xref: /openbmc/linux/drivers/media/i2c/ov5640.c (revision 0c7beb2d)
1 /*
2  * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright (C) 2014-2017 Mentor Graphics Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 
11 #include <linux/clk.h>
12 #include <linux/clk-provider.h>
13 #include <linux/clkdev.h>
14 #include <linux/ctype.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/i2c.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <media/v4l2-async.h>
26 #include <media/v4l2-ctrls.h>
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-event.h>
29 #include <media/v4l2-fwnode.h>
30 #include <media/v4l2-subdev.h>
31 
32 /* min/typical/max system clock (xclk) frequencies */
33 #define OV5640_XCLK_MIN  6000000
34 #define OV5640_XCLK_MAX 54000000
35 
36 #define OV5640_DEFAULT_SLAVE_ID 0x3c
37 
38 #define OV5640_REG_SYS_RESET02		0x3002
39 #define OV5640_REG_SYS_CLOCK_ENABLE02	0x3006
40 #define OV5640_REG_SYS_CTRL0		0x3008
41 #define OV5640_REG_CHIP_ID		0x300a
42 #define OV5640_REG_IO_MIPI_CTRL00	0x300e
43 #define OV5640_REG_PAD_OUTPUT_ENABLE01	0x3017
44 #define OV5640_REG_PAD_OUTPUT_ENABLE02	0x3018
45 #define OV5640_REG_PAD_OUTPUT00		0x3019
46 #define OV5640_REG_SYSTEM_CONTROL1	0x302e
47 #define OV5640_REG_SC_PLL_CTRL0		0x3034
48 #define OV5640_REG_SC_PLL_CTRL1		0x3035
49 #define OV5640_REG_SC_PLL_CTRL2		0x3036
50 #define OV5640_REG_SC_PLL_CTRL3		0x3037
51 #define OV5640_REG_SLAVE_ID		0x3100
52 #define OV5640_REG_SCCB_SYS_CTRL1	0x3103
53 #define OV5640_REG_SYS_ROOT_DIVIDER	0x3108
54 #define OV5640_REG_AWB_R_GAIN		0x3400
55 #define OV5640_REG_AWB_G_GAIN		0x3402
56 #define OV5640_REG_AWB_B_GAIN		0x3404
57 #define OV5640_REG_AWB_MANUAL_CTRL	0x3406
58 #define OV5640_REG_AEC_PK_EXPOSURE_HI	0x3500
59 #define OV5640_REG_AEC_PK_EXPOSURE_MED	0x3501
60 #define OV5640_REG_AEC_PK_EXPOSURE_LO	0x3502
61 #define OV5640_REG_AEC_PK_MANUAL	0x3503
62 #define OV5640_REG_AEC_PK_REAL_GAIN	0x350a
63 #define OV5640_REG_AEC_PK_VTS		0x350c
64 #define OV5640_REG_TIMING_DVPHO		0x3808
65 #define OV5640_REG_TIMING_DVPVO		0x380a
66 #define OV5640_REG_TIMING_HTS		0x380c
67 #define OV5640_REG_TIMING_VTS		0x380e
68 #define OV5640_REG_TIMING_TC_REG20	0x3820
69 #define OV5640_REG_TIMING_TC_REG21	0x3821
70 #define OV5640_REG_AEC_CTRL00		0x3a00
71 #define OV5640_REG_AEC_B50_STEP		0x3a08
72 #define OV5640_REG_AEC_B60_STEP		0x3a0a
73 #define OV5640_REG_AEC_CTRL0D		0x3a0d
74 #define OV5640_REG_AEC_CTRL0E		0x3a0e
75 #define OV5640_REG_AEC_CTRL0F		0x3a0f
76 #define OV5640_REG_AEC_CTRL10		0x3a10
77 #define OV5640_REG_AEC_CTRL11		0x3a11
78 #define OV5640_REG_AEC_CTRL1B		0x3a1b
79 #define OV5640_REG_AEC_CTRL1E		0x3a1e
80 #define OV5640_REG_AEC_CTRL1F		0x3a1f
81 #define OV5640_REG_HZ5060_CTRL00	0x3c00
82 #define OV5640_REG_HZ5060_CTRL01	0x3c01
83 #define OV5640_REG_SIGMADELTA_CTRL0C	0x3c0c
84 #define OV5640_REG_FRAME_CTRL01		0x4202
85 #define OV5640_REG_FORMAT_CONTROL00	0x4300
86 #define OV5640_REG_VFIFO_HSIZE		0x4602
87 #define OV5640_REG_VFIFO_VSIZE		0x4604
88 #define OV5640_REG_JPG_MODE_SELECT	0x4713
89 #define OV5640_REG_POLARITY_CTRL00	0x4740
90 #define OV5640_REG_MIPI_CTRL00		0x4800
91 #define OV5640_REG_DEBUG_MODE		0x4814
92 #define OV5640_REG_ISP_FORMAT_MUX_CTRL	0x501f
93 #define OV5640_REG_PRE_ISP_TEST_SET1	0x503d
94 #define OV5640_REG_SDE_CTRL0		0x5580
95 #define OV5640_REG_SDE_CTRL1		0x5581
96 #define OV5640_REG_SDE_CTRL3		0x5583
97 #define OV5640_REG_SDE_CTRL4		0x5584
98 #define OV5640_REG_SDE_CTRL5		0x5585
99 #define OV5640_REG_AVG_READOUT		0x56a1
100 
101 enum ov5640_mode_id {
102 	OV5640_MODE_QCIF_176_144 = 0,
103 	OV5640_MODE_QVGA_320_240,
104 	OV5640_MODE_VGA_640_480,
105 	OV5640_MODE_NTSC_720_480,
106 	OV5640_MODE_PAL_720_576,
107 	OV5640_MODE_XGA_1024_768,
108 	OV5640_MODE_720P_1280_720,
109 	OV5640_MODE_1080P_1920_1080,
110 	OV5640_MODE_QSXGA_2592_1944,
111 	OV5640_NUM_MODES,
112 };
113 
114 enum ov5640_frame_rate {
115 	OV5640_15_FPS = 0,
116 	OV5640_30_FPS,
117 	OV5640_60_FPS,
118 	OV5640_NUM_FRAMERATES,
119 };
120 
121 enum ov5640_format_mux {
122 	OV5640_FMT_MUX_YUV422 = 0,
123 	OV5640_FMT_MUX_RGB,
124 	OV5640_FMT_MUX_DITHER,
125 	OV5640_FMT_MUX_RAW_DPC,
126 	OV5640_FMT_MUX_SNR_RAW,
127 	OV5640_FMT_MUX_RAW_CIP,
128 };
129 
130 struct ov5640_pixfmt {
131 	u32 code;
132 	u32 colorspace;
133 };
134 
135 static const struct ov5640_pixfmt ov5640_formats[] = {
136 	{ MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
137 	{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
138 	{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
139 	{ MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
140 	{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
141 	{ MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
142 	{ MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
143 	{ MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
144 	{ MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
145 };
146 
147 /*
148  * FIXME: remove this when a subdev API becomes available
149  * to set the MIPI CSI-2 virtual channel.
150  */
151 static unsigned int virtual_channel;
152 module_param(virtual_channel, uint, 0444);
153 MODULE_PARM_DESC(virtual_channel,
154 		 "MIPI CSI-2 virtual channel (0..3), default 0");
155 
156 static const int ov5640_framerates[] = {
157 	[OV5640_15_FPS] = 15,
158 	[OV5640_30_FPS] = 30,
159 	[OV5640_60_FPS] = 60,
160 };
161 
162 /* regulator supplies */
163 static const char * const ov5640_supply_name[] = {
164 	"DOVDD", /* Digital I/O (1.8V) supply */
165 	"DVDD",  /* Digital Core (1.5V) supply */
166 	"AVDD",  /* Analog (2.8V) supply */
167 };
168 
169 #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
170 
171 /*
172  * Image size under 1280 * 960 are SUBSAMPLING
173  * Image size upper 1280 * 960 are SCALING
174  */
175 enum ov5640_downsize_mode {
176 	SUBSAMPLING,
177 	SCALING,
178 };
179 
180 struct reg_value {
181 	u16 reg_addr;
182 	u8 val;
183 	u8 mask;
184 	u32 delay_ms;
185 };
186 
187 struct ov5640_mode_info {
188 	enum ov5640_mode_id id;
189 	enum ov5640_downsize_mode dn_mode;
190 	u32 hact;
191 	u32 htot;
192 	u32 vact;
193 	u32 vtot;
194 	const struct reg_value *reg_data;
195 	u32 reg_data_size;
196 };
197 
198 struct ov5640_ctrls {
199 	struct v4l2_ctrl_handler handler;
200 	struct {
201 		struct v4l2_ctrl *auto_exp;
202 		struct v4l2_ctrl *exposure;
203 	};
204 	struct {
205 		struct v4l2_ctrl *auto_wb;
206 		struct v4l2_ctrl *blue_balance;
207 		struct v4l2_ctrl *red_balance;
208 	};
209 	struct {
210 		struct v4l2_ctrl *auto_gain;
211 		struct v4l2_ctrl *gain;
212 	};
213 	struct v4l2_ctrl *brightness;
214 	struct v4l2_ctrl *light_freq;
215 	struct v4l2_ctrl *saturation;
216 	struct v4l2_ctrl *contrast;
217 	struct v4l2_ctrl *hue;
218 	struct v4l2_ctrl *test_pattern;
219 	struct v4l2_ctrl *hflip;
220 	struct v4l2_ctrl *vflip;
221 };
222 
223 struct ov5640_dev {
224 	struct i2c_client *i2c_client;
225 	struct v4l2_subdev sd;
226 	struct media_pad pad;
227 	struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
228 	struct clk *xclk; /* system clock to OV5640 */
229 	u32 xclk_freq;
230 
231 	struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
232 	struct gpio_desc *reset_gpio;
233 	struct gpio_desc *pwdn_gpio;
234 	bool   upside_down;
235 
236 	/* lock to protect all members below */
237 	struct mutex lock;
238 
239 	int power_count;
240 
241 	struct v4l2_mbus_framefmt fmt;
242 	bool pending_fmt_change;
243 
244 	const struct ov5640_mode_info *current_mode;
245 	const struct ov5640_mode_info *last_mode;
246 	enum ov5640_frame_rate current_fr;
247 	struct v4l2_fract frame_interval;
248 
249 	struct ov5640_ctrls ctrls;
250 
251 	u32 prev_sysclk, prev_hts;
252 	u32 ae_low, ae_high, ae_target;
253 
254 	bool pending_mode_change;
255 	bool streaming;
256 };
257 
258 static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
259 {
260 	return container_of(sd, struct ov5640_dev, sd);
261 }
262 
263 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
264 {
265 	return &container_of(ctrl->handler, struct ov5640_dev,
266 			     ctrls.handler)->sd;
267 }
268 
269 /*
270  * FIXME: all of these register tables are likely filled with
271  * entries that set the register to their power-on default values,
272  * and which are otherwise not touched by this driver. Those entries
273  * should be identified and removed to speed register load time
274  * over i2c.
