xref: /openbmc/linux/drivers/media/i2c/mt9p031.c (revision afb46f79)
1 /*
2  * Driver for MT9P031 CMOS Image Sensor from Aptina
3  *
4  * Copyright (C) 2011, Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  * Copyright (C) 2011, Javier Martin <javier.martin@vista-silicon.com>
6  * Copyright (C) 2011, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7  *
8  * Based on the MT9V032 driver and Bastian Hecht's code.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/gpio.h>
19 #include <linux/i2c.h>
20 #include <linux/log2.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_gpio.h>
24 #include <linux/of_graph.h>
25 #include <linux/pm.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/slab.h>
28 #include <linux/videodev2.h>
29 
30 #include <media/mt9p031.h>
31 #include <media/v4l2-ctrls.h>
32 #include <media/v4l2-device.h>
33 #include <media/v4l2-subdev.h>
34 
35 #include "aptina-pll.h"
36 
37 #define MT9P031_PIXEL_ARRAY_WIDTH			2752
38 #define MT9P031_PIXEL_ARRAY_HEIGHT			2004
39 
40 #define MT9P031_CHIP_VERSION				0x00
41 #define		MT9P031_CHIP_VERSION_VALUE		0x1801
42 #define MT9P031_ROW_START				0x01
43 #define		MT9P031_ROW_START_MIN			0
44 #define		MT9P031_ROW_START_MAX			2004
45 #define		MT9P031_ROW_START_DEF			54
46 #define MT9P031_COLUMN_START				0x02
47 #define		MT9P031_COLUMN_START_MIN		0
48 #define		MT9P031_COLUMN_START_MAX		2750
49 #define		MT9P031_COLUMN_START_DEF		16
50 #define MT9P031_WINDOW_HEIGHT				0x03
51 #define		MT9P031_WINDOW_HEIGHT_MIN		2
52 #define		MT9P031_WINDOW_HEIGHT_MAX		2006
53 #define		MT9P031_WINDOW_HEIGHT_DEF		1944
54 #define MT9P031_WINDOW_WIDTH				0x04
55 #define		MT9P031_WINDOW_WIDTH_MIN		2
56 #define		MT9P031_WINDOW_WIDTH_MAX		2752
57 #define		MT9P031_WINDOW_WIDTH_DEF		2592
58 #define MT9P031_HORIZONTAL_BLANK			0x05
59 #define		MT9P031_HORIZONTAL_BLANK_MIN		0
60 #define		MT9P031_HORIZONTAL_BLANK_MAX		4095
61 #define MT9P031_VERTICAL_BLANK				0x06
62 #define		MT9P031_VERTICAL_BLANK_MIN		1
63 #define		MT9P031_VERTICAL_BLANK_MAX		4096
64 #define		MT9P031_VERTICAL_BLANK_DEF		26
65 #define MT9P031_OUTPUT_CONTROL				0x07
66 #define		MT9P031_OUTPUT_CONTROL_CEN		2
67 #define		MT9P031_OUTPUT_CONTROL_SYN		1
68 #define		MT9P031_OUTPUT_CONTROL_DEF		0x1f82
69 #define MT9P031_SHUTTER_WIDTH_UPPER			0x08
70 #define MT9P031_SHUTTER_WIDTH_LOWER			0x09
71 #define		MT9P031_SHUTTER_WIDTH_MIN		1
72 #define		MT9P031_SHUTTER_WIDTH_MAX		1048575
73 #define		MT9P031_SHUTTER_WIDTH_DEF		1943
74 #define	MT9P031_PLL_CONTROL				0x10
75 #define		MT9P031_PLL_CONTROL_PWROFF		0x0050
76 #define		MT9P031_PLL_CONTROL_PWRON		0x0051
77 #define		MT9P031_PLL_CONTROL_USEPLL		0x0052
78 #define	MT9P031_PLL_CONFIG_1				0x11
79 #define	MT9P031_PLL_CONFIG_2				0x12
80 #define MT9P031_PIXEL_CLOCK_CONTROL			0x0a
81 #define		MT9P031_PIXEL_CLOCK_INVERT		(1 << 15)
82 #define		MT9P031_PIXEL_CLOCK_SHIFT(n)		((n) << 8)
83 #define		MT9P031_PIXEL_CLOCK_DIVIDE(n)		((n) << 0)
84 #define MT9P031_FRAME_RESTART				0x0b
85 #define MT9P031_SHUTTER_DELAY				0x0c
86 #define MT9P031_RST					0x0d
87 #define		MT9P031_RST_ENABLE			1
88 #define		MT9P031_RST_DISABLE			0
89 #define MT9P031_READ_MODE_1				0x1e
90 #define MT9P031_READ_MODE_2				0x20
91 #define		MT9P031_READ_MODE_2_ROW_MIR		(1 << 15)
92 #define		MT9P031_READ_MODE_2_COL_MIR		(1 << 14)
93 #define		MT9P031_READ_MODE_2_ROW_BLC		(1 << 6)
94 #define MT9P031_ROW_ADDRESS_MODE			0x22
95 #define MT9P031_COLUMN_ADDRESS_MODE			0x23
96 #define MT9P031_GLOBAL_GAIN				0x35
97 #define		MT9P031_GLOBAL_GAIN_MIN			8
98 #define		MT9P031_GLOBAL_GAIN_MAX			1024
99 #define		MT9P031_GLOBAL_GAIN_DEF			8
100 #define		MT9P031_GLOBAL_GAIN_MULT		(1 << 6)
101 #define MT9P031_ROW_BLACK_TARGET			0x49
102 #define MT9P031_ROW_BLACK_DEF_OFFSET			0x4b
103 #define MT9P031_GREEN1_OFFSET				0x60
104 #define MT9P031_GREEN2_OFFSET				0x61
105 #define MT9P031_BLACK_LEVEL_CALIBRATION			0x62
106 #define		MT9P031_BLC_MANUAL_BLC			(1 << 0)
107 #define MT9P031_RED_OFFSET				0x63
108 #define MT9P031_BLUE_OFFSET				0x64
