x5583
93 #define OV5640_REG_SDE_CTRL4		0x5584
94 #define OV5640_REG_SDE_CTRL5		0x5585
95 #define OV5640_REG_AVG_READOUT		0x56a1
96 
97 enum ov5640_mode_id {
98 	OV5640_MODE_QCIF_176_144 = 0,
99 	OV5640_MODE_QVGA_320_240,
100 	OV5640_MODE_VGA_640_480,
101 	OV5640_MODE_NTSC_720_480,
102 	OV5640_MODE_PAL_720_576,
103 	OV5640_MODE_XGA_1024_768,
104 	OV5640_MODE_720P_1280_720,
105 	OV5640_MODE_1080P_1920_1080,
106 	OV5640_MODE_QSXGA_2592_1944,
107 	OV5640_NUM_MODES,
108 };
109 
110 enum ov5640_frame_rate {
111 	OV5640_15_FPS = 0,
112 	OV5640_30_FPS,
113 	OV5640_60_FPS,
114 	OV5640_NUM_FRAMERATES,
115 };
116 
117 enum ov5640_format_mux {
118 	OV5640_FMT_MUX_YUV422 = 0,
119 	OV5640_FMT_MUX_RGB,
120 	OV5640_FMT_MUX_DITHER,
121 	OV5640_FMT_MUX_RAW_DPC,
122 	OV5640_FMT_MUX_SNR_RAW,
123 	OV5640_FMT_MUX_RAW_CIP,
124 };
125 
126 struct ov5640_pixfmt {
127 	u32 code;
128 	u32 colorspace;
129 };
130 
131 static const struct ov5640_pixfmt ov5640_formats[] = {
132 	{ MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
133 	{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
134 	{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
135 	{ MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
136 	{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
137 	{ MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
138 	{ MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
139 	{ MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
140 	{ MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
141 };
142 
143 /*
144  * FIXME: remove this when a subdev API becomes available
145  * to set the MIPI CSI-2 virtual channel.
146  */
147 static unsigned int virtual_channel;
148 module_param(virtual_channel, uint, 0444);
149 MODULE_PARM_DESC(virtual_channel,
150 		 "MIPI CSI-2 virtual channel (0..3), default 0");
151 
152 static const int ov5640_framerates[] = {
153 	[OV5640_15_FPS] = 15,
154 	[OV5640_30_FPS] = 30,
155 	[OV5640_60_FPS] = 60,
156 };
157 
158 /* regulator supplies */
159 static const char * const ov5640_supply_name[] = {
160 	"DOVDD", /* Digital I/O (1.8V) supply */
161 	"AVDD",  /* Analog (2.8V) supply */
162 	"DVDD",  /* Digital Core (1.5V) supply */
163 };
164 
165 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
166 
167 /*
168  * Image size under 1280 * 960 are SUBSAMPLING
169  * Image size upper 1280 * 960 are SCALING
170  */
171 enum ov5640_downsize_mode {
172 	SUBSAMPLING,
173 	SCALING,
174 };
175 
176 struct reg_value {
177 	u16 reg_addr;
178 	u8 val;
179 	u8 mask;
180 	u32 delay_ms;
181 };
182 
183 struct ov5640_mode_info {
184 	enum ov5640_mode_id id;
185 	enum ov5640_downsize_mode dn_mode;
186 	u32 hact;
187 	u32 htot;
188 	u32 vact;
189 	u32 vtot;
190 	const struct reg_value *reg_data;
191 	u32 reg_data_size;
192 };
193 
194 struct ov5640_ctrls {
195 	struct v4l2_ctrl_handler handler;
196 	struct {
197 		struct v4l2_ctrl *auto_exp;
198 		struct v4l2_ctrl *exposure;
199 	};
200 	struct {
201 		struct v4l2_ctrl *auto_wb;
202 		struct v4l2_ctrl *blue_balance;
203 		struct v4l2_ctrl *red_balance;
204 	};
205 	struct {
206 		struct v4l2_ctrl *auto_gain;
207 		struct v4l2_ctrl *gain;
208 	};
209 	struct v4l2_ctrl *brightness;
210 	struct v4l2_ctrl *light_freq;
211 	struct v4l2_ctrl *saturation;
212 	struct v4l2_ctrl *contrast;
213 	struct v4l2_ctrl *hue;
214 	struct v4l2_ctrl *test_pattern;
215 	struct v4l2_ctrl *hflip;
216 	struct v4l2_ctrl *vflip;
217 };
218 
219 struct ov5640_dev {
220 	struct i2c_client *i2c_client;
221 	struct v4l2_subdev sd;
222 	struct media_pad pad;
223 	struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
224 	struct clk *xclk; /* system clock to OV5640 */
225 	u32 xclk_freq;
226 
227 	struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
228 	struct gpio_desc *reset_gpio;
229 	struct gpio_desc *pwdn_gpio;
230 	bool   upside_down;
231 
232 	/* lock to protect all members below */
233 	struct mutex lock;
234 
235 	int power_count;
236 
237 	struct v4l2_mbus_framefmt fmt;
238 	bool pending_fmt_change;
239 
240 	const struct ov5640_mode_info *current_mode;
241 	const struct ov5640_mode_info *last_mode;
242 	enum ov5640_frame_rate current_fr;
243 	struct v4l2_fract frame_interval;
244 
245 	struct ov5640_ctrls ctrls;
246 
247 	u32 prev_sysclk, prev_hts;
248 	u32 ae_low, ae_high, ae_target;
249 
250 	bool pending_mode_change;
251 	bool streaming;
252 };
253 
254 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
255 {
256 	return container_of(sd, struct ov5640_dev, sd);
257 }
258 
259 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
260 {
261 	return &container_of(ctrl->handler, struct ov5640_dev,
262 			     ctrls.handler)->sd;
263 }
264 
265 /*
266  * FIXME: all of these register tables are likely filled with
267  * entries that set the register to their power-on default values,
268  * and which are otherwise not touched by this driver. Those entries
269  * should be identified and removed to speed register load time
270  * over i2c.
271  */
272 /* YUV422 UYVY VGA@30fps */
273 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
274 	{0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
275 	{0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0},
276 	{0x3630, 0x36, 0, 0},
277 	{0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
278 	{0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
279 	{0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
280 	{0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
281 	{0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
282 	{0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
283 	{0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
284 	{0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
285 	{0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
286 	{0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
287 	{0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
288 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
289 	{0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
290 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
291 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
292 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
293 	{0x3810, 0x00, 0, 0},
294 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
295 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
296 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
297 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
298 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
299 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
300 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
301 	{0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
302 	{0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
303 	{0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
304 	{0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
305 	{0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
306 	{0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
307 	{0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
308 	{0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
309 	{0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
310 	{0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
311 	{0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
312 	{0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
313 	{0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
314 	{0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
315 	{0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
316 	{0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
317 	{0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
318 	{0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
319 	{0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
320 	{0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
321 	{0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
322 	{0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
323 	{0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
324 	{0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
325 	{0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
326 	{0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
327 	{0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
328 	{0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
329 	{0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
330 	{0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
331 	{0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
332 	{0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
333 	{0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
334 	{0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
335 	{0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
336 	{0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
337 	{0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
338 	{0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
339 	{0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
340 	{0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
341 	{0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
342 	{0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
343 	{0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
344 	{0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
345 	{0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
346 	{0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
347 	{0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
348 	{0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
349 	{0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
350 	{0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
351 	{0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
352 	{0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
353 	{0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
354 	{0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
355 	{0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
356 };
357 
358 static const struct reg_value ov5640_setting_VGA_640_480[] = {
359 	{0x3c07, 0x08, 0, 0},
360 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
361 	{0x3814, 0x31, 0, 0},
362 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
363 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
364 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
365 	{0x3810, 0x00, 0, 0},
366 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
367 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
368 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
369 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
370 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
371 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
372 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
373 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
374 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
375 };
376 
377 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
378 	{0x3c07, 0x08, 0, 0},
379 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
380 	{0x3814, 0x31, 0, 0},
381 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
382 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
383 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
384 	{0x3810, 0x00, 0, 0},
385 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
386 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
387 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
388 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
389 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
390 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
391 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
392 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
393 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
394 };
395 
396 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
397 	{0x3c07, 0x08, 0, 0},
398 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
399 	{0x3814, 0x31, 0, 0},
400 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
401 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
402 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
403 	{0x3810, 0x00, 0, 0},
404 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
405 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
406 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
407 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
408 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
409 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
410 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
411 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
412 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
413 };
414 
415 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
416 	{0x3c07, 0x08, 0, 0},
417 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
418 	{0x3814, 0x31, 0, 0},
419 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
420 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
421 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
422 	{0x3810, 0x00, 0, 0},
423 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
424 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
425 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
426 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
427 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
428 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
429 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
430 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
431 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
432 };
433 
434 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
435 	{0x3c07, 0x08, 0, 0},
436 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
437 	{0x3814, 0x31, 0, 0},
438 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
439 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
440 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
441 	{0x3810, 0x00, 0, 0},
442 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
443 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
444 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
445 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
446 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
447 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
448 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
449 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
450 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