275  */
276 /* YUV422 UYVY VGA@30fps */
277 static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
278 	{0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
279 	{0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0},
280 	{0x3630, 0x36, 0, 0},
281 	{0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
282 	{0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
283 	{0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
284 	{0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
285 	{0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
286 	{0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
287 	{0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
288 	{0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
289 	{0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
290 	{0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
291 	{0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
292 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
293 	{0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
294 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
295 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
296 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
297 	{0x3810, 0x00, 0, 0},
298 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
299 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
300 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
301 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
302 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
303 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
304 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
305 	{0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
306 	{0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
307 	{0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
308 	{0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
309 	{0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
310 	{0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
311 	{0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
312 	{0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
313 	{0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
314 	{0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
315 	{0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
316 	{0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
317 	{0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
318 	{0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
319 	{0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
320 	{0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
321 	{0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
322 	{0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
323 	{0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
324 	{0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
325 	{0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
326 	{0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
327 	{0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
328 	{0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
329 	{0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
330 	{0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
331 	{0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
332 	{0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
333 	{0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
334 	{0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
335 	{0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
336 	{0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
337 	{0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
338 	{0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
339 	{0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
340 	{0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
341 	{0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
342 	{0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
343 	{0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
344 	{0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
345 	{0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
346 	{0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
347 	{0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
348 	{0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
349 	{0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
350 	{0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
351 	{0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
352 	{0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
353 	{0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
354 	{0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
355 	{0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
356 	{0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
357 	{0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
358 	{0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
359 	{0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
360 };
361 
362 static const struct reg_value ov5640_setting_VGA_640_480[] = {
363 	{0x3c07, 0x08, 0, 0},
364 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
365 	{0x3814, 0x31, 0, 0},
366 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
367 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
368 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
369 	{0x3810, 0x00, 0, 0},
370 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
371 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
372 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
373 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
374 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
375 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
376 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
377 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
378 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
379 };
380 
381 static const struct reg_value ov5640_setting_XGA_1024_768[] = {
382 	{0x3c07, 0x08, 0, 0},
383 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
384 	{0x3814, 0x31, 0, 0},
385 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
386 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
387 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
388 	{0x3810, 0x00, 0, 0},
389 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
390 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
391 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
392 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
393 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
394 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
395 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
396 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
397 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
398 };
399 
400 static const struct reg_value ov5640_setting_QVGA_320_240[] = {
401 	{0x3c07, 0x08, 0, 0},
402 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
403 	{0x3814, 0x31, 0, 0},
404 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
405 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
406 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
407 	{0x3810, 0x00, 0, 0},
408 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
409 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
410 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
411 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
412 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
413 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
414 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
415 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
416 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
417 };
418 
419 static const struct reg_value ov5640_setting_QCIF_176_144[] = {
420 	{0x3c07, 0x08, 0, 0},
421 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
422 	{0x3814, 0x31, 0, 0},
423 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
424 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
425 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
426 	{0x3810, 0x00, 0, 0},
427 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
428 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
429 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
430 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
431 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
432 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
433 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
434 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
435 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
436 };
437 
438 static const struct reg_value ov5640_setting_NTSC_720_480[] = {
439 	{0x3c07, 0x08, 0, 0},
440 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
441 	{0x3814, 0x31, 0, 0},
442 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
443 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
444 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
445 	{0x3810, 0x00, 0, 0},
446 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
447 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
448 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
449 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
450 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
451 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
452 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
453 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
454 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
455 };
456 
457 static const struct reg_value ov5640_setting_PAL_720_576[] = {
458 	{0x3c07, 0x08, 0, 0},
459 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
460 	{0x3814, 0x31, 0, 0},
461 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
462 	{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
463 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
464 	{0x3810, 0x00, 0, 0},
465 	{0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
466 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
467 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
468 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
469 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
470 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
471 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
472 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
473 	{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
474 };
475 
476 static const struct reg_value ov5640_setting_720P_1280_720[] = {
477 	{0x3c07, 0x07, 0, 0},
478 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
479 	{0x3814, 0x31, 0, 0},
480 	{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
481 	{0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
482 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
483 	{0x3810, 0x00, 0, 0},
484 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
485 	{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
486 	{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
487 	{0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
488 	{0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
489 	{0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
490 	{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
491 	{0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
492 	{0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
493 };
494 
495 static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
496 	{0x3008, 0x42, 0, 0},
497 	{0x3c07, 0x08, 0, 0},
498 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
499 	{0x3814, 0x11, 0, 0},
500 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
501 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
502 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
503 	{0x3810, 0x00, 0, 0},
504 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
505 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
506 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
507 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
508 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
509 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
510 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
511 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
512 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
513 	{0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
514 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
515 	{0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
516 	{0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
517 	{0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
518 	{0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
519 	{0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
520 	{0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
521 	{0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
522 	{0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
523 	{0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
524 	{0x4005, 0x1a, 0, 0}, {0x3008, 0x02, 0, 0},
525 };
526 
527 static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
528 	{0x3c07, 0x08, 0, 0},
529 	{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
530 	{0x3814, 0x11, 0, 0},
531 	{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
532 	{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
533 	{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
534 	{0x3810, 0x00, 0, 0},
535 	{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
536 	{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
537 	{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
538 	{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
539 	{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
540 	{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
541 	{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
542 	{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
543 	{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
544 };
545 
546 /* power-on sensor init reg table */
547 static const struct ov5640_mode_info ov5640_mode_init_data = {
548 	0, SUBSAMPLING, 640, 1896, 480, 984,
549 	ov5640_init_setting_30fps_VGA,
550 	ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
551 };
552 
553 static const struct ov5640_mode_info
554 ov5640_mode_data[OV5640_NUM_MODES] = {
555 	{OV5640_MODE_QCIF_176_144, SUBSAMPLING,
556 	 176, 1896, 144, 984,
557 	 ov5640_setting_QCIF_176_144,
558 	 ARRAY_SIZE(ov5640_setting_QCIF_176_144)},
559 	{OV5640_MODE_QVGA_320_240, SUBSAMPLING,
560 	 320, 1896, 240, 984,
561 	 ov5640_setting_QVGA_320_240,
562 	 ARRAY_SIZE(ov5640_setting_QVGA_320_240)},
563 	{OV5640_MODE_VGA_640_480, SUBSAMPLING,
564 	 640, 1896, 480, 1080,
565 	 ov5640_setting_VGA_640_480,
566 	 ARRAY_SIZE(ov5640_setting_VGA_640_480)},
567 	{OV5640_MODE_NTSC_720_480, SUBSAMPLING,
568 	 720, 1896, 480, 984,
569 	 ov5640_setting_NTSC_720_480,
570 	 ARRAY_SIZE(ov5640_setting_NTSC_720_480)},
571 	{OV5640_MODE_PAL_720_576, SUBSAMPLING,
572 	 720, 1896, 576, 984,
573 	 ov5640_setting_PAL_720_576,
574 	 ARRAY_SIZE(ov5640_setting_PAL_720_576)},
575 	{OV5640_MODE_XGA_1024_768, SUBSAMPLING,
576 	 1024, 1896, 768, 1080,
577 	 ov5640_setting_XGA_1024_768,
578 	 ARRAY_SIZE(ov5640_setting_XGA_1024_768)},
579 	{OV5640_MODE_720P_1280_720, SUBSAMPLING,
580 	 1280, 1892, 720, 740,
581 	 ov5640_setting_720P_1280_720,
582 	 ARRAY_SIZE(ov5640_setting_720P_1280_720)},
583 	{OV5640_MODE_1080P_1920_1080, SCALING,
584 	 1920, 2500, 1080, 1120,
585 	 ov5640_setting_1080P_1920_1080,
586 	 ARRAY_SIZE(ov5640_setting_1080P_1920_1080)},
587 	{OV5640_MODE_QSXGA_2592_1944, SCALING,
588 	 2592, 2844, 1944, 1968,
589 	 ov5640_setting_QSXGA_2592_1944,
590 	 ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944)},
591 };
592 
593 static int ov5640_init_slave_id(struct ov5640_dev *sensor)
594 {
595 	struct i2c_client *client = sensor->i2c_client;
596 	struct i2c_msg msg;
597 	u8 buf[3];
598 	int ret;
599 
600 	if (client->addr == OV5640_DEFAULT_SLAVE_ID)
601 		return 0;
602 
603 	buf[0] = OV5640_REG_SLAVE_ID >> 8;
604 	buf[1] = OV5640_REG_SLAVE_ID & 0xff;
605 	buf[2] = client->addr << 1;
606 
607 	msg.addr = OV5640_DEFAULT_SLAVE_ID;
608 	msg.flags = 0;
609 	msg.buf = buf;
610 	msg.len = sizeof(buf);
611 
612 	ret = i2c_transfer(client->adapter, &msg, 1);
613 	if (ret < 0) {
614 		dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
615 		return ret;
616 	}
617 
618 	return 0;
619 }
620 
621 static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
622 {
623 	struct i2c_client *client = sensor->i2c_client;
624 	struct i2c_msg msg;
625 	u8 buf[3];
626 	int ret;
627 
628 	buf[0] = reg >> 8;
629 	buf[1] = reg & 0xff;
630 	buf[2] = val;
631 
632 	msg.addr = client->addr;
633 	msg.flags = client->flags;
634 	msg.buf = buf;
635 	msg.len = sizeof(buf);
636 
637 	ret = i2c_transfer(client->adapter, &msg, 1);
638 	if (ret < 0) {
639 		dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
640 			__func__, reg, val);
641 		return ret;
642 	}
643 
644 	return 0;
645 }
646 
647 static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
648 {
649 	struct i2c_client *client = sensor->i2c_client;
650 	struct i2c_msg msg[2];
651 	u8 buf[2];
652 	int ret;
653 
654 	buf[0] = reg >> 8;
655 	buf[1] = reg & 0xff;
656 
657 	msg[0].addr = client->addr;
658 	msg[0].flags = client->flags;
659 	msg[0].buf = buf;
660 	msg[0].len = sizeof(buf);
661 
662 	msg[1].addr = client->addr;
663 	msg[1].flags = client->flags | I2C_M_RD;
664 	msg[1].buf = buf;
665 	msg[1].len = 1;
666 
667 	ret = i2c_transfer(client->adapter, msg, 2);
668 	if (ret < 0) {
669 		dev_err(&client->dev, "%s: error: reg=%x\n",
670 			__func__, reg);
671 		return ret;
672 	}
673 
674 	*val = buf[0];
675 	return 0;
676 }
677 
678 static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
679 {
680 	u8 hi, lo;
681 	int ret;
682 
683 	ret = ov5640_read_reg(sensor, reg, &hi);
684 	if (ret)
685 		return ret;
686 	ret = ov5640_read_reg(sensor, reg + 1, &lo);
687 	if (ret)
688 		return ret;
689 
690 	*val = ((u16)hi << 8) | (u16)lo;
691 	return 0;
692 }
693 
694 static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
695 {
696 	int ret;
697 
698 	ret = ov5640_write_reg(sensor, reg, val >> 8);
699 	if (ret)
700 		return ret;
701 
702 	return ov5640_write_reg(sensor, reg + 1, val & 0xff);
703 }
704 
705 static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
706 			  u8 mask, u8 val)
707 {
708 	u8 readval;
709 	int ret;
710 
711 	ret = ov5640_read_reg(sensor, reg, &readval);
712 	if (ret)
713 		return ret;
714 
715 	readval &= ~mask;
716 	val &= mask;
717 	val |= readval;
718 
719 	return ov5640_write_reg(sensor, reg, val);
720 }
721 
722 /*
723  * After trying the various combinations, reading various
724  * documentations spread around the net, and from the various
725  * feedback, the clock tree is probably as follows:
726  *
727  *   +--------------+
728  *   |  Ext. Clock  |
729  *   +-+------------+
730  *     |  +----------+
731  *     +->|   PLL1   | - reg 0x3036, for the multiplier
732  *        +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
733  *          |  +--------------+
734  *          +->| System Clock |  - reg 0x3035, bits 4-7
735  *             +-+------------+
736  *               |  +--------------+
737  *               +->| MIPI Divider | - reg 0x3035, bits 0-3
738  *               |  +-+------------+
739  *               |    +----------------> MIPI SCLK
740  *               |    +  +-----+
741  *               |    +->| / 2 |-------> MIPI BIT CLK
742  *               |       +-----+
743  *               |  +--------------+
744  *               +->| PLL Root Div | - reg 0x3037, bit 4
745  *                  +-+------------+
746  *                    |  +---------+
747  *                    +->| Bit Div | - reg 0x3035, bits 0-3
748  *                       +-+-------+
749  *                         |  +-------------+
750  *                         +->| SCLK Div    | - reg 0x3108, bits 0-1
751  *                         |  +-+-----------+
752  *                         |    +---------------> SCLK
753  *                         |  +-------------+
754  *                         +->| SCLK 2X Div | - reg 0x3108, bits 2-3
755  *                         |  +-+-----------+
756  *                         |    +---------------> SCLK 2X
757  *                         |  +-------------+
758  *                         +->| PCLK Div    | - reg 0x3108, bits 4-5
759  *                            ++------------+
760  *                             +  +-----------+
761  *                             +->|   P_DIV   | - reg 0x3035, bits 0-3
762  *                                +-----+-----+
763  *                                       +------------> PCLK
764  *
765  * This is deviating from the datasheet at least for the register
766  * 0x3108, since it's said here that the PCLK would be clocked from
767  * the PLL.