109 #define MT9P031_TEST_PATTERN				0xa0
110 #define		MT9P031_TEST_PATTERN_SHIFT		3
111 #define		MT9P031_TEST_PATTERN_ENABLE		(1 << 0)
112 #define		MT9P031_TEST_PATTERN_DISABLE		(0 << 0)
113 #define MT9P031_TEST_PATTERN_GREEN			0xa1
114 #define MT9P031_TEST_PATTERN_RED			0xa2
115 #define MT9P031_TEST_PATTERN_BLUE			0xa3
116 
117 enum mt9p031_model {
118 	MT9P031_MODEL_COLOR,
119 	MT9P031_MODEL_MONOCHROME,
120 };
121 
122 struct mt9p031 {
123 	struct v4l2_subdev subdev;
124 	struct media_pad pad;
125 	struct v4l2_rect crop;  /* Sensor window */
126 	struct v4l2_mbus_framefmt format;
127 	struct mt9p031_platform_data *pdata;
128 	struct mutex power_lock; /* lock to protect power_count */
129 	int power_count;
130 
131 	struct clk *clk;
132 	struct regulator_bulk_data regulators[3];
133 
134 	enum mt9p031_model model;
135 	struct aptina_pll pll;
136 	unsigned int clk_div;
137 	bool use_pll;
138 	int reset;
139 
140 	struct v4l2_ctrl_handler ctrls;
141 	struct v4l2_ctrl *blc_auto;
142 	struct v4l2_ctrl *blc_offset;
143 
144 	/* Registers cache */
145 	u16 output_control;
146 	u16 mode2;
147 };
148 
149 static struct mt9p031 *to_mt9p031(struct v4l2_subdev *sd)
150 {
151 	return container_of(sd, struct mt9p031, subdev);
152 }
153 
154 static int mt9p031_read(struct i2c_client *client, u8 reg)
155 {
156 	return i2c_smbus_read_word_swapped(client, reg);
157 }
158 
159 static int mt9p031_write(struct i2c_client *client, u8 reg, u16 data)
160 {
161 	return i2c_smbus_write_word_swapped(client, reg, data);
162 }
163 
164 static int mt9p031_set_output_control(struct mt9p031 *mt9p031, u16 clear,
165 				      u16 set)
166 {
167 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
168 	u16 value = (mt9p031->output_control & ~clear) | set;
169 	int ret;
170 
171 	ret = mt9p031_write(client, MT9P031_OUTPUT_CONTROL, value);
172 	if (ret < 0)
173 		return ret;
174 
175 	mt9p031->output_control = value;
176 	return 0;
177 }
178 
179 static int mt9p031_set_mode2(struct mt9p031 *mt9p031, u16 clear, u16 set)
180 {
181 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
182 	u16 value = (mt9p031->mode2 & ~clear) | set;
183 	int ret;
184 
185 	ret = mt9p031_write(client, MT9P031_READ_MODE_2, value);
186 	if (ret < 0)
187 		return ret;
188 
189 	mt9p031->mode2 = value;
190 	return 0;
191 }
192 
193 static int mt9p031_reset(struct mt9p031 *mt9p031)
194 {
195 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
196 	int ret;
197 
198 	/* Disable chip output, synchronous option update */
199 	ret = mt9p031_write(client, MT9P031_RST, MT9P031_RST_ENABLE);
200 	if (ret < 0)
201 		return ret;
202 	ret = mt9p031_write(client, MT9P031_RST, MT9P031_RST_DISABLE);
203 	if (ret < 0)
204 		return ret;
205 
206 	ret = mt9p031_write(client, MT9P031_PIXEL_CLOCK_CONTROL,
207 			    MT9P031_PIXEL_CLOCK_DIVIDE(mt9p031->clk_div));
208 	if (ret < 0)
209 		return ret;
210 
211 	return mt9p031_set_output_control(mt9p031, MT9P031_OUTPUT_CONTROL_CEN,
212 					  0);
213 }
214 
215 static int mt9p031_clk_setup(struct mt9p031 *mt9p031)
216 {
217 	static const struct aptina_pll_limits limits = {
218 		.ext_clock_min = 6000000,
219 		.ext_clock_max = 27000000,
220 		.int_clock_min = 2000000,
221 		.int_clock_max = 13500000,
222 		.out_clock_min = 180000000,
223 		.out_clock_max = 360000000,
224 		.pix_clock_max = 96000000,
225 		.n_min = 1,
226 		.n_max = 64,
227 		.m_min = 16,
228 		.m_max = 255,
229 		.p1_min = 1,
230 		.p1_max = 128,
231 	};
232 
233 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
234 	struct mt9p031_platform_data *pdata = mt9p031->pdata;
235 	int ret;
236 
237 	mt9p031->clk = devm_clk_get(&client->dev, NULL);
238 	if (IS_ERR(mt9p031->clk))
239 		return PTR_ERR(mt9p031->clk);
240 
241 	ret = clk_set_rate(mt9p031->clk, pdata->ext_freq);
242 	if (ret < 0)
243 		return ret;
244 
245 	/* If the external clock frequency is out of bounds for the PLL use the
246 	 * pixel clock divider only and disable the PLL.
