1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Video Capture Driver (Video for Linux 1/2) 4 * for the Matrox Marvel G200,G400 and Rainbow Runner-G series 5 * 6 * This module is an interface to the KS0127 video decoder chip. 7 * 8 * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net> 9 * 10 ***************************************************************************** 11 * 12 * Modified and extended by 13 * Mike Bernson <mike@mlb.org> 14 * Gerard v.d. Horst 15 * Leon van Stuivenberg <l.vanstuivenberg@chello.nl> 16 * Gernot Ziegler <gz@lysator.liu.se> 17 * 18 * Version History: 19 * V1.0 Ryan Drake Initial version by Ryan Drake 20 * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard 21 */ 22 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/delay.h> 26 #include <linux/errno.h> 27 #include <linux/kernel.h> 28 #include <linux/i2c.h> 29 #include <linux/videodev2.h> 30 #include <linux/slab.h> 31 #include <media/v4l2-device.h> 32 #include "ks0127.h" 33 34 MODULE_DESCRIPTION("KS0127 video decoder driver"); 35 MODULE_AUTHOR("Ryan Drake"); 36 MODULE_LICENSE("GPL"); 37 38 /* Addresses */ 39 #define I2C_KS0127_ADDON 0xD8 40 #define I2C_KS0127_ONBOARD 0xDA 41 42 43 /* ks0127 control registers */ 44 #define KS_STAT 0x00 45 #define KS_CMDA 0x01 46 #define KS_CMDB 0x02 47 #define KS_CMDC 0x03 48 #define KS_CMDD 0x04 49 #define KS_HAVB 0x05 50 #define KS_HAVE 0x06 51 #define KS_HS1B 0x07 52 #define KS_HS1E 0x08 53 #define KS_HS2B 0x09 54 #define KS_HS2E 0x0a 55 #define KS_AGC 0x0b 56 #define KS_HXTRA 0x0c 57 #define KS_CDEM 0x0d 58 #define KS_PORTAB 0x0e 59 #define KS_LUMA 0x0f 60 #define KS_CON 0x10 61 #define KS_BRT 0x11 62 #define KS_CHROMA 0x12 63 #define KS_CHROMB 0x13 64 #define KS_DEMOD 0x14 65 #define KS_SAT 0x15 66 #define KS_HUE 0x16 67 #define KS_VERTIA 0x17 68 #define KS_VERTIB 0x18 69 #define KS_VERTIC 0x19 70 #define KS_HSCLL 0x1a 71 #define KS_HSCLH 0x1b 72 #define KS_VSCLL 0x1c 73 #define KS_VSCLH 0x1d 74 #define KS_OFMTA 0x1e 75 #define KS_OFMTB 0x1f 76 #define KS_VBICTL 0x20 77 #define KS_CCDAT2 0x21 78 #define KS_CCDAT1 0x22 79 #define KS_VBIL30 0x23 80 #define KS_VBIL74 0x24 81 #define KS_VBIL118 0x25 82 #define KS_VBIL1512 0x26 83 #define KS_TTFRAM 0x27 84 #define KS_TESTA 0x28 85 #define KS_UVOFFH 0x29 86 #define KS_UVOFFL 0x2a 87 #define KS_UGAIN 0x2b 88 #define KS_VGAIN 0x2c 89 #define KS_VAVB 0x2d 90 #define KS_VAVE 0x2e 91 #define KS_CTRACK 0x2f 92 #define KS_POLCTL 0x30 93 #define KS_REFCOD 0x31 94 #define KS_INVALY 0x32 95 #define KS_INVALU 0x33 96 #define KS_INVALV 0x34 97 #define KS_UNUSEY 0x35 98 #define KS_UNUSEU 0x36 99 #define KS_UNUSEV 0x37 100 #define KS_USRSAV 0x38 101 #define KS_USREAV 0x39 102 #define KS_SHS1A 0x3a 103 #define KS_SHS1B 0x3b 104 #define KS_SHS1C 0x3c 105 #define KS_CMDE 0x3d 106 #define KS_VSDEL 0x3e 107 #define KS_CMDF 0x3f 108 #define KS_GAMMA0 0x40 109 #define KS_GAMMA1 0x41 110 #define KS_GAMMA2 0x42 111 #define KS_GAMMA3 0x43 112 #define KS_GAMMA4 0x44 113 #define KS_GAMMA5 0x45 114 #define KS_GAMMA6 0x46 115 #define KS_GAMMA7 0x47 116 #define KS_GAMMA8 0x48 117 #define KS_GAMMA9 0x49 118 #define KS_GAMMA10 0x4a 119 #define KS_GAMMA11 0x4b 120 #define KS_GAMMA12 0x4c 121 #define KS_GAMMA13 0x4d 122 #define KS_GAMMA14 0x4e 123 #define KS_GAMMA15 0x4f 124 #define KS_GAMMA16 0x50 125 #define KS_GAMMA17 0x51 126 #define KS_GAMMA18 0x52 127 #define KS_GAMMA19 0x53 128 #define KS_GAMMA20 0x54 129 #define KS_GAMMA21 0x55 130 #define KS_GAMMA22 0x56 131 #define KS_GAMMA23 0x57 132 #define KS_GAMMA24 0x58 133 #define KS_GAMMA25 0x59 134 #define KS_GAMMA26 0x5a 135 #define KS_GAMMA27 0x5b 136 #define KS_GAMMA28 0x5c 137 #define KS_GAMMA29 0x5d 