451 };
452 
453 static const struct reg_value ov5640_setting_PAL_720_576[] = {
454 	{0x3c07, 0x08, 0, 0},
455 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
456 	{0x3814, 0x31, 0, 0},
457 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
458 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
459 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
460 	{0x3810, 0x00, 0, 0},
461 	{0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
462 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
463 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
464 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
465 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
466 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
467 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
468 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
469 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
470 };
471 
472 static const struct reg_value ov5640_setting_720P_1280_720[] = {
473 	{0x3c07, 0x07, 0, 0},
474 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
475 	{0x3814, 0x31, 0, 0},
476 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
477 	{0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
478 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
479 	{0x3810, 0x00, 0, 0},
480 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
481 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
482 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
483 	{0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
484 	{0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
485 	{0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
486 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
487 	{0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
488 	{0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
489 };
490 
491 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
492 	{0x3008, 0x42, 0, 0},
493 	{0x3c07, 0x08, 0, 0},
494 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
495 	{0x3814, 0x11, 0, 0},
496 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
497 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
498 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
499 	{0x3810, 0x00, 0, 0},
500 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
501 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
502 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
503 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
504 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
505 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
506 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
507 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
508 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
509 	{0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
510 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
511 	{0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
512 	{0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
513 	{0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
514 	{0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
515 	{0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
516 	{0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
517 	{0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
518 	{0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
519 	{0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
520 	{0x4005, 0x1a, 0, 0}, {0x3008, 0x02, 0, 0},
521 };
522 
523 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
524 	{0x3c07, 0x08, 0, 0},
525 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
526 	{0x3814, 0x11, 0, 0},
527 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
528 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
529 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
530 	{0x3810, 0x00, 0, 0},
531 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
532 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
533 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
534 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
535 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
536 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
537 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
538 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
539 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
540 };
541 
542 /* power-on sensor init reg table */
543 static const struct ov5640_mode_info ov5640_mode_init_data = {
544 	0, SUBSAMPLING, 640, 1896, 480, 984,
545 	ov5640_init_setting_30fps_VGA,
546 	ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
547 };
548 
549 static const struct ov5640_mode_info
550 ov5640_mode_data[OV5640_NUM_MODES] = {
551 	{OV5640_MODE_QCIF_176_144, SUBSAMPLING,
552 	 176, 1896, 144, 984,
553 	 ov5640_setting_QCIF_176_144,
554 	 ARRAY_SIZE(ov5640_setting_QCIF_176_144)},
555 	{OV5640_MODE_QVGA_320_240, SUBSAMPLING,
556 	 320, 1896, 240, 984,
557 	 ov5640_setting_QVGA_320_240,
558 	 ARRAY_SIZE(ov5640_setting_QVGA_320_240)},
559 	{OV5640_MODE_VGA_640_480, SUBSAMPLING,
560 	 640, 1896, 480, 1080,
561 	 ov5640_setting_VGA_640_480,
562 	 ARRAY_SIZE(ov5640_setting_VGA_640_480)},
563 	{OV5640_MODE_NTSC_720_480, SUBSAMPLING,
564 	 720, 1896, 480, 984,
565 	 ov5640_setting_NTSC_720_480,
566 	 ARRAY_SIZE(ov5640_setting_NTSC_720_480)},
567 	{OV5640_MODE_PAL_720_576, SUBSAMPLING,
568 	 720, 1896, 576, 984,
569 	 ov5640_setting_PAL_720_576,
570 	 ARRAY_SIZE(ov5640_setting_PAL_720_576)},
571 	{OV5640_MODE_XGA_1024_768, SUBSAMPLING,
572 	 1024, 1896, 768, 1080,
573 	 ov5640_setting_XGA_1024_768,
574 	 ARRAY_SIZE(ov5640_setting_XGA_1024_768)},
575 	{OV5640_MODE_720P_1280_720, SUBSAMPLING,
576 	 1280, 1892, 720, 740,
577 	 ov5640_setting_720P_1280_720,
578 	 ARRAY_SIZE(ov5640_setting_720P_1280_720)},
579 	{OV5640_MODE_1080P_1920_1080, SCALING,
580 	 1920, 2500, 1080, 1120,
581 	 ov5640_setting_1080P_1920_1080,
582 	 ARRAY_SIZE(ov5640_setting_1080P_1920_1080)},
583 	{OV5640_MODE_QSXGA_2592_1944, SCALING,
584 	 2592, 2844, 1944, 1968,
585 	 ov5640_setting_QSXGA_2592_1944,
586 	 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944)},
587 };
588 
589 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
590 {
591 	struct i2c_client *client = sensor->i2c_client;
592 	struct i2c_msg msg;
593 	u8 buf[3];
594 	int ret;
595 
596 	if (client->addr == OV5640_DEFAULT_SLAVE_ID)
597 		return 0;
598 
599 	buf[0] = OV5640_REG_SLAVE_ID >> 8;
600 	buf[1] = OV5640_REG_SLAVE_ID & 0xff;
601 	buf[2] = client->addr << 1;
602 
603 	msg.addr = OV5640_DEFAULT_SLAVE_ID;
604 	msg.flags = 0;
605 	msg.buf = buf;
606 	msg.len = sizeof(buf);
607 
608 	ret = i2c_transfer(client->adapter, &msg, 1);
609 	if (ret < 0) {
610 		dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
611 		return ret;
612 	}
613 
614 	return 0;
615 }
616 
617 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
618 {
619 	struct i2c_client *client = sensor->i2c_client;
620 	struct i2c_msg msg;
621 	u8 buf[3];
622 	int ret;
623 
624 	buf[0] = reg >> 8;
625 	buf[1] = reg & 0xff;
626 	buf[2] = val;
627 
628 	msg.addr = client->addr;
629 	msg.flags = client->flags;
630 	msg.buf = buf;
631 	msg.len = sizeof(buf);
632 
633 	ret = i2c_transfer(client->adapter, &msg, 1);
634 	if (ret < 0) {
635 		dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
636 			__func__, reg, val);
637 		return ret;
638 	}
639 
640 	return 0;
641 }
642 
643 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
644 {
645 	struct i2c_client *client = sensor->i2c_client;
646 	struct i2c_msg msg[2];
647 	u8 buf[2];
648 	int ret;
649 
650 	buf[0] = reg >> 8;
651 	buf[1] = reg & 0xff;
652 
653 	msg[0].addr = client->addr;
654 	msg[0].flags = client->flags;
655 	msg[0].buf = buf;
656 	msg[0].len = sizeof(buf);
657 
658 	msg[1].addr = client->addr;
659 	msg[1].flags = client->flags | I2C_M_RD;
660 	msg[1].buf = buf;
661 	msg[1].len = 1;
662 
663 	ret = i2c_transfer(client->adapter, msg, 2);
664 	if (ret < 0) {
665 		dev_err(&client->dev, "%s: error: reg=%x\n",
666 			__func__, reg);
667 		return ret;
668 	}
669 
670 	*val = buf[0];
671 	return 0;
672 }
673 
674 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
675 {
676 	u8 hi, lo;
677 	int ret;
678 
679 	ret = ov5640_read_reg(sensor, reg, &hi);
680 	if (ret)
681 		return ret;
682 	ret = ov5640_read_reg(sensor, reg + 1, &lo);
683 	if (ret)
684 		return ret;
685 
686 	*val = ((u16)hi << 8) | (u16)lo;
687 	return 0;
688 }
689 
690 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
691 {
692 	int ret;
693 
694 	ret = ov5640_write_reg(sensor, reg, val >> 8);
695 	if (ret)
696 		return ret;
697 
698 	return ov5640_write_reg(sensor, reg + 1, val & 0xff);
699 }
700 
701 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
702 			  u8 mask, u8 val)
703 {
704 	u8 readval;
705 	int ret;
706 
707 	ret = ov5640_read_reg(sensor, reg, &readval);
708 	if (ret)
709 		return ret;
710 
711 	readval &= ~mask;
712 	val &= mask;
713 	val |= readval;
714 
715 	return ov5640_write_reg(sensor, reg, val);
716 }
717 
718 /*
719  * After trying the various combinations, reading various
720  * documentations spread around the net, and from the various
721  * feedback, the clock tree is probably as follows:
722  *
723  *   +--------------+
724  *   |  Ext. Clock  |
725  *   +-+------------+
726  *     |  +----------+
727  *     +->|   PLL1   | - reg 0x3036, for the multiplier
728  *        +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
729  *          |  +--------------+
730  *          +->| System Clock |  - reg 0x3035, bits 4-7
731  *             +-+------------+
732  *               |  +--------------+
733  *               +->| MIPI Divider | - reg 0x3035, bits 0-3
734  *               |  +-+------------+
735  *               |    +----------------> MIPI SCLK
736  *               |    +  +-----+
737  *               |    +->| / 2 |-------> MIPI BIT CLK
738  *               |       +-----+
739  *               |  +--------------+
740  *               +->| PLL Root Div | - reg 0x3037, bit 4
741  *                  +-+------------+
742  *                    |  +---------+
743  *                    +->| Bit Div | - reg 0x3035, bits 0-3
744  *                       +-+-------+
745  *                         |  +-------------+
746  *                         +->| SCLK Div    | - reg 0x3108, bits 0-1
747  *                         |  +-+-----------+
748  *                         |    +---------------> SCLK
749  *                         |  +-------------+
750  *                         +->| SCLK 2X Div | - reg 0x3108, bits 2-3
751  *                         |  +-+-----------+
752  *                         |    +---------------> SCLK 2X
753  *                         |  +-------------+
754  *                         +->| PCLK Div    | - reg 0x3108, bits 4-5
755  *                            ++------------+
756  *                             +  +-----------+
757  *                             +->|   P_DIV   | - reg 0x3035, bits 0-3
758  *                                +-----+-----+
759  *                                       +------------> PCLK
760  *
761  * This is deviating from the datasheet at least for the register
762  * 0x3108, since it's said here that the PCLK would be clocked from
763  * the PLL.
764  *
765  * There seems to be also (unverified) constraints:
766  *  - the PLL pre-divider output rate should be in the 4-27MHz range
767  *  - the PLL multiplier output rate should be in the 500-1000MHz range
768  *  - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
769  *
770  * In the two latter cases, these constraints are met since our
771  * factors are hardcoded. If we were to change that, we would need to
772  * take this into account. The only varying parts are the PLL
773  * multiplier and the system clock divider, which are shared between
774  * all these clocks so won't cause any issue.
775  */
776 
777 /*
778  * This is supposed to be ranging from 1 to 8, but the value is always
779  * set to 3 in the vendor kernels.
780  */
781 #define OV5640_PLL_PREDIV	3
782 
783 #define OV5640_PLL_MULT_MIN	4
784 #define OV5640_PLL_MULT_MAX	252
785 
786 /*
787  * This is supposed to be ranging from 1 to 16, but the value is
788  * always set to either 1 or 2 in the vendor kernels.
789  */
790 #define OV5640_SYSDIV_MIN	1
791 #define OV5640_SYSDIV_MAX	16
792 
793 /*
794  * Hardcode these values for scaler and non-scaler modes.
795  * FIXME: to be re-calcualted for 1 data lanes setups
796  */
797 #define OV5640_MIPI_DIV_PCLK	2
798 #define OV5640_MIPI_DIV_SCLK	1
799 
800 /*
801  * This is supposed to be ranging from 1 to 2, but the value is always
802  * set to 2 in the vendor kernels.
803  */
804 #define OV5640_PLL_ROOT_DIV			2
805 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2		BIT(4)
806 
807 /*
808  * We only supports 8-bit formats at the moment
809  */
810 #define OV5640_BIT_DIV				2
811 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT		0x08
812 
813 /*
814  * This is supposed to be ranging from 1 to 8, but the value is always
815  * set to 2 in the vendor kernels.
816  */
817 #define OV5640_SCLK_ROOT_DIV	2
818 
819 /*
820  * This is hardcoded so that the consistency is maintained between SCLK and
821  * SCLK 2x.
822  */
823 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
824 
825 /*
826  * This is supposed to be ranging from 1 to 8, but the value is always
827  * set to 1 in the vendor kernels.
828  */
829 #define OV5640_PCLK_ROOT_DIV			1
830 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS	0x00
831 
832 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
833 					    u8 pll_prediv, u8 pll_mult,
834 					    u8 sysdiv)
835 {
836 	unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
837 
838 	/* PLL1 output cannot exceed 1GHz. */
839 	if (sysclk / 1000000 > 1000)
840 		return 0;
841 
842 	return sysclk / sysdiv;
843 }
844 
845 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
846 					 unsigned long rate,
847 					 u8 *pll_prediv, u8 *pll_mult,
848 					 u8 *sysdiv)
849 {
850 	unsigned long best = ~0;
851 	u8 best_sysdiv = 1, best_mult = 1;
852 	u8 _sysdiv, _pll_mult;
853 
854 	for (_sysdiv = OV5640_SYSDIV_MIN;
855 	     _sysdiv <= OV5640_SYSDIV_MAX;
856 	     _sysdiv++) {
857 		for (_pll_mult = OV5640_PLL_MULT_MIN;
858 		     _pll_mult <= OV5640_PLL_MULT_MAX;
859 		     _pll_mult++) {
860 			unsigned long _rate;
861 
862 			/*
863 			 * The PLL multiplier cannot be odd if above
864 			 * 127.