247 	 */
248 	if (pdata->ext_freq > limits.ext_clock_max) {
249 		unsigned int div;
250 
251 		div = DIV_ROUND_UP(pdata->ext_freq, pdata->target_freq);
252 		div = roundup_pow_of_two(div) / 2;
253 
254 		mt9p031->clk_div = max_t(unsigned int, div, 64);
255 		mt9p031->use_pll = false;
256 
257 		return 0;
258 	}
259 
260 	mt9p031->pll.ext_clock = pdata->ext_freq;
261 	mt9p031->pll.pix_clock = pdata->target_freq;
262 	mt9p031->use_pll = true;
263 
264 	return aptina_pll_calculate(&client->dev, &limits, &mt9p031->pll);
265 }
266 
267 static int mt9p031_pll_enable(struct mt9p031 *mt9p031)
268 {
269 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
270 	int ret;
271 
272 	if (!mt9p031->use_pll)
273 		return 0;
274 
275 	ret = mt9p031_write(client, MT9P031_PLL_CONTROL,
276 			    MT9P031_PLL_CONTROL_PWRON);
277 	if (ret < 0)
278 		return ret;
279 
280 	ret = mt9p031_write(client, MT9P031_PLL_CONFIG_1,
281 			    (mt9p031->pll.m << 8) | (mt9p031->pll.n - 1));
282 	if (ret < 0)
283 		return ret;
284 
285 	ret = mt9p031_write(client, MT9P031_PLL_CONFIG_2, mt9p031->pll.p1 - 1);
286 	if (ret < 0)
287 		return ret;
288 
289 	usleep_range(1000, 2000);
290 	ret = mt9p031_write(client, MT9P031_PLL_CONTROL,
291 			    MT9P031_PLL_CONTROL_PWRON |
292 			    MT9P031_PLL_CONTROL_USEPLL);
293 	return ret;
294 }
295 
296 static inline int mt9p031_pll_disable(struct mt9p031 *mt9p031)
297 {
298 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
299 
300 	if (!mt9p031->use_pll)
301 		return 0;
302 
303 	return mt9p031_write(client, MT9P031_PLL_CONTROL,
304 			     MT9P031_PLL_CONTROL_PWROFF);
305 }
306 
307 static int mt9p031_power_on(struct mt9p031 *mt9p031)
308 {
309 	int ret;
310 
311 	/* Ensure RESET_BAR is low */
312 	if (gpio_is_valid(mt9p031->reset)) {
313 		gpio_set_value(mt9p031->reset, 0);
314 		usleep_range(1000, 2000);
315 	}
316 
317 	/* Bring up the supplies */
318 	ret = regulator_bulk_enable(ARRAY_SIZE(mt9p031->regulators),
319 				   mt9p031->regulators);
320 	if (ret < 0)
321 		return ret;
322 
323 	/* Enable clock */
324 	if (mt9p031->clk) {
325 		ret = clk_prepare_enable(mt9p031->clk);
326 		if (ret) {
327 			regulator_bulk_disable(ARRAY_SIZE(mt9p031->regulators),
328 					       mt9p031->regulators);
329 			return ret;
330 		}
331 	}
332 
333 	/* Now RESET_BAR must be high */
334 	if (gpio_is_valid(mt9p031->reset)) {
335 		gpio_set_value(mt9p031->reset, 1);
336 		usleep_range(1000, 2000);
337 	}
338 
339 	return 0;
340 }
341 
342 static void mt9p031_power_off(struct mt9p031 *mt9p031)
343 {
344 	if (gpio_is_valid(mt9p031->reset)) {
345 		gpio_set_value(mt9p031->reset, 0);
346 		usleep_range(1000, 2000);
347 	}
348 
349 	regulator_bulk_disable(ARRAY_SIZE(mt9p031->regulators),
350 			       mt9p031->regulators);
351 
352 	if (mt9p031->clk)
353 		clk_disable_unprepare(mt9p031->clk);
354 }
355 
356 static int __mt9p031_set_power(struct mt9p031 *mt9p031, bool on)
357 {
358 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
359 	int ret;
360 
361 	if (!on) {
362 		mt9p031_power_off(mt9p031);
363 		return 0;
364 	}
365 
366 	ret = mt9p031_power_on(mt9p031);
367 	if (ret < 0)
368 		return ret;
369 
370 	ret = mt9p031_reset(mt9p031);
371 	if (ret < 0) {
372 		dev_err(&client->dev, "Failed to reset the camera\n");
373 		return ret;
374 	}
375 
376 	return v4l2_ctrl_handler_setup(&mt9p031->ctrls);
377 }
378 
379 /* -----------------------------------------------------------------------------
380  * V4L2 subdev video operations
381  */
382 
383 static int mt9p031_set_params(struct mt9p031 *mt9p031)
384 {
385 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
386 	struct v4l2_mbus_framefmt *format = &mt9p031->format;
387 	const struct v4l2_rect *crop = &mt9p031->crop;
388 	unsigned int hblank;
389 	unsigned int vblank;
390 	unsigned int xskip;
391 	unsigned int yskip;
392 	unsigned int xbin;
393 	unsigned int ybin;
394 	int ret;
395 
396 	/* Windows position and size.
397 	 *
398 	 * TODO: Make sure the start coordinates and window size match the
399 	 * skipping, binning and mirroring (see description of registers 2 and 4
400 	 * in table 13, and Binning section on page 41).
401 	 */
402 	ret = mt9p031_write(client, MT9P031_COLUMN_START, crop->left);
403 	if (ret < 0)
404 		return ret;
405 	ret = mt9p031_write(client, MT9P031_ROW_START, crop->top);
406 	if (ret < 0)
407 		return ret;
408 	ret = mt9p031_write(client, MT9P031_WINDOW_WIDTH, crop->width - 1);
409 	if (ret < 0)
410 		return ret;
411 	ret = mt9p031_write(client, MT9P031_WINDOW_HEIGHT, crop->height - 1);
412 	if (ret < 0)
413 		return ret;
414 
415 	/* Row and column binning and skipping. Use the maximum binning value
416 	 * compatible with the skipping settings.
417 	 */
418 	xskip = DIV_ROUND_CLOSEST(crop->width, format->width);
419 	yskip = DIV_ROUND_CLOSEST(crop->height, format->height);
420 	xbin = 1 << (ffs(xskip) - 1);
421 	ybin = 1 << (ffs(yskip) - 1);
422 
423 	ret = mt9p031_write(client, MT9P031_COLUMN_ADDRESS_MODE,
424 			    ((xbin - 1) << 4) | (xskip - 1));
425 	if (ret < 0)
426 		return ret;
427 	ret = mt9p031_write(client, MT9P031_ROW_ADDRESS_MODE,
428 			    ((ybin - 1) << 4) | (yskip - 1));
429 	if (ret < 0)
430 		return ret;
431 
432 	/* Blanking - use minimum value for horizontal blanking and default
433 	 * value for vertical blanking.