138 #define KS_GAMMA30 0x5e 139 #define KS_GAMMA31 0x5f 140 #define KS_GAMMAD0 0x60 141 #define KS_GAMMAD1 0x61 142 #define KS_GAMMAD2 0x62 143 #define KS_GAMMAD3 0x63 144 #define KS_GAMMAD4 0x64 145 #define KS_GAMMAD5 0x65 146 #define KS_GAMMAD6 0x66 147 #define KS_GAMMAD7 0x67 148 #define KS_GAMMAD8 0x68 149 #define KS_GAMMAD9 0x69 150 #define KS_GAMMAD10 0x6a 151 #define KS_GAMMAD11 0x6b 152 #define KS_GAMMAD12 0x6c 153 #define KS_GAMMAD13 0x6d 154 #define KS_GAMMAD14 0x6e 155 #define KS_GAMMAD15 0x6f 156 #define KS_GAMMAD16 0x70 157 #define KS_GAMMAD17 0x71 158 #define KS_GAMMAD18 0x72 159 #define KS_GAMMAD19 0x73 160 #define KS_GAMMAD20 0x74 161 #define KS_GAMMAD21 0x75 162 #define KS_GAMMAD22 0x76 163 #define KS_GAMMAD23 0x77 164 #define KS_GAMMAD24 0x78 165 #define KS_GAMMAD25 0x79 166 #define KS_GAMMAD26 0x7a 167 #define KS_GAMMAD27 0x7b 168 #define KS_GAMMAD28 0x7c 169 #define KS_GAMMAD29 0x7d 170 #define KS_GAMMAD30 0x7e 171 #define KS_GAMMAD31 0x7f 172 173 174 /**************************************************************************** 175 * mga_dev : represents one ks0127 chip. 176 ****************************************************************************/ 177 178 struct adjust { 179 int contrast; 180 int bright; 181 int hue; 182 int ugain; 183 int vgain; 184 }; 185 186 struct ks0127 { 187 struct v4l2_subdev sd; 188 v4l2_std_id norm; 189 u8 regs[256]; 190 }; 191 192 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd) 193 { 194 return container_of(sd, struct ks0127, sd); 195 } 196 197 198 static int debug; /* insmod parameter */ 199 200 module_param(debug, int, 0); 201 MODULE_PARM_DESC(debug, "Debug output"); 202 203 static u8 reg_defaults[64]; 204 205 static void init_reg_defaults(void) 206 { 207 static int initialized; 208 u8 *table = reg_defaults; 209 210 if (initialized) 211 return; 212 initialized = 1; 213 214 table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */ 215 table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */ 216 table[KS_CMDC] = 0x00; /* Test options */ 217 /* clock & input select, write 1 to PORTA */ 218 table[KS_CMDD] = 0x01; 219 table[KS_HAVB] = 0x00; /* HAV Start Control */ 220 table[KS_HAVE] = 0x00; /* HAV End Control */ 221 table[KS_HS1B] = 0x10; /* HS1 Start Control */ 222 table[KS_HS1E] = 0x00; /* HS1 End Control */ 223 table[KS_HS2B] = 0x00; /* HS2 Start Control */ 224 table[KS_HS2E] = 0x00; /* HS2 End Control */ 225 table[KS_AGC] = 0x53; /* Manual setting for AGC */ 226 table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */ 227 table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */ 228 table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */ 229 table[KS_LUMA] = 0x01; /* Luma control */ 230 table[KS_CON] = 0x00; /* Contrast Control */ 231 table[KS_BRT] = 0x00; /* Brightness Control */ 232 table[KS_CHROMA] = 0x2a; /* Chroma control A */ 233 table[KS_CHROMB] = 0x90; /* Chroma control B */ 234 table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */ 235 table[KS_SAT] = 0x00; /* Color Saturation Control*/ 236 table[KS_HUE] = 0x00; /* Hue Control */ 237 table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */ 238 /* Vertical Processing Control B, luma 1 line delayed */ 239 table[KS_VERTIB] = 0x12; 240 table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */ 241 table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */ 242 table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */ 243 table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */ 244 table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */ 245 /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */ 246 table[KS_OFMTA] = 0x30; 247 