768  *
769  * There seems to be also (unverified) constraints:
770  *  - the PLL pre-divider output rate should be in the 4-27MHz range
771  *  - the PLL multiplier output rate should be in the 500-1000MHz range
772  *  - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
773  *
774  * In the two latter cases, these constraints are met since our
775  * factors are hardcoded. If we were to change that, we would need to
776  * take this into account. The only varying parts are the PLL
777  * multiplier and the system clock divider, which are shared between
778  * all these clocks so won't cause any issue.
779  */
780 
781 /*
782  * This is supposed to be ranging from 1 to 8, but the value is always
783  * set to 3 in the vendor kernels.
784  */
785 #define OV5640_PLL_PREDIV	3
786 
787 #define OV5640_PLL_MULT_MIN	4
788 #define OV5640_PLL_MULT_MAX	252
789 
790 /*
791  * This is supposed to be ranging from 1 to 16, but the value is
792  * always set to either 1 or 2 in the vendor kernels.
793  */
794 #define OV5640_SYSDIV_MIN	1
795 #define OV5640_SYSDIV_MAX	16
796 
797 /*
798  * Hardcode these values for scaler and non-scaler modes.
799  * FIXME: to be re-calcualted for 1 data lanes setups
800  */
801 #define OV5640_MIPI_DIV_PCLK	2
802 #define OV5640_MIPI_DIV_SCLK	1
803 
804 /*
805  * This is supposed to be ranging from 1 to 2, but the value is always
806  * set to 2 in the vendor kernels.
807  */
808 #define OV5640_PLL_ROOT_DIV			2
809 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2		BIT(4)
810 
811 /*
812  * We only supports 8-bit formats at the moment
813  */
814 #define OV5640_BIT_DIV				2
815 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT		0x08
816 
817 /*
818  * This is supposed to be ranging from 1 to 8, but the value is always
819  * set to 2 in the vendor kernels.
820  */
821 #define OV5640_SCLK_ROOT_DIV	2
822 
823 /*
824  * This is hardcoded so that the consistency is maintained between SCLK and
825  * SCLK 2x.
826  */
827 #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
828 
829 /*
830  * This is supposed to be ranging from 1 to 8, but the value is always
831  * set to 1 in the vendor kernels.
832  */
833 #define OV5640_PCLK_ROOT_DIV			1
834 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS	0x00
835 
836 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
837 					    u8 pll_prediv, u8 pll_mult,
838 					    u8 sysdiv)
839 {
840 	unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
841 
842 	/* PLL1 output cannot exceed 1GHz. */
843 	if (sysclk / 1000000 > 1000)
844 		return 0;
845 
846 	return sysclk / sysdiv;
847 }
848 
849 static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
850 					 unsigned long rate,
851 					 u8 *pll_prediv, u8 *pll_mult,
852 					 u8 *sysdiv)
853 {
854 	unsigned long best = ~0;
855 	u8 best_sysdiv = 1, best_mult = 1;
856 	u8 _sysdiv, _pll_mult;
857 
858 	for (_sysdiv = OV5640_SYSDIV_MIN;
859 	     _sysdiv <= OV5640_SYSDIV_MAX;
860 	     _sysdiv++) {
861 		for (_pll_mult = OV5640_PLL_MULT_MIN;
862 		     _pll_mult <= OV5640_PLL_MULT_MAX;
863 		     _pll_mult++) {
864 			unsigned long _rate;
865 
866 			/*
867 			 * The PLL multiplier cannot be odd if above
868 			 * 127.
869 			 */
870 			if (_pll_mult > 127 && (_pll_mult % 2))
871 				continue;
872 
873 			_rate = ov5640_compute_sys_clk(sensor,
874 						       OV5640_PLL_PREDIV,
875 						       _pll_mult, _sysdiv);
876 
877 			/*
878 			 * We have reached the maximum allowed PLL1 output,
879 			 * increase sysdiv.
880 			 */
881 			if (!rate)
882 				break;
883 
884 			/*
885 			 * Prefer rates above the expected clock rate than
886 			 * below, even if that means being less precise.
887 			 */
888 			if (_rate < rate)
889 				continue;
890 
891 			if (abs(rate - _rate) < abs(rate - best)) {
892 				best = _rate;
893 				best_sysdiv = _sysdiv;
894 				best_mult = _pll_mult;
895 			}
896 
897 			if (_rate == rate)
898 				goto out;
899 		}
900 	}
901 
902 out:
903 	*sysdiv = best_sysdiv;
904 	*pll_prediv = OV5640_PLL_PREDIV;
905 	*pll_mult = best_mult;
906 
907 	return best;
908 }
909 
910 /*
911  * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
912  *			    for the MIPI CSI-2 output.
913  *
914  * @rate: The requested bandwidth per lane in bytes per second.
915  *	  'Bandwidth Per Lane' is calculated as:
916  *	  bpl = HTOT * VTOT * FPS * bpp / num_lanes;
917  *
918  * This function use the requested bandwidth to calculate:
919  * - sample_rate = bpl / (bpp / num_lanes);
920  *	         = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
921  *
922  * - mipi_sclk   = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
923  *
924  * with these fixed parameters:
925  *	PLL_RDIV	= 2;
926  *	BIT_DIVIDER	= 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
927  *	PCLK_DIV	= 1;
928  *
929  * The MIPI clock generation differs for modes that use the scaler and modes
930  * that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
931  * BIT CLk, and thus:
932  *
933  * - mipi_sclk = bpl / MIPI_DIV / 2;
934  *   MIPI_DIV = 1;
935  *
936  * For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
937  * from the pixel clock, and thus:
938  *
939  * - sample_rate = bpl / (bpp / num_lanes);
940  *	         = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
941  *		 = bpl / (4 * MIPI_DIV / num_lanes);
942  * - MIPI_DIV	 = bpp / (4 * num_lanes);
943  *
944  * FIXME: this have been tested with 16bpp and 2 lanes setup only.
945  * MIPI_DIV is fixed to value 2, but it -might- be changed according to the
946  * above formula for setups with 1 lane or image formats with different bpp.
947  *
948  * FIXME: this deviates from the sensor manual documentation which is quite
949  * thin on the MIPI clock tree generation part.
950  */
951 static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
952 				unsigned long rate)
953 {
954 	const struct ov5640_mode_info *mode = sensor->current_mode;
955 	u8 prediv, mult, sysdiv;
956 	u8 mipi_div;
957 	int ret;
958 
959 	/*
960 	 * 1280x720 is reported to use 'SUBSAMPLING' only,
961 	 * but according to the sensor manual it goes through the
962 	 * scaler before subsampling.
963 	 */
964 	if (mode->dn_mode == SCALING ||
965 	   (mode->id == OV5640_MODE_720P_1280_720))
966 		mipi_div = OV5640_MIPI_DIV_SCLK;
967 	else
968 		mipi_div = OV5640_MIPI_DIV_PCLK;
969 
970 	ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
971 
972 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
973 			     0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
974 
975 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
976 			     0xff, sysdiv << 4 | mipi_div);
977 	if (ret)
978 		return ret;
979 
980 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
981 	if (ret)
982 		return ret;
983 
984 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
985 			     0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
986 	if (ret)
987 		return ret;
988 
989 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
990 			      0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
991 }
992 
993 static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
994 				      unsigned long rate,
995 				      u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
996 				      u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
997 {
998 	unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
999 				OV5640_PCLK_ROOT_DIV;
1000 
1001 	_rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
1002 				    sysdiv);
1003 	*pll_rdiv = OV5640_PLL_ROOT_DIV;
1004 	*bit_div = OV5640_BIT_DIV;
1005 	*pclk_div = OV5640_PCLK_ROOT_DIV;
1006 
1007 	return _rate / *pll_rdiv / *bit_div / *pclk_div;
1008 }
1009 
1010 static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
1011 {
1012 	u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
1013 	int ret;
1014 
1015 	ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
1016 			 &bit_div, &pclk_div);
1017 
1018 	if (bit_div == 2)
1019 		bit_div = 8;
1020 
1021 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
1022 			     0x0f, bit_div);
1023 	if (ret)
1024 		return ret;
1025 
1026 	/*
1027 	 * We need to set sysdiv according to the clock, and to clear
1028 	 * the MIPI divider.
1029 	 */
1030 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
1031 			     0xff, sysdiv << 4);
1032 	if (ret)
1033 		return ret;
1034 
1035 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
1036 			     0xff, mult);
1037 	if (ret)
1038 		return ret;
1039 
1040 	ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
1041 			     0x1f, prediv | ((pll_rdiv - 1) << 4));
1042 	if (ret)
1043 		return ret;
1044 
1045 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
1046 			      (ilog2(pclk_div) << 4));
1047 }
1048 
1049 /* set JPEG framing sizes */
1050 static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
1051 				   const struct ov5640_mode_info *mode)
1052 {
1053 	int ret;
1054 
1055 	/*
1056 	 * compression mode 3 timing
1057 	 *
1058 	 * Data is transmitted with programmable width (VFIFO_HSIZE).
1059 	 * No padding done. Last line may have less data. Varying
1060 	 * number of lines per frame, depending on amount of data.
1061 	 */
1062 	ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
1063 	if (ret < 0)
1064 		return ret;
1065 
1066 	ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
1067 	if (ret < 0)
1068 		return ret;
1069 
1070 	return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
1071 }
1072 
1073 /* download ov5640 settings to sensor through i2c */
1074 static int ov5640_set_timings(struct ov5640_dev *sensor,
1075 			      const struct ov5640_mode_info *mode)
1076 {
1077 	int ret;
1078 
1079 	if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
1080 		ret = ov5640_set_jpeg_timings(sensor, mode);
1081 		if (ret < 0)
1082 			return ret;
1083 	}
1084 
1085 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
1094 	if (ret < 0)
1095 		return ret;
1096 
1097 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
1098 }
1099 
1100 static int ov5640_load_regs(struct ov5640_dev *sensor,
1101 			    const struct ov5640_mode_info *mode)
1102 {
1103 	const struct reg_value *regs = mode->reg_data;
1104 	unsigned int i;
1105 	u32 delay_ms;
1106 	u16 reg_addr;
1107 	u8 mask, val;
1108 	int ret = 0;
1109 
1110 	for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
1111 		delay_ms = regs->delay_ms;
1112 		reg_addr = regs->reg_addr;
1113 		val = regs->val;
1114 		mask = regs->mask;
1115 
1116 		if (mask)
1117 			ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
1118 		else
1119 			ret = ov5640_write_reg(sensor, reg_addr, val);
1120 		if (ret)
1121 			break;
1122 
1123 		if (delay_ms)
1124 			usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
1125 	}
1126 
1127 	return ov5640_set_timings(sensor, mode);
1128 }
1129 
1130 static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
1131 {
1132 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1133 			      BIT(0), on ? 0 : BIT(0));
1134 }
1135 
1136 /* read exposure, in number of line periods */
1137 static int ov5640_get_exposure(struct ov5640_dev *sensor)
1138 {
1139 	int exp, ret;
1140 	u8 temp;
1141 
1142 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
1143 	if (ret)
1144 		return ret;
1145 	exp = ((int)temp & 0x0f) << 16;
1146 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
1147 	if (ret)
1148 		return ret;
1149 	exp |= ((int)temp << 8);
1150 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
1151 	if (ret)
1152 		return ret;
1153 	exp |= (int)temp;
1154 
1155 	return exp >> 4;
1156 }
1157 
1158 /* write exposure, given number of line periods */
1159 static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
1160 {
1161 	int ret;
1162 
1163 	exposure <<= 4;
1164 
1165 	ret = ov5640_write_reg(sensor,
1166 			       OV5640_REG_AEC_PK_EXPOSURE_LO,
1167 			       exposure & 0xff);
1168 	if (ret)
1169 		return ret;
1170 	ret = ov5640_write_reg(sensor,
1171 			       OV5640_REG_AEC_PK_EXPOSURE_MED,
1172 			       (exposure >> 8) & 0xff);
1173 	if (ret)
1174 		return ret;
1175 	return ov5640_write_reg(sensor,
1176 				OV5640_REG_AEC_PK_EXPOSURE_HI,
1177 				(exposure >> 16) & 0x0f);
1178 }
1179 
1180 static int ov5640_get_gain(struct ov5640_dev *sensor)
1181 {
1182 	u16 gain;
1183 	int ret;
1184 
1185 	ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
1186 	if (ret)
1187 		return ret;
1188 
1189 	return gain & 0x3ff;
1190 }
1191 
1192 static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
1193 {
1194 	return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
1195 				  (u16)gain & 0x3ff);
1196 }
1197 
1198 static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
1199 {
1200 	return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
1201 			      BIT(1), on ? 0 : BIT(1));
1202 }
1203 
1204 static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
1205 {
1206 	int ret;
1207 	unsigned int flags = sensor->ep.bus.parallel.flags;
1208 	u8 pclk_pol = 0;
1209 	u8 hsync_pol = 0;
1210 	u8 vsync_pol = 0;
1211 
1212 	/*
1213 	 * Note about parallel port configuration.
