xref: /openbmc/linux/drivers/media/i2c/ov5640.c (revision 14474950)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright (C) 2014-2017 Mentor Graphics Inc.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/clkdev.h>
10 #include <linux/ctype.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <media/v4l2-async.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-event.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-subdev.h>
27 
28 /* min/typical/max system clock (xclk) frequencies */
29 #define OV5640_XCLK_MIN  6000000
30 #define OV5640_XCLK_MAX 54000000
31 
32 #define OV5640_DEFAULT_SLAVE_ID 0x3c
33 
34 #define OV5640_REG_SYS_RESET02		0x3002
35 #define OV5640_REG_SYS_CLOCK_ENABLE02	0x3006
36 #define OV5640_REG_SYS_CTRL0		0x3008
37 #define OV5640_REG_CHIP_ID		0x300a
38 #define OV5640_REG_IO_MIPI_CTRL00	0x300e
39 #define OV5640_REG_PAD_OUTPUT_ENABLE01	0x3017
40 #define OV5640_REG_PAD_OUTPUT_ENABLE02	0x3018
41 #define OV5640_REG_PAD_OUTPUT00		0x3019
42 #define OV5640_REG_SYSTEM_CONTROL1	0x302e
43 #define OV5640_REG_SC_PLL_CTRL0		0x3034
44 #define OV5640_REG_SC_PLL_CTRL1		0x3035
45 #define OV5640_REG_SC_PLL_CTRL2		0x3036
46 #define OV5640_REG_SC_PLL_CTRL3		0x3037
47 #define OV5640_REG_SLAVE_ID		0x3100
48 #define OV5640_REG_SCCB_SYS_CTRL1	0x3103
49 #define OV5640_REG_SYS_ROOT_DIVIDER	0x3108
50 #define OV5640_REG_AWB_R_GAIN		0x3400
51 #define OV5640_REG_AWB_G_GAIN		0x3402
52 #define OV5640_REG_AWB_B_GAIN		0x3404
53 #define OV5640_REG_AWB_MANUAL_CTRL	0x3406
54 #define OV5640_REG_AEC_PK_EXPOSURE_HI	0x3500
55 #define OV5640_REG_AEC_PK_EXPOSURE_MED	0x3501
56 #define OV5640_REG_AEC_PK_EXPOSURE_LO	0x3502
57 #define OV5640_REG_AEC_PK_MANUAL	0x3503
58 #define OV5640_REG_AEC_PK_REAL_GAIN	0x350a
59 #define OV5640_REG_AEC_PK_VTS		0x350c
60 #define OV5640_REG_TIMING_DVPHO		0x3808
61 #define OV5640_REG_TIMING_DVPVO		0x380a
62 #define OV5640_REG_TIMING_HTS		0x380c
63 #define OV5640_REG_TIMING_VTS		0x380e
64 #define OV5640_REG_TIMING_TC_REG20	0x3820
65 #define OV5640_REG_TIMING_TC_REG21	0x3821
66 #define OV5640_REG_AEC_CTRL00		0x3a00
67 #define OV5640_REG_AEC_B50_STEP		0x3a08
68 #define OV5640_REG_AEC_B60_STEP		0x3a0a
69 #define OV5640_REG_AEC_CTRL0D		0x3a0d
70 #define OV5640_REG_AEC_CTRL0E		0x3a0e
71 #define OV5640_REG_AEC_CTRL0F		0x3a0f
72 #define OV5640_REG_AEC_CTRL10		0x3a10
73 #define OV5640_REG_AEC_CTRL11		0x3a11
74 #define OV5640_REG_AEC_CTRL1B		0x3a1b
75 #define OV5640_REG_AEC_CTRL1E		0x3a1e
76 #define OV5640_REG_AEC_CTRL1F		0x3a1f
77 #define OV5640_REG_HZ5060_CTRL00	0x3c00
78 #define OV5640_REG_HZ5060_CTRL01	0x3c01
79 #define OV5640_REG_SIGMADELTA_CTRL0C	0x3c0c
80 #define OV5640_REG_FRAME_CTRL01		0x4202
81 #define OV5640_REG_FORMAT_CONTROL00	0x4300
82 #define OV5640_REG_VFIFO_HSIZE		0x4602
83 #define OV5640_REG_VFIFO_VSIZE		0x4604
84 #define OV5640_REG_JPG_MODE_SELECT	0x4713
85 #define OV5640_REG_POLARITY_CTRL00	0x4740
86 #define OV5640_REG_MIPI_CTRL00		0x4800
87 #define OV5640_REG_DEBUG_MODE		0x4814
88 #define OV5640_REG_ISP_FORMAT_MUX_CTRL	0x501f
89 #define OV5640_REG_PRE_ISP_TEST_SET1	0x503d
90 #define OV5640_REG_SDE_CTRL0		0x5580
91 #define OV5640_REG_SDE_CTRL1		0x5581
92 #define OV5640_REG_SDE_CTRL3		0x5583
93 #define OV5640_REG_SDE_CTRL4		0x5584
94 #define OV5640_REG_SDE_CTRL5		0x5585
95 #define OV5640_REG_AVG_READOUT		0x56a1
96 
97 enum ov5640_mode_id {
98 	OV5640_MODE_QCIF_176_144 = 0,
99 	OV5640_MODE_QVGA_320_240,
100 	OV5640_MODE_VGA_640_480,
101 	OV5640_MODE_NTSC_720_480,
102 	OV5640_MODE_PAL_720_576,
103 	OV5640_MODE_XGA_1024_768,
104 	OV5640_MODE_720P_1280_720,
105 	OV5640_MODE_1080P_1920_1080,
106 	OV5640_MODE_QSXGA_2592_1944,
107 	OV5640_NUM_MODES,
108 };
109 
110 enum ov5640_frame_rate {
111 	OV5640_15_FPS = 0,
112 	OV5640_30_FPS,
113 	OV5640_60_FPS,
114 	OV5640_NUM_FRAMERATES,
115 };
116 
117 enum ov5640_format_mux {
118 	OV5640_FMT_MUX_YUV422 = 0,
119 	OV5640_FMT_MUX_RGB,
120 	OV5640_FMT_MUX_DITHER,
121 	OV5640_FMT_MUX_RAW_DPC,
122 	OV5640_FMT_MUX_SNR_RAW,
123 	OV5640_FMT_MUX_RAW_CIP,
124 };
125 
126 struct ov5640_pixfmt {
127 	u32 code;
128 	u32 colorspace;
129 };
130 
131 static const struct ov5640_pixfmt ov5640_formats[] = {
132 	{ MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
133 	{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
134 	{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
135 	{ MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
136 	{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
137 	{ MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
138 	{ MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
139 	{ MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
140 	{ MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
141 };
142 
143 /*
144  * FIXME: remove this when a subdev API becomes available
145  * to set the MIPI CSI-2 virtual channel.
146  */
147 static unsigned int virtual_channel;
148 module_param(virtual_channel, uint, 0444);
149 MODULE_PARM_DESC(virtual_channel,
150 		 "MIPI CSI-2 virtual channel (0..3), default 0");
151 
152 static const int ov5640_framerates[] = {
153 	[OV5640_15_FPS] = 15,
154 	[OV5640_30_FPS] = 30,
155 	[OV5640_60_FPS] = 60,
156 };
157 
158 /* regulator supplies */
159 static const char * const ov5640_supply_name[] = {
160 	"DOVDD", /* Digital I/O (1.8V) supply */
161 	"AVDD",  /* Analog (2.8V) supply */
162 	"DVDD",  /* Digital Core (1.5V) supply */
163 };
164 
165 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
166 
167 /*
168  * Image size under 1280 * 960 are SUBSAMPLING
169  * Image size upper 1280 * 960 are SCALING
170  */
171 enum ov5640_downsize_mode {
172 	SUBSAMPLING,
173 	SCALING,
174 };
175 
176 struct reg_value {
177 	u16 reg_addr;
178 	u8 val;
179 	u8 mask;
180 	u32 delay_ms;
181 };
182 
183 struct ov5640_mode_info {
184 	enum ov5640_mode_id id;
185 	enum ov5640_downsize_mode dn_mode;
186 	u32 hact;
187 	u32 htot;
188 	u32 vact;
189 	u32 vtot;
190 	const struct reg_value *reg_data;
191 	u32 reg_data_size;
192 	u32 max_fps;
193 };
194 
195 struct ov5640_ctrls {
196 	struct v4l2_ctrl_handler handler;
197 	struct v4l2_ctrl *pixel_rate;
198 	struct {
199 		struct v4l2_ctrl *auto_exp;
200 		struct v4l2_ctrl *exposure;
201 	};
202 	struct {
203 		struct v4l2_ctrl *auto_wb;
204 		struct v4l2_ctrl *blue_balance;
205 		struct v4l2_ctrl *red_balance;
206 	};
207 	struct {
208 		struct v4l2_ctrl *auto_gain;
209 		struct v4l2_ctrl *gain;
210 	};
211 	struct v4l2_ctrl *brightness;
212 	struct v4l2_ctrl *light_freq;
213 	struct v4l2_ctrl *saturation;
214 	struct v4l2_ctrl *contrast;
215 	struct v4l2_ctrl *hue;
216 	struct v4l2_ctrl *test_pattern;
217 	struct v4l2_ctrl *hflip;
218 	struct v4l2_ctrl *vflip;
219 };
220 
221 struct ov5640_dev {
222 	struct i2c_client *i2c_client;
223 	struct v4l2_subdev sd;
224 	struct media_pad pad;
225 	struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
226 	struct clk *xclk; /* system clock to OV5640 */
227 	u32 xclk_freq;
228 
229 	struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
230 	struct gpio_desc *reset_gpio;
231 	struct gpio_desc *pwdn_gpio;
232 	bool   upside_down;
233 
234 	/* lock to protect all members below */
235 	struct mutex lock;
236 
237 	int power_count;
238 
239 	struct v4l2_mbus_framefmt fmt;
240 	bool pending_fmt_change;
241 
242 	const struct ov5640_mode_info *current_mode;
243 	const struct ov5640_mode_info *last_mode;
244 	enum ov5640_frame_rate current_fr;
245 	struct v4l2_fract frame_interval;
246 
247 	struct ov5640_ctrls ctrls;
248 
249 	u32 prev_sysclk, prev_hts;
250 	u32 ae_low, ae_high, ae_target;
251 
252 	bool pending_mode_change;
253 	bool streaming;
254 };
255 
256 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
257 {
258 	return container_of(sd, struct ov5640_dev, sd);
259 }
260 
261 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
262 {
263 	return &container_of(ctrl->handler, struct ov5640_dev,
264 			     ctrls.handler)->sd;
265 }
266 
267 /*
268  * FIXME: all of these register tables are likely filled with
269  * entries that set the register to their power-on default values,
270  * and which are otherwise not touched by this driver. Those entries
271  * should be identified and removed to speed register load time
272  * over i2c.