865 			 */
866 			if (_pll_mult > 127 && (_pll_mult % 2))
867 				continue;
868 
869 			_rate = ov5640_compute_sys_clk(sensor,
870 						       OV5640_PLL_PREDIV,
871 						       _pll_mult, _sysdiv);
872 
873 			/*
874 			 * We have reached the maximum allowed PLL1 output,
875 			 * increase sysdiv.
876 			 */
877 			if (!rate)
878 				break;
879 
880 			/*
881 			 * Prefer rates above the expected clock rate than
882 			 * below, even if that means being less precise.
883 			 */
884 			if (_rate < rate)
885 				continue;
886 
887 			if (abs(rate - _rate) < abs(rate - best)) {
888 				best = _rate;
889 				best_sysdiv = _sysdiv;
890 				best_mult = _pll_mult;
891 			}
892 
893 			if (_rate == rate)
894 				goto out;
895 		}
896 	}
897 
898 out:
899 	*sysdiv = best_sysdiv;
900 	*pll_prediv = OV5640_PLL_PREDIV;
901 	*pll_mult = best_mult;
902 
903 	return best;
904 }
905 
906 /*
907  * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
908  *			    for the MIPI CSI-2 output.
909  *
910  * @rate: The requested bandwidth per lane in bytes per second.
911  *	  'Bandwidth Per Lane' is calculated as:
912  *	  bpl = HTOT * VTOT * FPS * bpp / num_lanes;
913  *
914  * This function use the requested bandwidth to calculate:
915  * - sample_rate = bpl / (bpp / num_lanes);
916  *	         = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
917  *
918  * - mipi_sclk   = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
919  *
920  * with these fixed parameters:
921  *	PLL_RDIV	= 2;
922  *	BIT_DIVIDER	= 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
923  *	PCLK_DIV	= 1;
924  *
925  * The MIPI clock generation differs for modes that use the scaler and modes
926  * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
927  * BIT CLk, and thus:
928  *
929  * - mipi_sclk = bpl / MIPI_DIV / 2;
930  *   MIPI_DIV = 1;
931  *
932  * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
933  * from the pixel clock, and thus:
934  *
935  * - sample_rate = bpl / (bpp / num_lanes);
936  *	         = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
937  *		 = bpl / (4 * MIPI_DIV / num_lanes);
938  * - MIPI_DIV	 = bpp / (4 * num_lanes);
939  *
940  * FIXME: this have been tested with 16bpp and 2 lanes setup only.
941  * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
942  * above formula for setups with 1 lane or image formats with different bpp.
943  *
944  * FIXME: this deviates from the sensor manual documentation which is quite
945  * thin on the MIPI clock tree generation part.
946  */
947 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
948 				unsigned long rate)
949 {
950 	const struct ov5640_mode_info *mode = sensor->current_mode;
951 	u8 prediv, mult, sysdiv;
952 	u8 mipi_div;
953 	int ret;
954 
955 	/*
956 	 * 1280x720 is reported to use 'SUBSAMPLING' only,
957 	 * but according to the sensor manual it goes through the
958 	 * scaler before subsampling.
959 	 */
960 	if (mode->dn_mode == SCALING ||
961 	   (mode->id == OV5640_MODE_720P_1280_720))
962 		mipi_div = OV5640_MIPI_DIV_SCLK;
963 	else
964 		mipi_div = OV5640_MIPI_DIV_PCLK;
965 
966 	ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
967 
968 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
969 			     0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
970 
971 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
972 			     0xff, sysdiv << 4 | mipi_div);
973 	if (ret)
974 		return ret;
975 
976 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
977 	if (ret)
978 		return ret;
979 
980 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
981 			     0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
982 	if (ret)
983 		return ret;
984 
985 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
986 			      0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
987 }
988 
989 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
990 				      unsigned long rate,
991 				      u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
992 				      u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
993 {
994 	unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
995 				OV5640_PCLK_ROOT_DIV;
996 
997 	_rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
998 				    sysdiv);
999 	*pll_rdiv = OV5640_PLL_ROOT_DIV;
1000 	*bit_div = OV5640_BIT_DIV;
1001 	*pclk_div = OV5640_PCLK_ROOT_DIV;
1002 
1003 	return _rate / *pll_rdiv / *bit_div / *pclk_div;
1004 }
1005 
1006 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1007 {
1008 	u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1009 	int ret;
1010 
1011 	ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1012 			 &bit_div, &pclk_div);
1013 
1014 	if (bit_div == 2)
1015 		bit_div = 8;
1016 
1017 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1018 			     0x0f, bit_div);
1019 	if (ret)
1020 		return ret;
1021 
1022 	/*
1023 	 * We need to set sysdiv according to the clock, and to clear
1024 	 * the MIPI divider.
1025 	 */
1026 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1027 			     0xff, sysdiv << 4);
1028 	if (ret)
1029 		return ret;
1030 
1031 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1032 			     0xff, mult);
1033 	if (ret)
1034 		return ret;
1035 
1036 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1037 			     0x1f, prediv | ((pll_rdiv - 1) << 4));
1038 	if (ret)
1039 		return ret;
1040 
1041 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1042 			      (ilog2(pclk_div) << 4));
1043 }
1044 
1045 /* set JPEG framing sizes */
1046 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1047 				   const struct ov5640_mode_info *mode)
1048 {
1049 	int ret;
1050 
1051 	/*
1052 	 * compression mode 3 timing
1053 	 *
1054 	 * Data is transmitted with programmable width (VFIFO_HSIZE).
1055 	 * No padding done. Last line may have less data. Varying
1056 	 * number of lines per frame, depending on amount of data.
1057 	 */
1058 	ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1059 	if (ret < 0)
1060 		return ret;
1061 
1062 	ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1063 	if (ret < 0)
1064 		return ret;
1065 
1066 	return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1067 }
1068 
1069 /* download ov5640 settings to sensor through i2c */
1070 static int ov5640_set_timings(struct ov5640_dev *sensor,
1071 			      const struct ov5640_mode_info *mode)
1072 {
1073 	int ret;
1074 
1075 	if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1076 		ret = ov5640_set_jpeg_timings(sensor, mode);
1077 		if (ret < 0)
1078 			return ret;
1079 	}
1080 
1081 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1082 	if (ret < 0)
1083 		return ret;
1084 
1085 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1094 }
1095 
1096 static int ov5640_load_regs(struct ov5640_dev *sensor,
1097 			    const struct ov5640_mode_info *mode)
1098 {
1099 	const struct reg_value *regs = mode->reg_data;
1100 	unsigned int i;
1101 	u32 delay_ms;
1102 	u16 reg_addr;
1103 	u8 mask, val;
1104 	int ret = 0;
1105 
1106 	for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1107 		delay_ms = regs->delay_ms;
1108 		reg_addr = regs->reg_addr;
1109 		val = regs->val;
1110 		mask = regs->mask;
1111 
1112 		if (mask)
1113 			ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1114 		else
1115 			ret = ov5640_write_reg(sensor, reg_addr, val);
1116 		if (ret)
1117 			break;
1118 
1119 		if (delay_ms)
1120 			usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1121 	}
1122 
1123 	return ov5640_set_timings(sensor, mode);
1124 }
1125 
1126 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1127 {
1128 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1129 			      BIT(0), on ? 0 : BIT(0));
1130 }
1131 
1132 /* read exposure, in number of line periods */
1133 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1134 {
1135 	int exp, ret;
1136 	u8 temp;
1137 
1138 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1139 	if (ret)
1140 		return ret;
1141 	exp = ((int)temp & 0x0f) << 16;
1142 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1143 	if (ret)
1144 		return ret;
1145 	exp |= ((int)temp << 8);
1146 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1147 	if (ret)
1148 		return ret;
1149 	exp |= (int)temp;
1150 
1151 	return exp >> 4;
1152 }
1153 
1154 /* write exposure, given number of line periods */
1155 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1156 {
1157 	int ret;
1158 
1159 	exposure <<= 4;
1160 
1161 	ret = ov5640_write_reg(sensor,
1162 			       OV5640_REG_AEC_PK_EXPOSURE_LO,
1163 			       exposure & 0xff);
1164 	if (ret)
1165 		return ret;
1166 	ret = ov5640_write_reg(sensor,
1167 			       OV5640_REG_AEC_PK_EXPOSURE_MED,
1168 			       (exposure >> 8) & 0xff);
1169 	if (ret)
1170 		return ret;
1171 	return ov5640_write_reg(sensor,
1172 				OV5640_REG_AEC_PK_EXPOSURE_HI,
1173 				(exposure >> 16) & 0x0f);
1174 }
1175 
1176 static int ov5640_get_gain(struct ov5640_dev *sensor)
1177 {
1178 	u16 gain;
1179 	int ret;
1180 
1181 	ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1182 	if (ret)
1183 		return ret;
1184 
1185 	return gain & 0x3ff;
1186 }
1187 
1188 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1189 {
1190 	return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1191 				  (u16)gain & 0x3ff);
1192 }
1193 
1194 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1195 {
1196 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1197 			      BIT(1), on ? 0 : BIT(1));
1198 }
1199 
1200 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1201 {
1202 	int ret;
1203 	unsigned int flags = sensor->ep.bus.parallel.flags;
1204 	u8 pclk_pol = 0;
1205 	u8 hsync_pol = 0;
1206 	u8 vsync_pol = 0;
1207 
1208 	/*
1209 	 * Note about parallel port configuration.
1210 	 *
1211 	 * When configured in parallel mode, the OV5640 will
1212 	 * output 10 bits data on DVP data lines [9:0].
1213 	 * If only 8 bits data are wanted, the 8 bits data lines
1214 	 * of the camera interface must be physically connected
1215 	 * on the DVP data lines [9:2].
1216 	 *
1217 	 * Control lines polarity can be configured through
1218 	 * devicetree endpoint control lines properties.
1219 	 * If no endpoint control lines properties are set,
1220 	 * polarity will be as below:
1221 	 * - VSYNC:	active high
1222 	 * - HREF:	active low
1223 	 * - PCLK:	active low
1224 	 */
1225 
1226 	if (on) {
1227 		/*
1228 		 * configure parallel port control lines polarity
1229 		 *
1230 		 * POLARITY CTRL0
1231 		 * - [5]:	PCLK polarity (0: active low, 1: active high)
1232 		 * - [1]:	HREF polarity (0: active low, 1: active high)
1233 		 * - [0]:	VSYNC polarity (mismatch here between
1234 		 *		datasheet and hardware, 0 is active high
1235 		 *		and 1 is active low...)