1214 	 *
1215 	 * When configured in parallel mode, the OV5640 will
1216 	 * output 10 bits data on DVP data lines [9:0].
1217 	 * If only 8 bits data are wanted, the 8 bits data lines
1218 	 * of the camera interface must be physically connected
1219 	 * on the DVP data lines [9:2].
1220 	 *
1221 	 * Control lines polarity can be configured through
1222 	 * devicetree endpoint control lines properties.
1223 	 * If no endpoint control lines properties are set,
1224 	 * polarity will be as below:
1225 	 * - VSYNC:	active high
1226 	 * - HREF:	active low
1227 	 * - PCLK:	active low
1228 	 */
1229 
1230 	if (on) {
1231 		/*
1232 		 * configure parallel port control lines polarity
1233 		 *
1234 		 * POLARITY CTRL0
1235 		 * - [5]:	PCLK polarity (0: active low, 1: active high)
1236 		 * - [1]:	HREF polarity (0: active low, 1: active high)
1237 		 * - [0]:	VSYNC polarity (mismatch here between
1238 		 *		datasheet and hardware, 0 is active high
1239 		 *		and 1 is active low...)
1240 		 */
1241 		if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
1242 			pclk_pol = 1;
1243 		if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
1244 			hsync_pol = 1;
1245 		if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
1246 			vsync_pol = 1;
1247 
1248 		ret = ov5640_write_reg(sensor,
1249 				       OV5640_REG_POLARITY_CTRL00,
1250 				       (pclk_pol << 5) |
1251 				       (hsync_pol << 1) |
1252 				       vsync_pol);
1253 
1254 		if (ret)
1255 			return ret;
1256 	}
1257 
1258 	/*
1259 	 * powerdown MIPI TX/RX PHY & disable MIPI
1260 	 *
1261 	 * MIPI CONTROL 00
1262 	 * 4:	 PWDN PHY TX
1263 	 * 3:	 PWDN PHY RX
1264 	 * 2:	 MIPI enable
1265 	 */
1266 	ret = ov5640_write_reg(sensor,
1267 			       OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0);
1268 	if (ret)
1269 		return ret;
1270 
1271 	/*
1272 	 * enable VSYNC/HREF/PCLK DVP control lines
1273 	 * & D[9:6] DVP data lines
1274 	 *
1275 	 * PAD OUTPUT ENABLE 01
1276 	 * - 6:		VSYNC output enable
1277 	 * - 5:		HREF output enable
1278 	 * - 4:		PCLK output enable
1279 	 * - [3:0]:	D[9:6] output enable
1280 	 */
1281 	ret = ov5640_write_reg(sensor,
1282 			       OV5640_REG_PAD_OUTPUT_ENABLE01,
1283 			       on ? 0x7f : 0);
1284 	if (ret)
1285 		return ret;
1286 
1287 	/*
1288 	 * enable D[5:0] DVP data lines
1289 	 *
1290 	 * PAD OUTPUT ENABLE 02
1291 	 * - [7:2]:	D[5:0] output enable
1292 	 */
1293 	return ov5640_write_reg(sensor,
1294 				OV5640_REG_PAD_OUTPUT_ENABLE02,
1295 				on ? 0xfc : 0);
1296 }
1297 
1298 static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
1299 {
1300 	int ret;
1301 
1302 	/*
1303 	 * Enable/disable the MIPI interface
1304 	 *
1305 	 * 0x300e = on ? 0x45 : 0x40
1306 	 *
1307 	 * FIXME: the sensor manual (version 2.03) reports
1308 	 * [7:5] = 000  : 1 data lane mode
1309 	 * [7:5] = 001  : 2 data lanes mode
1310 	 * But this settings do not work, while the following ones
1311 	 * have been validated for 2 data lanes mode.
1312 	 *
1313 	 * [7:5] = 010	: 2 data lanes mode
1314 	 * [4] = 0	: Power up MIPI HS Tx
1315 	 * [3] = 0	: Power up MIPI LS Rx
1316 	 * [2] = 1/0	: MIPI interface enable/disable
1317 	 * [1:0] = 01/00: FIXME: 'debug'
1318 	 */
1319 	ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
1320 			       on ? 0x45 : 0x40);
1321 	if (ret)
1322 		return ret;
1323 
1324 	return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
1325 				on ? 0x00 : 0x0f);
1326 }
1327 
1328 static int ov5640_get_sysclk(struct ov5640_dev *sensor)
1329 {
1330 	 /* calculate sysclk */
1331 	u32 xvclk = sensor->xclk_freq / 10000;
1332 	u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
1333 	u32 sclk_rdiv_map[] = {1, 2, 4, 8};
1334 	u32 bit_div2x = 1, sclk_rdiv, sysclk;
1335 	u8 temp1, temp2;
1336 	int ret;
1337 
1338 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
1339 	if (ret)
1340 		return ret;
1341 	temp2 = temp1 & 0x0f;
1342 	if (temp2 == 8 || temp2 == 10)
1343 		bit_div2x = temp2 / 2;
1344 
1345 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
1346 	if (ret)
1347 		return ret;
1348 	sysdiv = temp1 >> 4;
1349 	if (sysdiv == 0)
1350 		sysdiv = 16;
1351 
1352 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
1353 	if (ret)
1354 		return ret;
1355 	multiplier = temp1;
1356 
1357 	ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
1358 	if (ret)
1359 		return ret;
1360 	prediv = temp1 & 0x0f;
1361 	pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
1362 
1363 	ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
1364 	if (ret)
1365 		return ret;
1366 	temp2 = temp1 & 0x03;
1367 	sclk_rdiv = sclk_rdiv_map[temp2];
1368 
1369 	if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
1370 		return -EINVAL;
1371 
1372 	VCO = xvclk * multiplier / prediv;
1373 
1374 	sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
1375 
1376 	return sysclk;
1377 }
1378 
1379 static int ov5640_set_night_mode(struct ov5640_dev *sensor)
1380 {
1381 	 /* read HTS from register settings */
1382 	u8 mode;
1383 	int ret;
1384 
1385 	ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
1386 	if (ret)
1387 		return ret;
1388 	mode &= 0xfb;
1389 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
1390 }
1391 
1392 static int ov5640_get_hts(struct ov5640_dev *sensor)
1393 {
1394 	/* read HTS from register settings */
1395 	u16 hts;
1396 	int ret;
1397 
1398 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
1399 	if (ret)
1400 		return ret;
1401 	return hts;
1402 }
1403 
1404 static int ov5640_get_vts(struct ov5640_dev *sensor)
1405 {
1406 	u16 vts;
1407 	int ret;
1408 
1409 	ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
1410 	if (ret)
1411 		return ret;
1412 	return vts;
1413 }
1414 
1415 static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
1416 {
1417 	return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
1418 }
1419 
1420 static int ov5640_get_light_freq(struct ov5640_dev *sensor)
1421 {
1422 	/* get banding filter value */
1423 	int ret, light_freq = 0;
1424 	u8 temp, temp1;
1425 
1426 	ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
1427 	if (ret)
1428 		return ret;
1429 
1430 	if (temp & 0x80) {
1431 		/* manual */
1432 		ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
1433 				      &temp1);
1434 		if (ret)
1435 			return ret;
1436 		if (temp1 & 0x04) {
1437 			/* 50Hz */
1438 			light_freq = 50;
1439 		} else {
1440 			/* 60Hz */
1441 			light_freq = 60;
1442 		}
1443 	} else {
1444 		/* auto */
1445 		ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
1446 				      &temp1);
1447 		if (ret)
1448 			return ret;
1449 
1450 		if (temp1 & 0x01) {
1451 			/* 50Hz */
1452 			light_freq = 50;
1453 		} else {
1454 			/* 60Hz */
1455 		}
1456 	}
1457 
1458 	return light_freq;
1459 }
1460 
1461 static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
1462 {
1463 	u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
1464 	int ret;
1465 
1466 	/* read preview PCLK */
1467 	ret = ov5640_get_sysclk(sensor);
1468 	if (ret < 0)
1469 		return ret;
1470 	if (ret == 0)
1471 		return -EINVAL;
1472 	sensor->prev_sysclk = ret;
1473 	/* read preview HTS */
1474 	ret = ov5640_get_hts(sensor);
1475 	if (ret < 0)
1476 		return ret;
1477 	if (ret == 0)
1478 		return -EINVAL;
1479 	sensor->prev_hts = ret;
1480 
1481 	/* read preview VTS */
1482 	ret = ov5640_get_vts(sensor);
1483 	if (ret < 0)
1484 		return ret;
1485 	prev_vts = ret;
1486 
1487 	/* calculate banding filter */
1488 	/* 60Hz */
1489 	band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
1490 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
1491 	if (ret)
1492 		return ret;
1493 	if (!band_step60)
1494 		return -EINVAL;
1495 	max_band60 = (int)((prev_vts - 4) / band_step60);
1496 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
1497 	if (ret)
1498 		return ret;
1499 
1500 	/* 50Hz */
1501 	band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
1502 	ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
1503 	if (ret)
1504 		return ret;
1505 	if (!band_step50)
1506 		return -EINVAL;
1507 	max_band50 = (int)((prev_vts - 4) / band_step50);
1508 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
1509 }
1510 
1511 static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
1512 {
1513 	/* stable in high */
1514 	u32 fast_high, fast_low;
1515 	int ret;
1516 
1517 	sensor->ae_low = target * 23 / 25;	/* 0.92 */
1518 	sensor->ae_high = target * 27 / 25;	/* 1.08 */
1519 
1520 	fast_high = sensor->ae_high << 1;
1521 	if (fast_high > 255)
1522 		fast_high = 255;
1523 
1524 	fast_low = sensor->ae_low >> 1;
1525 
1526 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
1527 	if (ret)
1528 		return ret;
1529 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
1530 	if (ret)
1531 		return ret;
1532 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
1533 	if (ret)
1534 		return ret;
1535 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
1536 	if (ret)
1537 		return ret;
1538 	ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
1539 	if (ret)
1540 		return ret;
1541 	return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
1542 }
1543 
1544 static int ov5640_get_binning(struct ov5640_dev *sensor)
1545 {
1546 	u8 temp;
1547 	int ret;
1548 
1549 	ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
1550 	if (ret)
1551 		return ret;
1552 
1553 	return temp & BIT(0);
1554 }
1555 
1556 static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
1557 {
1558 	int ret;
1559 
1560 	/*
1561 	 * TIMING TC REG21:
1562 	 * - [0]:	Horizontal binning enable
1563 	 */
1564 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
1565 			     BIT(0), enable ? BIT(0) : 0);
1566 	if (ret)
1567 		return ret;
1568 	/*
1569 	 * TIMING TC REG20:
1570 	 * - [0]:	Undocumented, but hardcoded init sequences
1571 	 *		are always setting REG21/REG20 bit 0 to same value...