273  */
274 /* YUV422 UYVY VGA@30fps */
275 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
276 	{0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
277 	{0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0},
278 	{0x3630, 0x36, 0, 0},
279 	{0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
280 	{0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
281 	{0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
282 	{0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
283 	{0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
284 	{0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
285 	{0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
286 	{0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
287 	{0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
288 	{0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
289 	{0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
290 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
291 	{0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
292 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
293 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
294 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
295 	{0x3810, 0x00, 0, 0},
296 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
297 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
298 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
299 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
300 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
301 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
302 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
303 	{0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
304 	{0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
305 	{0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
306 	{0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
307 	{0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
308 	{0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
309 	{0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
310 	{0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
311 	{0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
312 	{0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
313 	{0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
314 	{0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
315 	{0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
316 	{0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
317 	{0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
318 	{0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
319 	{0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
320 	{0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
321 	{0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
322 	{0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
323 	{0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
324 	{0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
325 	{0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
326 	{0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
327 	{0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
328 	{0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
329 	{0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
330 	{0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
331 	{0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
332 	{0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
333 	{0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
334 	{0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
335 	{0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
336 	{0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
337 	{0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
338 	{0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
339 	{0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
340 	{0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
341 	{0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
342 	{0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
343 	{0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
344 	{0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
345 	{0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
346 	{0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
347 	{0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
348 	{0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
349 	{0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
350 	{0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
351 	{0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
352 	{0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
353 	{0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
354 	{0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
355 	{0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
356 	{0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
357 	{0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
358 };
359 
360 static const struct reg_value ov5640_setting_VGA_640_480[] = {
361 	{0x3c07, 0x08, 0, 0},
362 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
363 	{0x3814, 0x31, 0, 0},
364 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
365 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
366 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
367 	{0x3810, 0x00, 0, 0},
368 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
369 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
370 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
371 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
372 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
373 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
374 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
375 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
376 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
377 };
378 
379 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
380 	{0x3c07, 0x08, 0, 0},
381 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
382 	{0x3814, 0x31, 0, 0},
383 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
384 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
385 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
386 	{0x3810, 0x00, 0, 0},
387 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
388 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
389 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
390 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
391 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
392 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
393 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
394 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
395 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
396 };
397 
398 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
399 	{0x3c07, 0x08, 0, 0},
400 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
401 	{0x3814, 0x31, 0, 0},
402 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
403 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
404 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
405 	{0x3810, 0x00, 0, 0},
406 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
407 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
408 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
409 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
410 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
411 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
412 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
413 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
414 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
415 };
416 
417 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
418 	{0x3c07, 0x08, 0, 0},
419 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
420 	{0x3814, 0x31, 0, 0},
421 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
422 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
423 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
424 	{0x3810, 0x00, 0, 0},
425 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
426 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
427 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
428 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
429 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
430 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
431 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
432 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
433 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
434 };
435 
436 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
437 	{0x3c07, 0x08, 0, 0},
438 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
439 	{0x3814, 0x31, 0, 0},
440 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
441 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
442 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
443 	{0x3810, 0x00, 0, 0},
444 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
445 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
446 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
447 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
448 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
449 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
450 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
451 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
452 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
453 };
454 
455 static const struct reg_value ov5640_setting_PAL_720_576[] = {
456 	{0x3c07, 0x08, 0, 0},
457 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
458 	{0x3814, 0x31, 0, 0},
459 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
460 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
461 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
462 	{0x3810, 0x00, 0, 0},
463 	{0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
464 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
465 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
466 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
467 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
468 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
469 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
470 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
471 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
472 };
473 
474 static const struct reg_value ov5640_setting_720P_1280_720[] = {
475 	{0x3c07, 0x07, 0, 0},
476 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
477 	{0x3814, 0x31, 0, 0},
478 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
479 	{0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
480 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
481 	{0x3810, 0x00, 0, 0},
482 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
483 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
484 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
485 	{0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
486 	{0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
487 	{0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
488 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
489 	{0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
490 	{0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
491 };
492 
493 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
494 	{0x3c07, 0x08, 0, 0},
495 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
496 	{0x3814, 0x11, 0, 0},
497 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
498 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
499 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
500 	{0x3810, 0x00, 0, 0},
501 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
502 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
503 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
504 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
505 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
506 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
507 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
508 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
509 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
510 	{0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
511 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
512 	{0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
513 	{0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
514 	{0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
515 	{0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
516 	{0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
517 	{0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
518 	{0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
519 	{0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
520 	{0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
521 	{0x4005, 0x1a, 0, 0},
522 };
523 
524 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
525 	{0x3c07, 0x08, 0, 0},
526 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
527 	{0x3814, 0x11, 0, 0},
528 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
529 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
530 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
531 	{0x3810, 0x00, 0, 0},
532 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
533 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
534 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
535 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
536 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
537 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
538 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
539 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
540 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
541 };
542 
543 /* power-on sensor init reg table */
544 static const struct ov5640_mode_info ov5640_mode_init_data = {
545 	0, SUBSAMPLING, 640, 1896, 480, 984,
546 	ov5640_init_setting_30fps_VGA,
547 	ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
548 	OV5640_30_FPS,
549 };
550 
551 static const struct ov5640_mode_info
552 ov5640_mode_data[OV5640_NUM_MODES] = {
553 	{OV5640_MODE_QCIF_176_144, SUBSAMPLING,
554 	 176, 1896, 144, 984,
555 	 ov5640_setting_QCIF_176_144,
556 	 ARRAY_SIZE(ov5640_setting_QCIF_176_144),
557 	 OV5640_30_FPS},
558 	{OV5640_MODE_QVGA_320_240, SUBSAMPLING,
559 	 320, 1896, 240, 984,
560 	 ov5640_setting_QVGA_320_240,
561 	 ARRAY_SIZE(ov5640_setting_QVGA_320_240),
562 	 OV5640_30_FPS},
563 	{OV5640_MODE_VGA_640_480, SUBSAMPLING,
564 	 640, 1896, 480, 1080,
565 	 ov5640_setting_VGA_640_480,
566 	 ARRAY_SIZE(ov5640_setting_VGA_640_480),
567 	 OV5640_60_FPS},
568 	{OV5640_MODE_NTSC_720_480, SUBSAMPLING,
569 	 720, 1896, 480, 984,
570 	 ov5640_setting_NTSC_720_480,
571 	 ARRAY_SIZE(ov5640_setting_NTSC_720_480),
572 	OV5640_30_FPS},
573 	{OV5640_MODE_PAL_720_576, SUBSAMPLING,
574 	 720, 1896, 576, 984,
575 	 ov5640_setting_PAL_720_576,
576 	 ARRAY_SIZE(ov5640_setting_PAL_720_576),
577 	 OV5640_30_FPS},
578 	{OV5640_MODE_XGA_1024_768, SUBSAMPLING,
579 	 1024, 1896, 768, 1080,
580 	 ov5640_setting_XGA_1024_768,
581 	 ARRAY_SIZE(ov5640_setting_XGA_1024_768),
582 	 OV5640_30_FPS},
583 	{OV5640_MODE_720P_1280_720, SUBSAMPLING,
584 	 1280, 1892, 720, 740,
585 	 ov5640_setting_720P_1280_720,
586 	 ARRAY_SIZE(ov5640_setting_720P_1280_720),
587 	 OV5640_30_FPS},
588 	{OV5640_MODE_1080P_1920_1080, SCALING,
589 	 1920, 2500, 1080, 1120,
590 	 ov5640_setting_1080P_1920_1080,
591 	 ARRAY_SIZE(ov5640_setting_1080P_1920_1080),
592 	 OV5640_30_FPS},
593 	{OV5640_MODE_QSXGA_2592_1944, SCALING,
594 	 2592, 2844, 1944, 1968,
595 	 ov5640_setting_QSXGA_2592_1944,
596 	 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944),
597 	 OV5640_15_FPS},
598 };
599 
600 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
601 {
602 	struct i2c_client *client = sensor->i2c_client;
603 	struct i2c_msg msg;
604 	u8 buf[3];
605 	int ret;
606 
607 	if (client->addr == OV5640_DEFAULT_SLAVE_ID)
608 		return 0;
609 
610 	buf[0] = OV5640_REG_SLAVE_ID >> 8;
611 	buf[1] = OV5640_REG_SLAVE_ID & 0xff;
612 	buf[2] = client->addr << 1;
613 
614 	msg.addr = OV5640_DEFAULT_SLAVE_ID;
615 	msg.flags = 0;
616 	msg.buf = buf;
617 	msg.len = sizeof(buf);
618 
619 	ret = i2c_transfer(client->adapter, &msg, 1);
620 	if (ret < 0) {
621 		dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
622 		return ret;
623 	}
624 
625 	return 0;
626 }
627 
628 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
629 {
630 	struct i2c_client *client = sensor->i2c_client;
631 	struct i2c_msg msg;
632 	u8 buf[3];
633 	int ret;
634 
635 	buf[0] = reg >> 8;
636 	buf[1] = reg & 0xff;
637 	buf[2] = val;
638 
639 	msg.addr = client->addr;
640 	msg.flags = client->flags;
641 	msg.buf = buf;
642 	msg.len = sizeof(buf);
643 
644 	ret = i2c_transfer(client->adapter, &msg, 1);
645 	if (ret < 0) {
646 		dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
647 			__func__, reg, val);
648 		return ret;
649 	}
650 
651 	return 0;
652 }
653 
654 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
655 {
656 	struct i2c_client *client = sensor->i2c_client;
657 	struct i2c_msg msg[2];
658 	u8 buf[2];
659 	int ret;
660 
661 	buf[0] = reg >> 8;
662 	buf[1] = reg & 0xff;
663 
664 	msg[0].addr = client->addr;
665 	msg[0].flags = client->flags;
666 	msg[0].buf = buf;
667 	msg[0].len = sizeof(buf);
668 
669 	msg[1].addr = client->addr;
670 	msg[1].flags = client->flags | I2C_M_RD;
671 	msg[1].buf = buf;
672 	msg[1].len = 1;
673 
674 	ret = i2c_transfer(client->adapter, msg, 2);
675 	if (ret < 0) {
676 		dev_err(&client->dev, "%s: error: reg=%x\n",
677 			__func__, reg);
678 		return ret;
679 	}
680 
681 	*val = buf[0];
682 	return 0;
683 }
684 
685 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
686 {
687 	u8 hi, lo;
688 	int ret;
689 
690 	ret = ov5640_read_reg(sensor, reg, &hi);
691 	if (ret)
692 		return ret;
693 	ret = ov5640_read_reg(sensor, reg + 1, &lo);
694 	if (ret)
695 		return ret;
696 
697 	*val = ((u16)hi << 8) | (u16)lo;
698 	return 0;
699 }
700 
701 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
702 {
703 	int ret;
704 
705 	ret = ov5640_write_reg(sensor, reg, val >> 8);
706 	if (ret)
707 		return ret;
708 
709 	return ov5640_write_reg(sensor, reg + 1, val & 0xff);
710 }
711 
712 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
713 			  u8 mask, u8 val)
714 {
715 	u8 readval;
716 	int ret;
717 
718 	ret = ov5640_read_reg(sensor, reg, &readval);
719 	if (ret)
720 		return ret;
721 
722 	readval &= ~mask;
723 	val &= mask;
724 	val |= readval;
725 
726 	return ov5640_write_reg(sensor, reg, val);
727 }
728 
729 /*
730  * After trying the various combinations, reading various
731  * documentations spread around the net, and from the various
732  * feedback, the clock tree is probably as follows:
733  *
734  *   +--------------+
735  *   |  Ext. Clock  |
736  *   +-+------------+
737  *     |  +----------+
738  *     +->|   PLL1   | - reg 0x3036, for the multiplier
739  *        +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
740  *          |  +--------------+
741  *          +->| System Clock |  - reg 0x3035, bits 4-7
742  *             +-+------------+
743  *               |  +--------------+
744  *               +->| MIPI Divider | - reg 0x3035, bits 0-3
745  *               |  +-+------------+
746  *               |    +----------------> MIPI SCLK
747  *               |    +  +-----+
748  *               |    +->| / 2 |-------> MIPI BIT CLK
749  *               |       +-----+
750  *               |  +--------------+
751  *               +->| PLL Root Div | - reg 0x3037, bit 4
752  *                  +-+------------+
753  *                    |  +---------+
754  *                    +->| Bit Div | - reg 0x3035, bits 0-3
755  *                       +-+-------+
756  *                         |  +-------------+
757  *                         +->| SCLK Div    | - reg 0x3108, bits 0-1
758  *                         |  +-+-----------+
759  *                         |    +---------------> SCLK
760  *                         |  +-------------+
761  *                         +->| SCLK 2X Div | - reg 0x3108, bits 2-3
762  *                         |  +-+-----------+
763  *                         |    +---------------> SCLK 2X
764  *                         |  +-------------+
765  *                         +->| PCLK Div    | - reg 0x3108, bits 4-5
766  *                            ++------------+
767  *                             +  +-----------+
768  *                             +->|   P_DIV   | - reg 0x3035, bits 0-3
769  *                                +-----+-----+
770  *                                       +------------> PCLK
771  *
772  * This is deviating from the datasheet at least for the register
773  * 0x3108, since it's said here that the PCLK would be clocked from
774  * the PLL.