1236 		 */
1237 		if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
1238 			pclk_pol = 1;
1239 		if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
1240 			hsync_pol = 1;
1241 		if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
1242 			vsync_pol = 1;
1243 
1244 		ret = ov5640_write_reg(sensor,
1245 				       OV5640_REG_POLARITY_CTRL00,
1246 				       (pclk_pol << 5) |
1247 				       (hsync_pol << 1) |
1248 				       vsync_pol);
1249 
1250 		if (ret)
1251 			return ret;
1252 	}
1253 
1254 	/*
1255 	 * powerdown MIPI TX/RX PHY & disable MIPI
1256 	 *
1257 	 * MIPI CONTROL 00
1258 	 * 4:	 PWDN PHY TX
1259 	 * 3:	 PWDN PHY RX
1260 	 * 2:	 MIPI enable
1261 	 */
1262 	ret = ov5640_write_reg(sensor,
1263 			       OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0);
1264 	if (ret)
1265 		return ret;
1266 
1267 	/*
1268 	 * enable VSYNC/HREF/PCLK DVP control lines
1269 	 * & D[9:6] DVP data lines
1270 	 *
1271 	 * PAD OUTPUT ENABLE 01
1272 	 * - 6:		VSYNC output enable
1273 	 * - 5:		HREF output enable
1274 	 * - 4:		PCLK output enable
1275 	 * - [3:0]:	D[9:6] output enable
1276 	 */
1277 	ret = ov5640_write_reg(sensor,
1278 			       OV5640_REG_PAD_OUTPUT_ENABLE01,
1279 			       on ? 0x7f : 0);
1280 	if (ret)
1281 		return ret;
1282 
1283 	/*
1284 	 * enable D[5:0] DVP data lines
1285 	 *
1286 	 * PAD OUTPUT ENABLE 02
1287 	 * - [7:2]:	D[5:0] output enable
1288 	 */
1289 	return ov5640_write_reg(sensor,
1290 				OV5640_REG_PAD_OUTPUT_ENABLE02,
1291 				on ? 0xfc : 0);
1292 }
1293 
1294 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1295 {
1296 	int ret;
1297 
1298 	/*
1299 	 * Enable/disable the MIPI interface
1300 	 *
1301 	 * 0x300e = on ? 0x45 : 0x40
1302 	 *
1303 	 * FIXME: the sensor manual (version 2.03) reports
1304 	 * [7:5] = 000  : 1 data lane mode
1305 	 * [7:5] = 001  : 2 data lanes mode
1306 	 * But this settings do not work, while the following ones
1307 	 * have been validated for 2 data lanes mode.
1308 	 *
1309 	 * [7:5] = 010	: 2 data lanes mode
1310 	 * [4] = 0	: Power up MIPI HS Tx
1311 	 * [3] = 0	: Power up MIPI LS Rx
1312 	 * [2] = 1/0	: MIPI interface enable/disable
1313 	 * [1:0] = 01/00: FIXME: 'debug'
1314 	 */
1315 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1316 			       on ? 0x45 : 0x40);
1317 	if (ret)
1318 		return ret;
1319 
1320 	return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1321 				on ? 0x00 : 0x0f);
1322 }
1323 
1324 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1325 {
1326 	 /* calculate sysclk */
1327 	u32 xvclk = sensor->xclk_freq / 10000;
1328 	u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1329 	u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1330 	u32 bit_div2x = 1, sclk_rdiv, sysclk;
1331 	u8 temp1, temp2;
1332 	int ret;
1333 
1334 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1335 	if (ret)
1336 		return ret;
1337 	temp2 = temp1 & 0x0f;
1338 	if (temp2 == 8 || temp2 == 10)
1339 		bit_div2x = temp2 / 2;
1340 
1341 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1342 	if (ret)
1343 		return ret;
1344 	sysdiv = temp1 >> 4;
1345 	if (sysdiv == 0)
1346 		sysdiv = 16;
1347 
1348 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1349 	if (ret)
1350 		return ret;
1351 	multiplier = temp1;
1352 
1353 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1354 	if (ret)
1355 		return ret;
1356 	prediv = temp1 & 0x0f;
1357 	pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1358 
1359 	ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1360 	if (ret)
1361 		return ret;
1362 	temp2 = temp1 & 0x03;
1363 	sclk_rdiv = sclk_rdiv_map[temp2];
1364 
1365 	if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1366 		return -EINVAL;
1367 
1368 	VCO = xvclk * multiplier / prediv;
1369 
1370 	sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1371 
1372 	return sysclk;
1373 }
1374 
1375 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1376 {
1377 	 /* read HTS from register settings */
1378 	u8 mode;
1379 	int ret;
1380 
1381 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1382 	if (ret)
1383 		return ret;
1384 	mode &= 0xfb;
1385 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1386 }
1387 
1388 static int ov5640_get_hts(struct ov5640_dev *sensor)
1389 {
1390 	/* read HTS from register settings */
1391 	u16 hts;
1392 	int ret;
1393 
1394 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1395 	if (ret)
1396 		return ret;
1397 	return hts;
1398 }
1399 
1400 static int ov5640_get_vts(struct ov5640_dev *sensor)
1401 {
1402 	u16 vts;
1403 	int ret;
1404 
1405 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1406 	if (ret)
1407 		return ret;
1408 	return vts;
1409 }
1410 
1411 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1412 {
1413 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1414 }
1415 
1416 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1417 {
1418 	/* get banding filter value */
1419 	int ret, light_freq = 0;
1420 	u8 temp, temp1;
1421 
1422 	ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1423 	if (ret)
1424 		return ret;
1425 
1426 	if (temp & 0x80) {
1427 		/* manual */
1428 		ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1429 				      &temp1);
1430 		if (ret)
1431 			return ret;
1432 		if (temp1 & 0x04) {
1433 			/* 50Hz */
1434 			light_freq = 50;
1435 		} else {
1436 			/* 60Hz */
1437 			light_freq = 60;
1438 		}
1439 	} else {
1440 		/* auto */
1441 		ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1442 				      &temp1);
1443 		if (ret)
1444 			return ret;
1445 
1446 		if (temp1 & 0x01) {
1447 			/* 50Hz */
1448 			light_freq = 50;
1449 		} else {
1450 			/* 60Hz */
1451 		}
1452 	}
1453 
1454 	return light_freq;
1455 }
1456 
1457 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1458 {
1459 	u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1460 	int ret;
1461 
1462 	/* read preview PCLK */
1463 	ret = ov5640_get_sysclk(sensor);
1464 	if (ret < 0)
1465 		return ret;
1466 	if (ret == 0)
1467 		return -EINVAL;
1468 	sensor->prev_sysclk = ret;
1469 	/* read preview HTS */
1470 	ret = ov5640_get_hts(sensor);
1471 	if (ret < 0)
1472 		return ret;
1473 	if (ret == 0)
1474 		return -EINVAL;
1475 	sensor->prev_hts = ret;
1476 
1477 	/* read preview VTS */
1478 	ret = ov5640_get_vts(sensor);
1479 	if (ret < 0)
1480 		return ret;
1481 	prev_vts = ret;
1482 
1483 	/* calculate banding filter */
1484 	/* 60Hz */
1485 	band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1486 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1487 	if (ret)
1488 		return ret;
1489 	if (!band_step60)
1490 		return -EINVAL;
1491 	max_band60 = (int)((prev_vts - 4) / band_step60);
1492 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1493 	if (ret)
1494 		return ret;
1495 
1496 	/* 50Hz */
1497 	band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1498 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1499 	if (ret)
1500 		return ret;
1501 	if (!band_step50)
1502 		return -EINVAL;
1503 	max_band50 = (int)((prev_vts - 4) / band_step50);
1504 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1505 }
1506 
1507 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1508 {
1509 	/* stable in high */
1510 	u32 fast_high, fast_low;
1511 	int ret;
1512 
1513 	sensor->ae_low = target * 23 / 25;	/* 0.92 */
1514 	sensor->ae_high = target * 27 / 25;	/* 1.08 */
1515 
1516 	fast_high = sensor->ae_high << 1;
1517 	if (fast_high > 255)
1518 		fast_high = 255;
1519 
1520 	fast_low = sensor->ae_low >> 1;
1521 
1522 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1523 	if (ret)
1524 		return ret;
1525 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1526 	if (ret)
1527 		return ret;
1528 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1529 	if (ret)
1530 		return ret;
1531 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1532 	if (ret)
1533 		return ret;
1534 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1535 	if (ret)
1536 		return ret;
1537 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1538 }
1539 
1540 static int ov5640_get_binning(struct ov5640_dev *sensor)
1541 {
1542 	u8 temp;
1543 	int ret;
1544 
1545 	ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1546 	if (ret)
1547 		return ret;
1548 
1549 	return temp & BIT(0);
1550 }
1551 
1552 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1553 {
1554 	int ret;
1555 
1556 	/*
1557 	 * TIMING TC REG21:
1558 	 * - [0]:	Horizontal binning enable
1559 	 */
1560 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1561 			     BIT(0), enable ? BIT(0) : 0);
1562 	if (ret)
1563 		return ret;
1564 	/*
1565 	 * TIMING TC REG20:
1566 	 * - [0]:	Undocumented, but hardcoded init sequences
1567 	 *		are always setting REG21/REG20 bit 0 to same value...