table[KS_OFMTB] = 0x00; /* Output Control B */ 248 /* VBI Decoder Control; 4bit fmt: avoid Y overflow */ 249 table[KS_VBICTL] = 0x5d; 250 table[KS_CCDAT2] = 0x00; /* Read Only register */ 251 table[KS_CCDAT1] = 0x00; /* Read Only register */ 252 table[KS_VBIL30] = 0xa8; /* VBI data decoding options */ 253 table[KS_VBIL74] = 0xaa; /* VBI data decoding options */ 254 table[KS_VBIL118] = 0x2a; /* VBI data decoding options */ 255 table[KS_VBIL1512] = 0x00; /* VBI data decoding options */ 256 table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */ 257 table[KS_TESTA] = 0x00; /* test register, shouldn't be written */ 258 table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */ 259 table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */ 260 table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */ 261 table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */ 262 table[KS_VAVB] = 0x07; /* VAV Begin */ 263 table[KS_VAVE] = 0x00; /* VAV End */ 264 table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */ 265 table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */ 266 table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */ 267 table[KS_INVALY] = 0x10; /* Invalid Y Code */ 268 table[KS_INVALU] = 0x80; /* Invalid U Code */ 269 table[KS_INVALV] = 0x80; /* Invalid V Code */ 270 table[KS_UNUSEY] = 0x10; /* Unused Y Code */ 271 table[KS_UNUSEU] = 0x80; /* Unused U Code */ 272 table[KS_UNUSEV] = 0x80; /* Unused V Code */ 273 table[KS_USRSAV] = 0x00; /* reserved */ 274 table[KS_USREAV] = 0x00; /* reserved */ 275 table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */ 276 /* User Defined SHS1 B, ALT656=1 on 0127B */ 277 table[KS_SHS1B] = 0x80; 278 table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */ 279 table[KS_CMDE] = 0x00; /* Command Register E */ 280 table[KS_VSDEL] = 0x00; /* VS Delay Control */ 281 /* Command Register F, update -immediately- */ 282 /* (there might come no vsync)*/ 283 table[KS_CMDF] = 0x02; 284 } 285 286 287 /* We need to manually read because of a bug in the KS0127 chip. 288 * 289 * An explanation from kayork@mail.utexas.edu: 290 * 291 * During I2C reads, the KS0127 only samples for a stop condition 292 * during the place where the acknowledge bit should be. Any standard 293 * I2C implementation (correctly) throws in another clock transition 294 * at the 9th bit, and the KS0127 will not recognize the stop condition 295 * and will continue to clock out data. 296 * 297 * So we have to do the read ourself. Big deal. 298 * workaround in i2c-algo-bit 299 */ 300 301 302 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg) 303 { 304 struct i2c_client *client = v4l2_get_subdevdata(sd); 305 char val = 0; 306 struct i2c_msg msgs[] = { 307 { 308 .addr = client->addr, 309 .len = sizeof(reg), 310 .buf = ® 311 }, 312 { 313 .addr = client->addr, 314 .flags = I2C_M_RD | I2C_M_NO_RD_ACK, 315 .len = sizeof(val), 316 .buf = &val 317 } 318 }; 319 int ret; 320 321 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); 322 if (ret != ARRAY_SIZE(msgs)) 323 v4l2_dbg(1, debug, sd, "read error\n"); 324 325 return val; 326 } 327 328 329 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val) 330 { 331 struct i2c_client *client = v4l2_get_subdevdata(sd); 332 struct ks0127 *ks = to_ks0127(sd); 333 char msg[] = { reg, val }; 334 335 if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg)) 336 v4l2_dbg(1, debug, sd, "write error\n"); 337 338 ks->regs[reg] = val; 339 } 340 341 342 /* generic bit-twiddling */ 343 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v) 344 { 345 struct ks0127 *ks = to_ks0127(sd); 346 347 u8 val = ks->regs[reg]; 348 val = (val & and_v) | or_v; 349 