775  *
776  * There seems to be also (unverified) constraints:
777  *  - the PLL pre-divider output rate should be in the 4-27MHz range
778  *  - the PLL multiplier output rate should be in the 500-1000MHz range
779  *  - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
780  *
781  * In the two latter cases, these constraints are met since our
782  * factors are hardcoded. If we were to change that, we would need to
783  * take this into account. The only varying parts are the PLL
784  * multiplier and the system clock divider, which are shared between
785  * all these clocks so won't cause any issue.
786  */
787 
788 /*
789  * This is supposed to be ranging from 1 to 8, but the value is always
790  * set to 3 in the vendor kernels.
791  */
792 #define OV5640_PLL_PREDIV	3
793 
794 #define OV5640_PLL_MULT_MIN	4
795 #define OV5640_PLL_MULT_MAX	252
796 
797 /*
798  * This is supposed to be ranging from 1 to 16, but the value is
799  * always set to either 1 or 2 in the vendor kernels.
800  */
801 #define OV5640_SYSDIV_MIN	1
802 #define OV5640_SYSDIV_MAX	16
803 
804 /*
805  * Hardcode these values for scaler and non-scaler modes.
806  * FIXME: to be re-calcualted for 1 data lanes setups
807  */
808 #define OV5640_MIPI_DIV_PCLK	2
809 #define OV5640_MIPI_DIV_SCLK	1
810 
811 /*
812  * This is supposed to be ranging from 1 to 2, but the value is always
813  * set to 2 in the vendor kernels.
814  */
815 #define OV5640_PLL_ROOT_DIV			2
816 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2		BIT(4)
817 
818 /*
819  * We only supports 8-bit formats at the moment
820  */
821 #define OV5640_BIT_DIV				2
822 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT		0x08
823 
824 /*
825  * This is supposed to be ranging from 1 to 8, but the value is always
826  * set to 2 in the vendor kernels.
827  */
828 #define OV5640_SCLK_ROOT_DIV	2
829 
830 /*
831  * This is hardcoded so that the consistency is maintained between SCLK and
832  * SCLK 2x.
833  */
834 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
835 
836 /*
837  * This is supposed to be ranging from 1 to 8, but the value is always
838  * set to 1 in the vendor kernels.
839  */
840 #define OV5640_PCLK_ROOT_DIV			1
841 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS	0x00
842 
843 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
844 					    u8 pll_prediv, u8 pll_mult,
845 					    u8 sysdiv)
846 {
847 	unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
848 
849 	/* PLL1 output cannot exceed 1GHz. */
850 	if (sysclk / 1000000 > 1000)
851 		return 0;
852 
853 	return sysclk / sysdiv;
854 }
855 
856 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
857 					 unsigned long rate,
858 					 u8 *pll_prediv, u8 *pll_mult,
859 					 u8 *sysdiv)
860 {
861 	unsigned long best = ~0;
862 	u8 best_sysdiv = 1, best_mult = 1;
863 	u8 _sysdiv, _pll_mult;
864 
865 	for (_sysdiv = OV5640_SYSDIV_MIN;
866 	     _sysdiv <= OV5640_SYSDIV_MAX;
867 	     _sysdiv++) {
868 		for (_pll_mult = OV5640_PLL_MULT_MIN;
869 		     _pll_mult <= OV5640_PLL_MULT_MAX;
870 		     _pll_mult++) {
871 			unsigned long _rate;
872 
873 			/*
874 			 * The PLL multiplier cannot be odd if above
875 			 * 127.
876 			 */
877 			if (_pll_mult > 127 && (_pll_mult % 2))
878 				continue;
879 
880 			_rate = ov5640_compute_sys_clk(sensor,
881 						       OV5640_PLL_PREDIV,
882 						       _pll_mult, _sysdiv);
883 
884 			/*
885 			 * We have reached the maximum allowed PLL1 output,
886 			 * increase sysdiv.
887 			 */
888 			if (!_rate)
889 				break;
890 
891 			/*
892 			 * Prefer rates above the expected clock rate than
893 			 * below, even if that means being less precise.
894 			 */
895 			if (_rate < rate)
896 				continue;
897 
898 			if (abs(rate - _rate) < abs(rate - best)) {
899 				best = _rate;
900 				best_sysdiv = _sysdiv;
901 				best_mult = _pll_mult;
902 			}
903 
904 			if (_rate == rate)
905 				goto out;
906 		}
907 	}
908 
909 out:
910 	*sysdiv = best_sysdiv;
911 	*pll_prediv = OV5640_PLL_PREDIV;
912 	*pll_mult = best_mult;
913 
914 	return best;
915 }
916 
917 /*
918  * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
919  *			    for the MIPI CSI-2 output.
920  *
921  * @rate: The requested bandwidth per lane in bytes per second.
922  *	  'Bandwidth Per Lane' is calculated as:
923  *	  bpl = HTOT * VTOT * FPS * bpp / num_lanes;
924  *
925  * This function use the requested bandwidth to calculate:
926  * - sample_rate = bpl / (bpp / num_lanes);
927  *	         = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
928  *
929  * - mipi_sclk   = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
930  *
931  * with these fixed parameters:
932  *	PLL_RDIV	= 2;
933  *	BIT_DIVIDER	= 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
934  *	PCLK_DIV	= 1;
935  *
936  * The MIPI clock generation differs for modes that use the scaler and modes
937  * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
938  * BIT CLk, and thus:
939  *
940  * - mipi_sclk = bpl / MIPI_DIV / 2;
941  *   MIPI_DIV = 1;
942  *
943  * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
944  * from the pixel clock, and thus:
945  *
946  * - sample_rate = bpl / (bpp / num_lanes);
947  *	         = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
948  *		 = bpl / (4 * MIPI_DIV / num_lanes);
949  * - MIPI_DIV	 = bpp / (4 * num_lanes);
950  *
951  * FIXME: this have been tested with 16bpp and 2 lanes setup only.
952  * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
953  * above formula for setups with 1 lane or image formats with different bpp.
954  *
955  * FIXME: this deviates from the sensor manual documentation which is quite
956  * thin on the MIPI clock tree generation part.
957  */
958 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
959 				unsigned long rate)
960 {
961 	const struct ov5640_mode_info *mode = sensor->current_mode;
962 	u8 prediv, mult, sysdiv;
963 	u8 mipi_div;
964 	int ret;
965 
966 	/*
967 	 * 1280x720 is reported to use 'SUBSAMPLING' only,
968 	 * but according to the sensor manual it goes through the
969 	 * scaler before subsampling.
970 	 */
971 	if (mode->dn_mode == SCALING ||
972 	   (mode->id == OV5640_MODE_720P_1280_720))
973 		mipi_div = OV5640_MIPI_DIV_SCLK;
974 	else
975 		mipi_div = OV5640_MIPI_DIV_PCLK;
976 
977 	ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
978 
979 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
980 			     0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
981 
982 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
983 			     0xff, sysdiv << 4 | mipi_div);
984 	if (ret)
985 		return ret;
986 
987 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
988 	if (ret)
989 		return ret;
990 
991 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
992 			     0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
993 	if (ret)
994 		return ret;
995 
996 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
997 			      0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
998 }
999 
1000 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
1001 				      unsigned long rate,
1002 				      u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
1003 				      u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
1004 {
1005 	unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
1006 				OV5640_PCLK_ROOT_DIV;
1007 
1008 	_rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
1009 				    sysdiv);
1010 	*pll_rdiv = OV5640_PLL_ROOT_DIV;
1011 	*bit_div = OV5640_BIT_DIV;
1012 	*pclk_div = OV5640_PCLK_ROOT_DIV;
1013 
1014 	return _rate / *pll_rdiv / *bit_div / *pclk_div;
1015 }
1016 
1017 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1018 {
1019 	u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1020 	int ret;
1021 
1022 	ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1023 			 &bit_div, &pclk_div);
1024 
1025 	if (bit_div == 2)
1026 		bit_div = 8;
1027 
1028 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1029 			     0x0f, bit_div);
1030 	if (ret)
1031 		return ret;
1032 
1033 	/*
1034 	 * We need to set sysdiv according to the clock, and to clear
1035 	 * the MIPI divider.
1036 	 */
1037 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1038 			     0xff, sysdiv << 4);
1039 	if (ret)
1040 		return ret;
1041 
1042 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1043 			     0xff, mult);
1044 	if (ret)
1045 		return ret;
1046 
1047 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1048 			     0x1f, prediv | ((pll_rdiv - 1) << 4));
1049 	if (ret)
1050 		return ret;
1051 
1052 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1053 			      (ilog2(pclk_div) << 4));
1054 }
1055 
1056 /* set JPEG framing sizes */
1057 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1058 				   const struct ov5640_mode_info *mode)
1059 {
1060 	int ret;
1061 
1062 	/*
1063 	 * compression mode 3 timing
1064 	 *
1065 	 * Data is transmitted with programmable width (VFIFO_HSIZE).
1066 	 * No padding done. Last line may have less data. Varying
1067 	 * number of lines per frame, depending on amount of data.
1068 	 */
1069 	ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1070 	if (ret < 0)
1071 		return ret;
1072 
1073 	ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1074 	if (ret < 0)
1075 		return ret;
1076 
1077 	return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1078 }
1079 
1080 /* download ov5640 settings to sensor through i2c */
1081 static int ov5640_set_timings(struct ov5640_dev *sensor,
1082 			      const struct ov5640_mode_info *mode)
1083 {
1084 	int ret;
1085 
1086 	if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1087 		ret = ov5640_set_jpeg_timings(sensor, mode);
1088 		if (ret < 0)
1089 			return ret;
1090 	}
1091 
1092 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1093 	if (ret < 0)
1094 		return ret;
1095 
1096 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1097 	if (ret < 0)
1098 		return ret;
1099 
1100 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1101 	if (ret < 0)
1102 		return ret;
1103 
1104 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1105 }
1106 
1107 static int ov5640_load_regs(struct ov5640_dev *sensor,
1108 			    const struct ov5640_mode_info *mode)
1109 {
1110 	const struct reg_value *regs = mode->reg_data;
1111 	unsigned int i;
1112 	u32 delay_ms;
1113 	u16 reg_addr;
1114 	u8 mask, val;
1115 	int ret = 0;
1116 
1117 	for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1118 		delay_ms = regs->delay_ms;
1119 		reg_addr = regs->reg_addr;
1120 		val = regs->val;
1121 		mask = regs->mask;
1122 
1123 		if (mask)
1124 			ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1125 		else
1126 			ret = ov5640_write_reg(sensor, reg_addr, val);
1127 		if (ret)
1128 			break;
1129 
1130 		if (delay_ms)
1131 			usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1132 	}
1133 
1134 	return ov5640_set_timings(sensor, mode);
1135 }
1136 
1137 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1138 {
1139 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1140 			      BIT(0), on ? 0 : BIT(0));
1141 }
1142 
1143 /* read exposure, in number of line periods */
1144 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1145 {
1146 	int exp, ret;
1147 	u8 temp;
1148 
1149 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1150 	if (ret)
1151 		return ret;
1152 	exp = ((int)temp & 0x0f) << 16;
1153 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1154 	if (ret)
1155 		return ret;
1156 	exp |= ((int)temp << 8);
1157 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1158 	if (ret)
1159 		return ret;
1160 	exp |= (int)temp;
1161 
1162 	return exp >> 4;
1163 }
1164 
1165 /* write exposure, given number of line periods */
1166 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1167 {
1168 	int ret;
1169 
1170 	exposure <<= 4;
1171 
1172 	ret = ov5640_write_reg(sensor,
1173 			       OV5640_REG_AEC_PK_EXPOSURE_LO,
1174 			       exposure & 0xff);
1175 	if (ret)
1176 		return ret;
1177 	ret = ov5640_write_reg(sensor,
1178 			       OV5640_REG_AEC_PK_EXPOSURE_MED,
1179 			       (exposure >> 8) & 0xff);
1180 	if (ret)
1181 		return ret;
1182 	return ov5640_write_reg(sensor,
1183 				OV5640_REG_AEC_PK_EXPOSURE_HI,
1184 				(exposure >> 16) & 0x0f);
1185 }
1186 
1187 static int ov5640_get_gain(struct ov5640_dev *sensor)
1188 {
1189 	u16 gain;
1190 	int ret;
1191 
1192 	ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1193 	if (ret)
1194 		return ret;
1195 
1196 	return gain & 0x3ff;
1197 }
1198 
1199 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1200 {
1201 	return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1202 				  (u16)gain & 0x3ff);
1203 }
1204 
1205 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1206 {
1207 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1208 			      BIT(1), on ? 0 : BIT(1));
1209 }
1210 
1211 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1212 {
1213 	int ret;
1214 	unsigned int flags = sensor->ep.bus.parallel.flags;
1215 	u8 pclk_pol = 0;
1216 	u8 hsync_pol = 0;
1217 	u8 vsync_pol = 0;
1218 
1219 	/*
1220 	 * Note about parallel port configuration.