1568 	 */
1569 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1570 			      BIT(0), enable ? BIT(0) : 0);
1571 }
1572 
1573 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1574 {
1575 	struct i2c_client *client = sensor->i2c_client;
1576 	u8 temp, channel = virtual_channel;
1577 	int ret;
1578 
1579 	if (channel > 3) {
1580 		dev_err(&client->dev,
1581 			"%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1582 			__func__, channel);
1583 		return -EINVAL;
1584 	}
1585 
1586 	ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1587 	if (ret)
1588 		return ret;
1589 	temp &= ~(3 << 6);
1590 	temp |= (channel << 6);
1591 	return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1592 }
1593 
1594 static const struct ov5640_mode_info *
1595 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1596 		 int width, int height, bool nearest)
1597 {
1598 	const struct ov5640_mode_info *mode;
1599 
1600 	mode = v4l2_find_nearest_size(ov5640_mode_data,
1601 				      ARRAY_SIZE(ov5640_mode_data),
1602 				      hact, vact,
1603 				      width, height);
1604 
1605 	if (!mode ||
1606 	    (!nearest && (mode->hact != width || mode->vact != height)))
1607 		return NULL;
1608 
1609 	/* Only 640x480 can operate at 60fps (for now) */
1610 	if (fr == OV5640_60_FPS &&
1611 	    !(mode->hact == 640 && mode->vact == 480))
1612 		return NULL;
1613 
1614 	return mode;
1615 }
1616 
1617 /*
1618  * sensor changes between scaling and subsampling, go through
1619  * exposure calculation
1620  */
1621 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1622 					 const struct ov5640_mode_info *mode)
1623 {
1624 	u32 prev_shutter, prev_gain16;
1625 	u32 cap_shutter, cap_gain16;
1626 	u32 cap_sysclk, cap_hts, cap_vts;
1627 	u32 light_freq, cap_bandfilt, cap_maxband;
1628 	u32 cap_gain16_shutter;
1629 	u8 average;
1630 	int ret;
1631 
1632 	if (!mode->reg_data)
1633 		return -EINVAL;
1634 
1635 	/* read preview shutter */
1636 	ret = ov5640_get_exposure(sensor);
1637 	if (ret < 0)
1638 		return ret;
1639 	prev_shutter = ret;
1640 	ret = ov5640_get_binning(sensor);
1641 	if (ret < 0)
1642 		return ret;
1643 	if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1644 	    mode->id != OV5640_MODE_1080P_1920_1080)
1645 		prev_shutter *= 2;
1646 
1647 	/* read preview gain */
1648 	ret = ov5640_get_gain(sensor);
1649 	if (ret < 0)
1650 		return ret;
1651 	prev_gain16 = ret;
1652 
1653 	/* get average */
1654 	ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1655 	if (ret)
1656 		return ret;
1657 
1658 	/* turn off night mode for capture */
1659 	ret = ov5640_set_night_mode(sensor);
1660 	if (ret < 0)
1661 		return ret;
1662 
1663 	/* Write capture setting */
1664 	ret = ov5640_load_regs(sensor, mode);
1665 	if (ret < 0)
1666 		return ret;
1667 
1668 	/* read capture VTS */
1669 	ret = ov5640_get_vts(sensor);
1670 	if (ret < 0)
1671 		return ret;
1672 	cap_vts = ret;
1673 	ret = ov5640_get_hts(sensor);
1674 	if (ret < 0)
1675 		return ret;
1676 	if (ret == 0)
1677 		return -EINVAL;
1678 	cap_hts = ret;
1679 
1680 	ret = ov5640_get_sysclk(sensor);
1681 	if (ret < 0)
1682 		return ret;
1683 	if (ret == 0)
1684 		return -EINVAL;
1685 	cap_sysclk = ret;
1686 
1687 	/* calculate capture banding filter */
1688 	ret = ov5640_get_light_freq(sensor);
1689 	if (ret < 0)
1690 		return ret;
1691 	light_freq = ret;
1692 
1693 	if (light_freq == 60) {
1694 		/* 60Hz */
1695 		cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1696 	} else {
1697 		/* 50Hz */
1698 		cap_bandfilt = cap_sysclk * 100 / cap_hts;
1699 	}
1700 
1701 	if (!sensor->prev_sysclk) {
1702 		ret = ov5640_get_sysclk(sensor);
1703 		if (ret < 0)
1704 			return ret;
1705 		if (ret == 0)
1706 			return -EINVAL;
1707 		sensor->prev_sysclk = ret;
1708 	}
1709 
1710 	if (!cap_bandfilt)
1711 		return -EINVAL;
1712 
1713 	cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1714 
1715 	/* calculate capture shutter/gain16 */
1716 	if (average > sensor->ae_low && average < sensor->ae_high) {
1717 		/* in stable range */
1718 		cap_gain16_shutter =
1719 			prev_gain16 * prev_shutter *
1720 			cap_sysclk / sensor->prev_sysclk *
1721 			sensor->prev_hts / cap_hts *
1722 			sensor->ae_target / average;
1723 	} else {
1724 		cap_gain16_shutter =
1725 			prev_gain16 * prev_shutter *
1726 			cap_sysclk / sensor->prev_sysclk *
1727 			sensor->prev_hts / cap_hts;
1728 	}
1729 
1730 	/* gain to shutter */
1731 	if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1732 		/* shutter < 1/100 */
1733 		cap_shutter = cap_gain16_shutter / 16;
1734 		if (cap_shutter < 1)
1735 			cap_shutter = 1;
1736 
1737 		cap_gain16 = cap_gain16_shutter / cap_shutter;
1738 		if (cap_gain16 < 16)
1739 			cap_gain16 = 16;
1740 	} else {
1741 		if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1742 			/* exposure reach max */
1743 			cap_shutter = cap_bandfilt * cap_maxband;
1744 			if (!cap_shutter)
1745 				return -EINVAL;
1746 
1747 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1748 		} else {
1749 			/* 1/100 < (cap_shutter = n/100) =< max */
1750 			cap_shutter =
1751 				((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1752 				* cap_bandfilt;
1753 			if (!cap_shutter)
1754 				return -EINVAL;
1755 
1756 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1757 		}
1758 	}
1759 
1760 	/* set capture gain */
1761 	ret = ov5640_set_gain(sensor, cap_gain16);
1762 	if (ret)
1763 		return ret;
1764 
1765 	/* write capture shutter */
1766 	if (cap_shutter > (cap_vts - 4)) {
1767 		cap_vts = cap_shutter + 4;
1768 		ret = ov5640_set_vts(sensor, cap_vts);
1769 		if (ret < 0)
1770 			return ret;
1771 	}
1772 
1773 	/* set exposure */
1774 	return ov5640_set_exposure(sensor, cap_shutter);
1775 }
1776 
1777 /*
1778  * if sensor changes inside scaling or subsampling
1779  * change mode directly
1780  */
1781 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1782 				  const struct ov5640_mode_info *mode)
1783 {
1784 	if (!mode->reg_data)
1785 		return -EINVAL;
1786 
1787 	/* Write capture setting */
1788 	return ov5640_load_regs(sensor, mode);
1789 }
1790 
1791 static int ov5640_set_mode(struct ov5640_dev *sensor)
1792 {
1793 	const struct ov5640_mode_info *mode = sensor->current_mode;
1794 	const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1795 	enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1796 	bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1797 	bool auto_exp =  sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1798 	unsigned long rate;
1799 	int ret;
1800 
1801 	dn_mode = mode->dn_mode;
1802 	orig_dn_mode = orig_mode->dn_mode;
1803 
1804 	/* auto gain and exposure must be turned off when changing modes */
1805 	if (auto_gain) {
1806 		ret = ov5640_set_autogain(sensor, false);
1807 		if (ret)
1808 			return ret;
1809 	}
1810 
1811 	if (auto_exp) {
1812 		ret = ov5640_set_autoexposure(sensor, false);
1813 		if (ret)
1814 			goto restore_auto_gain;
1815 	}
1816 
1817 	/*
1818 	 * All the formats we support have 16 bits per pixel, seems to require
1819 	 * the same rate than YUV, so we can just use 16 bpp all the time.
1820 	 */
1821 	rate = mode->vtot * mode->htot * 16;
1822 	rate *= ov5640_framerates[sensor->current_fr];
1823 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1824 		rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1825 		ret = ov5640_set_mipi_pclk(sensor, rate);
1826 	} else {
1827 		rate = rate / sensor->ep.bus.parallel.bus_width;
1828 		ret = ov5640_set_dvp_pclk(sensor, rate);
1829 	}
1830 
1831 	if (ret < 0)
1832 		return 0;
1833 
1834 	if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1835 	    (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1836 		/*
1837 		 * change between subsampling and scaling
1838 		 * go through exposure calculation
1839 		 */
1840 		ret = ov5640_set_mode_exposure_calc(sensor, mode);
1841 	} else {
1842 		/*
1843 		 * change inside subsampling or scaling
1844 		 * download firmware directly
1845 		 */
1846 		ret = ov5640_set_mode_direct(sensor, mode);
1847 	}
1848 	if (ret < 0)
1849 		goto restore_auto_exp_gain;
1850 
1851 	/* restore auto gain and exposure */
1852 	if (auto_gain)
1853 		ov5640_set_autogain(sensor, true);
1854 	if (auto_exp)
1855 		ov5640_set_autoexposure(sensor, true);
1856 
1857 	ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1858 	if (ret < 0)
1859 		return ret;
1860 	ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1861 	if (ret < 0)
1862 		return ret;
1863 	ret = ov5640_get_light_freq(sensor);
1864 	if (ret < 0)
1865 		return ret;
1866 	ret = ov5640_set_bandingfilter(sensor);
1867 	if (ret < 0)
1868 		return ret;
1869 	ret = ov5640_set_virtual_channel(sensor);
1870 	if (ret < 0)
1871 		return ret;
1872 
1873 	sensor->pending_mode_change = false;
1874 	sensor->last_mode = mode;
1875 
1876 	return 0;
1877 
1878 restore_auto_exp_gain:
1879 	if (auto_exp)
1880 		ov5640_set_autoexposure(sensor, true);
1881 restore_auto_gain:
1882 	if (auto_gain)
1883 		ov5640_set_autogain(sensor, true);
1884 
1885 	return ret;
1886 }
1887 
1888 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1889 			       struct v4l2_mbus_framefmt *format);
1890 
1891 /* restore the last set video mode after chip power-on */
1892 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1893 {
1894 	int ret;
1895 
1896 	/* first load the initial register values */
1897 	ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1898 	if (ret < 0)
1899 		return ret;
1900 	sensor->last_mode = &ov5640_mode_init_data;
1901 
1902 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1903 			     (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1904 			     ilog2(OV5640_SCLK_ROOT_DIV));
1905 	if (ret)
1906 		return ret;
1907 
1908 	/* now restore the last capture mode */
1909 	ret = ov5640_set_mode(sensor);
1910 	if (ret < 0)
1911 		return ret;
1912 
1913 	return ov5640_set_framefmt(sensor, &sensor->fmt);
1914 }
1915 
1916 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1917 {
1918 	gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1919 }
1920 
1921 static void ov5640_reset(struct ov5640_dev *sensor)
1922 {
1923 	if (!sensor->reset_gpio)
1924 		return;
1925 
1926 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1927 
1928 	/* camera power cycle */
1929 	ov5640_power(sensor, false);
1930 	usleep_range(5000, 10000);
1931 	ov5640_power(sensor, true);
1932 	usleep_range(5000, 10000);
1933 
1934 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1935 	usleep_range(1000, 2000);
1936 
1937 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1938 	usleep_range(20000, 25000);
1939 }
1940 
1941 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1942 {
1943 	struct i2c_client *client = sensor->i2c_client;
1944 	int ret;
1945 
1946 	ret = clk_prepare_enable(sensor->xclk);
1947 	if (ret) {
1948 		dev_err(&client->dev, "%s: failed to enable clock\n",
1949 			__func__);
1950 		return ret;
1951 	}
1952 
1953 	ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1954 				    sensor->supplies);
1955 	if (ret) {
1956 		dev_err(&client->dev, "%s: failed to enable regulators\n",
1957 			__func__);
1958 		goto xclk_off;
1959 	}
1960 
1961 	ov5640_reset(sensor);
1962 	ov5640_power(sensor, true);
1963 
1964 	ret = ov5640_init_slave_id(sensor);
1965 	if (ret)
1966 		goto power_off;
1967 
1968 	return 0;
1969 
1970 power_off:
1971 	ov5640_power(sensor, false);
1972 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1973 xclk_off:
1974 	clk_disable_unprepare(sensor->xclk);
1975 	return ret;
1976 }
1977 
1978 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1979 {
1980 	ov5640_power(sensor, false);
1981 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1982 	clk_disable_unprepare(sensor->xclk);
1983 }
1984 
1985 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
1986 {
1987 	int ret = 0;
1988 
1989 	if (on) {
1990 		ret = ov5640_set_power_on(sensor);
1991 		if (ret)
1992 			return ret;
1993 
1994 		ret = ov5640_restore_mode(sensor);
1995 		if (ret)
1996 			goto power_off;
1997 
1998 		/* We're done here for DVP bus, while CSI-2 needs setup. */
1999 		if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
2000 			return 0;
2001 
2002 		/*
2003 		 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
2004 		 *
2005 		 * 0x300e = 0x40
2006 		 * [7:5] = 010	: 2 data lanes mode (see FIXME note in
2007 		 *		  "ov5640_set_stream_mipi()")
2008 		 * [4] = 0	: Power up MIPI HS Tx
2009 		 * [3] = 0	: Power up MIPI LS Rx
2010 		 * [2] = 0	: MIPI interface disabled
2011 		 */
2012 		ret = ov5640_write_reg(sensor,
2013 				       OV5640_REG_IO_MIPI_CTRL00, 0x40);
2014 		if (ret)
2015 			goto power_off;
2016 
2017 		/*
2018 		 * Gate clock and set LP11 in 'no packets mode' (idle)
2019 		 *
2020 		 * 0x4800 = 0x24
2021 		 * [5] = 1	: Gate clock when 'no packets'
2022 		 * [2] = 1	: MIPI bus in LP11 when 'no packets'
2023 		 */
2024 		ret = ov5640_write_reg(sensor,
2025 				       OV5640_REG_MIPI_CTRL00, 0x24);
2026 		if (ret)
2027 			goto power_off;
2028 
2029 		/*
2030 		 * Set data lanes and clock in LP11 when 'sleeping'
2031 		 *
2032 		 * 0x3019 = 0x70
2033 		 * [6] = 1	: MIPI data lane 2 in LP11 when 'sleeping'
2034 		 * [5] = 1	: MIPI data lane 1 in LP11 when 'sleeping'
2035 		 * [4] = 1	: MIPI clock lane in LP11 when 'sleeping'
2036 		 */
2037 		ret = ov5640_write_reg(sensor,
2038 				       OV5640_REG_PAD_OUTPUT00, 0x70);
2039 		if (ret)
2040 			goto power_off;
2041 
2042 		/* Give lanes some time to coax into LP11 state. */
2043 		usleep_range(500, 1000);
2044 
2045 	} else {
2046 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
2047 			/* Reset MIPI bus settings to their default values. */
2048 			ov5640_write_reg(sensor,
2049 					 OV5640_REG_IO_MIPI_CTRL00, 0x58);
2050 			ov5640_write_reg(sensor,
2051 					 OV5640_REG_MIPI_CTRL00, 0x04);
2052 			ov5640_write_reg(sensor,
2053 					 OV5640_REG_PAD_OUTPUT00, 0x00);
2054 		}
2055 
2056 		ov5640_set_power_off(sensor);
2057 	}
2058 
2059 	return 0;
2060 
2061 power_off:
2062 	ov5640_set_power_off(sensor);
2063 	return ret;
2064 }
2065 
2066 /* --------------- Subdev Operations --------------- */
2067 
2068 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2069 {
2070 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2071 	int ret = 0;
2072 
2073 	mutex_lock(&sensor->lock);
2074 
2075 	/*
2076 	 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2077 	 * update the power state.