434 	 */
435 	hblank = 346 * ybin + 64 + (80 >> min_t(unsigned int, xbin, 3));
436 	vblank = MT9P031_VERTICAL_BLANK_DEF;
437 
438 	ret = mt9p031_write(client, MT9P031_HORIZONTAL_BLANK, hblank - 1);
439 	if (ret < 0)
440 		return ret;
441 	ret = mt9p031_write(client, MT9P031_VERTICAL_BLANK, vblank - 1);
442 	if (ret < 0)
443 		return ret;
444 
445 	return ret;
446 }
447 
448 static int mt9p031_s_stream(struct v4l2_subdev *subdev, int enable)
449 {
450 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
451 	int ret;
452 
453 	if (!enable) {
454 		/* Stop sensor readout */
455 		ret = mt9p031_set_output_control(mt9p031,
456 						 MT9P031_OUTPUT_CONTROL_CEN, 0);
457 		if (ret < 0)
458 			return ret;
459 
460 		return mt9p031_pll_disable(mt9p031);
461 	}
462 
463 	ret = mt9p031_set_params(mt9p031);
464 	if (ret < 0)
465 		return ret;
466 
467 	/* Switch to master "normal" mode */
468 	ret = mt9p031_set_output_control(mt9p031, 0,
469 					 MT9P031_OUTPUT_CONTROL_CEN);
470 	if (ret < 0)
471 		return ret;
472 
473 	return mt9p031_pll_enable(mt9p031);
474 }
475 
476 static int mt9p031_enum_mbus_code(struct v4l2_subdev *subdev,
477 				  struct v4l2_subdev_fh *fh,
478 				  struct v4l2_subdev_mbus_code_enum *code)
479 {
480 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
481 
482 	if (code->pad || code->index)
483 		return -EINVAL;
484 
485 	code->code = mt9p031->format.code;
486 	return 0;
487 }
488 
489 static int mt9p031_enum_frame_size(struct v4l2_subdev *subdev,
490 				   struct v4l2_subdev_fh *fh,
491 				   struct v4l2_subdev_frame_size_enum *fse)
492 {
493 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
494 
495 	if (fse->index >= 8 || fse->code != mt9p031->format.code)
496 		return -EINVAL;
497 
498 	fse->min_width = MT9P031_WINDOW_WIDTH_DEF
499 		       / min_t(unsigned int, 7, fse->index + 1);
500 	fse->max_width = fse->min_width;
501 	fse->min_height = MT9P031_WINDOW_HEIGHT_DEF / (fse->index + 1);
502 	fse->max_height = fse->min_height;
503 
504 	return 0;
505 }
506 
507 static struct v4l2_mbus_framefmt *
508 __mt9p031_get_pad_format(struct mt9p031 *mt9p031, struct v4l2_subdev_fh *fh,
509 			 unsigned int pad, u32 which)
510 {
511 	switch (which) {
512 	case V4L2_SUBDEV_FORMAT_TRY:
513 		return v4l2_subdev_get_try_format(fh, pad);
514 	case V4L2_SUBDEV_FORMAT_ACTIVE:
515 		return &mt9p031->format;
516 	default:
517 		return NULL;
518 	}
519 }
520 
521 static struct v4l2_rect *
522 __mt9p031_get_pad_crop(struct mt9p031 *mt9p031, struct v4l2_subdev_fh *fh,
523 		     unsigned int pad, u32 which)
524 {
525 	switch (which) {
526 	case V4L2_SUBDEV_FORMAT_TRY:
527 		return v4l2_subdev_get_try_crop(fh, pad);
528 	case V4L2_SUBDEV_FORMAT_ACTIVE:
529 		return &mt9p031->crop;
530 	default:
531 		return NULL;
532 	}
533 }
534 
535 static int mt9p031_get_format(struct v4l2_subdev *subdev,
536 			      struct v4l2_subdev_fh *fh,
537 			      struct v4l2_subdev_format *fmt)
538 {
539 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
540 
541 	fmt->format = *__mt9p031_get_pad_format(mt9p031, fh, fmt->pad,
542 						fmt->which);
543 	return 0;
544 }
545 
546 static int mt9p031_set_format(struct v4l2_subdev *subdev,
547 			      struct v4l2_subdev_fh *fh,
548 			      struct v4l2_subdev_format *format)
549 {
550 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
551 	struct v4l2_mbus_framefmt *__format;
552 	struct v4l2_rect *__crop;
553 	unsigned int width;
554 	unsigned int height;
555 	unsigned int hratio;
556 	unsigned int vratio;
557 
558 	__crop = __mt9p031_get_pad_crop(mt9p031, fh, format->pad,
559 					format->which);
560 
561 	/* Clamp the width and height to avoid dividing by zero. */
562 	width = clamp_t(unsigned int, ALIGN(format->format.width, 2),
563 			max_t(unsigned int, __crop->width / 7,
564 			      MT9P031_WINDOW_WIDTH_MIN),
565 			__crop->width);
566 	height = clamp_t(unsigned int, ALIGN(format->format.height, 2),
567 			 max_t(unsigned int, __crop->height / 8,
568 			       MT9P031_WINDOW_HEIGHT_MIN),
569 			 __crop->height);
570 
571 	hratio = DIV_ROUND_CLOSEST(__crop->width, width);
572 	vratio = DIV_ROUND_CLOSEST(__crop->height, height);
573 
574 	__format = __mt9p031_get_pad_format(mt9p031, fh, format->pad,
575 					    format->which);
576 	__format->width = __crop->width / hratio;
577 	__format->height = __crop->height / vratio;
578 
579 	format->format = *__format;
580 
581 	return 0;
582 }
583 
584 static int mt9p031_get_crop(struct v4l2_subdev *subdev,
585 			    struct v4l2_subdev_fh *fh,
586 			    struct v4l2_subdev_crop *crop)
587 {
588 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
589 
590 	crop->rect = *__mt9p031_get_pad_crop(mt9p031, fh, crop->pad,
591 					     crop->which);
592 	return 0;
593 }
594 
595 static int mt9p031_set_crop(struct v4l2_subdev *subdev,
596 			    struct v4l2_subdev_fh *fh,
597 			    struct v4l2_subdev_crop *crop)
598 {
599 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
600 	struct v4l2_mbus_framefmt *__format;
601 	struct v4l2_rect *__crop;
602 	struct v4l2_rect rect;
603 
604 	/* Clamp the crop rectangle boundaries and align them to a multiple of 2
605 	 * pixels to ensure a GRBG Bayer pattern.