1221 	 *
1222 	 * When configured in parallel mode, the OV5640 will
1223 	 * output 10 bits data on DVP data lines [9:0].
1224 	 * If only 8 bits data are wanted, the 8 bits data lines
1225 	 * of the camera interface must be physically connected
1226 	 * on the DVP data lines [9:2].
1227 	 *
1228 	 * Control lines polarity can be configured through
1229 	 * devicetree endpoint control lines properties.
1230 	 * If no endpoint control lines properties are set,
1231 	 * polarity will be as below:
1232 	 * - VSYNC:	active high
1233 	 * - HREF:	active low
1234 	 * - PCLK:	active low
1235 	 */
1236 
1237 	if (on) {
1238 		/*
1239 		 * configure parallel port control lines polarity
1240 		 *
1241 		 * POLARITY CTRL0
1242 		 * - [5]:	PCLK polarity (0: active low, 1: active high)
1243 		 * - [1]:	HREF polarity (0: active low, 1: active high)
1244 		 * - [0]:	VSYNC polarity (mismatch here between
1245 		 *		datasheet and hardware, 0 is active high
1246 		 *		and 1 is active low...)
1247 		 */
1248 		if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
1249 			pclk_pol = 1;
1250 		if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
1251 			hsync_pol = 1;
1252 		if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
1253 			vsync_pol = 1;
1254 
1255 		ret = ov5640_write_reg(sensor,
1256 				       OV5640_REG_POLARITY_CTRL00,
1257 				       (pclk_pol << 5) |
1258 				       (hsync_pol << 1) |
1259 				       vsync_pol);
1260 
1261 		if (ret)
1262 			return ret;
1263 	}
1264 
1265 	/*
1266 	 * powerdown MIPI TX/RX PHY & disable MIPI
1267 	 *
1268 	 * MIPI CONTROL 00
1269 	 * 4:	 PWDN PHY TX
1270 	 * 3:	 PWDN PHY RX
1271 	 * 2:	 MIPI enable
1272 	 */
1273 	ret = ov5640_write_reg(sensor,
1274 			       OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0);
1275 	if (ret)
1276 		return ret;
1277 
1278 	/*
1279 	 * enable VSYNC/HREF/PCLK DVP control lines
1280 	 * & D[9:6] DVP data lines
1281 	 *
1282 	 * PAD OUTPUT ENABLE 01
1283 	 * - 6:		VSYNC output enable
1284 	 * - 5:		HREF output enable
1285 	 * - 4:		PCLK output enable
1286 	 * - [3:0]:	D[9:6] output enable
1287 	 */
1288 	ret = ov5640_write_reg(sensor,
1289 			       OV5640_REG_PAD_OUTPUT_ENABLE01,
1290 			       on ? 0x7f : 0);
1291 	if (ret)
1292 		return ret;
1293 
1294 	/*
1295 	 * enable D[5:0] DVP data lines
1296 	 *
1297 	 * PAD OUTPUT ENABLE 02
1298 	 * - [7:2]:	D[5:0] output enable
1299 	 */
1300 	return ov5640_write_reg(sensor,
1301 				OV5640_REG_PAD_OUTPUT_ENABLE02,
1302 				on ? 0xfc : 0);
1303 }
1304 
1305 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1306 {
1307 	int ret;
1308 
1309 	/*
1310 	 * Enable/disable the MIPI interface
1311 	 *
1312 	 * 0x300e = on ? 0x45 : 0x40
1313 	 *
1314 	 * FIXME: the sensor manual (version 2.03) reports
1315 	 * [7:5] = 000  : 1 data lane mode
1316 	 * [7:5] = 001  : 2 data lanes mode
1317 	 * But this settings do not work, while the following ones
1318 	 * have been validated for 2 data lanes mode.
1319 	 *
1320 	 * [7:5] = 010	: 2 data lanes mode
1321 	 * [4] = 0	: Power up MIPI HS Tx
1322 	 * [3] = 0	: Power up MIPI LS Rx
1323 	 * [2] = 1/0	: MIPI interface enable/disable
1324 	 * [1:0] = 01/00: FIXME: 'debug'
1325 	 */
1326 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1327 			       on ? 0x45 : 0x40);
1328 	if (ret)
1329 		return ret;
1330 
1331 	return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1332 				on ? 0x00 : 0x0f);
1333 }
1334 
1335 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1336 {
1337 	 /* calculate sysclk */
1338 	u32 xvclk = sensor->xclk_freq / 10000;
1339 	u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1340 	u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1341 	u32 bit_div2x = 1, sclk_rdiv, sysclk;
1342 	u8 temp1, temp2;
1343 	int ret;
1344 
1345 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1346 	if (ret)
1347 		return ret;
1348 	temp2 = temp1 & 0x0f;
1349 	if (temp2 == 8 || temp2 == 10)
1350 		bit_div2x = temp2 / 2;
1351 
1352 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1353 	if (ret)
1354 		return ret;
1355 	sysdiv = temp1 >> 4;
1356 	if (sysdiv == 0)
1357 		sysdiv = 16;
1358 
1359 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1360 	if (ret)
1361 		return ret;
1362 	multiplier = temp1;
1363 
1364 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1365 	if (ret)
1366 		return ret;
1367 	prediv = temp1 & 0x0f;
1368 	pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1369 
1370 	ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1371 	if (ret)
1372 		return ret;
1373 	temp2 = temp1 & 0x03;
1374 	sclk_rdiv = sclk_rdiv_map[temp2];
1375 
1376 	if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1377 		return -EINVAL;
1378 
1379 	VCO = xvclk * multiplier / prediv;
1380 
1381 	sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1382 
1383 	return sysclk;
1384 }
1385 
1386 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1387 {
1388 	 /* read HTS from register settings */
1389 	u8 mode;
1390 	int ret;
1391 
1392 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1393 	if (ret)
1394 		return ret;
1395 	mode &= 0xfb;
1396 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1397 }
1398 
1399 static int ov5640_get_hts(struct ov5640_dev *sensor)
1400 {
1401 	/* read HTS from register settings */
1402 	u16 hts;
1403 	int ret;
1404 
1405 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1406 	if (ret)
1407 		return ret;
1408 	return hts;
1409 }
1410 
1411 static int ov5640_get_vts(struct ov5640_dev *sensor)
1412 {
1413 	u16 vts;
1414 	int ret;
1415 
1416 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1417 	if (ret)
1418 		return ret;
1419 	return vts;
1420 }
1421 
1422 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1423 {
1424 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1425 }
1426 
1427 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1428 {
1429 	/* get banding filter value */
1430 	int ret, light_freq = 0;
1431 	u8 temp, temp1;
1432 
1433 	ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1434 	if (ret)
1435 		return ret;
1436 
1437 	if (temp & 0x80) {
1438 		/* manual */
1439 		ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1440 				      &temp1);
1441 		if (ret)
1442 			return ret;
1443 		if (temp1 & 0x04) {
1444 			/* 50Hz */
1445 			light_freq = 50;
1446 		} else {
1447 			/* 60Hz */
1448 			light_freq = 60;
1449 		}
1450 	} else {
1451 		/* auto */
1452 		ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1453 				      &temp1);
1454 		if (ret)
1455 			return ret;
1456 
1457 		if (temp1 & 0x01) {
1458 			/* 50Hz */
1459 			light_freq = 50;
1460 		} else {
1461 			/* 60Hz */
1462 		}
1463 	}
1464 
1465 	return light_freq;
1466 }
1467 
1468 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1469 {
1470 	u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1471 	int ret;
1472 
1473 	/* read preview PCLK */
1474 	ret = ov5640_get_sysclk(sensor);
1475 	if (ret < 0)
1476 		return ret;
1477 	if (ret == 0)
1478 		return -EINVAL;
1479 	sensor->prev_sysclk = ret;
1480 	/* read preview HTS */
1481 	ret = ov5640_get_hts(sensor);
1482 	if (ret < 0)
1483 		return ret;
1484 	if (ret == 0)
1485 		return -EINVAL;
1486 	sensor->prev_hts = ret;
1487 
1488 	/* read preview VTS */
1489 	ret = ov5640_get_vts(sensor);
1490 	if (ret < 0)
1491 		return ret;
1492 	prev_vts = ret;
1493 
1494 	/* calculate banding filter */
1495 	/* 60Hz */
1496 	band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1497 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1498 	if (ret)
1499 		return ret;
1500 	if (!band_step60)
1501 		return -EINVAL;
1502 	max_band60 = (int)((prev_vts - 4) / band_step60);
1503 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1504 	if (ret)
1505 		return ret;
1506 
1507 	/* 50Hz */
1508 	band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1509 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1510 	if (ret)
1511 		return ret;
1512 	if (!band_step50)
1513 		return -EINVAL;
1514 	max_band50 = (int)((prev_vts - 4) / band_step50);
1515 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1516 }
1517 
1518 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1519 {
1520 	/* stable in high */
1521 	u32 fast_high, fast_low;
1522 	int ret;
1523 
1524 	sensor->ae_low = target * 23 / 25;	/* 0.92 */
1525 	sensor->ae_high = target * 27 / 25;	/* 1.08 */
1526 
1527 	fast_high = sensor->ae_high << 1;
1528 	if (fast_high > 255)
1529 		fast_high = 255;
1530 
1531 	fast_low = sensor->ae_low >> 1;
1532 
1533 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1534 	if (ret)
1535 		return ret;
1536 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1537 	if (ret)
1538 		return ret;
1539 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1540 	if (ret)
1541 		return ret;
1542 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1543 	if (ret)
1544 		return ret;
1545 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1546 	if (ret)
1547 		return ret;
1548 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1549 }
1550 
1551 static int ov5640_get_binning(struct ov5640_dev *sensor)
1552 {
1553 	u8 temp;
1554 	int ret;
1555 
1556 	ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1557 	if (ret)
1558 		return ret;
1559 
1560 	return temp & BIT(0);
1561 }
1562 
1563 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1564 {
1565 	int ret;
1566 
1567 	/*
1568 	 * TIMING TC REG21:
1569 	 * - [0]:	Horizontal binning enable
1570 	 */
1571 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1572 			     BIT(0), enable ? BIT(0) : 0);
1573 	if (ret)
1574 		return ret;
1575 	/*
1576 	 * TIMING TC REG20:
1577 	 * - [0]:	Undocumented, but hardcoded init sequences
1578 	 *		are always setting REG21/REG20 bit 0 to same value...