ks0127_write(sd, reg, val); 350 } 351 352 353 354 /**************************************************************************** 355 * ks0127 private api 356 ****************************************************************************/ 357 static void ks0127_init(struct v4l2_subdev *sd) 358 { 359 u8 *table = reg_defaults; 360 int i; 361 362 v4l2_dbg(1, debug, sd, "reset\n"); 363 msleep(1); 364 365 /* initialize all registers to known values */ 366 /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */ 367 368 for (i = 1; i < 33; i++) 369 ks0127_write(sd, i, table[i]); 370 371 for (i = 35; i < 40; i++) 372 ks0127_write(sd, i, table[i]); 373 374 for (i = 41; i < 56; i++) 375 ks0127_write(sd, i, table[i]); 376 377 for (i = 58; i < 64; i++) 378 ks0127_write(sd, i, table[i]); 379 380 381 if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) { 382 v4l2_dbg(1, debug, sd, "ks0122s found\n"); 383 return; 384 } 385 386 switch (ks0127_read(sd, KS_CMDE) & 0x0f) { 387 case 0: 388 v4l2_dbg(1, debug, sd, "ks0127 found\n"); 389 break; 390 391 case 9: 392 v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n"); 393 break; 394 395 default: 396 v4l2_dbg(1, debug, sd, "unknown revision\n"); 397 break; 398 } 399 } 400 401 static int ks0127_s_routing(struct v4l2_subdev *sd, 402 u32 input, u32 output, u32 config) 403 { 404 struct ks0127 *ks = to_ks0127(sd); 405 406 switch (input) { 407 case KS_INPUT_COMPOSITE_1: 408 case KS_INPUT_COMPOSITE_2: 409 case KS_INPUT_COMPOSITE_3: 410 case KS_INPUT_COMPOSITE_4: 411 case KS_INPUT_COMPOSITE_5: 412 case KS_INPUT_COMPOSITE_6: 413 v4l2_dbg(1, debug, sd, 414 "s_routing %d: Composite\n", input); 415 /* autodetect 50/60 Hz */ 416 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00); 417 /* VSE=0 */ 418 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00); 419 /* set input line */ 420 ks0127_and_or(sd, KS_CMDB, 0xb0, input); 421 /* non-freerunning mode */ 422 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a); 423 /* analog input */ 424 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00); 425 /* enable chroma demodulation */ 426 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00); 427 /* chroma trap, HYBWR=1 */ 428 ks0127_and_or(sd, KS_LUMA, 0x00, 429 (reg_defaults[KS_LUMA])|0x0c); 430 /* scaler fullbw, luma comb off */ 431 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81); 432 /* manual chroma comb .25 .5 .25 */ 433 ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90); 434 435 /* chroma path delay */ 436 ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90); 437 438 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]); 439 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]); 440 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]); 441 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]); 442 break; 443 444 case KS_INPUT_SVIDEO_1: 445 case KS_INPUT_SVIDEO_2: 446 case KS_INPUT_SVIDEO_3: 447 v4l2_dbg(1, debug, sd, 448 "s_routing %d: S-Video\n", input); 449 /* autodetect 50/60 Hz */ 450 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00); 451 /* VSE=0 */ 452 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00); 453 /* set input line */ 454 ks0127_and_or(sd, KS_CMDB, 0xb0, input); 455 /* non-freerunning mode */ 456 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a); 457 /* analog input */ 458 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00); 459 /* enable chroma demodulation */ 460 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00); 461 ks0127_and_or(sd, KS_LUMA, 0x00, 462 reg_defaults[KS_LUMA]); 463 /* disable luma comb */ 464 ks0127_and_or(sd, KS_VERTIA, 0x08, 465 (reg_defaults[KS_VERTIA]&0xf0)|0x01); 