606 	 */
607 	rect.left = clamp(ALIGN(crop->rect.left, 2), MT9P031_COLUMN_START_MIN,
608 			  MT9P031_COLUMN_START_MAX);
609 	rect.top = clamp(ALIGN(crop->rect.top, 2), MT9P031_ROW_START_MIN,
610 			 MT9P031_ROW_START_MAX);
611 	rect.width = clamp_t(unsigned int, ALIGN(crop->rect.width, 2),
612 			     MT9P031_WINDOW_WIDTH_MIN,
613 			     MT9P031_WINDOW_WIDTH_MAX);
614 	rect.height = clamp_t(unsigned int, ALIGN(crop->rect.height, 2),
615 			      MT9P031_WINDOW_HEIGHT_MIN,
616 			      MT9P031_WINDOW_HEIGHT_MAX);
617 
618 	rect.width = min_t(unsigned int, rect.width,
619 			   MT9P031_PIXEL_ARRAY_WIDTH - rect.left);
620 	rect.height = min_t(unsigned int, rect.height,
621 			    MT9P031_PIXEL_ARRAY_HEIGHT - rect.top);
622 
623 	__crop = __mt9p031_get_pad_crop(mt9p031, fh, crop->pad, crop->which);
624 
625 	if (rect.width != __crop->width || rect.height != __crop->height) {
626 		/* Reset the output image size if the crop rectangle size has
627 		 * been modified.
628 		 */
629 		__format = __mt9p031_get_pad_format(mt9p031, fh, crop->pad,
630 						    crop->which);
631 		__format->width = rect.width;
632 		__format->height = rect.height;
633 	}
634 
635 	*__crop = rect;
636 	crop->rect = rect;
637 
638 	return 0;
639 }
640 
641 /* -----------------------------------------------------------------------------
642  * V4L2 subdev control operations
643  */
644 
645 #define V4L2_CID_BLC_AUTO		(V4L2_CID_USER_BASE | 0x1002)
646 #define V4L2_CID_BLC_TARGET_LEVEL	(V4L2_CID_USER_BASE | 0x1003)
647 #define V4L2_CID_BLC_ANALOG_OFFSET	(V4L2_CID_USER_BASE | 0x1004)
648 #define V4L2_CID_BLC_DIGITAL_OFFSET	(V4L2_CID_USER_BASE | 0x1005)
649 
650 static int mt9p031_s_ctrl(struct v4l2_ctrl *ctrl)
651 {
652 	struct mt9p031 *mt9p031 =
653 			container_of(ctrl->handler, struct mt9p031, ctrls);
654 	struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev);
655 	u16 data;
656 	int ret;
657 
658 	switch (ctrl->id) {
659 	case V4L2_CID_EXPOSURE:
660 		ret = mt9p031_write(client, MT9P031_SHUTTER_WIDTH_UPPER,
661 				    (ctrl->val >> 16) & 0xffff);
662 		if (ret < 0)
663 			return ret;
664 
665 		return mt9p031_write(client, MT9P031_SHUTTER_WIDTH_LOWER,
666 				     ctrl->val & 0xffff);
667 
668 	case V4L2_CID_GAIN:
669 		/* Gain is controlled by 2 analog stages and a digital stage.
670 		 * Valid values for the 3 stages are
671 		 *
672 		 * Stage                Min     Max     Step
673 		 * ------------------------------------------
674 		 * First analog stage   x1      x2      1
675 		 * Second analog stage  x1      x4      0.125
676 		 * Digital stage        x1      x16     0.125
677 		 *
678 		 * To minimize noise, the gain stages should be used in the
679 		 * second analog stage, first analog stage, digital stage order.
680 		 * Gain from a previous stage should be pushed to its maximum
681 		 * value before the next stage is used.
682 		 */
683 		if (ctrl->val <= 32) {
684 			data = ctrl->val;
685 		} else if (ctrl->val <= 64) {
686 			ctrl->val &= ~1;
687 			data = (1 << 6) | (ctrl->val >> 1);
688 		} else {
689 			ctrl->val &= ~7;
690 			data = ((ctrl->val - 64) << 5) | (1 << 6) | 32;
691 		}
692 
693 		return mt9p031_write(client, MT9P031_GLOBAL_GAIN, data);
694 
695 	case V4L2_CID_HFLIP:
696 		if (ctrl->val)
697 			return mt9p031_set_mode2(mt9p031,
698 					0, MT9P031_READ_MODE_2_COL_MIR);
699 		else
700 			return mt9p031_set_mode2(mt9p031,
701 					MT9P031_READ_MODE_2_COL_MIR, 0);
702 
703 	case V4L2_CID_VFLIP:
704 		if (ctrl->val)
705 			return mt9p031_set_mode2(mt9p031,
706 					0, MT9P031_READ_MODE_2_ROW_MIR);
707 		else
708 			return mt9p031_set_mode2(mt9p031,
709 					MT9P031_READ_MODE_2_ROW_MIR, 0);
710 
711 	case V4L2_CID_TEST_PATTERN:
712 		if (!ctrl->val) {
713 			/* Restore the black level compensation settings. */
714 			if (mt9p031->blc_auto->cur.val != 0) {
715 				ret = mt9p031_s_ctrl(mt9p031->blc_auto);
716 				if (ret < 0)
717 					return ret;
718 			}
719 			if (mt9p031->blc_offset->cur.val != 0) {
720 				ret = mt9p031_s_ctrl(mt9p031->blc_offset);
721 				if (ret < 0)
722 					return ret;
723 			}
724 			return mt9p031_write(client, MT9P031_TEST_PATTERN,
725 					     MT9P031_TEST_PATTERN_DISABLE);
726 		}
727 
728 		ret = mt9p031_write(client, MT9P031_TEST_PATTERN_GREEN, 0x05a0);
729 		if (ret < 0)
730 			return ret;
731 		ret = mt9p031_write(client, MT9P031_TEST_PATTERN_RED, 0x0a50);
732 		if (ret < 0)
733 			return ret;
734 		ret = mt9p031_write(client, MT9P031_TEST_PATTERN_BLUE, 0x0aa0);
735 		if (ret < 0)
736 			return ret;
737 
738 		/* Disable digital black level compensation when using a test
739 		 * pattern.