1579 	 */
1580 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1581 			      BIT(0), enable ? BIT(0) : 0);
1582 }
1583 
1584 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1585 {
1586 	struct i2c_client *client = sensor->i2c_client;
1587 	u8 temp, channel = virtual_channel;
1588 	int ret;
1589 
1590 	if (channel > 3) {
1591 		dev_err(&client->dev,
1592 			"%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1593 			__func__, channel);
1594 		return -EINVAL;
1595 	}
1596 
1597 	ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1598 	if (ret)
1599 		return ret;
1600 	temp &= ~(3 << 6);
1601 	temp |= (channel << 6);
1602 	return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1603 }
1604 
1605 static const struct ov5640_mode_info *
1606 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1607 		 int width, int height, bool nearest)
1608 {
1609 	const struct ov5640_mode_info *mode;
1610 
1611 	mode = v4l2_find_nearest_size(ov5640_mode_data,
1612 				      ARRAY_SIZE(ov5640_mode_data),
1613 				      hact, vact,
1614 				      width, height);
1615 
1616 	if (!mode ||
1617 	    (!nearest && (mode->hact != width || mode->vact != height)))
1618 		return NULL;
1619 
1620 	/* Check to see if the current mode exceeds the max frame rate */
1621 	if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps])
1622 		return NULL;
1623 
1624 	return mode;
1625 }
1626 
1627 static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor)
1628 {
1629 	u64 rate;
1630 
1631 	rate = sensor->current_mode->vtot * sensor->current_mode->htot;
1632 	rate *= ov5640_framerates[sensor->current_fr];
1633 
1634 	return rate;
1635 }
1636 
1637 /*
1638  * sensor changes between scaling and subsampling, go through
1639  * exposure calculation
1640  */
1641 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1642 					 const struct ov5640_mode_info *mode)
1643 {
1644 	u32 prev_shutter, prev_gain16;
1645 	u32 cap_shutter, cap_gain16;
1646 	u32 cap_sysclk, cap_hts, cap_vts;
1647 	u32 light_freq, cap_bandfilt, cap_maxband;
1648 	u32 cap_gain16_shutter;
1649 	u8 average;
1650 	int ret;
1651 
1652 	if (!mode->reg_data)
1653 		return -EINVAL;
1654 
1655 	/* read preview shutter */
1656 	ret = ov5640_get_exposure(sensor);
1657 	if (ret < 0)
1658 		return ret;
1659 	prev_shutter = ret;
1660 	ret = ov5640_get_binning(sensor);
1661 	if (ret < 0)
1662 		return ret;
1663 	if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1664 	    mode->id != OV5640_MODE_1080P_1920_1080)
1665 		prev_shutter *= 2;
1666 
1667 	/* read preview gain */
1668 	ret = ov5640_get_gain(sensor);
1669 	if (ret < 0)
1670 		return ret;
1671 	prev_gain16 = ret;
1672 
1673 	/* get average */
1674 	ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1675 	if (ret)
1676 		return ret;
1677 
1678 	/* turn off night mode for capture */
1679 	ret = ov5640_set_night_mode(sensor);
1680 	if (ret < 0)
1681 		return ret;
1682 
1683 	/* Write capture setting */
1684 	ret = ov5640_load_regs(sensor, mode);
1685 	if (ret < 0)
1686 		return ret;
1687 
1688 	/* read capture VTS */
1689 	ret = ov5640_get_vts(sensor);
1690 	if (ret < 0)
1691 		return ret;
1692 	cap_vts = ret;
1693 	ret = ov5640_get_hts(sensor);
1694 	if (ret < 0)
1695 		return ret;
1696 	if (ret == 0)
1697 		return -EINVAL;
1698 	cap_hts = ret;
1699 
1700 	ret = ov5640_get_sysclk(sensor);
1701 	if (ret < 0)
1702 		return ret;
1703 	if (ret == 0)
1704 		return -EINVAL;
1705 	cap_sysclk = ret;
1706 
1707 	/* calculate capture banding filter */
1708 	ret = ov5640_get_light_freq(sensor);
1709 	if (ret < 0)
1710 		return ret;
1711 	light_freq = ret;
1712 
1713 	if (light_freq == 60) {
1714 		/* 60Hz */
1715 		cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1716 	} else {
1717 		/* 50Hz */
1718 		cap_bandfilt = cap_sysclk * 100 / cap_hts;
1719 	}
1720 
1721 	if (!sensor->prev_sysclk) {
1722 		ret = ov5640_get_sysclk(sensor);
1723 		if (ret < 0)
1724 			return ret;
1725 		if (ret == 0)
1726 			return -EINVAL;
1727 		sensor->prev_sysclk = ret;
1728 	}
1729 
1730 	if (!cap_bandfilt)
1731 		return -EINVAL;
1732 
1733 	cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1734 
1735 	/* calculate capture shutter/gain16 */
1736 	if (average > sensor->ae_low && average < sensor->ae_high) {
1737 		/* in stable range */
1738 		cap_gain16_shutter =
1739 			prev_gain16 * prev_shutter *
1740 			cap_sysclk / sensor->prev_sysclk *
1741 			sensor->prev_hts / cap_hts *
1742 			sensor->ae_target / average;
1743 	} else {
1744 		cap_gain16_shutter =
1745 			prev_gain16 * prev_shutter *
1746 			cap_sysclk / sensor->prev_sysclk *
1747 			sensor->prev_hts / cap_hts;
1748 	}
1749 
1750 	/* gain to shutter */
1751 	if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1752 		/* shutter < 1/100 */
1753 		cap_shutter = cap_gain16_shutter / 16;
1754 		if (cap_shutter < 1)
1755 			cap_shutter = 1;
1756 
1757 		cap_gain16 = cap_gain16_shutter / cap_shutter;
1758 		if (cap_gain16 < 16)
1759 			cap_gain16 = 16;
1760 	} else {
1761 		if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1762 			/* exposure reach max */
1763 			cap_shutter = cap_bandfilt * cap_maxband;
1764 			if (!cap_shutter)
1765 				return -EINVAL;
1766 
1767 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1768 		} else {
1769 			/* 1/100 < (cap_shutter = n/100) =< max */
1770 			cap_shutter =
1771 				((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1772 				* cap_bandfilt;
1773 			if (!cap_shutter)
1774 				return -EINVAL;
1775 
1776 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1777 		}
1778 	}
1779 
1780 	/* set capture gain */
1781 	ret = ov5640_set_gain(sensor, cap_gain16);
1782 	if (ret)
1783 		return ret;
1784 
1785 	/* write capture shutter */
1786 	if (cap_shutter > (cap_vts - 4)) {
1787 		cap_vts = cap_shutter + 4;
1788 		ret = ov5640_set_vts(sensor, cap_vts);
1789 		if (ret < 0)
1790 			return ret;
1791 	}
1792 
1793 	/* set exposure */
1794 	return ov5640_set_exposure(sensor, cap_shutter);
1795 }
1796 
1797 /*
1798  * if sensor changes inside scaling or subsampling
1799  * change mode directly
1800  */
1801 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1802 				  const struct ov5640_mode_info *mode)
1803 {
1804 	if (!mode->reg_data)
1805 		return -EINVAL;
1806 
1807 	/* Write capture setting */
1808 	return ov5640_load_regs(sensor, mode);
1809 }
1810 
1811 static int ov5640_set_mode(struct ov5640_dev *sensor)
1812 {
1813 	const struct ov5640_mode_info *mode = sensor->current_mode;
1814 	const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1815 	enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1816 	bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1817 	bool auto_exp =  sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1818 	unsigned long rate;
1819 	int ret;
1820 
1821 	dn_mode = mode->dn_mode;
1822 	orig_dn_mode = orig_mode->dn_mode;
1823 
1824 	/* auto gain and exposure must be turned off when changing modes */
1825 	if (auto_gain) {
1826 		ret = ov5640_set_autogain(sensor, false);
1827 		if (ret)
1828 			return ret;
1829 	}
1830 
1831 	if (auto_exp) {
1832 		ret = ov5640_set_autoexposure(sensor, false);
1833 		if (ret)
1834 			goto restore_auto_gain;
1835 	}
1836 
1837 	/*
1838 	 * All the formats we support have 16 bits per pixel, seems to require
1839 	 * the same rate than YUV, so we can just use 16 bpp all the time.