2078 	 */
2079 	if (sensor->power_count == !on) {
2080 		ret = ov5640_set_power(sensor, !!on);
2081 		if (ret)
2082 			goto out;
2083 	}
2084 
2085 	/* Update the power count. */
2086 	sensor->power_count += on ? 1 : -1;
2087 	WARN_ON(sensor->power_count < 0);
2088 out:
2089 	mutex_unlock(&sensor->lock);
2090 
2091 	if (on && !ret && sensor->power_count == 1) {
2092 		/* restore controls */
2093 		ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2100 				     struct v4l2_fract *fi,
2101 				     u32 width, u32 height)
2102 {
2103 	const struct ov5640_mode_info *mode;
2104 	enum ov5640_frame_rate rate = OV5640_15_FPS;
2105 	int minfps, maxfps, best_fps, fps;
2106 	int i;
2107 
2108 	minfps = ov5640_framerates[OV5640_15_FPS];
2109 	maxfps = ov5640_framerates[OV5640_60_FPS];
2110 
2111 	if (fi->numerator == 0) {
2112 		fi->denominator = maxfps;
2113 		fi->numerator = 1;
2114 		rate = OV5640_60_FPS;
2115 		goto find_mode;
2116 	}
2117 
2118 	fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2119 			minfps, maxfps);
2120 
2121 	best_fps = minfps;
2122 	for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2123 		int curr_fps = ov5640_framerates[i];
2124 
2125 		if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2126 			best_fps = curr_fps;
2127 			rate = i;
2128 		}
2129 	}
2130 
2131 	fi->numerator = 1;
2132 	fi->denominator = best_fps;
2133 
2134 find_mode:
2135 	mode = ov5640_find_mode(sensor, rate, width, height, false);
2136 	return mode ? rate : -EINVAL;
2137 }
2138 
2139 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2140 			  struct v4l2_subdev_pad_config *cfg,
2141 			  struct v4l2_subdev_format *format)
2142 {
2143 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2144 	struct v4l2_mbus_framefmt *fmt;
2145 
2146 	if (format->pad != 0)
2147 		return -EINVAL;
2148 
2149 	mutex_lock(&sensor->lock);
2150 
2151 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2152 		fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg,
2153 						 format->pad);
2154 	else
2155 		fmt = &sensor->fmt;
2156 
2157 	format->format = *fmt;
2158 
2159 	mutex_unlock(&sensor->lock);
2160 
2161 	return 0;
2162 }
2163 
2164 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2165 				   struct v4l2_mbus_framefmt *fmt,
2166 				   enum ov5640_frame_rate fr,
2167 				   const struct ov5640_mode_info **new_mode)
2168 {
2169 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2170 	const struct ov5640_mode_info *mode;
2171 	int i;
2172 
2173 	mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2174 	if (!mode)
2175 		return -EINVAL;
2176 	fmt->width = mode->hact;
2177 	fmt->height = mode->vact;
2178 
2179 	if (new_mode)
2180 		*new_mode = mode;
2181 
2182 	for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2183 		if (ov5640_formats[i].code == fmt->code)
2184 			break;
2185 	if (i >= ARRAY_SIZE(ov5640_formats))
2186 		i = 0;
2187 
2188 	fmt->code = ov5640_formats[i].code;
2189 	fmt->colorspace = ov5640_formats[i].colorspace;
2190 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2191 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2192 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2193 
2194 	return 0;
2195 }
2196 
2197 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2198 			  struct v4l2_subdev_pad_config *cfg,
2199 			  struct v4l2_subdev_format *format)
2200 {
2201 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2202 	const struct ov5640_mode_info *new_mode;
2203 	struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2204 	struct v4l2_mbus_framefmt *fmt;
2205 	int ret;
2206 
2207 	if (format->pad != 0)
2208 		return -EINVAL;
2209 
2210 	mutex_lock(&sensor->lock);
2211 
2212 	if (sensor->streaming) {
2213 		ret = -EBUSY;
2214 		goto out;
2215 	}
2216 
2217 	ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2218 				      sensor->current_fr, &new_mode);
2219 	if (ret)
2220 		goto out;
2221 
2222 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2223 		fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
2224 	else
2225 		fmt = &sensor->fmt;
2226 
2227 	*fmt = *mbus_fmt;
2228 
2229 	if (new_mode != sensor->current_mode) {
2230 		sensor->current_mode = new_mode;
2231 		sensor->pending_mode_change = true;
2232 	}
2233 	if (mbus_fmt->code != sensor->fmt.code)
2234 		sensor->pending_fmt_change = true;
2235 
2236 out:
2237 	mutex_unlock(&sensor->lock);
2238 	return ret;
2239 }
2240 
2241 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2242 			       struct v4l2_mbus_framefmt *format)
2243 {
2244 	int ret = 0;
2245 	bool is_jpeg = false;
2246 	u8 fmt, mux;
2247 
2248 	switch (format->code) {
2249 	case MEDIA_BUS_FMT_UYVY8_2X8:
2250 		/* YUV422, UYVY */
2251 		fmt = 0x3f;
2252 		mux = OV5640_FMT_MUX_YUV422;
2253 		break;
2254 	case MEDIA_BUS_FMT_YUYV8_2X8:
2255 		/* YUV422, YUYV */
2256 		fmt = 0x30;
2257 		mux = OV5640_FMT_MUX_YUV422;
2258 		break;
2259 	case MEDIA_BUS_FMT_RGB565_2X8_LE:
2260 		/* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2261 		fmt = 0x6F;
2262 		mux = OV5640_FMT_MUX_RGB;
2263 		break;
2264 	case MEDIA_BUS_FMT_RGB565_2X8_BE:
2265 		/* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2266 		fmt = 0x61;
2267 		mux = OV5640_FMT_MUX_RGB;
2268 		break;
2269 	case MEDIA_BUS_FMT_JPEG_1X8:
2270 		/* YUV422, YUYV */
2271 		fmt = 0x30;
2272 		mux = OV5640_FMT_MUX_YUV422;
2273 		is_jpeg = true;
2274 		break;
2275 	case MEDIA_BUS_FMT_SBGGR8_1X8:
2276 		/* Raw, BGBG... / GRGR... */
2277 		fmt = 0x00;
2278 		mux = OV5640_FMT_MUX_RAW_DPC;
2279 		break;
2280 	case MEDIA_BUS_FMT_SGBRG8_1X8:
2281 		/* Raw bayer, GBGB... / RGRG... */
2282 		fmt = 0x01;
2283 		mux = OV5640_FMT_MUX_RAW_DPC;
2284 		break;
2285 	case MEDIA_BUS_FMT_SGRBG8_1X8:
2286 		/* Raw bayer, GRGR... / BGBG... */
2287 		fmt = 0x02;
2288 		mux = OV5640_FMT_MUX_RAW_DPC;
2289 		break;
2290 	case MEDIA_BUS_FMT_SRGGB8_1X8:
2291 		/* Raw bayer, RGRG... / GBGB... */
2292 		fmt = 0x03;
2293 		mux = OV5640_FMT_MUX_RAW_DPC;
2294 		break;
2295 	default:
2296 		return -EINVAL;
2297 	}
2298 
2299 	/* FORMAT CONTROL00: YUV and RGB formatting */
2300 	ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2301 	if (ret)
2302 		return ret;
2303 
2304 	/* FORMAT MUX CONTROL: ISP YUV or RGB */
2305 	ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2306 	if (ret)
2307 		return ret;
2308 
2309 	/*
2310 	 * TIMING TC REG21:
2311 	 * - [5]:	JPEG enable
2312 	 */
2313 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2314 			     BIT(5), is_jpeg ? BIT(5) : 0);
2315 	if (ret)
2316 		return ret;
2317 
2318 	/*
2319 	 * SYSTEM RESET02:
2320 	 * - [4]:	Reset JFIFO
2321 	 * - [3]:	Reset SFIFO
2322 	 * - [2]:	Reset JPEG
2323 	 */
2324 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2325 			     BIT(4) | BIT(3) | BIT(2),
2326 			     is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2327 	if (ret)
2328 		return ret;
2329 
2330 	/*
2331 	 * CLOCK ENABLE02:
2332 	 * - [5]:	Enable JPEG 2x clock
2333 	 * - [3]:	Enable JPEG clock
2334 	 */
2335 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2336 			      BIT(5) | BIT(3),
2337 			      is_jpeg ? (BIT(5) | BIT(3)) : 0);
2338 }
2339 
2340 /*
2341  * Sensor Controls.