740 		 */
741 		ret = mt9p031_set_mode2(mt9p031, MT9P031_READ_MODE_2_ROW_BLC,
742 					0);
743 		if (ret < 0)
744 			return ret;
745 
746 		ret = mt9p031_write(client, MT9P031_ROW_BLACK_DEF_OFFSET, 0);
747 		if (ret < 0)
748 			return ret;
749 
750 		return mt9p031_write(client, MT9P031_TEST_PATTERN,
751 				((ctrl->val - 1) << MT9P031_TEST_PATTERN_SHIFT)
752 				| MT9P031_TEST_PATTERN_ENABLE);
753 
754 	case V4L2_CID_BLC_AUTO:
755 		ret = mt9p031_set_mode2(mt9p031,
756 				ctrl->val ? 0 : MT9P031_READ_MODE_2_ROW_BLC,
757 				ctrl->val ? MT9P031_READ_MODE_2_ROW_BLC : 0);
758 		if (ret < 0)
759 			return ret;
760 
761 		return mt9p031_write(client, MT9P031_BLACK_LEVEL_CALIBRATION,
762 				     ctrl->val ? 0 : MT9P031_BLC_MANUAL_BLC);
763 
764 	case V4L2_CID_BLC_TARGET_LEVEL:
765 		return mt9p031_write(client, MT9P031_ROW_BLACK_TARGET,
766 				     ctrl->val);
767 
768 	case V4L2_CID_BLC_ANALOG_OFFSET:
769 		data = ctrl->val & ((1 << 9) - 1);
770 
771 		ret = mt9p031_write(client, MT9P031_GREEN1_OFFSET, data);
772 		if (ret < 0)
773 			return ret;
774 		ret = mt9p031_write(client, MT9P031_GREEN2_OFFSET, data);
775 		if (ret < 0)
776 			return ret;
777 		ret = mt9p031_write(client, MT9P031_RED_OFFSET, data);
778 		if (ret < 0)
779 			return ret;
780 		return mt9p031_write(client, MT9P031_BLUE_OFFSET, data);
781 
782 	case V4L2_CID_BLC_DIGITAL_OFFSET:
783 		return mt9p031_write(client, MT9P031_ROW_BLACK_DEF_OFFSET,
784 				     ctrl->val & ((1 << 12) - 1));
785 	}
786 
787 	return 0;
788 }
789 
790 static struct v4l2_ctrl_ops mt9p031_ctrl_ops = {
791 	.s_ctrl = mt9p031_s_ctrl,
792 };
793 
794 static const char * const mt9p031_test_pattern_menu[] = {
795 	"Disabled",
796 	"Color Field",
797 	"Horizontal Gradient",
798 	"Vertical Gradient",
799 	"Diagonal Gradient",
800 	"Classic Test Pattern",
801 	"Walking 1s",
802 	"Monochrome Horizontal Bars",
803 	"Monochrome Vertical Bars",
804 	"Vertical Color Bars",
805 };
806 
807 static const struct v4l2_ctrl_config mt9p031_ctrls[] = {
808 	{
809 		.ops		= &mt9p031_ctrl_ops,
810 		.id		= V4L2_CID_BLC_AUTO,
811 		.type		= V4L2_CTRL_TYPE_BOOLEAN,
812 		.name		= "BLC, Auto",
813 		.min		= 0,
814 		.max		= 1,
815 		.step		= 1,
816 		.def		= 1,
817 		.flags		= 0,
818 	}, {
819 		.ops		= &mt9p031_ctrl_ops,
820 		.id		= V4L2_CID_BLC_TARGET_LEVEL,
821 		.type		= V4L2_CTRL_TYPE_INTEGER,
822 		.name		= "BLC Target Level",
823 		.min		= 0,
824 		.max		= 4095,
825 		.step		= 1,
826 		.def		= 168,
827 		.flags		= 0,
828 	}, {
829 		.ops		= &mt9p031_ctrl_ops,
830 		.id		= V4L2_CID_BLC_ANALOG_OFFSET,
831 		.type		= V4L2_CTRL_TYPE_INTEGER,
832 		.name		= "BLC Analog Offset",
833 		.min		= -255,
834 		.max		= 255,
835 		.step		= 1,
836 		.def		= 32,
837 		.flags		= 0,
838 	}, {
839 		.ops		= &mt9p031_ctrl_ops,
840 		.id		= V4L2_CID_BLC_DIGITAL_OFFSET,
841 		.type		= V4L2_CTRL_TYPE_INTEGER,
842 		.name		= "BLC Digital Offset",
843 		.min		= -2048,
844 		.max		= 2047,
845 		.step		= 1,
846 		.def		= 40,
847 		.flags		= 0,
848 	}
849 };
850 
851 /* -----------------------------------------------------------------------------
852  * V4L2 subdev core operations
853  */
854 
855 static int mt9p031_set_power(struct v4l2_subdev *subdev, int on)
856 {
857 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
858 	int ret = 0;
859 
860 	mutex_lock(&mt9p031->power_lock);
861 
862 	/* If the power count is modified from 0 to != 0 or from != 0 to 0,
863 	 * update the power state.