1572 	 */
1573 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
1574 			      BIT(0), enable ? BIT(0) : 0);
1575 }
1576 
1577 static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
1578 {
1579 	struct i2c_client *client = sensor->i2c_client;
1580 	u8 temp, channel = virtual_channel;
1581 	int ret;
1582 
1583 	if (channel > 3) {
1584 		dev_err(&client->dev,
1585 			"%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
1586 			__func__, channel);
1587 		return -EINVAL;
1588 	}
1589 
1590 	ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
1591 	if (ret)
1592 		return ret;
1593 	temp &= ~(3 << 6);
1594 	temp |= (channel << 6);
1595 	return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
1596 }
1597 
1598 static const struct ov5640_mode_info *
1599 ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
1600 		 int width, int height, bool nearest)
1601 {
1602 	const struct ov5640_mode_info *mode;
1603 
1604 	mode = v4l2_find_nearest_size(ov5640_mode_data,
1605 				      ARRAY_SIZE(ov5640_mode_data),
1606 				      hact, vact,
1607 				      width, height);
1608 
1609 	if (!mode ||
1610 	    (!nearest && (mode->hact != width || mode->vact != height)))
1611 		return NULL;
1612 
1613 	/* Only 640x480 can operate at 60fps (for now) */
1614 	if (fr == OV5640_60_FPS &&
1615 	    !(mode->hact == 640 && mode->vact == 480))
1616 		return NULL;
1617 
1618 	return mode;
1619 }
1620 
1621 /*
1622  * sensor changes between scaling and subsampling, go through
1623  * exposure calculation
1624  */
1625 static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
1626 					 const struct ov5640_mode_info *mode)
1627 {
1628 	u32 prev_shutter, prev_gain16;
1629 	u32 cap_shutter, cap_gain16;
1630 	u32 cap_sysclk, cap_hts, cap_vts;
1631 	u32 light_freq, cap_bandfilt, cap_maxband;
1632 	u32 cap_gain16_shutter;
1633 	u8 average;
1634 	int ret;
1635 
1636 	if (!mode->reg_data)
1637 		return -EINVAL;
1638 
1639 	/* read preview shutter */
1640 	ret = ov5640_get_exposure(sensor);
1641 	if (ret < 0)
1642 		return ret;
1643 	prev_shutter = ret;
1644 	ret = ov5640_get_binning(sensor);
1645 	if (ret < 0)
1646 		return ret;
1647 	if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
1648 	    mode->id != OV5640_MODE_1080P_1920_1080)
1649 		prev_shutter *= 2;
1650 
1651 	/* read preview gain */
1652 	ret = ov5640_get_gain(sensor);
1653 	if (ret < 0)
1654 		return ret;
1655 	prev_gain16 = ret;
1656 
1657 	/* get average */
1658 	ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
1659 	if (ret)
1660 		return ret;
1661 
1662 	/* turn off night mode for capture */
1663 	ret = ov5640_set_night_mode(sensor);
1664 	if (ret < 0)
1665 		return ret;
1666 
1667 	/* Write capture setting */
1668 	ret = ov5640_load_regs(sensor, mode);
1669 	if (ret < 0)
1670 		return ret;
1671 
1672 	/* read capture VTS */
1673 	ret = ov5640_get_vts(sensor);
1674 	if (ret < 0)
1675 		return ret;
1676 	cap_vts = ret;
1677 	ret = ov5640_get_hts(sensor);
1678 	if (ret < 0)
1679 		return ret;
1680 	if (ret == 0)
1681 		return -EINVAL;
1682 	cap_hts = ret;
1683 
1684 	ret = ov5640_get_sysclk(sensor);
1685 	if (ret < 0)
1686 		return ret;
1687 	if (ret == 0)
1688 		return -EINVAL;
1689 	cap_sysclk = ret;
1690 
1691 	/* calculate capture banding filter */
1692 	ret = ov5640_get_light_freq(sensor);
1693 	if (ret < 0)
1694 		return ret;
1695 	light_freq = ret;
1696 
1697 	if (light_freq == 60) {
1698 		/* 60Hz */
1699 		cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
1700 	} else {
1701 		/* 50Hz */
1702 		cap_bandfilt = cap_sysclk * 100 / cap_hts;
1703 	}
1704 
1705 	if (!sensor->prev_sysclk) {
1706 		ret = ov5640_get_sysclk(sensor);
1707 		if (ret < 0)
1708 			return ret;
1709 		if (ret == 0)
1710 			return -EINVAL;
1711 		sensor->prev_sysclk = ret;
1712 	}
1713 
1714 	if (!cap_bandfilt)
1715 		return -EINVAL;
1716 
1717 	cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
1718 
1719 	/* calculate capture shutter/gain16 */
1720 	if (average > sensor->ae_low && average < sensor->ae_high) {
1721 		/* in stable range */
1722 		cap_gain16_shutter =
1723 			prev_gain16 * prev_shutter *
1724 			cap_sysclk / sensor->prev_sysclk *
1725 			sensor->prev_hts / cap_hts *
1726 			sensor->ae_target / average;
1727 	} else {
1728 		cap_gain16_shutter =
1729 			prev_gain16 * prev_shutter *
1730 			cap_sysclk / sensor->prev_sysclk *
1731 			sensor->prev_hts / cap_hts;
1732 	}
1733 
1734 	/* gain to shutter */
1735 	if (cap_gain16_shutter < (cap_bandfilt * 16)) {
1736 		/* shutter < 1/100 */
1737 		cap_shutter = cap_gain16_shutter / 16;
1738 		if (cap_shutter < 1)
1739 			cap_shutter = 1;
1740 
1741 		cap_gain16 = cap_gain16_shutter / cap_shutter;
1742 		if (cap_gain16 < 16)
1743 			cap_gain16 = 16;
1744 	} else {
1745 		if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
1746 			/* exposure reach max */
1747 			cap_shutter = cap_bandfilt * cap_maxband;
1748 			if (!cap_shutter)
1749 				return -EINVAL;
1750 
1751 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1752 		} else {
1753 			/* 1/100 < (cap_shutter = n/100) =< max */
1754 			cap_shutter =
1755 				((int)(cap_gain16_shutter / 16 / cap_bandfilt))
1756 				* cap_bandfilt;
1757 			if (!cap_shutter)
1758 				return -EINVAL;
1759 
1760 			cap_gain16 = cap_gain16_shutter / cap_shutter;
1761 		}
1762 	}
1763 
1764 	/* set capture gain */
1765 	ret = ov5640_set_gain(sensor, cap_gain16);
1766 	if (ret)
1767 		return ret;
1768 
1769 	/* write capture shutter */
1770 	if (cap_shutter > (cap_vts - 4)) {
1771 		cap_vts = cap_shutter + 4;
1772 		ret = ov5640_set_vts(sensor, cap_vts);
1773 		if (ret < 0)
1774 			return ret;
1775 	}
1776 
1777 	/* set exposure */
1778 	return ov5640_set_exposure(sensor, cap_shutter);
1779 }
1780 
1781 /*
1782  * if sensor changes inside scaling or subsampling
1783  * change mode directly
1784  */
1785 static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
1786 				  const struct ov5640_mode_info *mode)
1787 {
1788 	if (!mode->reg_data)
1789 		return -EINVAL;
1790 
1791 	/* Write capture setting */
1792 	return ov5640_load_regs(sensor, mode);
1793 }
1794 
1795 static int ov5640_set_mode(struct ov5640_dev *sensor)
1796 {
1797 	const struct ov5640_mode_info *mode = sensor->current_mode;
1798 	const struct ov5640_mode_info *orig_mode = sensor->last_mode;
1799 	enum ov5640_downsize_mode dn_mode, orig_dn_mode;
1800 	bool auto_gain = sensor->ctrls.auto_gain->val == 1;
1801 	bool auto_exp =  sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
1802 	unsigned long rate;
1803 	int ret;
1804 
1805 	dn_mode = mode->dn_mode;
1806 	orig_dn_mode = orig_mode->dn_mode;
1807 
1808 	/* auto gain and exposure must be turned off when changing modes */
1809 	if (auto_gain) {
1810 		ret = ov5640_set_autogain(sensor, false);
1811 		if (ret)
1812 			return ret;
1813 	}
1814 
1815 	if (auto_exp) {
1816 		ret = ov5640_set_autoexposure(sensor, false);
1817 		if (ret)
1818 			goto restore_auto_gain;
1819 	}
1820 
1821 	/*
1822 	 * All the formats we support have 16 bits per pixel, seems to require
1823 	 * the same rate than YUV, so we can just use 16 bpp all the time.
1824 	 */
1825 	rate = mode->vtot * mode->htot * 16;
1826 	rate *= ov5640_framerates[sensor->current_fr];
1827 	if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
1828 		rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
1829 		ret = ov5640_set_mipi_pclk(sensor, rate);
1830 	} else {
1831 		rate = rate / sensor->ep.bus.parallel.bus_width;
1832 		ret = ov5640_set_dvp_pclk(sensor, rate);
1833 	}
1834 
1835 	if (ret < 0)
1836 		return 0;
1837 
1838 	if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
1839 	    (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
1840 		/*
1841 		 * change between subsampling and scaling
1842 		 * go through exposure calculation
1843 		 */
1844 		ret = ov5640_set_mode_exposure_calc(sensor, mode);
1845 	} else {
1846 		/*
1847 		 * change inside subsampling or scaling
1848 		 * download firmware directly
1849 		 */
1850 		ret = ov5640_set_mode_direct(sensor, mode);
1851 	}
1852 	if (ret < 0)
1853 		goto restore_auto_exp_gain;
1854 
1855 	/* restore auto gain and exposure */
1856 	if (auto_gain)
1857 		ov5640_set_autogain(sensor, true);
1858 	if (auto_exp)
1859 		ov5640_set_autoexposure(sensor, true);
1860 
1861 	ret = ov5640_set_binning(sensor, dn_mode != SCALING);
1862 	if (ret < 0)
1863 		return ret;
1864 	ret = ov5640_set_ae_target(sensor, sensor->ae_target);
1865 	if (ret < 0)
1866 		return ret;
1867 	ret = ov5640_get_light_freq(sensor);
1868 	if (ret < 0)
1869 		return ret;
1870 	ret = ov5640_set_bandingfilter(sensor);
1871 	if (ret < 0)
1872 		return ret;
1873 	ret = ov5640_set_virtual_channel(sensor);
1874 	if (ret < 0)
1875 		return ret;
1876 
1877 	sensor->pending_mode_change = false;
1878 	sensor->last_mode = mode;
1879 
1880 	return 0;
1881 
1882 restore_auto_exp_gain:
1883 	if (auto_exp)
1884 		ov5640_set_autoexposure(sensor, true);
1885 restore_auto_gain:
1886 	if (auto_gain)
1887 		ov5640_set_autogain(sensor, true);
1888 
1889 	return ret;
1890 }
1891 
1892 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
1893 			       struct v4l2_mbus_framefmt *format);
1894 
1895 /* restore the last set video mode after chip power-on */
1896 static int ov5640_restore_mode(struct ov5640_dev *sensor)
1897 {
1898 	int ret;
1899 
1900 	/* first load the initial register values */
1901 	ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
1902 	if (ret < 0)
1903 		return ret;
1904 	sensor->last_mode = &ov5640_mode_init_data;
1905 
1906 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
1907 			     (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
1908 			     ilog2(OV5640_SCLK_ROOT_DIV));
1909 	if (ret)
1910 		return ret;
1911 
1912 	/* now restore the last capture mode */
1913 	ret = ov5640_set_mode(sensor);
1914 	if (ret < 0)
1915 		return ret;
1916 
1917 	return ov5640_set_framefmt(sensor, &sensor->fmt);
1918 }
1919 
1920 static void ov5640_power(struct ov5640_dev *sensor, bool enable)
1921 {
1922 	gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
1923 }
1924 
1925 static void ov5640_reset(struct ov5640_dev *sensor)
1926 {
1927 	if (!sensor->reset_gpio)
1928 		return;
1929 
1930 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1931 
1932 	/* camera power cycle */
1933 	ov5640_power(sensor, false);
1934 	usleep_range(5000, 10000);
1935 	ov5640_power(sensor, true);
1936 	usleep_range(5000, 10000);
1937 
1938 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1939 	usleep_range(1000, 2000);
1940 
1941 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1942 	usleep_range(20000, 25000);
1943 }
1944 
1945 static int ov5640_set_power_on(struct ov5640_dev *sensor)
1946 {
1947 	struct i2c_client *client = sensor->i2c_client;
1948 	int ret;
1949 
1950 	ret = clk_prepare_enable(sensor->xclk);
1951 	if (ret) {