2342  */
2343 
2344 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2345 {
2346 	int ret;
2347 
2348 	if (value) {
2349 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2350 				     BIT(0), BIT(0));
2351 		if (ret)
2352 			return ret;
2353 		ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2354 	} else {
2355 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2356 	}
2357 
2358 	return ret;
2359 }
2360 
2361 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2362 {
2363 	int ret;
2364 
2365 	if (value) {
2366 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2367 				     BIT(2), BIT(2));
2368 		if (ret)
2369 			return ret;
2370 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2371 				       value & 0xff);
2372 	} else {
2373 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2374 	}
2375 
2376 	return ret;
2377 }
2378 
2379 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2380 {
2381 	int ret;
2382 
2383 	if (value) {
2384 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2385 				     BIT(1), BIT(1));
2386 		if (ret)
2387 			return ret;
2388 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2389 				       value & 0xff);
2390 		if (ret)
2391 			return ret;
2392 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2393 				       value & 0xff);
2394 	} else {
2395 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2396 	}
2397 
2398 	return ret;
2399 }
2400 
2401 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2402 {
2403 	int ret;
2404 
2405 	ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2406 			     BIT(0), awb ? 0 : 1);
2407 	if (ret)
2408 		return ret;
2409 
2410 	if (!awb) {
2411 		u16 red = (u16)sensor->ctrls.red_balance->val;
2412 		u16 blue = (u16)sensor->ctrls.blue_balance->val;
2413 
2414 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2415 		if (ret)
2416 			return ret;
2417 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2418 	}
2419 
2420 	return ret;
2421 }
2422 
2423 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2424 				    enum v4l2_exposure_auto_type auto_exposure)
2425 {
2426 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2427 	bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2428 	int ret = 0;
2429 
2430 	if (ctrls->auto_exp->is_new) {
2431 		ret = ov5640_set_autoexposure(sensor, auto_exp);
2432 		if (ret)
2433 			return ret;
2434 	}
2435 
2436 	if (!auto_exp && ctrls->exposure->is_new) {
2437 		u16 max_exp;
2438 
2439 		ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2440 					&max_exp);
2441 		if (ret)
2442 			return ret;
2443 		ret = ov5640_get_vts(sensor);
2444 		if (ret < 0)
2445 			return ret;
2446 		max_exp += ret;
2447 		ret = 0;
2448 
2449 		if (ctrls->exposure->val < max_exp)
2450 			ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2451 	}
2452 
2453 	return ret;
2454 }
2455 
2456 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2457 {
2458 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2459 	int ret = 0;
2460 
2461 	if (ctrls->auto_gain->is_new) {
2462 		ret = ov5640_set_autogain(sensor, auto_gain);
2463 		if (ret)
2464 			return ret;
2465 	}
2466 
2467 	if (!auto_gain && ctrls->gain->is_new)
2468 		ret = ov5640_set_gain(sensor, ctrls->gain->val);
2469 
2470 	return ret;
2471 }
2472 
2473 static const char * const test_pattern_menu[] = {
2474 	"Disabled",
2475 	"Color bars",
2476 	"Color bars w/ rolling bar",
2477 	"Color squares",
2478 	"Color squares w/ rolling bar",
2479 };
2480 
2481 #define OV5640_TEST_ENABLE		BIT(7)
2482 #define OV5640_TEST_ROLLING		BIT(6)	/* rolling horizontal bar */
2483 #define OV5640_TEST_TRANSPARENT		BIT(5)
2484 #define OV5640_TEST_SQUARE_BW		BIT(4)	/* black & white squares */
2485 #define OV5640_TEST_BAR_STANDARD	(0 << 2)
2486 #define OV5640_TEST_BAR_VERT_CHANGE_1	(1 << 2)
2487 #define OV5640_TEST_BAR_HOR_CHANGE	(2 << 2)
2488 #define OV5640_TEST_BAR_VERT_CHANGE_2	(3 << 2)
2489 #define OV5640_TEST_BAR			(0 << 0)
2490 #define OV5640_TEST_RANDOM		(1 << 0)
2491 #define OV5640_TEST_SQUARE		(2 << 0)
2492 #define OV5640_TEST_BLACK		(3 << 0)
2493 
2494 static const u8 test_pattern_val[] = {
2495 	0,
2496 	OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2497 		OV5640_TEST_BAR,
2498 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2499 		OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2500 	OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2501 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2502 };
2503 
2504 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2505 {
2506 	return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2507 				test_pattern_val[value]);
2508 }
2509 
2510 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2511 {
2512 	int ret;
2513 
2514 	ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2515 			     (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2516 			     0 : BIT(7));
2517 	if (ret)
2518 		return ret;
2519 
2520 	return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2521 			      (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2522 			      BIT(2) : 0);
2523 }
2524 
2525 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2526 {
2527 	/*
2528 	 * If sensor is mounted upside down, mirror logic is inversed.
2529 	 *
2530 	 * Sensor is a BSI (Back Side Illuminated) one,
2531 	 * so image captured is physically mirrored.
2532 	 * This is why mirror logic is inversed in
2533 	 * order to cancel this mirror effect.
2534 	 */
2535 
2536 	/*
2537 	 * TIMING TC REG21:
2538 	 * - [2]:	ISP mirror
2539 	 * - [1]:	Sensor mirror
2540 	 */
2541 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2542 			      BIT(2) | BIT(1),
2543 			      (!(value ^ sensor->upside_down)) ?
2544 			      (BIT(2) | BIT(1)) : 0);
2545 }
2546 
2547 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2548 {
2549 	/* If sensor is mounted upside down, flip logic is inversed */
2550 
2551 	/*
2552 	 * TIMING TC REG20:
2553 	 * - [2]:	ISP vflip
2554 	 * - [1]:	Sensor vflip
2555 	 */
2556 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2557 			      BIT(2) | BIT(1),
2558 			      (value ^ sensor->upside_down) ?
2559 			      (BIT(2) | BIT(1)) : 0);
2560 }
2561 
2562 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2563 {
2564 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2565 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2566 	int val;
2567 
2568 	/* v4l2_ctrl_lock() locks our own mutex */
2569 
2570 	switch (ctrl->id) {
2571 	case V4L2_CID_AUTOGAIN:
2572 		val = ov5640_get_gain(sensor);
2573 		if (val < 0)
2574 			return val;
2575 		sensor->ctrls.gain->val = val;
2576 		break;
2577 	case V4L2_CID_EXPOSURE_AUTO:
2578 		val = ov5640_get_exposure(sensor);
2579 		if (val < 0)
2580 			return val;
2581 		sensor->ctrls.exposure->val = val;
2582 		break;
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2589 {
2590 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2591 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2592 	int ret;
2593 
2594 	/* v4l2_ctrl_lock() locks our own mutex */
2595 
2596 	/*
2597 	 * If the device is not powered up by the host driver do
2598 	 * not apply any controls to H/W at this time. Instead
2599 	 * the controls will be restored right after power-up.
2600 	 */
2601 	if (sensor->power_count == 0)
2602 		return 0;
2603 
2604 	switch (ctrl->id) {
2605 	case V4L2_CID_AUTOGAIN:
2606 		ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2607 		break;
2608 	case V4L2_CID_EXPOSURE_AUTO:
2609 		ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2610 		break;
2611 	case V4L2_CID_AUTO_WHITE_BALANCE:
2612 		ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2613 		break;
2614 	case V4L2_CID_HUE:
2615 		ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2616 		break;
2617 	case V4L2_CID_CONTRAST:
2618 		ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2619 		break;
2620 	case V4L2_CID_SATURATION:
2621 		ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2622 		break;
2623 	case V4L2_CID_TEST_PATTERN:
2624 		ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2625 		break;
2626 	case V4L2_CID_POWER_LINE_FREQUENCY:
2627 		ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2628 		break;
2629 	case V4L2_CID_HFLIP:
2630 		ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2631 		break;
2632 	case V4L2_CID_VFLIP:
2633 		ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2634 		break;
2635 	default:
2636 		ret = -EINVAL;
2637 		break;
2638 	}
2639 
2640 	return ret;
2641 }
2642 
2643 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2644 	.g_volatile_ctrl = ov5640_g_volatile_ctrl,
2645 	.s_ctrl = ov5640_s_ctrl,
2646 };
2647 
2648 static int ov5640_init_controls(struct ov5640_dev *sensor)
2649 {
2650 	const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2651 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2652 	struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2653 	int ret;
2654 
2655 	v4l2_ctrl_handler_init(hdl, 32);
2656 
2657 	/* we can use our own mutex for the ctrl lock */
2658 	hdl->lock = &sensor->lock;
2659 
2660 	/* Auto/manual white balance */
2661 	ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2662 					   V4L2_CID_AUTO_WHITE_BALANCE,
2663 					   0, 1, 1, 1);
2664 	ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2665 						0, 4095, 1, 0);
2666 	ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2667 					       0, 4095, 1, 0);
2668 	/* Auto/manual exposure */
2669 	ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2670 						 V4L2_CID_EXPOSURE_AUTO,
2671 						 V4L2_EXPOSURE_MANUAL, 0,
2672 						 V4L2_EXPOSURE_AUTO);
2673 	ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2674 					    0, 65535, 1, 0);
2675 	/* Auto/manual gain */
2676 	ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2677 					     0, 1, 1, 1);
2678 	ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2679 					0, 1023, 1, 0);
2680 
2681 	ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2682 					      0, 255, 1, 64);
2683 	ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2684 				       0, 359, 1, 0);
2685 	ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2686 					    0, 255, 1, 0);
2687 	ctrls->test_pattern =
2688 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2689 					     ARRAY_SIZE(test_pattern_menu) - 1,
2690 					     0, 0, test_pattern_menu);
2691 	ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2692 					 0, 1, 1, 0);
2693 	ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2694 					 0, 1, 1, 0);
2695 
2696 	ctrls->light_freq =
2697 		v4l2_ctrl_new_std_menu(hdl, ops,
2698 				       V4L2_CID_POWER_LINE_FREQUENCY,
2699 				       V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2700 				       V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2701 
2702 	if (hdl->error) {
2703 		ret = hdl->error;
2704 		goto free_ctrls;
2705 	}
2706 
2707 	ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2708 	ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2709 
2710 	v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2711 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2712 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2713 
2714 	sensor->sd.ctrl_handler = hdl;
2715 	return 0;
2716 
2717 free_ctrls:
2718 	v4l2_ctrl_handler_free(hdl);