864 	 */
865 	if (mt9p031->power_count == !on) {
866 		ret = __mt9p031_set_power(mt9p031, !!on);
867 		if (ret < 0)
868 			goto out;
869 	}
870 
871 	/* Update the power count. */
872 	mt9p031->power_count += on ? 1 : -1;
873 	WARN_ON(mt9p031->power_count < 0);
874 
875 out:
876 	mutex_unlock(&mt9p031->power_lock);
877 	return ret;
878 }
879 
880 /* -----------------------------------------------------------------------------
881  * V4L2 subdev internal operations
882  */
883 
884 static int mt9p031_registered(struct v4l2_subdev *subdev)
885 {
886 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
887 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
888 	s32 data;
889 	int ret;
890 
891 	ret = mt9p031_power_on(mt9p031);
892 	if (ret < 0) {
893 		dev_err(&client->dev, "MT9P031 power up failed\n");
894 		return ret;
895 	}
896 
897 	/* Read out the chip version register */
898 	data = mt9p031_read(client, MT9P031_CHIP_VERSION);
899 	mt9p031_power_off(mt9p031);
900 
901 	if (data != MT9P031_CHIP_VERSION_VALUE) {
902 		dev_err(&client->dev, "MT9P031 not detected, wrong version "
903 			"0x%04x\n", data);
904 		return -ENODEV;
905 	}
906 
907 	dev_info(&client->dev, "MT9P031 detected at address 0x%02x\n",
908 		 client->addr);
909 
910 	return 0;
911 }
912 
913 static int mt9p031_open(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh)
914 {
915 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
916 	struct v4l2_mbus_framefmt *format;
917 	struct v4l2_rect *crop;
918 
919 	crop = v4l2_subdev_get_try_crop(fh, 0);
920 	crop->left = MT9P031_COLUMN_START_DEF;
921 	crop->top = MT9P031_ROW_START_DEF;
922 	crop->width = MT9P031_WINDOW_WIDTH_DEF;
923 	crop->height = MT9P031_WINDOW_HEIGHT_DEF;
924 
925 	format = v4l2_subdev_get_try_format(fh, 0);
926 
927 	if (mt9p031->model == MT9P031_MODEL_MONOCHROME)
928 		format->code = V4L2_MBUS_FMT_Y12_1X12;
929 	else
930 		format->code = V4L2_MBUS_FMT_SGRBG12_1X12;
931 
932 	format->width = MT9P031_WINDOW_WIDTH_DEF;
933 	format->height = MT9P031_WINDOW_HEIGHT_DEF;
934 	format->field = V4L2_FIELD_NONE;
935 	format->colorspace = V4L2_COLORSPACE_SRGB;
936 
937 	return mt9p031_set_power(subdev, 1);
938 }
939 
940 static int mt9p031_close(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh)
941 {
942 	return mt9p031_set_power(subdev, 0);
943 }
944 
945 static struct v4l2_subdev_core_ops mt9p031_subdev_core_ops = {
946 	.s_power        = mt9p031_set_power,
947 };
948 
949 static struct v4l2_subdev_video_ops mt9p031_subdev_video_ops = {
950 	.s_stream       = mt9p031_s_stream,
951 };
952 
953 static struct v4l2_subdev_pad_ops mt9p031_subdev_pad_ops = {
954 	.enum_mbus_code = mt9p031_enum_mbus_code,
955 	.enum_frame_size = mt9p031_enum_frame_size,
956 	.get_fmt = mt9p031_get_format,
957 	.set_fmt = mt9p031_set_format,
958 	.get_crop = mt9p031_get_crop,
959 	.set_crop = mt9p031_set_crop,
960 };
961 
962 static struct v4l2_subdev_ops mt9p031_subdev_ops = {
963 	.core   = &mt9p031_subdev_core_ops,
964 	.video  = &mt9p031_subdev_video_ops,
965 	.pad    = &mt9p031_subdev_pad_ops,
966 };
967 
968 static const struct v4l2_subdev_internal_ops mt9p031_subdev_internal_ops = {
969 	.registered = mt9p031_registered,
970 	.open = mt9p031_open,
971 	.close = mt9p031_close,
972 };
973 
974 /* -----------------------------------------------------------------------------
975  * Driver initialization and probing
976  */
977 
978 static struct mt9p031_platform_data *
979 mt9p031_get_pdata(struct i2c_client *client)
980 {
981 	struct mt9p031_platform_data *pdata;
982 	struct device_node *np;
983 
984 	if (!IS_ENABLED(CONFIG_OF) || !client->dev.of_node)
985 		return client->dev.platform_data;
986 
987 	np = of_graph_get_next_endpoint(client->dev.of_node, NULL);
988 	if (!np)
989 		return NULL;
990 
991 	pdata = devm_kzalloc(&client->dev, sizeof(*pdata), GFP_KERNEL);
992 	if (!pdata)
993 		goto done;
994 
995 	pdata->reset = of_get_named_gpio(client->dev.of_node, "reset-gpios", 0);
996 	of_property_read_u32(np, "input-clock-frequency", &pdata->ext_freq);
997 	of_property_read_u32(np, "pixel-clock-frequency", &pdata->target_freq);
998 
999 done:
1000 	of_node_put(np);
1001 	return pdata;
1002 }
1003 
1004 static int mt9p031_probe(struct i2c_client *client,
1005 			 const struct i2c_device_id *did)
1006 {
1007 	struct mt9p031_platform_data *pdata = mt9p031_get_pdata(client);
1008 	struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
1009 	struct mt9p031 *mt9p031;
1010 	unsigned int i;
1011 	int ret;
1012 
1013 	if (pdata == NULL) {
1014 		dev_err(&client->dev, "No platform data\n");
1015 		return -EINVAL;
1016 	}
1017 
1018 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1019 		dev_warn(&client->dev,
1020 			"I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n");
1021 		return -EIO;
1022 	}
1023 
1024 	mt9p031 = devm_kzalloc(&client->dev, sizeof(*mt9p031), GFP_KERNEL);
1025 	if (mt9p031 == NULL)
1026 		return -ENOMEM;
1027 
1028 	mt9p031->pdata = pdata;