1952 		dev_err(&client->dev, "%s: failed to enable clock\n",
1953 			__func__);
1954 		return ret;
1955 	}
1956 
1957 	ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
1958 				    sensor->supplies);
1959 	if (ret) {
1960 		dev_err(&client->dev, "%s: failed to enable regulators\n",
1961 			__func__);
1962 		goto xclk_off;
1963 	}
1964 
1965 	ov5640_reset(sensor);
1966 	ov5640_power(sensor, true);
1967 
1968 	ret = ov5640_init_slave_id(sensor);
1969 	if (ret)
1970 		goto power_off;
1971 
1972 	return 0;
1973 
1974 power_off:
1975 	ov5640_power(sensor, false);
1976 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1977 xclk_off:
1978 	clk_disable_unprepare(sensor->xclk);
1979 	return ret;
1980 }
1981 
1982 static void ov5640_set_power_off(struct ov5640_dev *sensor)
1983 {
1984 	ov5640_power(sensor, false);
1985 	regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
1986 	clk_disable_unprepare(sensor->xclk);
1987 }
1988 
1989 static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
1990 {
1991 	int ret = 0;
1992 
1993 	if (on) {
1994 		ret = ov5640_set_power_on(sensor);
1995 		if (ret)
1996 			return ret;
1997 
1998 		ret = ov5640_restore_mode(sensor);
1999 		if (ret)
2000 			goto power_off;
2001 
2002 		/* We're done here for DVP bus, while CSI-2 needs setup. */
2003 		if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
2004 			return 0;
2005 
2006 		/*
2007 		 * Power up MIPI HS Tx and LS Rx; 2 data lanes mode
2008 		 *
2009 		 * 0x300e = 0x40
2010 		 * [7:5] = 010	: 2 data lanes mode (see FIXME note in
2011 		 *		  "ov5640_set_stream_mipi()")
2012 		 * [4] = 0	: Power up MIPI HS Tx
2013 		 * [3] = 0	: Power up MIPI LS Rx
2014 		 * [2] = 0	: MIPI interface disabled
2015 		 */
2016 		ret = ov5640_write_reg(sensor,
2017 				       OV5640_REG_IO_MIPI_CTRL00, 0x40);
2018 		if (ret)
2019 			goto power_off;
2020 
2021 		/*
2022 		 * Gate clock and set LP11 in 'no packets mode' (idle)
2023 		 *
2024 		 * 0x4800 = 0x24
2025 		 * [5] = 1	: Gate clock when 'no packets'
2026 		 * [2] = 1	: MIPI bus in LP11 when 'no packets'
2027 		 */
2028 		ret = ov5640_write_reg(sensor,
2029 				       OV5640_REG_MIPI_CTRL00, 0x24);
2030 		if (ret)
2031 			goto power_off;
2032 
2033 		/*
2034 		 * Set data lanes and clock in LP11 when 'sleeping'
2035 		 *
2036 		 * 0x3019 = 0x70
2037 		 * [6] = 1	: MIPI data lane 2 in LP11 when 'sleeping'
2038 		 * [5] = 1	: MIPI data lane 1 in LP11 when 'sleeping'
2039 		 * [4] = 1	: MIPI clock lane in LP11 when 'sleeping'
2040 		 */
2041 		ret = ov5640_write_reg(sensor,
2042 				       OV5640_REG_PAD_OUTPUT00, 0x70);
2043 		if (ret)
2044 			goto power_off;
2045 
2046 		/* Give lanes some time to coax into LP11 state. */
2047 		usleep_range(500, 1000);
2048 
2049 	} else {
2050 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
2051 			/* Reset MIPI bus settings to their default values. */
2052 			ov5640_write_reg(sensor,
2053 					 OV5640_REG_IO_MIPI_CTRL00, 0x58);
2054 			ov5640_write_reg(sensor,
2055 					 OV5640_REG_MIPI_CTRL00, 0x04);
2056 			ov5640_write_reg(sensor,
2057 					 OV5640_REG_PAD_OUTPUT00, 0x00);
2058 		}
2059 
2060 		ov5640_set_power_off(sensor);
2061 	}
2062 
2063 	return 0;
2064 
2065 power_off:
2066 	ov5640_set_power_off(sensor);
2067 	return ret;
2068 }
2069 
2070 /* --------------- Subdev Operations --------------- */
2071 
2072 static int ov5640_s_power(struct v4l2_subdev *sd, int on)
2073 {
2074 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2075 	int ret = 0;
2076 
2077 	mutex_lock(&sensor->lock);
2078 
2079 	/*
2080 	 * If the power count is modified from 0 to != 0 or from != 0 to 0,
2081 	 * update the power state.
2082 	 */
2083 	if (sensor->power_count == !on) {
2084 		ret = ov5640_set_power(sensor, !!on);
2085 		if (ret)
2086 			goto out;
2087 	}
2088 
2089 	/* Update the power count. */
2090 	sensor->power_count += on ? 1 : -1;
2091 	WARN_ON(sensor->power_count < 0);
2092 out:
2093 	mutex_unlock(&sensor->lock);
2094 
2095 	if (on && !ret && sensor->power_count == 1) {
2096 		/* restore controls */
2097 		ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
2103 static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
2104 				     struct v4l2_fract *fi,
2105 				     u32 width, u32 height)
2106 {
2107 	const struct ov5640_mode_info *mode;
2108 	enum ov5640_frame_rate rate = OV5640_15_FPS;
2109 	int minfps, maxfps, best_fps, fps;
2110 	int i;
2111 
2112 	minfps = ov5640_framerates[OV5640_15_FPS];
2113 	maxfps = ov5640_framerates[OV5640_60_FPS];
2114 
2115 	if (fi->numerator == 0) {
2116 		fi->denominator = maxfps;
2117 		fi->numerator = 1;
2118 		rate = OV5640_60_FPS;
2119 		goto find_mode;
2120 	}
2121 
2122 	fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
2123 			minfps, maxfps);
2124 
2125 	best_fps = minfps;
2126 	for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
2127 		int curr_fps = ov5640_framerates[i];
2128 
2129 		if (abs(curr_fps - fps) < abs(best_fps - fps)) {
2130 			best_fps = curr_fps;
2131 			rate = i;
2132 		}
2133 	}
2134 
2135 	fi->numerator = 1;
2136 	fi->denominator = best_fps;
2137 
2138 find_mode:
2139 	mode = ov5640_find_mode(sensor, rate, width, height, false);
2140 	return mode ? rate : -EINVAL;
2141 }
2142 
2143 static int ov5640_get_fmt(struct v4l2_subdev *sd,
2144 			  struct v4l2_subdev_pad_config *cfg,
2145 			  struct v4l2_subdev_format *format)
2146 {
2147 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2148 	struct v4l2_mbus_framefmt *fmt;
2149 
2150 	if (format->pad != 0)
2151 		return -EINVAL;
2152 
2153 	mutex_lock(&sensor->lock);
2154 
2155 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2156 		fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg,
2157 						 format->pad);
2158 	else
2159 		fmt = &sensor->fmt;
2160 
2161 	format->format = *fmt;
2162 
2163 	mutex_unlock(&sensor->lock);
2164 
2165 	return 0;
2166 }
2167 
2168 static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
2169 				   struct v4l2_mbus_framefmt *fmt,
2170 				   enum ov5640_frame_rate fr,
2171 				   const struct ov5640_mode_info **new_mode)
2172 {
2173 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2174 	const struct ov5640_mode_info *mode;
2175 	int i;
2176 
2177 	mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
2178 	if (!mode)
2179 		return -EINVAL;
2180 	fmt->width = mode->hact;
2181 	fmt->height = mode->vact;
2182 
2183 	if (new_mode)
2184 		*new_mode = mode;
2185 
2186 	for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
2187 		if (ov5640_formats[i].code == fmt->code)
2188 			break;
2189 	if (i >= ARRAY_SIZE(ov5640_formats))
2190 		i = 0;
2191 
2192 	fmt->code = ov5640_formats[i].code;
2193 	fmt->colorspace = ov5640_formats[i].colorspace;
2194 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2195 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2196 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2197 
2198 	return 0;
2199 }
2200 
2201 static int ov5640_set_fmt(struct v4l2_subdev *sd,
2202 			  struct v4l2_subdev_pad_config *cfg,
2203 			  struct v4l2_subdev_format *format)
2204 {
2205 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2206 	const struct ov5640_mode_info *new_mode;
2207 	struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
2208 	struct v4l2_mbus_framefmt *fmt;
2209 	int ret;
2210 
2211 	if (format->pad != 0)
2212 		return -EINVAL;
2213 
2214 	mutex_lock(&sensor->lock);
2215 
2216 	if (sensor->streaming) {
2217 		ret = -EBUSY;
2218 		goto out;
2219 	}
2220 
2221 	ret = ov5640_try_fmt_internal(sd, mbus_fmt,
2222 				      sensor->current_fr, &new_mode);
2223 	if (ret)
2224 		goto out;
2225 
2226 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
2227 		fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
2228 	else
2229 		fmt = &sensor->fmt;
2230 
2231 	*fmt = *mbus_fmt;
2232 
2233 	if (new_mode != sensor->current_mode) {
2234 		sensor->current_mode = new_mode;
2235 		sensor->pending_mode_change = true;
2236 	}
2237 	if (mbus_fmt->code != sensor->fmt.code)
2238 		sensor->pending_fmt_change = true;
2239 
2240 out:
2241 	mutex_unlock(&sensor->lock);
2242 	return ret;
2243 }
2244 
2245 static int ov5640_set_framefmt(struct ov5640_dev *sensor,
2246 			       struct v4l2_mbus_framefmt *format)
2247 {
2248 	int ret = 0;
2249 	bool is_jpeg = false;
2250 	u8 fmt, mux;
2251 
2252 	switch (format->code) {
2253 	case MEDIA_BUS_FMT_UYVY8_2X8:
2254 		/* YUV422, UYVY */
2255 		fmt = 0x3f;
2256 		mux = OV5640_FMT_MUX_YUV422;
2257 		break;
2258 	case MEDIA_BUS_FMT_YUYV8_2X8:
2259 		/* YUV422, YUYV */
2260 		fmt = 0x30;
2261 		mux = OV5640_FMT_MUX_YUV422;
2262 		break;
2263 	case MEDIA_BUS_FMT_RGB565_2X8_LE:
2264 		/* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
2265 		fmt = 0x6F;
2266 		mux = OV5640_FMT_MUX_RGB;
2267 		break;
2268 	case MEDIA_BUS_FMT_RGB565_2X8_BE:
2269 		/* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
2270 		fmt = 0x61;
2271 		mux = OV5640_FMT_MUX_RGB;
2272 		break;
2273 	case MEDIA_BUS_FMT_JPEG_1X8:
2274 		/* YUV422, YUYV */
2275 		fmt = 0x30;
2276 		mux = OV5640_FMT_MUX_YUV422;
2277 		is_jpeg = true;
2278 		break;
2279 	case MEDIA_BUS_FMT_SBGGR8_1X8:
2280 		/* Raw, BGBG... / GRGR... */
2281 		fmt = 0x00;
2282 		mux = OV5640_FMT_MUX_RAW_DPC;
2283 		break;
2284 	case MEDIA_BUS_FMT_SGBRG8_1X8:
2285 		/* Raw bayer, GBGB... / RGRG... */
2286 		fmt = 0x01;
2287 		mux = OV5640_FMT_MUX_RAW_DPC;
2288 		break;
2289 	case MEDIA_BUS_FMT_SGRBG8_1X8:
2290 		/* Raw bayer, GRGR... / BGBG... */
2291 		fmt = 0x02;
2292 		mux = OV5640_FMT_MUX_RAW_DPC;
2293 		break;
2294 	case MEDIA_BUS_FMT_SRGGB8_1X8:
2295 		/* Raw bayer, RGRG... / GBGB... */
2296 		fmt = 0x03;
2297 		mux = OV5640_FMT_MUX_RAW_DPC;
2298 		break;
2299 	default:
2300 		return -EINVAL;
2301 	}
2302 
2303 	/* FORMAT CONTROL00: YUV and RGB formatting */
2304 	ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
2305 	if (ret)
2306 		return ret;
2307 
2308 	/* FORMAT MUX CONTROL: ISP YUV or RGB */
2309 	ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
2310 	if (ret)
2311 		return ret;
2312 
2313 	/*
2314 	 * TIMING TC REG21:
2315 	 * - [5]:	JPEG enable
2316 	 */
2317 	ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2318 			     BIT(5), is_jpeg ? BIT(5) : 0);
2319 	if (ret)
2320 		return ret;
2321 
2322 	/*
2323 	 * SYSTEM RESET02:
2324 	 * - [4]:	Reset JFIFO
2325 	 * - [3]:	Reset SFIFO
2326 	 * - [2]:	Reset JPEG
2327 	 */
2328 	ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
2329 			     BIT(4) | BIT(3) | BIT(2),
2330 			     is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
2331 	if (ret)
2332 		return ret;
2333 
2334 	/*
2335 	 * CLOCK ENABLE02:
2336 	 * - [5]:	Enable JPEG 2x clock
2337 	 * - [3]:	Enable JPEG clock
2338 	 */
2339 	return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
2340 			      BIT(5) | BIT(3),
2341 			      is_jpeg ? (BIT(5) | BIT(3)) : 0);
2342 }
2343 
2344 /*
2345  * Sensor Controls.