2719 	return ret;
2720 }
2721 
2722 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2723 				  struct v4l2_subdev_pad_config *cfg,
2724 				  struct v4l2_subdev_frame_size_enum *fse)
2725 {
2726 	if (fse->pad != 0)
2727 		return -EINVAL;
2728 	if (fse->index >= OV5640_NUM_MODES)
2729 		return -EINVAL;
2730 
2731 	fse->min_width =
2732 		ov5640_mode_data[fse->index].hact;
2733 	fse->max_width = fse->min_width;
2734 	fse->min_height =
2735 		ov5640_mode_data[fse->index].vact;
2736 	fse->max_height = fse->min_height;
2737 
2738 	return 0;
2739 }
2740 
2741 static int ov5640_enum_frame_interval(
2742 	struct v4l2_subdev *sd,
2743 	struct v4l2_subdev_pad_config *cfg,
2744 	struct v4l2_subdev_frame_interval_enum *fie)
2745 {
2746 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2747 	struct v4l2_fract tpf;
2748 	int ret;
2749 
2750 	if (fie->pad != 0)
2751 		return -EINVAL;
2752 	if (fie->index >= OV5640_NUM_FRAMERATES)
2753 		return -EINVAL;
2754 
2755 	tpf.numerator = 1;
2756 	tpf.denominator = ov5640_framerates[fie->index];
2757 
2758 	ret = ov5640_try_frame_interval(sensor, &tpf,
2759 					fie->width, fie->height);
2760 	if (ret < 0)
2761 		return -EINVAL;
2762 
2763 	fie->interval = tpf;
2764 	return 0;
2765 }
2766 
2767 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2768 				   struct v4l2_subdev_frame_interval *fi)
2769 {
2770 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2771 
2772 	mutex_lock(&sensor->lock);
2773 	fi->interval = sensor->frame_interval;
2774 	mutex_unlock(&sensor->lock);
2775 
2776 	return 0;
2777 }
2778 
2779 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2780 				   struct v4l2_subdev_frame_interval *fi)
2781 {
2782 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2783 	const struct ov5640_mode_info *mode;
2784 	int frame_rate, ret = 0;
2785 
2786 	if (fi->pad != 0)
2787 		return -EINVAL;
2788 
2789 	mutex_lock(&sensor->lock);
2790 
2791 	if (sensor->streaming) {
2792 		ret = -EBUSY;
2793 		goto out;
2794 	}
2795 
2796 	mode = sensor->current_mode;
2797 
2798 	frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2799 					       mode->hact, mode->vact);
2800 	if (frame_rate < 0) {
2801 		/* Always return a valid frame interval value */
2802 		fi->interval = sensor->frame_interval;
2803 		goto out;
2804 	}
2805 
2806 	mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2807 				mode->vact, true);
2808 	if (!mode) {
2809 		ret = -EINVAL;
2810 		goto out;
2811 	}
2812 
2813 	if (mode != sensor->current_mode ||
2814 	    frame_rate != sensor->current_fr) {
2815 		sensor->current_fr = frame_rate;
2816 		sensor->frame_interval = fi->interval;
2817 		sensor->current_mode = mode;
2818 		sensor->pending_mode_change = true;
2819 	}
2820 out:
2821 	mutex_unlock(&sensor->lock);
2822 	return ret;
2823 }
2824 
2825 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2826 				 struct v4l2_subdev_pad_config *cfg,
2827 				 struct v4l2_subdev_mbus_code_enum *code)
2828 {
2829 	if (code->pad != 0)
2830 		return -EINVAL;
2831 	if (code->index >= ARRAY_SIZE(ov5640_formats))
2832 		return -EINVAL;
2833 
2834 	code->code = ov5640_formats[code->index].code;
2835 	return 0;
2836 }
2837 
2838 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2839 {
2840 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2841 	int ret = 0;
2842 
2843 	mutex_lock(&sensor->lock);
2844 
2845 	if (sensor->streaming == !enable) {
2846 		if (enable && sensor->pending_mode_change) {
2847 			ret = ov5640_set_mode(sensor);
2848 			if (ret)
2849 				goto out;
2850 		}
2851 
2852 		if (enable && sensor->pending_fmt_change) {
2853 			ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2854 			if (ret)
2855 				goto out;
2856 			sensor->pending_fmt_change = false;
2857 		}
2858 
2859 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2860 			ret = ov5640_set_stream_mipi(sensor, enable);
2861 		else
2862 			ret = ov5640_set_stream_dvp(sensor, enable);
2863 
2864 		if (!ret)
2865 			sensor->streaming = enable;
2866 	}
2867 out:
2868 	mutex_unlock(&sensor->lock);
2869 	return ret;
2870 }
2871 
2872 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2873 	.s_power = ov5640_s_power,
2874 	.log_status = v4l2_ctrl_subdev_log_status,
2875 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2876 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2877 };
2878 
2879 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2880 	.g_frame_interval = ov5640_g_frame_interval,
2881 	.s_frame_interval = ov5640_s_frame_interval,
2882 	.s_stream = ov5640_s_stream,
2883 };
2884 
2885 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2886 	.enum_mbus_code = ov5640_enum_mbus_code,
2887 	.get_fmt = ov5640_get_fmt,
2888 	.set_fmt = ov5640_set_fmt,
2889 	.enum_frame_size = ov5640_enum_frame_size,
2890 	.enum_frame_interval = ov5640_enum_frame_interval,
2891 };
2892 
2893 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2894 	.core = &ov5640_core_ops,
2895 	.video = &ov5640_video_ops,
2896 	.pad = &ov5640_pad_ops,
2897 };
2898 
2899 static int ov5640_get_regulators(struct ov5640_dev *sensor)
2900 {
2901 	int i;
2902 
2903 	for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
2904 		sensor->supplies[i].supply = ov5640_supply_name[i];
2905 
2906 	return devm_regulator_bulk_get(&sensor->i2c_client->dev,
2907 				       OV5640_NUM_SUPPLIES,
2908 				       sensor->supplies);
2909 }
2910 
2911 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
2912 {
2913 	struct i2c_client *client = sensor->i2c_client;
2914 	int ret = 0;
2915 	u16 chip_id;
2916 
2917 	ret = ov5640_set_power_on(sensor);
2918 	if (ret)
2919 		return ret;
2920 
2921 	ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
2922 	if (ret) {
2923 		dev_err(&client->dev, "%s: failed to read chip identifier\n",
2924 			__func__);
2925 		goto power_off;
2926 	}
2927 
2928 	if (chip_id != 0x5640) {
2929 		dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
2930 			__func__, chip_id);
2931 		ret = -ENXIO;
2932 	}
2933 
2934 power_off:
2935 	ov5640_set_power_off(sensor);
2936 	return ret;
2937 }
2938 
2939 static int ov5640_probe(struct i2c_client *client,
2940 			const struct i2c_device_id *id)
2941 {
2942 	struct device *dev = &client->dev;
2943 	struct fwnode_handle *endpoint;
2944 	struct ov5640_dev *sensor;
2945 	struct v4l2_mbus_framefmt *fmt;
2946 	u32 rotation;
2947 	int ret;
2948 
2949 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
2950 	if (!sensor)
2951 		return -ENOMEM;
2952 
2953 	sensor->i2c_client = client;
2954 
2955 	/*
2956 	 * default init sequence initialize sensor to
2957 	 * YUV422 UYVY VGA@30fps
2958 	 */
2959 	fmt = &sensor->fmt;
2960 	fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
2961 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
2962 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2963 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2964 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2965 	fmt->width = 640;
2966 	fmt->height = 480;
2967 	fmt->field = V4L2_FIELD_NONE;
2968 	sensor->frame_interval.numerator = 1;
2969 	sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
2970 	sensor->current_fr = OV5640_30_FPS;
2971 	sensor->current_mode =
2972 		&ov5640_mode_data[OV5640_MODE_VGA_640_480];
2973 	sensor->last_mode = sensor->current_mode;
2974 
2975 	sensor->ae_target = 52;
2976 
2977 	/* optional indication of physical rotation of sensor */
2978 	ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
2979 				       &rotation);
2980 	if (!ret) {
2981 		switch (rotation) {
2982 		case 180:
2983 			sensor->upside_down = true;
2984 			/* fall through */
2985 		case 0:
2986 			break;
2987 		default:
2988 			dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
2989 				 rotation);
2990 		}
2991 	}
2992 
2993 	endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
2994 						  NULL);
2995 	if (!endpoint) {
2996 		dev_err(dev, "endpoint node not found\n");
2997 		return -EINVAL;
2998 	}
2999 
3000 	ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3001 	fwnode_handle_put(endpoint);
3002 	if (ret) {
3003 		dev_err(dev, "Could not parse endpoint\n");
3004 		return ret;
3005 	}
3006 
3007 	/* get system clock (xclk) */
3008 	sensor->xclk = devm_clk_get(dev, "xclk");
3009 	if (IS_ERR(sensor->xclk)) {
3010 		dev_err(dev, "failed to get xclk\n");
3011 		return PTR_ERR(sensor->xclk);
3012 	}
3013 
3014 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
3015 	if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3016 	    sensor->xclk_freq > OV5640_XCLK_MAX) {
3017 		dev_err(dev, "xclk frequency out of range: %d Hz\n",
3018 			sensor->xclk_freq);
3019 		return -EINVAL;
3020 	}
3021 
3022 	/* request optional power down pin */
3023 	sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3024 						    GPIOD_OUT_HIGH);
3025 	if (IS_ERR(sensor->pwdn_gpio))
3026 		return PTR_ERR(sensor->pwdn_gpio);
3027 
3028 	/* request optional reset pin */
3029 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3030 						     GPIOD_OUT_HIGH);
3031 	if (IS_ERR(sensor->reset_gpio))
3032 		return PTR_ERR(sensor->reset_gpio);
3033 
3034 	v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3035 
3036 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3037 			    V4L2_SUBDEV_FL_HAS_EVENTS;
3038 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3039 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3040 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3041 	if (ret)
3042 		return ret;
3043 
3044 	ret = ov5640_get_regulators(sensor);
3045 	if (ret)
3046 		return ret;
3047 
3048 	mutex_init(&sensor->lock);
3049 
3050 	ret = ov5640_check_chip_id(sensor);
3051 	if (ret)
3052 		goto entity_cleanup;
3053 
3054 	ret = ov5640_init_controls(sensor);
3055 	if (ret)
3056 		goto entity_cleanup;
3057 
3058 	ret = v4l2_async_register_subdev(&sensor->sd);
3059 	if (ret)
3060 		goto free_ctrls;
3061 
3062 	return 0;
3063 
3064 free_ctrls:
3065 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3066 entity_cleanup:
3067 	mutex_destroy(&sensor->lock);
3068 	media_entity_cleanup(&sensor->sd.entity);
3069 	return ret;
3070 }
3071 
3072 static int ov5640_remove(struct i2c_client *client)
3073 {
3074 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3075 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
3076 
3077 	v4l2_async_unregister_subdev(&sensor->sd);
3078 	mutex_destroy(&sensor->lock);
3079 	media_entity_cleanup(&sensor->sd.entity);
3080 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3081 
3082 	return 0;
3083 }
3084 
3085 static const struct i2c_device_id ov5640_id[] = {
3086 	{"ov5640", 0},
3087 	{},
3088 };
3089 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3090 
3091 static const struct of_device_id ov5640_dt_ids[] = {
3092 	{ .compatible = "ovti,ov5640" },
3093 	{ /* sentinel */ }
3094 };
3095 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3096 
3097 static struct i2c_driver ov5640_i2c_driver = {
3098 	.driver = {
3099 		.name  = "ov5640",
3100 		.of_match_table	= ov5640_dt_ids,
3101 	},
3102 	.id_table = ov5640_id,
3103 	.probe    = ov5640_probe,
3104 	.remove   = ov5640_remove,
3105 };
3106 
3107 module_i2c_driver(ov5640_i2c_driver);
3108 
3109 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3110 MODULE_LICENSE("GPL");
3111