1840 	 */
1841 	rate = ov5640_calc_pixel_rate(sensor) * 16;
1842 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1843 		rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1844 		ret = ov5640_set_mipi_pclk(sensor, rate);
1845 	} else {
1846 		rate = rate / sensor->ep.bus.parallel.bus_width;
1847 		ret = ov5640_set_dvp_pclk(sensor, rate);
1848 	}
1849 
1850 	if (ret < 0)
1851 		return 0;
1852 
1853 	if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1854 	    (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1855 		/*
1856 		 * change between subsampling and scaling
1857 		 * go through exposure calculation
1858 		 */
1859 		ret = ov5640_set_mode_exposure_calc(sensor, mode);
1860 	} else {
1861 		/*
1862 		 * change inside subsampling or scaling
1863 		 * download firmware directly
1864 		 */
1865 		ret = ov5640_set_mode_direct(sensor, mode);
1866 	}
1867 	if (ret < 0)
1868 		goto restore_auto_exp_gain;
1869 
1870 	/* restore auto gain and exposure */
1871 	if (auto_gain)
1872 		ov5640_set_autogain(sensor, true);
1873 	if (auto_exp)
1874 		ov5640_set_autoexposure(sensor, true);
1875 
1876 	ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1877 	if (ret < 0)
1878 		return ret;
1879 	ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1880 	if (ret < 0)
1881 		return ret;
1882 	ret = ov5640_get_light_freq(sensor);
1883 	if (ret < 0)
1884 		return ret;
1885 	ret = ov5640_set_bandingfilter(sensor);
1886 	if (ret < 0)
1887 		return ret;
1888 	ret = ov5640_set_virtual_channel(sensor);
1889 	if (ret < 0)
1890 		return ret;
1891 
1892 	sensor->pending_mode_change = false;
1893 	sensor->last_mode = mode;
1894 
1895 	return 0;
1896 
1897 restore_auto_exp_gain:
1898 	if (auto_exp)
1899 		ov5640_set_autoexposure(sensor, true);
1900 restore_auto_gain:
1901 	if (auto_gain)
1902 		ov5640_set_autogain(sensor, true);
1903 
1904 	return ret;
1905 }
1906 
1907 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1908 			       struct v4l2_mbus_framefmt *format);
1909 
1910 /* restore the last set video mode after chip power-on */
1911 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1912 {
1913 	int ret;
1914 
1915 	/* first load the initial register values */
1916 	ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1917 	if (ret < 0)
1918 		return ret;
1919 	sensor->last_mode = &ov5640_mode_init_data;
1920 
1921 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1922 			     (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1923 			     ilog2(OV5640_SCLK_ROOT_DIV));
1924 	if (ret)
1925 		return ret;
1926 
1927 	/* now restore the last capture mode */
1928 	ret = ov5640_set_mode(sensor);
1929 	if (ret < 0)
1930 		return ret;
1931 
1932 	return ov5640_set_framefmt(sensor, &sensor->fmt);
1933 }
1934 
1935 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1936 {
1937 	gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1938 }
1939 
1940 static void ov5640_reset(struct ov5640_dev *sensor)
1941 {
1942 	if (!sensor->reset_gpio)
1943 		return;
1944 
1945 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1946 
1947 	/* camera power cycle */
1948 	ov5640_power(sensor, false);
1949 	usleep_range(5000, 10000);
1950 	ov5640_power(sensor, true);
1951 	usleep_range(5000, 10000);
1952 
1953 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1954 	usleep_range(1000, 2000);
1955 
1956 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1957 	usleep_range(20000, 25000);
1958 }
1959 
1960 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1961 {
1962 	struct i2c_client *client = sensor->i2c_client;
1963 	int ret;
1964 
1965 	ret = clk_prepare_enable(sensor->xclk);
1966 	if (ret) {
1967 		dev_err(&client->dev, "%s: failed to enable clock\n",
1968 			__func__);
1969 		return ret;
1970 	}
1971 
1972 	ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1973 				    sensor->supplies);
1974 	if (ret) {
1975 		dev_err(&client->dev, "%s: failed to enable regulators\n",
1976 			__func__);
1977 		goto xclk_off;
1978 	}
1979 
1980 	ov5640_reset(sensor);
1981 	ov5640_power(sensor, true);
1982 
1983 	ret = ov5640_init_slave_id(sensor);
1984 	if (ret)
1985 		goto power_off;
1986 
1987 	return 0;
1988 
1989 power_off:
1990 	ov5640_power(sensor, false);
1991 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1992 xclk_off:
1993 	clk_disable_unprepare(sensor->xclk);
1994 	return ret;
1995 }
1996 
1997 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1998 {
1999 	ov5640_power(sensor, false);
2000 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
2001 	clk_disable_unprepare(sensor->xclk);
2002 }
2003 
2004 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
2005 {
2006 	int ret = 0;
2007 
2008 	if (on) {
2009 		ret = ov5640_set_power_on(sensor);
2010 		if (ret)
2011 			return ret;
2012 
2013 		ret = ov5640_restore_mode(sensor);
2014 		if (ret)
2015 			goto power_off;
2016 
2017 		/* We're done here for DVP bus, while CSI-2 needs setup. */
2018 		if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
2019 			return 0;
2020 
2021 		/*
2022 		 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
2023 		 *
2024 		 * 0x300e = 0x40
2025 		 * [7:5] = 010	: 2 data lanes mode (see FIXME note in
2026 		 *		  "ov5640_set_stream_mipi()")
2027 		 * [4] = 0	: Power up MIPI HS Tx
2028 		 * [3] = 0	: Power up MIPI LS Rx
2029 		 * [2] = 0	: MIPI interface disabled
2030 		 */
2031 		ret = ov5640_write_reg(sensor,
2032 				       OV5640_REG_IO_MIPI_CTRL00, 0x40);
2033 		if (ret)
2034 			goto power_off;
2035 
2036 		/*
2037 		 * Gate clock and set LP11 in 'no packets mode' (idle)
2038 		 *
2039 		 * 0x4800 = 0x24
2040 		 * [5] = 1	: Gate clock when 'no packets'
2041 		 * [2] = 1	: MIPI bus in LP11 when 'no packets'
2042 		 */
2043 		ret = ov5640_write_reg(sensor,
2044 				       OV5640_REG_MIPI_CTRL00, 0x24);
2045 		if (ret)
2046 			goto power_off;
2047 
2048 		/*
2049 		 * Set data lanes and clock in LP11 when 'sleeping'
2050 		 *
2051 		 * 0x3019 = 0x70
2052 		 * [6] = 1	: MIPI data lane 2 in LP11 when 'sleeping'
2053 		 * [5] = 1	: MIPI data lane 1 in LP11 when 'sleeping'
2054 		 * [4] = 1	: MIPI clock lane in LP11 when 'sleeping'
2055 		 */
2056 		ret = ov5640_write_reg(sensor,
2057 				       OV5640_REG_PAD_OUTPUT00, 0x70);
2058 		if (ret)
2059 			goto power_off;
2060 
2061 		/* Give lanes some time to coax into LP11 state. */
2062 		usleep_range(500, 1000);
2063 
2064 	} else {
2065 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
2066 			/* Reset MIPI bus settings to their default values. */
2067 			ov5640_write_reg(sensor,
2068 					 OV5640_REG_IO_MIPI_CTRL00, 0x58);
2069 			ov5640_write_reg(sensor,
2070 					 OV5640_REG_MIPI_CTRL00, 0x04);
2071 			ov5640_write_reg(sensor,
2072 					 OV5640_REG_PAD_OUTPUT00, 0x00);
2073 		}
2074 
2075 		ov5640_set_power_off(sensor);
2076 	}
2077 
2078 	return 0;
2079 
2080 power_off:
2081 	ov5640_set_power_off(sensor);
2082 	return ret;
2083 }
2084 
2085 /* --------------- Subdev Operations --------------- */
2086 
2087 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2088 {
2089 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2090 	int ret = 0;
2091 
2092 	mutex_lock(&sensor->lock);
2093 
2094 	/*
2095 	 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2096 	 * update the power state.
2097 	 */
2098 	if (sensor->power_count == !on) {
2099 		ret = ov5640_set_power(sensor, !!on);
2100 		if (ret)
2101 			goto out;
2102 	}
2103 
2104 	/* Update the power count. */
2105 	sensor->power_count += on ? 1 : -1;
2106 	WARN_ON(sensor->power_count < 0);
2107 out:
2108 	mutex_unlock(&sensor->lock);
2109 
2110 	if (on && !ret && sensor->power_count == 1) {
2111 		/* restore controls */
2112 		ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2113 	}
2114 
2115 	return ret;
2116 }
2117 
2118 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2119 				     struct v4l2_fract *fi,
2120 				     u32 width, u32 height)
2121 {
2122 	const struct ov5640_mode_info *mode;
2123 	enum ov5640_frame_rate rate = OV5640_15_FPS;
2124 	int minfps, maxfps, best_fps, fps;
2125 	int i;
2126 
2127 	minfps = ov5640_framerates[OV5640_15_FPS];
2128 	maxfps = ov5640_framerates[OV5640_60_FPS];
2129 
2130 	if (fi->numerator == 0) {
2131 		fi->denominator = maxfps;
2132 		fi->numerator = 1;
2133 		rate = OV5640_60_FPS;
2134 		goto find_mode;
2135 	}
2136 
2137 	fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2138 			minfps, maxfps);
2139 
2140 	best_fps = minfps;
2141 	for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2142 		int curr_fps = ov5640_framerates[i];
2143 
2144 		if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2145 			best_fps = curr_fps;
2146 			rate = i;
2147 		}
2148 	}
2149 
2150 	fi->numerator = 1;
2151 	fi->denominator = best_fps;
2152 
2153 find_mode:
2154 	mode = ov5640_find_mode(sensor, rate, width, height, false);
2155 	return mode ? rate : -EINVAL;
2156 }
2157 
2158 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2159 			  struct v4l2_subdev_pad_config *cfg,
2160 			  struct v4l2_subdev_format *format)
2161 {
2162 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2163 	struct v4l2_mbus_framefmt *fmt;
2164 
2165 	if (format->pad != 0)
2166 		return -EINVAL;
2167 
2168 	mutex_lock(&sensor->lock);
2169 
2170 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2171 		fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg,
2172 						 format->pad);
2173 	else
2174 		fmt = &sensor->fmt;
2175 
2176 	format->format = *fmt;
2177 
2178 	mutex_unlock(&sensor->lock);
2179 
2180 	return 0;
2181 }
2182 
2183 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2184 				   struct v4l2_mbus_framefmt *fmt,
2185 				   enum ov5640_frame_rate fr,
2186 				   const struct ov5640_mode_info **new_mode)
2187 {
2188 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2189 	const struct ov5640_mode_info *mode;
2190 	int i;
2191 
2192 	mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2193 	if (!mode)
2194 		return -EINVAL;
2195 	fmt->width = mode->hact;
2196 	fmt->height = mode->vact;
2197 
2198 	if (new_mode)
2199 		*new_mode = mode;
2200 
2201 	for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2202 		if (ov5640_formats[i].code == fmt->code)
2203 			break;
2204 	if (i >= ARRAY_SIZE(ov5640_formats))
2205 		i = 0;
2206 
2207 	fmt->code = ov5640_formats[i].code;
2208 	fmt->colorspace = ov5640_formats[i].colorspace;
2209 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2210 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2211 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2212 
2213 	return 0;
2214 }
2215 
2216 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2217 			  struct v4l2_subdev_pad_config *cfg,
2218 			  struct v4l2_subdev_format *format)
2219 {
2220 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2221 	const struct ov5640_mode_info *new_mode;
2222 	struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2223 	struct v4l2_mbus_framefmt *fmt;
2224 	int ret;
2225 
2226 	if (format->pad != 0)
2227 		return -EINVAL;
2228 
2229 	mutex_lock(&sensor->lock);
2230 
2231 	if (sensor->streaming) {
2232 		ret = -EBUSY;
2233 		goto out;
2234 	}
2235 
2236 	ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2237 				      sensor->current_fr, &new_mode);
2238 	if (ret)
2239 		goto out;
2240 
2241 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2242 		fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
2243 	else
2244 		fmt = &sensor->fmt;
2245 
2246 	*fmt = *mbus_fmt;
2247 
2248 	if (new_mode != sensor->current_mode) {
2249 		sensor->current_mode = new_mode;
2250 		sensor->pending_mode_change = true;
2251 	}
2252 	if (mbus_fmt->code != sensor->fmt.code)
2253 		sensor->pending_fmt_change = true;
2254 
2255 	__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2256 				 ov5640_calc_pixel_rate(sensor));
2257 out:
2258 	mutex_unlock(&sensor->lock);
2259 	return ret;
2260 }
2261 
2262 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2263 			       struct v4l2_mbus_framefmt *format)
2264 {
2265 	int ret = 0;
2266 	bool is_jpeg = false;
2267 	u8 fmt, mux;
2268 
2269 	switch (format->code) {
2270 	case MEDIA_BUS_FMT_UYVY8_2X8:
2271 		/* YUV422, UYVY */
2272 		fmt = 0x3f;
2273 		mux = OV5640_FMT_MUX_YUV422;
2274 		break;
2275 	case MEDIA_BUS_FMT_YUYV8_2X8:
2276 		/* YUV422, YUYV */
2277 		fmt = 0x30;
2278 		mux = OV5640_FMT_MUX_YUV422;
2279 		break;
2280 	case MEDIA_BUS_FMT_RGB565_2X8_LE:
2281 		/* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2282 		fmt = 0x6F;
2283 		mux = OV5640_FMT_MUX_RGB;
2284 		break;
2285 	case MEDIA_BUS_FMT_RGB565_2X8_BE:
2286 		/* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2287 		fmt = 0x61;
2288 		mux = OV5640_FMT_MUX_RGB;
2289 		break;
2290 	case MEDIA_BUS_FMT_JPEG_1X8:
2291 		/* YUV422, YUYV */
2292 		fmt = 0x30;
2293 		mux = OV5640_FMT_MUX_YUV422;
2294 		is_jpeg = true;
2295 		break;
2296 	case MEDIA_BUS_FMT_SBGGR8_1X8:
2297 		/* Raw, BGBG... / GRGR... */
2298 		fmt = 0x00;
2299 		mux = OV5640_FMT_MUX_RAW_DPC;
2300 		break;
2301 	case MEDIA_BUS_FMT_SGBRG8_1X8:
2302 		/* Raw bayer, GBGB... / RGRG... */
2303 		fmt = 0x01;
2304 		mux = OV5640_FMT_MUX_RAW_DPC;
2305 		break;
2306 	case MEDIA_BUS_FMT_SGRBG8_1X8:
2307 		/* Raw bayer, GRGR... / BGBG... */
2308 		fmt = 0x02;
2309 		mux = OV5640_FMT_MUX_RAW_DPC;
2310 		break;
2311 	case MEDIA_BUS_FMT_SRGGB8_1X8:
2312 		/* Raw bayer, RGRG... / GBGB... */
2313 		fmt = 0x03;
2314 		mux = OV5640_FMT_MUX_RAW_DPC;
2315 		break;
2316 	default:
2317 		return -EINVAL;
2318 	}
2319 
2320 	/* FORMAT CONTROL00: YUV and RGB formatting */
2321 	ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2322 	if (ret)
2323 		return ret;
2324 
2325 	/* FORMAT MUX CONTROL: ISP YUV or RGB */
2326 	ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2327 	if (ret)
2328 		return ret;
2329 
2330 	/*
2331 	 * TIMING TC REG21:
2332 	 * - [5]:	JPEG enable
2333 	 */
2334 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2335 			     BIT(5), is_jpeg ? BIT(5) : 0);
2336 	if (ret)
2337 		return ret;
2338 
2339 	/*
2340 	 * SYSTEM RESET02:
2341 	 * - [4]:	Reset JFIFO
2342 	 * - [3]:	Reset SFIFO
2343 	 * - [2]:	Reset JPEG
2344 	 */
2345 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2346 			     BIT(4) | BIT(3) | BIT(2),
2347 			     is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2348 	if (ret)
2349 		return ret;
2350 
2351 	/*
2352 	 * CLOCK ENABLE02:
2353 	 * - [5]:	Enable JPEG 2x clock
2354 	 * - [3]:	Enable JPEG clock
2355 	 */
2356 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2357 			      BIT(5) | BIT(3),
2358 			      is_jpeg ? (BIT(5) | BIT(3)) : 0);
2359 }
2360 
2361 /*
2362  * Sensor Controls.