2346  */
2347 
2348 static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
2349 {
2350 	int ret;
2351 
2352 	if (value) {
2353 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2354 				     BIT(0), BIT(0));
2355 		if (ret)
2356 			return ret;
2357 		ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
2358 	} else {
2359 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
2360 	}
2361 
2362 	return ret;
2363 }
2364 
2365 static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
2366 {
2367 	int ret;
2368 
2369 	if (value) {
2370 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2371 				     BIT(2), BIT(2));
2372 		if (ret)
2373 			return ret;
2374 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
2375 				       value & 0xff);
2376 	} else {
2377 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
2378 	}
2379 
2380 	return ret;
2381 }
2382 
2383 static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
2384 {
2385 	int ret;
2386 
2387 	if (value) {
2388 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
2389 				     BIT(1), BIT(1));
2390 		if (ret)
2391 			return ret;
2392 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
2393 				       value & 0xff);
2394 		if (ret)
2395 			return ret;
2396 		ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
2397 				       value & 0xff);
2398 	} else {
2399 		ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
2400 	}
2401 
2402 	return ret;
2403 }
2404 
2405 static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
2406 {
2407 	int ret;
2408 
2409 	ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
2410 			     BIT(0), awb ? 0 : 1);
2411 	if (ret)
2412 		return ret;
2413 
2414 	if (!awb) {
2415 		u16 red = (u16)sensor->ctrls.red_balance->val;
2416 		u16 blue = (u16)sensor->ctrls.blue_balance->val;
2417 
2418 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
2419 		if (ret)
2420 			return ret;
2421 		ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
2422 	}
2423 
2424 	return ret;
2425 }
2426 
2427 static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
2428 				    enum v4l2_exposure_auto_type auto_exposure)
2429 {
2430 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2431 	bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
2432 	int ret = 0;
2433 
2434 	if (ctrls->auto_exp->is_new) {
2435 		ret = ov5640_set_autoexposure(sensor, auto_exp);
2436 		if (ret)
2437 			return ret;
2438 	}
2439 
2440 	if (!auto_exp && ctrls->exposure->is_new) {
2441 		u16 max_exp;
2442 
2443 		ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
2444 					&max_exp);
2445 		if (ret)
2446 			return ret;
2447 		ret = ov5640_get_vts(sensor);
2448 		if (ret < 0)
2449 			return ret;
2450 		max_exp += ret;
2451 		ret = 0;
2452 
2453 		if (ctrls->exposure->val < max_exp)
2454 			ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
2455 	}
2456 
2457 	return ret;
2458 }
2459 
2460 static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
2461 {
2462 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2463 	int ret = 0;
2464 
2465 	if (ctrls->auto_gain->is_new) {
2466 		ret = ov5640_set_autogain(sensor, auto_gain);
2467 		if (ret)
2468 			return ret;
2469 	}
2470 
2471 	if (!auto_gain && ctrls->gain->is_new)
2472 		ret = ov5640_set_gain(sensor, ctrls->gain->val);
2473 
2474 	return ret;
2475 }
2476 
2477 static const char * const test_pattern_menu[] = {
2478 	"Disabled",
2479 	"Color bars",
2480 	"Color bars w/ rolling bar",
2481 	"Color squares",
2482 	"Color squares w/ rolling bar",
2483 };
2484 
2485 #define OV5640_TEST_ENABLE		BIT(7)
2486 #define OV5640_TEST_ROLLING		BIT(6)	/* rolling horizontal bar */
2487 #define OV5640_TEST_TRANSPARENT		BIT(5)
2488 #define OV5640_TEST_SQUARE_BW		BIT(4)	/* black & white squares */
2489 #define OV5640_TEST_BAR_STANDARD	(0 << 2)
2490 #define OV5640_TEST_BAR_VERT_CHANGE_1	(1 << 2)
2491 #define OV5640_TEST_BAR_HOR_CHANGE	(2 << 2)
2492 #define OV5640_TEST_BAR_VERT_CHANGE_2	(3 << 2)
2493 #define OV5640_TEST_BAR			(0 << 0)
2494 #define OV5640_TEST_RANDOM		(1 << 0)
2495 #define OV5640_TEST_SQUARE		(2 << 0)
2496 #define OV5640_TEST_BLACK		(3 << 0)
2497 
2498 static const u8 test_pattern_val[] = {
2499 	0,
2500 	OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
2501 		OV5640_TEST_BAR,
2502 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
2503 		OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
2504 	OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
2505 	OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
2506 };
2507 
2508 static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
2509 {
2510 	return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
2511 				test_pattern_val[value]);
2512 }
2513 
2514 static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
2515 {
2516 	int ret;
2517 
2518 	ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
2519 			     (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
2520 			     0 : BIT(7));
2521 	if (ret)
2522 		return ret;
2523 
2524 	return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
2525 			      (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
2526 			      BIT(2) : 0);
2527 }
2528 
2529 static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
2530 {
2531 	/*
2532 	 * If sensor is mounted upside down, mirror logic is inversed.
2533 	 *
2534 	 * Sensor is a BSI (Back Side Illuminated) one,
2535 	 * so image captured is physically mirrored.
2536 	 * This is why mirror logic is inversed in
2537 	 * order to cancel this mirror effect.
2538 	 */
2539 
2540 	/*
2541 	 * TIMING TC REG21:
2542 	 * - [2]:	ISP mirror
2543 	 * - [1]:	Sensor mirror
2544 	 */
2545 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
2546 			      BIT(2) | BIT(1),
2547 			      (!(value ^ sensor->upside_down)) ?
2548 			      (BIT(2) | BIT(1)) : 0);
2549 }
2550 
2551 static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
2552 {
2553 	/* If sensor is mounted upside down, flip logic is inversed */
2554 
2555 	/*
2556 	 * TIMING TC REG20:
2557 	 * - [2]:	ISP vflip
2558 	 * - [1]:	Sensor vflip
2559 	 */
2560 	return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
2561 			      BIT(2) | BIT(1),
2562 			      (value ^ sensor->upside_down) ?
2563 			      (BIT(2) | BIT(1)) : 0);
2564 }
2565 
2566 static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
2567 {
2568 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2569 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2570 	int val;
2571 
2572 	/* v4l2_ctrl_lock() locks our own mutex */
2573 
2574 	switch (ctrl->id) {
2575 	case V4L2_CID_AUTOGAIN:
2576 		val = ov5640_get_gain(sensor);
2577 		if (val < 0)
2578 			return val;
2579 		sensor->ctrls.gain->val = val;
2580 		break;
2581 	case V4L2_CID_EXPOSURE_AUTO:
2582 		val = ov5640_get_exposure(sensor);
2583 		if (val < 0)
2584 			return val;
2585 		sensor->ctrls.exposure->val = val;
2586 		break;
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
2593 {
2594 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
2595 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2596 	int ret;
2597 
2598 	/* v4l2_ctrl_lock() locks our own mutex */
2599 
2600 	/*
2601 	 * If the device is not powered up by the host driver do
2602 	 * not apply any controls to H/W at this time. Instead
2603 	 * the controls will be restored right after power-up.
2604 	 */
2605 	if (sensor->power_count == 0)
2606 		return 0;
2607 
2608 	switch (ctrl->id) {
2609 	case V4L2_CID_AUTOGAIN:
2610 		ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
2611 		break;
2612 	case V4L2_CID_EXPOSURE_AUTO:
2613 		ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
2614 		break;
2615 	case V4L2_CID_AUTO_WHITE_BALANCE:
2616 		ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
2617 		break;
2618 	case V4L2_CID_HUE:
2619 		ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
2620 		break;
2621 	case V4L2_CID_CONTRAST:
2622 		ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
2623 		break;
2624 	case V4L2_CID_SATURATION:
2625 		ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
2626 		break;
2627 	case V4L2_CID_TEST_PATTERN:
2628 		ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
2629 		break;
2630 	case V4L2_CID_POWER_LINE_FREQUENCY:
2631 		ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
2632 		break;
2633 	case V4L2_CID_HFLIP:
2634 		ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
2635 		break;
2636 	case V4L2_CID_VFLIP:
2637 		ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
2638 		break;
2639 	default:
2640 		ret = -EINVAL;
2641 		break;
2642 	}
2643 
2644 	return ret;
2645 }
2646 
2647 static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
2648 	.g_volatile_ctrl = ov5640_g_volatile_ctrl,
2649 	.s_ctrl = ov5640_s_ctrl,
2650 };
2651 
2652 static int ov5640_init_controls(struct ov5640_dev *sensor)
2653 {
2654 	const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
2655 	struct ov5640_ctrls *ctrls = &sensor->ctrls;
2656 	struct v4l2_ctrl_handler *hdl = &ctrls->handler;
2657 	int ret;
2658 
2659 	v4l2_ctrl_handler_init(hdl, 32);
2660 
2661 	/* we can use our own mutex for the ctrl lock */
2662 	hdl->lock = &sensor->lock;
2663 
2664 	/* Auto/manual white balance */
2665 	ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
2666 					   V4L2_CID_AUTO_WHITE_BALANCE,
2667 					   0, 1, 1, 1);
2668 	ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
2669 						0, 4095, 1, 0);
2670 	ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
2671 					       0, 4095, 1, 0);
2672 	/* Auto/manual exposure */
2673 	ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
2674 						 V4L2_CID_EXPOSURE_AUTO,
2675 						 V4L2_EXPOSURE_MANUAL, 0,
2676 						 V4L2_EXPOSURE_AUTO);
2677 	ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
2678 					    0, 65535, 1, 0);
2679 	/* Auto/manual gain */
2680 	ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
2681 					     0, 1, 1, 1);
2682 	ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
2683 					0, 1023, 1, 0);
2684 
2685 	ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
2686 					      0, 255, 1, 64);
2687 	ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
2688 				       0, 359, 1, 0);
2689 	ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
2690 					    0, 255, 1, 0);
2691 	ctrls->test_pattern =
2692 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
2693 					     ARRAY_SIZE(test_pattern_menu) - 1,
2694 					     0, 0, test_pattern_menu);
2695 	ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
2696 					 0, 1, 1, 0);
2697 	ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
2698 					 0, 1, 1, 0);
2699 
2700 	ctrls->light_freq =
2701 		v4l2_ctrl_new_std_menu(hdl, ops,
2702 				       V4L2_CID_POWER_LINE_FREQUENCY,
2703 				       V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
2704 				       V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
2705 
2706 	if (hdl->error) {
2707 		ret = hdl->error;
2708 		goto free_ctrls;
2709 	}
2710 
2711 	ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
2712 	ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
2713 
2714 	v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
2715 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
2716 	v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