466 ks0127_and_or(sd, KS_VERTIC, 0x0f, 467 reg_defaults[KS_VERTIC]&0xf0); 468 469 ks0127_and_or(sd, KS_CHROMB, 0x0f, 470 reg_defaults[KS_CHROMB]&0xf0); 471 472 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]); 473 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]); 474 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]); 475 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]); 476 break; 477 478 case KS_INPUT_YUV656: 479 v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n"); 480 if (ks->norm & V4L2_STD_525_60) 481 /* force 60 Hz */ 482 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03); 483 else 484 /* force 50 Hz */ 485 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02); 486 487 ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */ 488 /* set input line and VALIGN */ 489 ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40)); 490 /* freerunning mode, */ 491 /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/ 492 ks0127_and_or(sd, KS_CMDC, 0x70, 0x87); 493 /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */ 494 ks0127_and_or(sd, KS_CMDD, 0x03, 0x08); 495 /* disable chroma demodulation */ 496 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30); 497 /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */ 498 ks0127_and_or(sd, KS_LUMA, 0x00, 0x71); 499 ks0127_and_or(sd, KS_VERTIC, 0x0f, 500 reg_defaults[KS_VERTIC]&0xf0); 501 502 /* scaler fullbw, luma comb off */ 503 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81); 504 505 ks0127_and_or(sd, KS_CHROMB, 0x0f, 506 reg_defaults[KS_CHROMB]&0xf0); 507 508 ks0127_and_or(sd, KS_CON, 0x00, 0x00); 509 ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */ 510 /* spec: 229 (e5) */ 511 ks0127_and_or(sd, KS_SAT, 0x00, 0xe8); 512 ks0127_and_or(sd, KS_HUE, 0x00, 0); 513 514 ks0127_and_or(sd, KS_UGAIN, 0x00, 238); 515 ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00); 516 517 /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */ 518 ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f); 519 ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00); 520 break; 521 522 default: 523 v4l2_dbg(1, debug, sd, 524 "s_routing: Unknown input %d\n", input); 525 break; 526 } 527 528 /* hack: CDMLPF sometimes spontaneously switches on; */ 529 /* force back off */ 530 ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]); 531 return 0; 532 } 533 534 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std) 535 { 536 struct ks0127 *ks = to_ks0127(sd); 537 538 /* Set to automatic SECAM/Fsc mode */ 539 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00); 540 541 ks->norm = std; 542 if (std & V4L2_STD_NTSC) { 543 v4l2_dbg(1, debug, sd, 544 "s_std: NTSC_M\n"); 545 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20); 546 } else if (std & V4L2_STD_PAL_N) { 547 v4l2_dbg(1, debug, sd, 548 "s_std: NTSC_N (fixme)\n"); 549 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40); 550 } else if (std & V4L2_STD_PAL) { 551 v4l2_dbg(1, debug, sd, 552 "s_std: PAL_N\n"); 553 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20); 554 } else if (std & V4L2_STD_PAL_M) { 555 v4l2_dbg(1, debug, sd, 556 "s_std: PAL_M (fixme)\n"); 557 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40); 558 } else if (std & V4L2_STD_SECAM) { 559 v4l2_dbg(1, debug, sd, 560 "s_std: SECAM\n"); 561 562 /* set to secam autodetection */ 563 ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20); 564 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00); 565 schedule_timeout_interruptible(HZ/10+1); 566 567 /* did it autodetect? */ 568 if (!