2363  */
2364 
2365 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2366 {
2367 	int ret;
2368 
2369 	if (value) {
2370 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2371 				     BIT(0), BIT(0));
2372 		if (ret)
2373 			return ret;
2374 		ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2375 	} else {
2376 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2377 	}
2378 
2379 	return ret;
2380 }
2381 
2382 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2383 {
2384 	int ret;
2385 
2386 	if (value) {
2387 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2388 				     BIT(2), BIT(2));
2389 		if (ret)
2390 			return ret;
2391 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2392 				       value & 0xff);
2393 	} else {
2394 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2395 	}
2396 
2397 	return ret;
2398 }
2399 
2400 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2401 {
2402 	int ret;
2403 
2404 	if (value) {
2405 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2406 				     BIT(1), BIT(1));
2407 		if (ret)
2408 			return ret;
2409 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2410 				       value & 0xff);
2411 		if (ret)
2412 			return ret;
2413 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2414 				       value & 0xff);
2415 	} else {
2416 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2417 	}
2418 
2419 	return ret;
2420 }
2421 
2422 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2423 {
2424 	int ret;
2425 
2426 	ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2427 			     BIT(0), awb ? 0 : 1);
2428 	if (ret)
2429 		return ret;
2430 
2431 	if (!awb) {
2432 		u16 red = (u16)sensor->ctrls.red_balance->val;
2433 		u16 blue = (u16)sensor->ctrls.blue_balance->val;
2434 
2435 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2436 		if (ret)
2437 			return ret;
2438 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2445 				    enum v4l2_exposure_auto_type auto_exposure)
2446 {
2447 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2448 	bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2449 	int ret = 0;
2450 
2451 	if (ctrls->auto_exp->is_new) {
2452 		ret = ov5640_set_autoexposure(sensor, auto_exp);
2453 		if (ret)
2454 			return ret;
2455 	}
2456 
2457 	if (!auto_exp && ctrls->exposure->is_new) {
2458 		u16 max_exp;
2459 
2460 		ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2461 					&max_exp);
2462 		if (ret)
2463 			return ret;
2464 		ret = ov5640_get_vts(sensor);
2465 		if (ret < 0)
2466 			return ret;
2467 		max_exp += ret;
2468 		ret = 0;
2469 
2470 		if (ctrls->exposure->val < max_exp)
2471 			ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2472 	}
2473 
2474 	return ret;
2475 }
2476 
2477 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2478 {
2479 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2480 	int ret = 0;
2481 
2482 	if (ctrls->auto_gain->is_new) {
2483 		ret = ov5640_set_autogain(sensor, auto_gain);
2484 		if (ret)
2485 			return ret;
2486 	}
2487 
2488 	if (!auto_gain && ctrls->gain->is_new)
2489 		ret = ov5640_set_gain(sensor, ctrls->gain->val);
2490 
2491 	return ret;
2492 }
2493 
2494 static const char * const test_pattern_menu[] = {
2495 	"Disabled",
2496 	"Color bars",
2497 	"Color bars w/ rolling bar",
2498 	"Color squares",
2499 	"Color squares w/ rolling bar",
2500 };
2501 
2502 #define OV5640_TEST_ENABLE		BIT(7)
2503 #define OV5640_TEST_ROLLING		BIT(6)	/* rolling horizontal bar */
2504 #define OV5640_TEST_TRANSPARENT		BIT(5)
2505 #define OV5640_TEST_SQUARE_BW		BIT(4)	/* black & white squares */
2506 #define OV5640_TEST_BAR_STANDARD	(0 << 2)
2507 #define OV5640_TEST_BAR_VERT_CHANGE_1	(1 << 2)
2508 #define OV5640_TEST_BAR_HOR_CHANGE	(2 << 2)
2509 #define OV5640_TEST_BAR_VERT_CHANGE_2	(3 << 2)
2510 #define OV5640_TEST_BAR			(0 << 0)
2511 #define OV5640_TEST_RANDOM		(1 << 0)
2512 #define OV5640_TEST_SQUARE		(2 << 0)
2513 #define OV5640_TEST_BLACK		(3 << 0)
2514 
2515 static const u8 test_pattern_val[] = {
2516 	0,
2517 	OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2518 		OV5640_TEST_BAR,
2519 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2520 		OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2521 	OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2522 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2523 };
2524 
2525 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2526 {
2527 	return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2528 				test_pattern_val[value]);
2529 }
2530 
2531 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2532 {
2533 	int ret;
2534 
2535 	ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2536 			     (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2537 			     0 : BIT(7));
2538 	if (ret)
2539 		return ret;
2540 
2541 	return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2542 			      (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2543 			      BIT(2) : 0);
2544 }
2545 
2546 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2547 {
2548 	/*
2549 	 * If sensor is mounted upside down, mirror logic is inversed.
2550 	 *
2551 	 * Sensor is a BSI (Back Side Illuminated) one,
2552 	 * so image captured is physically mirrored.
2553 	 * This is why mirror logic is inversed in
2554 	 * order to cancel this mirror effect.
2555 	 */
2556 
2557 	/*
2558 	 * TIMING TC REG21:
2559 	 * - [2]:	ISP mirror
2560 	 * - [1]:	Sensor mirror
2561 	 */
2562 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2563 			      BIT(2) | BIT(1),
2564 			      (!(value ^ sensor->upside_down)) ?
2565 			      (BIT(2) | BIT(1)) : 0);
2566 }
2567 
2568 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2569 {
2570 	/* If sensor is mounted upside down, flip logic is inversed */
2571 
2572 	/*
2573 	 * TIMING TC REG20:
2574 	 * - [2]:	ISP vflip
2575 	 * - [1]:	Sensor vflip
2576 	 */
2577 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2578 			      BIT(2) | BIT(1),
2579 			      (value ^ sensor->upside_down) ?
2580 			      (BIT(2) | BIT(1)) : 0);
2581 }
2582 
2583 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2584 {
2585 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2586 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2587 	int val;
2588 
2589 	/* v4l2_ctrl_lock() locks our own mutex */
2590 
2591 	switch (ctrl->id) {
2592 	case V4L2_CID_AUTOGAIN:
2593 		val = ov5640_get_gain(sensor);
2594 		if (val < 0)
2595 			return val;
2596 		sensor->ctrls.gain->val = val;
2597 		break;
2598 	case V4L2_CID_EXPOSURE_AUTO:
2599 		val = ov5640_get_exposure(sensor);
2600 		if (val < 0)
2601 			return val;
2602 		sensor->ctrls.exposure->val = val;
2603 		break;
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2610 {
2611 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2612 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2613 	int ret;
2614 
2615 	/* v4l2_ctrl_lock() locks our own mutex */
2616 
2617 	/*
2618 	 * If the device is not powered up by the host driver do
2619 	 * not apply any controls to H/W at this time. Instead
2620 	 * the controls will be restored right after power-up.
2621 	 */
2622 	if (sensor->power_count == 0)
2623 		return 0;
2624 
2625 	switch (ctrl->id) {
2626 	case V4L2_CID_AUTOGAIN:
2627 		ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2628 		break;
2629 	case V4L2_CID_EXPOSURE_AUTO:
2630 		ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2631 		break;
2632 	case V4L2_CID_AUTO_WHITE_BALANCE:
2633 		ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2634 		break;
2635 	case V4L2_CID_HUE:
2636 		ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2637 		break;
2638 	case V4L2_CID_CONTRAST:
2639 		ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2640 		break;
2641 	case V4L2_CID_SATURATION:
2642 		ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2643 		break;
2644 	case V4L2_CID_TEST_PATTERN:
2645 		ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2646 		break;
2647 	case V4L2_CID_POWER_LINE_FREQUENCY:
2648 		ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2649 		break;
2650 	case V4L2_CID_HFLIP:
2651 		ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2652 		break;
2653 	case V4L2_CID_VFLIP:
2654 		ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2655 		break;
2656 	default:
2657 		ret = -EINVAL;
2658 		break;
2659 	}
2660 
2661 	return ret;
2662 }
2663 
2664 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2665 	.g_volatile_ctrl = ov5640_g_volatile_ctrl,
2666 	.s_ctrl = ov5640_s_ctrl,
2667 };
2668 
2669 static int ov5640_init_controls(struct ov5640_dev *sensor)
2670 {
2671 	const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2672 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2673 	struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2674 	int ret;
2675 
2676 	v4l2_ctrl_handler_init(hdl, 32);
2677 
2678 	/* we can use our own mutex for the ctrl lock */
2679 	hdl->lock = &sensor->lock;
2680 
2681 	/* Clock related controls */
2682 	ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
2683 					      0, INT_MAX, 1,
2684 					      ov5640_calc_pixel_rate(sensor));
2685 
2686 	/* Auto/manual white balance */
2687 	ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2688 					   V4L2_CID_AUTO_WHITE_BALANCE,
2689 					   0, 1, 1, 1);
2690 	ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2691 						0, 4095, 1, 0);
2692 	ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2693 					       0, 4095, 1, 0);
2694 	/* Auto/manual exposure */
2695 	ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2696 						 V4L2_CID_EXPOSURE_AUTO,
2697 						 V4L2_EXPOSURE_MANUAL, 0,
2698 						 V4L2_EXPOSURE_AUTO);
2699 	ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2700 					    0, 65535, 1, 0);
2701 	/* Auto/manual gain */
2702 	ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2703 					     0, 1, 1, 1);
2704 	ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2705 					0, 1023, 1, 0);
2706 
2707 	ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2708 					      0, 255, 1, 64);
2709 	ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2710 				       0, 359, 1, 0);
2711 	ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2712 					    0, 255, 1, 0);
2713 	ctrls->test_pattern =
2714 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2715 					     ARRAY_SIZE(test_pattern_menu) - 1,
2716 					     0, 0, test_pattern_menu);
2717 	ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2718 					 0, 1, 1, 0);
2719 	ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2720 					 0, 1, 1, 0);
2721 
2722 	ctrls->light_freq =
2723 		v4l2_ctrl_new_std_menu(hdl, ops,
2724 				       V4L2_CID_POWER_LINE_FREQUENCY,
2725 				       V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2726 				       V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2727 
2728 	if (hdl->error) {
2729 		ret = hdl->error;
2730 		goto free_ctrls;
2731 	}
2732 
2733 	ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY;
2734 	ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2735 	ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2736 
2737 	v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2738 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2739 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2740 
2741 	sensor->sd.ctrl_handler = hdl;
2742 	return 0;
2743 
2744 free_ctrls:
2745 	v4l2_ctrl_handler_free(hdl);
2746 	return ret;
2747 }
2748 
2749 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2750 				  struct v4l2_subdev_pad_config *cfg,
2751 				  struct v4l2_subdev_frame_size_enum *fse)
2752 {
2753 	if (fse->pad != 0)
2754 		return -EINVAL;
2755 	if (fse->index >= OV5640_NUM_MODES)
2756 		return -EINVAL;
2757 
2758 	fse->min_width =
2759 		ov5640_mode_data[fse->index].hact;
2760 	fse->max_width = fse->min_width;
2761 	fse->min_height =
2762 		ov5640_mode_data[fse->index].vact;
2763 	fse->max_height = fse->min_height;
2764 
2765 	return 0;
2766 }
2767 
2768 static int ov5640_enum_frame_interval(
2769 	struct v4l2_subdev *sd,
2770 	struct v4l2_subdev_pad_config *cfg,
2771 	struct v4l2_subdev_frame_interval_enum *fie)
2772 {
2773 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2774 	struct v4l2_fract tpf;
2775 	int ret;
2776 
2777 	if (fie->pad != 0)
2778 		return -EINVAL;
2779 	if (fie->index >= OV5640_NUM_FRAMERATES)
2780 		return -EINVAL;
2781 
2782 	tpf.numerator = 1;
2783 	tpf.denominator = ov5640_framerates[fie->index];
2784 
2785 	ret = ov5640_try_frame_interval(sensor, &tpf,
2786 					fie->width, fie->height);
2787 	if (ret < 0)
2788 		return -EINVAL;
2789 
2790 	fie->interval = tpf;
2791 	return 0;
2792 }
2793 
2794 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2795 				   struct v4l2_subdev_frame_interval *fi)
2796 {
2797 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2798 
2799 	mutex_lock(&sensor->lock);
2800 	fi->interval = sensor->frame_interval;
2801 	mutex_unlock(&sensor->lock);
2802 
2803 	return 0;
2804 }
2805 
2806 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2807 				   struct v4l2_subdev_frame_interval *fi)
2808 {
2809 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2810 	const struct ov5640_mode_info *mode;
2811 	int frame_rate, ret = 0;
2812 
2813 	if (fi->pad != 0)
2814 		return -EINVAL;
2815 
2816 	mutex_lock(&sensor->lock);
2817 
2818 	if (sensor->streaming) {
2819 		ret = -EBUSY;
2820 		goto out;
2821 	}
2822 
2823 	mode = sensor->current_mode;
2824 
2825 	frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2826 					       mode->hact, mode->vact);
2827 	if (frame_rate < 0) {
2828 		/* Always return a valid frame interval value */
2829 		fi->interval = sensor->frame_interval;
2830 		goto out;
2831 	}
2832 
2833 	mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2834 				mode->vact, true);
2835 	if (!mode) {
2836 		ret = -EINVAL;
2837 		goto out;
2838 	}
2839 
2840 	if (mode != sensor->current_mode ||
2841 	    frame_rate != sensor->current_fr) {
2842 		sensor->current_fr = frame_rate;
2843 		sensor->frame_interval = fi->interval;
2844 		sensor->current_mode = mode;
2845 		sensor->pending_mode_change = true;
2846 
2847 		__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
2848 					 ov5640_calc_pixel_rate(sensor));
2849 	}
2850 out:
2851 	mutex_unlock(&sensor->lock);
2852 	return ret;
2853 }
2854 
2855 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2856 				 struct v4l2_subdev_pad_config *cfg,
2857 				 struct v4l2_subdev_mbus_code_enum *code)
2858 {
2859 	if (code->pad != 0)
2860 		return -EINVAL;
2861 	if (code->index >= ARRAY_SIZE(ov5640_formats))
2862 		return -EINVAL;
2863 
2864 	code->code = ov5640_formats[code->index].code;
2865 	return 0;
2866 }
2867 
2868 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2869 {
2870 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2871 	int ret = 0;
2872 
2873 	mutex_lock(&sensor->lock);
2874 
2875 	if (sensor->streaming == !enable) {
2876 		if (enable && sensor->pending_mode_change) {
2877 			ret = ov5640_set_mode(sensor);
2878 			if (ret)
2879 				goto out;
2880 		}
2881 
2882 		if (enable && sensor->pending_fmt_change) {
2883 			ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2884 			if (ret)
2885 				goto out;
2886 			sensor->pending_fmt_change = false;
2887 		}
2888 
2889 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2890 			ret = ov5640_set_stream_mipi(sensor, enable);
2891 		else
2892 			ret = ov5640_set_stream_dvp(sensor, enable);
2893 
2894 		if (!ret)
2895 			sensor->streaming = enable;
2896 	}
2897 out:
2898 	mutex_unlock(&sensor->lock);
2899 	return ret;
2900 }
2901 
2902 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2903 	.s_power = ov5640_s_power,
2904 	.log_status = v4l2_ctrl_subdev_log_status,
2905 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2906 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2907 };
2908 
2909 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2910 	.g_frame_interval = ov5640_g_frame_interval,
2911 	.s_frame_interval = ov5640_s_frame_interval,
2912 	.s_stream = ov5640_s_stream,
2913 };
2914 
2915 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2916 	.enum_mbus_code = ov5640_enum_mbus_code,
2917 	.get_fmt = ov5640_get_fmt,
2918 	.set_fmt = ov5640_set_fmt,
2919 	.enum_frame_size = ov5640_enum_frame_size,
2920 	.enum_frame_interval = ov5640_enum_frame_interval,
2921 };
2922 
2923 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2924 	.core = &ov5640_core_ops,
2925 	.video = &ov5640_video_ops,
2926 	.pad = &ov5640_pad_ops,
2927 };
2928 
2929 static int ov5640_get_regulators(struct ov5640_dev *sensor)
2930 {
2931 	int i;
2932 
2933 	for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
2934 		sensor->supplies[i].supply = ov5640_supply_name[i];
2935 
2936 	return devm_regulator_bulk_get(&sensor->i2c_client->dev,
2937 				       OV5640_NUM_SUPPLIES,
2938 				       sensor->supplies);
2939 }
2940 
2941 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
2942 {
2943 	struct i2c_client *client = sensor->i2c_client;
2944 	int ret = 0;
2945 	u16 chip_id;
2946 
2947 	ret = ov5640_set_power_on(sensor);
2948 	if (ret)
2949 		return ret;
2950 
2951 	ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
2952 	if (ret) {
2953 		dev_err(&client->dev, "%s: failed to read chip identifier\n",
2954 			__func__);
2955 		goto power_off;
2956 	}
2957 
2958 	if (chip_id != 0x5640) {
2959 		dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
2960 			__func__, chip_id);
2961 		ret = -ENXIO;
2962 	}
2963 
2964 power_off:
2965 	ov5640_set_power_off(sensor);
2966 	return ret;
2967 }
2968 
2969 static int ov5640_probe(struct i2c_client *client)
2970 {
2971 	struct device *dev = &client->dev;
2972 	struct fwnode_handle *endpoint;
2973 	struct ov5640_dev *sensor;
2974 	struct v4l2_mbus_framefmt *fmt;
2975 	u32 rotation;
2976 	int ret;
2977 
2978 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
2979 	if (!sensor)
2980 		return -ENOMEM;
2981 
2982 	sensor->i2c_client = client;
2983 
2984 	/*
2985 	 * default init sequence initialize sensor to
2986 	 * YUV422 UYVY VGA@30fps
2987 	 */
2988 	fmt = &sensor->fmt;
2989 	fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
2990 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
2991 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2992 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2993 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2994 	fmt->width = 640;
2995 	fmt->height = 480;
2996 	fmt->field = V4L2_FIELD_NONE;
2997 	sensor->frame_interval.numerator = 1;
2998 	sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
2999 	sensor->current_fr = OV5640_30_FPS;
3000 	sensor->current_mode =
3001 		&ov5640_mode_data[OV5640_MODE_VGA_640_480];
3002 	sensor->last_mode = sensor->current_mode;
3003 
3004 	sensor->ae_target = 52;
3005 
3006 	/* optional indication of physical rotation of sensor */
3007 	ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
3008 				       &rotation);
3009 	if (!ret) {
3010 		switch (rotation) {
3011 		case 180:
3012 			sensor->upside_down = true;
3013 			/* fall through */
3014 		case 0:
3015 			break;
3016 		default:
3017 			dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
3018 				 rotation);
3019 		}
3020 	}
3021 
3022 	endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
3023 						  NULL);
3024 	if (!endpoint) {
3025 		dev_err(dev, "endpoint node not found\n");
3026 		return -EINVAL;
3027 	}
3028 
3029 	ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3030 	fwnode_handle_put(endpoint);
3031 	if (ret) {
3032 		dev_err(dev, "Could not parse endpoint\n");
3033 		return ret;
3034 	}
3035 
3036 	/* get system clock (xclk) */
3037 	sensor->xclk = devm_clk_get(dev, "xclk");
3038 	if (IS_ERR(sensor->xclk)) {
3039 		dev_err(dev, "failed to get xclk\n");
3040 		return PTR_ERR(sensor->xclk);
3041 	}
3042 
3043 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
3044 	if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3045 	    sensor->xclk_freq > OV5640_XCLK_MAX) {
3046 		dev_err(dev, "xclk frequency out of range: %d Hz\n",
3047 			sensor->xclk_freq);
3048 		return -EINVAL;
3049 	}
3050 
3051 	/* request optional power down pin */
3052 	sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3053 						    GPIOD_OUT_HIGH);
3054 	if (IS_ERR(sensor->pwdn_gpio))
3055 		return PTR_ERR(sensor->pwdn_gpio);
3056 
3057 	/* request optional reset pin */
3058 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3059 						     GPIOD_OUT_HIGH);
3060 	if (IS_ERR(sensor->reset_gpio))
3061 		return PTR_ERR(sensor->reset_gpio);
3062 
3063 	v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3064 
3065 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3066 			    V4L2_SUBDEV_FL_HAS_EVENTS;
3067 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3068 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3069 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3070 	if (ret)
3071 		return ret;
3072 
3073 	ret = ov5640_get_regulators(sensor);
3074 	if (ret)
3075 		return ret;
3076 
3077 	mutex_init(&sensor->lock);
3078 
3079 	ret = ov5640_check_chip_id(sensor);
3080 	if (ret)
3081 		goto entity_cleanup;
3082 
3083 	ret = ov5640_init_controls(sensor);
3084 	if (ret)
3085 		goto entity_cleanup;
3086 
3087 	ret = v4l2_async_register_subdev_sensor_common(&sensor->sd);
3088 	if (ret)
3089 		goto free_ctrls;
3090 
3091 	return 0;
3092 
3093 free_ctrls:
3094 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3095 entity_cleanup:
3096 	media_entity_cleanup(&sensor->sd.entity);
3097 	mutex_destroy(&sensor->lock);
3098 	return ret;
3099 }
3100 
3101 static int ov5640_remove(struct i2c_client *client)
3102 {
3103 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3104 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
3105 
3106 	v4l2_async_unregister_subdev(&sensor->sd);
3107 	media_entity_cleanup(&sensor->sd.entity);
3108 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3109 	mutex_destroy(&sensor->lock);
3110 
3111 	return 0;
3112 }
3113 
3114 static const struct i2c_device_id ov5640_id[] = {
3115 	{"ov5640", 0},
3116 	{},
3117 };
3118 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3119 
3120 static const struct of_device_id ov5640_dt_ids[] = {
3121 	{ .compatible = "ovti,ov5640" },
3122 	{ /* sentinel */ }
3123 };
3124 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3125 
3126 static struct i2c_driver ov5640_i2c_driver = {
3127 	.driver = {
3128 		.name  = "ov5640",
3129 		.of_match_table	= ov5640_dt_ids,
3130 	},
3131 	.id_table = ov5640_id,
3132 	.probe_new = ov5640_probe,
3133 	.remove   = ov5640_remove,
3134 };
3135 
3136 module_i2c_driver(ov5640_i2c_driver);
3137 
3138 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3139 MODULE_LICENSE("GPL");
3140