2717 
2718 	sensor->sd.ctrl_handler = hdl;
2719 	return 0;
2720 
2721 free_ctrls:
2722 	v4l2_ctrl_handler_free(hdl);
2723 	return ret;
2724 }
2725 
2726 static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
2727 				  struct v4l2_subdev_pad_config *cfg,
2728 				  struct v4l2_subdev_frame_size_enum *fse)
2729 {
2730 	if (fse->pad != 0)
2731 		return -EINVAL;
2732 	if (fse->index >= OV5640_NUM_MODES)
2733 		return -EINVAL;
2734 
2735 	fse->min_width =
2736 		ov5640_mode_data[fse->index].hact;
2737 	fse->max_width = fse->min_width;
2738 	fse->min_height =
2739 		ov5640_mode_data[fse->index].vact;
2740 	fse->max_height = fse->min_height;
2741 
2742 	return 0;
2743 }
2744 
2745 static int ov5640_enum_frame_interval(
2746 	struct v4l2_subdev *sd,
2747 	struct v4l2_subdev_pad_config *cfg,
2748 	struct v4l2_subdev_frame_interval_enum *fie)
2749 {
2750 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2751 	struct v4l2_fract tpf;
2752 	int ret;
2753 
2754 	if (fie->pad != 0)
2755 		return -EINVAL;
2756 	if (fie->index >= OV5640_NUM_FRAMERATES)
2757 		return -EINVAL;
2758 
2759 	tpf.numerator = 1;
2760 	tpf.denominator = ov5640_framerates[fie->index];
2761 
2762 	ret = ov5640_try_frame_interval(sensor, &tpf,
2763 					fie->width, fie->height);
2764 	if (ret < 0)
2765 		return -EINVAL;
2766 
2767 	fie->interval = tpf;
2768 	return 0;
2769 }
2770 
2771 static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
2772 				   struct v4l2_subdev_frame_interval *fi)
2773 {
2774 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2775 
2776 	mutex_lock(&sensor->lock);
2777 	fi->interval = sensor->frame_interval;
2778 	mutex_unlock(&sensor->lock);
2779 
2780 	return 0;
2781 }
2782 
2783 static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
2784 				   struct v4l2_subdev_frame_interval *fi)
2785 {
2786 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2787 	const struct ov5640_mode_info *mode;
2788 	int frame_rate, ret = 0;
2789 
2790 	if (fi->pad != 0)
2791 		return -EINVAL;
2792 
2793 	mutex_lock(&sensor->lock);
2794 
2795 	if (sensor->streaming) {
2796 		ret = -EBUSY;
2797 		goto out;
2798 	}
2799 
2800 	mode = sensor->current_mode;
2801 
2802 	frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
2803 					       mode->hact, mode->vact);
2804 	if (frame_rate < 0) {
2805 		/* Always return a valid frame interval value */
2806 		fi->interval = sensor->frame_interval;
2807 		goto out;
2808 	}
2809 
2810 	mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
2811 				mode->vact, true);
2812 	if (!mode) {
2813 		ret = -EINVAL;
2814 		goto out;
2815 	}
2816 
2817 	if (mode != sensor->current_mode ||
2818 	    frame_rate != sensor->current_fr) {
2819 		sensor->current_fr = frame_rate;
2820 		sensor->frame_interval = fi->interval;
2821 		sensor->current_mode = mode;
2822 		sensor->pending_mode_change = true;
2823 	}
2824 out:
2825 	mutex_unlock(&sensor->lock);
2826 	return ret;
2827 }
2828 
2829 static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
2830 				 struct v4l2_subdev_pad_config *cfg,
2831 				 struct v4l2_subdev_mbus_code_enum *code)
2832 {
2833 	if (code->pad != 0)
2834 		return -EINVAL;
2835 	if (code->index >= ARRAY_SIZE(ov5640_formats))
2836 		return -EINVAL;
2837 
2838 	code->code = ov5640_formats[code->index].code;
2839 	return 0;
2840 }
2841 
2842 static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
2843 {
2844 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
2845 	int ret = 0;
2846 
2847 	mutex_lock(&sensor->lock);
2848 
2849 	if (sensor->streaming == !enable) {
2850 		if (enable && sensor->pending_mode_change) {
2851 			ret = ov5640_set_mode(sensor);
2852 			if (ret)
2853 				goto out;
2854 		}
2855 
2856 		if (enable && sensor->pending_fmt_change) {
2857 			ret = ov5640_set_framefmt(sensor, &sensor->fmt);
2858 			if (ret)
2859 				goto out;
2860 			sensor->pending_fmt_change = false;
2861 		}
2862 
2863 		if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
2864 			ret = ov5640_set_stream_mipi(sensor, enable);
2865 		else
2866 			ret = ov5640_set_stream_dvp(sensor, enable);
2867 
2868 		if (!ret)
2869 			sensor->streaming = enable;
2870 	}
2871 out:
2872 	mutex_unlock(&sensor->lock);
2873 	return ret;
2874 }
2875 
2876 static const struct v4l2_subdev_core_ops ov5640_core_ops = {
2877 	.s_power = ov5640_s_power,
2878 	.log_status = v4l2_ctrl_subdev_log_status,
2879 	.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
2880 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2881 };
2882 
2883 static const struct v4l2_subdev_video_ops ov5640_video_ops = {
2884 	.g_frame_interval = ov5640_g_frame_interval,
2885 	.s_frame_interval = ov5640_s_frame_interval,
2886 	.s_stream = ov5640_s_stream,
2887 };
2888 
2889 static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
2890 	.enum_mbus_code = ov5640_enum_mbus_code,
2891 	.get_fmt = ov5640_get_fmt,
2892 	.set_fmt = ov5640_set_fmt,
2893 	.enum_frame_size = ov5640_enum_frame_size,
2894 	.enum_frame_interval = ov5640_enum_frame_interval,
2895 };
2896 
2897 static const struct v4l2_subdev_ops ov5640_subdev_ops = {
2898 	.core = &ov5640_core_ops,
2899 	.video = &ov5640_video_ops,
2900 	.pad = &ov5640_pad_ops,
2901 };
2902 
2903 static int ov5640_get_regulators(struct ov5640_dev *sensor)
2904 {
2905 	int i;
2906 
2907 	for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
2908 		sensor->supplies[i].supply = ov5640_supply_name[i];
2909 
2910 	return devm_regulator_bulk_get(&sensor->i2c_client->dev,
2911 				       OV5640_NUM_SUPPLIES,
2912 				       sensor->supplies);
2913 }
2914 
2915 static int ov5640_check_chip_id(struct ov5640_dev *sensor)
2916 {
2917 	struct i2c_client *client = sensor->i2c_client;
2918 	int ret = 0;
2919 	u16 chip_id;
2920 
2921 	ret = ov5640_set_power_on(sensor);
2922 	if (ret)
2923 		return ret;
2924 
2925 	ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
2926 	if (ret) {
2927 		dev_err(&client->dev, "%s: failed to read chip identifier\n",
2928 			__func__);
2929 		goto power_off;
2930 	}
2931 
2932 	if (chip_id != 0x5640) {
2933 		dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
2934 			__func__, chip_id);
2935 		ret = -ENXIO;
2936 	}
2937 
2938 power_off:
2939 	ov5640_set_power_off(sensor);
2940 	return ret;
2941 }
2942 
2943 static int ov5640_probe(struct i2c_client *client,
2944 			const struct i2c_device_id *id)
2945 {
2946 	struct device *dev = &client->dev;
2947 	struct fwnode_handle *endpoint;
2948 	struct ov5640_dev *sensor;
2949 	struct v4l2_mbus_framefmt *fmt;
2950 	u32 rotation;
2951 	int ret;
2952 
2953 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
2954 	if (!sensor)
2955 		return -ENOMEM;
2956 
2957 	sensor->i2c_client = client;
2958 
2959 	/*
2960 	 * default init sequence initialize sensor to
2961 	 * YUV422 UYVY VGA@30fps
2962 	 */
2963 	fmt = &sensor->fmt;
2964 	fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
2965 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
2966 	fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
2967 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
2968 	fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
2969 	fmt->width = 640;
2970 	fmt->height = 480;
2971 	fmt->field = V4L2_FIELD_NONE;
2972 	sensor->frame_interval.numerator = 1;
2973 	sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
2974 	sensor->current_fr = OV5640_30_FPS;
2975 	sensor->current_mode =
2976 		&ov5640_mode_data[OV5640_MODE_VGA_640_480];
2977 	sensor->last_mode = sensor->current_mode;
2978 
2979 	sensor->ae_target = 52;
2980 
2981 	/* optional indication of physical rotation of sensor */
2982 	ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
2983 				       &rotation);
2984 	if (!ret) {
2985 		switch (rotation) {
2986 		case 180:
2987 			sensor->upside_down = true;
2988 			/* fall through */
2989 		case 0:
2990 			break;
2991 		default:
2992 			dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
2993 				 rotation);
2994 		}
2995 	}
2996 
2997 	endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
2998 						  NULL);
2999 	if (!endpoint) {
3000 		dev_err(dev, "endpoint node not found\n");
3001 		return -EINVAL;
3002 	}
3003 
3004 	ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
3005 	fwnode_handle_put(endpoint);
3006 	if (ret) {
3007 		dev_err(dev, "Could not parse endpoint\n");
3008 		return ret;
3009 	}
3010 
3011 	/* get system clock (xclk) */
3012 	sensor->xclk = devm_clk_get(dev, "xclk");
3013 	if (IS_ERR(sensor->xclk)) {
3014 		dev_err(dev, "failed to get xclk\n");
3015 		return PTR_ERR(sensor->xclk);
3016 	}
3017 
3018 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
3019 	if (sensor->xclk_freq < OV5640_XCLK_MIN ||
3020 	    sensor->xclk_freq > OV5640_XCLK_MAX) {
3021 		dev_err(dev, "xclk frequency out of range: %d Hz\n",
3022 			sensor->xclk_freq);
3023 		return -EINVAL;
3024 	}
3025 
3026 	/* request optional power down pin */
3027 	sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
3028 						    GPIOD_OUT_HIGH);
3029 	/* request optional reset pin */
3030 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
3031 						     GPIOD_OUT_HIGH);
3032 
3033 	v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
3034 
3035 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
3036 			    V4L2_SUBDEV_FL_HAS_EVENTS;
3037 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
3038 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3039 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
3040 	if (ret)
3041 		return ret;
3042 
3043 	ret = ov5640_get_regulators(sensor);
3044 	if (ret)
3045 		return ret;
3046 
3047 	mutex_init(&sensor->lock);
3048 
3049 	ret = ov5640_check_chip_id(sensor);
3050 	if (ret)
3051 		goto entity_cleanup;
3052 
3053 	ret = ov5640_init_controls(sensor);
3054 	if (ret)
3055 		goto entity_cleanup;
3056 
3057 	ret = v4l2_async_register_subdev(&sensor->sd);
3058 	if (ret)
3059 		goto free_ctrls;
3060 
3061 	return 0;
3062 
3063 free_ctrls:
3064 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3065 entity_cleanup:
3066 	mutex_destroy(&sensor->lock);
3067 	media_entity_cleanup(&sensor->sd.entity);
3068 	return ret;
3069 }
3070 
3071 static int ov5640_remove(struct i2c_client *client)
3072 {
3073 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3074 	struct ov5640_dev *sensor = to_ov5640_dev(sd);
3075 
3076 	v4l2_async_unregister_subdev(&sensor->sd);
3077 	mutex_destroy(&sensor->lock);
3078 	media_entity_cleanup(&sensor->sd.entity);
3079 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
3080 
3081 	return 0;
3082 }
3083 
3084 static const struct i2c_device_id ov5640_id[] = {
3085 	{"ov5640", 0},
3086 	{},
3087 };
3088 MODULE_DEVICE_TABLE(i2c, ov5640_id);
3089 
3090 static const struct of_device_id ov5640_dt_ids[] = {
3091 	{ .compatible = "ovti,ov5640" },
3092 	{ /* sentinel */ }
3093 };
3094 MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
3095 
3096 static struct i2c_driver ov5640_i2c_driver = {
3097 	.driver = {
3098 		.name  = "ov5640",
3099 		.of_match_table	= ov5640_dt_ids,
3100 	},
3101 	.id_table = ov5640_id,
3102 	.probe    = ov5640_probe,
3103 	.remove   = ov5640_remove,
3104 };
3105 
3106 module_i2c_driver(ov5640_i2c_driver);
3107 
3108 MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
3109 MODULE_LICENSE("GPL");
3110