(ks0127_read(sd, KS_DEMOD) & 0x40)) 569 /* force to secam mode */ 570 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f); 571 } else { 572 v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n", 573 (unsigned long long)std); 574 } 575 return 0; 576 } 577 578 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable) 579 { 580 v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable); 581 if (enable) { 582 /* All output pins on */ 583 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30); 584 /* Obey the OEN pin */ 585 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00); 586 } else { 587 /* Video output pins off */ 588 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00); 589 /* Ignore the OEN pin */ 590 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80); 591 } 592 return 0; 593 } 594 595 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd) 596 { 597 int stat = V4L2_IN_ST_NO_SIGNAL; 598 u8 status; 599 v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL; 600 601 status = ks0127_read(sd, KS_STAT); 602 if (!(status & 0x20)) /* NOVID not set */ 603 stat = 0; 604 if (!(status & 0x01)) { /* CLOCK set */ 605 stat |= V4L2_IN_ST_NO_COLOR; 606 std = V4L2_STD_UNKNOWN; 607 } else { 608 if ((status & 0x08)) /* PALDET set */ 609 std &= V4L2_STD_PAL; 610 else 611 std &= V4L2_STD_NTSC; 612 } 613 if ((status & 0x10)) /* PALDET set */ 614 std &= V4L2_STD_525_60; 615 else 616 std &= V4L2_STD_625_50; 617 if (pstd) 618 *pstd = std; 619 if (pstatus) 620 *pstatus = stat; 621 return 0; 622 } 623 624 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) 625 { 626 v4l2_dbg(1, debug, sd, "querystd\n"); 627 return ks0127_status(sd, NULL, std); 628 } 629 630 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status) 631 { 632 v4l2_dbg(1, debug, sd, "g_input_status\n"); 633 return ks0127_status(sd, status, NULL); 634 } 635 636 /* ----------------------------------------------------------------------- */ 637 638 static const struct v4l2_subdev_video_ops ks0127_video_ops = { 639 .s_std = ks0127_s_std, 640 .s_routing = ks0127_s_routing, 641 .s_stream = ks0127_s_stream, 642 .querystd = ks0127_querystd, 643 .g_input_status = ks0127_g_input_status, 644 }; 645 646 static const struct v4l2_subdev_ops ks0127_ops = { 647 .video = &ks0127_video_ops, 648 }; 649 650 /* ----------------------------------------------------------------------- */ 651 652 653 static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id) 654 { 655 struct ks0127 *ks; 656 struct v4l2_subdev *sd; 657 658 v4l_info(client, "%s chip found @ 0x%x (%s)\n", 659 client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board", 660 client->addr << 1, client->adapter->name); 661 662 ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL); 663 if (ks == NULL) 664 return -ENOMEM; 665 sd = &ks->sd; 666 v4l2_i2c_subdev_init(sd, client, &ks0127_ops); 667 668 /* power up */ 669 init_reg_defaults(); 670 ks0127_write(sd, KS_CMDA, 0x2c); 671 mdelay(10); 672 673 /* reset the device */ 674 ks0127_init(sd); 675 return 0; 676 } 677 678 static int ks0127_remove(struct i2c_client *client) 679 { 680 struct v4l2_subdev *sd = i2c_get_clientdata(client); 681 682 v4l2_device_unregister_subdev(sd); 683 ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */ 684 ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */ 685 return 0; 686 } 687 688 static const struct i2c_device_id ks0127_id[] = { 689 { "ks0127", 0 }, 690 { "ks0127b", 0 }, 691 { "ks0122s", 0 }, 692 { } 693 }; 694 MODULE_DEVICE_TABLE(i2c, ks0127_id); 695 696 static struct i2c_driver ks0127_driver = { 697 .driver = { 698 .name = "ks0127", 699 }, 700 .probe = ks0127_probe, 701 .remove = ks0127_remove, 702 .id_table = ks0127_id, 703 }; 704 705 module_i2c_driver(ks0127_driver); 706