1029 	mt9p031->output_control	= MT9P031_OUTPUT_CONTROL_DEF;
1030 	mt9p031->mode2 = MT9P031_READ_MODE_2_ROW_BLC;
1031 	mt9p031->model = did->driver_data;
1032 	mt9p031->reset = -1;
1033 
1034 	mt9p031->regulators[0].supply = "vdd";
1035 	mt9p031->regulators[1].supply = "vdd_io";
1036 	mt9p031->regulators[2].supply = "vaa";
1037 
1038 	ret = devm_regulator_bulk_get(&client->dev, 3, mt9p031->regulators);
1039 	if (ret < 0) {
1040 		dev_err(&client->dev, "Unable to get regulators\n");
1041 		return ret;
1042 	}
1043 
1044 	v4l2_ctrl_handler_init(&mt9p031->ctrls, ARRAY_SIZE(mt9p031_ctrls) + 6);
1045 
1046 	v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops,
1047 			  V4L2_CID_EXPOSURE, MT9P031_SHUTTER_WIDTH_MIN,
1048 			  MT9P031_SHUTTER_WIDTH_MAX, 1,
1049 			  MT9P031_SHUTTER_WIDTH_DEF);
1050 	v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops,
1051 			  V4L2_CID_GAIN, MT9P031_GLOBAL_GAIN_MIN,
1052 			  MT9P031_GLOBAL_GAIN_MAX, 1, MT9P031_GLOBAL_GAIN_DEF);
1053 	v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops,
1054 			  V4L2_CID_HFLIP, 0, 1, 1, 0);
1055 	v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops,
1056 			  V4L2_CID_VFLIP, 0, 1, 1, 0);
1057 	v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops,
1058 			  V4L2_CID_PIXEL_RATE, pdata->target_freq,
1059 			  pdata->target_freq, 1, pdata->target_freq);
1060 	v4l2_ctrl_new_std_menu_items(&mt9p031->ctrls, &mt9p031_ctrl_ops,
1061 			  V4L2_CID_TEST_PATTERN,
1062 			  ARRAY_SIZE(mt9p031_test_pattern_menu) - 1, 0,
1063 			  0, mt9p031_test_pattern_menu);
1064 
1065 	for (i = 0; i < ARRAY_SIZE(mt9p031_ctrls); ++i)
1066 		v4l2_ctrl_new_custom(&mt9p031->ctrls, &mt9p031_ctrls[i], NULL);
1067 
1068 	mt9p031->subdev.ctrl_handler = &mt9p031->ctrls;
1069 
1070 	if (mt9p031->ctrls.error) {
1071 		printk(KERN_INFO "%s: control initialization error %d\n",
1072 		       __func__, mt9p031->ctrls.error);
1073 		ret = mt9p031->ctrls.error;
1074 		goto done;
1075 	}
1076 
1077 	mt9p031->blc_auto = v4l2_ctrl_find(&mt9p031->ctrls, V4L2_CID_BLC_AUTO);
1078 	mt9p031->blc_offset = v4l2_ctrl_find(&mt9p031->ctrls,
1079 					     V4L2_CID_BLC_DIGITAL_OFFSET);
1080 
1081 	mutex_init(&mt9p031->power_lock);
1082 	v4l2_i2c_subdev_init(&mt9p031->subdev, client, &mt9p031_subdev_ops);
1083 	mt9p031->subdev.internal_ops = &mt9p031_subdev_internal_ops;
1084 
1085 	mt9p031->pad.flags = MEDIA_PAD_FL_SOURCE;
1086 	ret = media_entity_init(&mt9p031->subdev.entity, 1, &mt9p031->pad, 0);
1087 	if (ret < 0)
1088 		goto done;
1089 
1090 	mt9p031->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1091 
1092 	mt9p031->crop.width = MT9P031_WINDOW_WIDTH_DEF;
1093 	mt9p031->crop.height = MT9P031_WINDOW_HEIGHT_DEF;
1094 	mt9p031->crop.left = MT9P031_COLUMN_START_DEF;
1095 	mt9p031->crop.top = MT9P031_ROW_START_DEF;
1096 
1097 	if (mt9p031->model == MT9P031_MODEL_MONOCHROME)
1098 		mt9p031->format.code = V4L2_MBUS_FMT_Y12_1X12;
1099 	else
1100 		mt9p031->format.code = V4L2_MBUS_FMT_SGRBG12_1X12;
1101 
1102 	mt9p031->format.width = MT9P031_WINDOW_WIDTH_DEF;
1103 	mt9p031->format.height = MT9P031_WINDOW_HEIGHT_DEF;
1104 	mt9p031->format.field = V4L2_FIELD_NONE;
1105 	mt9p031->format.colorspace = V4L2_COLORSPACE_SRGB;
1106 
1107 	if (gpio_is_valid(pdata->reset)) {
1108 		ret = devm_gpio_request_one(&client->dev, pdata->reset,
1109 					    GPIOF_OUT_INIT_LOW, "mt9p031_rst");
1110 		if (ret < 0)
1111 			goto done;
1112 
1113 		mt9p031->reset = pdata->reset;
1114 	}
1115 
1116 	ret = mt9p031_clk_setup(mt9p031);
1117 
1118 done:
1119 	if (ret < 0) {
1120 		v4l2_ctrl_handler_free(&mt9p031->ctrls);
1121 		media_entity_cleanup(&mt9p031->subdev.entity);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 static int mt9p031_remove(struct i2c_client *client)
1128 {
1129 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1130 	struct mt9p031 *mt9p031 = to_mt9p031(subdev);
1131 
1132 	v4l2_ctrl_handler_free(&mt9p031->ctrls);
1133 	v4l2_device_unregister_subdev(subdev);
1134 	media_entity_cleanup(&subdev->entity);
1135 
1136 	return 0;
1137 }
1138 
1139 static const struct i2c_device_id mt9p031_id[] = {
1140 	{ "mt9p031", MT9P031_MODEL_COLOR },
1141 	{ "mt9p031m", MT9P031_MODEL_MONOCHROME },
1142 	{ }
1143 };
1144 MODULE_DEVICE_TABLE(i2c, mt9p031_id);
1145 
1146 #if IS_ENABLED(CONFIG_OF)
1147 static const struct of_device_id mt9p031_of_match[] = {
1148 	{ .compatible = "aptina,mt9p031", },
1149 	{ .compatible = "aptina,mt9p031m", },
1150 	{ /* sentinel */ },
1151 };
1152 MODULE_DEVICE_TABLE(of, mt9p031_of_match);
1153 #endif
1154 
1155 static struct i2c_driver mt9p031_i2c_driver = {
1156 	.driver = {
1157 		.of_match_table = of_match_ptr(mt9p031_of_match),
1158 		.name = "mt9p031",
1159 	},
1160 	.probe          = mt9p031_probe,
1161 	.remove         = mt9p031_remove,
1162 	.id_table       = mt9p031_id,
1163 };
1164 
1165 module_i2c_driver(mt9p031_i2c_driver);
1166 
1167 MODULE_DESCRIPTION("Aptina MT9P031 Camera driver");
1168 MODULE_AUTHOR("Bastian Hecht <hechtb@gmail.com>");
1169 MODULE_LICENSE("GPL v2");
1170