xref: /openbmc/linux/drivers/media/i2c/ks0127.c (revision d0b73b48)
1 /*
2  * Video Capture Driver (Video for Linux 1/2)
3  * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
4  *
5  * This module is an interface to the KS0127 video decoder chip.
6  *
7  * Copyright (C) 1999  Ryan Drake <stiletto@mediaone.net>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  *****************************************************************************
24  *
25  * Modified and extended by
26  *	Mike Bernson <mike@mlb.org>
27  *	Gerard v.d. Horst
28  *	Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
29  *	Gernot Ziegler <gz@lysator.liu.se>
30  *
31  * Version History:
32  * V1.0 Ryan Drake	   Initial version by Ryan Drake
33  * V1.1 Gerard v.d. Horst  Added some debugoutput, reset the video-standard
34  */
35 
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/kernel.h>
41 #include <linux/i2c.h>
42 #include <linux/videodev2.h>
43 #include <linux/slab.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-chip-ident.h>
46 #include "ks0127.h"
47 
48 MODULE_DESCRIPTION("KS0127 video decoder driver");
49 MODULE_AUTHOR("Ryan Drake");
50 MODULE_LICENSE("GPL");
51 
52 /* Addresses */
53 #define I2C_KS0127_ADDON   0xD8
54 #define I2C_KS0127_ONBOARD 0xDA
55 
56 
57 /* ks0127 control registers */
58 #define KS_STAT     0x00
59 #define KS_CMDA     0x01
60 #define KS_CMDB     0x02
61 #define KS_CMDC     0x03
62 #define KS_CMDD     0x04
63 #define KS_HAVB     0x05
64 #define KS_HAVE     0x06
65 #define KS_HS1B     0x07
66 #define KS_HS1E     0x08
67 #define KS_HS2B     0x09
68 #define KS_HS2E     0x0a
69 #define KS_AGC      0x0b
70 #define KS_HXTRA    0x0c
71 #define KS_CDEM     0x0d
72 #define KS_PORTAB   0x0e
73 #define KS_LUMA     0x0f
74 #define KS_CON      0x10
75 #define KS_BRT      0x11
76 #define KS_CHROMA   0x12
77 #define KS_CHROMB   0x13
78 #define KS_DEMOD    0x14
79 #define KS_SAT      0x15
80 #define KS_HUE      0x16
81 #define KS_VERTIA   0x17
82 #define KS_VERTIB   0x18
83 #define KS_VERTIC   0x19
84 #define KS_HSCLL    0x1a
85 #define KS_HSCLH    0x1b
86 #define KS_VSCLL    0x1c
87 #define KS_VSCLH    0x1d
88 #define KS_OFMTA    0x1e
89 #define KS_OFMTB    0x1f
90 #define KS_VBICTL   0x20
91 #define KS_CCDAT2   0x21
92 #define KS_CCDAT1   0x22
93 #define KS_VBIL30   0x23
94 #define KS_VBIL74   0x24
95 #define KS_VBIL118  0x25
96 #define KS_VBIL1512 0x26
97 #define KS_TTFRAM   0x27
98 #define KS_TESTA    0x28
99 #define KS_UVOFFH   0x29
100 #define KS_UVOFFL   0x2a
101 #define KS_UGAIN    0x2b
102 #define KS_VGAIN    0x2c
103 #define KS_VAVB     0x2d
104 #define KS_VAVE     0x2e
105 #define KS_CTRACK   0x2f
106 #define KS_POLCTL   0x30
107 #define KS_REFCOD   0x31
108 #define KS_INVALY   0x32
109 #define KS_INVALU   0x33
110 #define KS_INVALV   0x34
111 #define KS_UNUSEY   0x35
112 #define KS_UNUSEU   0x36
113 #define KS_UNUSEV   0x37
114 #define KS_USRSAV   0x38
115 #define KS_USREAV   0x39
116 #define KS_SHS1A    0x3a
117 #define KS_SHS1B    0x3b
118 #define KS_SHS1C    0x3c
119 #define KS_CMDE     0x3d
120 #define KS_VSDEL    0x3e
121 #define KS_CMDF     0x3f
122 #define KS_GAMMA0   0x40
123 #define KS_GAMMA1   0x41
124 #define KS_GAMMA2   0x42
125 #define KS_GAMMA3   0x43
126 #define KS_GAMMA4   0x44
127 #define KS_GAMMA5   0x45
128 #define KS_GAMMA6   0x46
129 #define KS_GAMMA7   0x47
130 #define KS_GAMMA8   0x48
131 #define KS_GAMMA9   0x49
132 #define KS_GAMMA10  0x4a
133 #define KS_GAMMA11  0x4b
134 #define KS_GAMMA12  0x4c
135 #define KS_GAMMA13  0x4d
136 #define KS_GAMMA14  0x4e
137 #define KS_GAMMA15  0x4f
138 #define KS_GAMMA16  0x50
139 #define KS_GAMMA17  0x51
140 #define KS_GAMMA18  0x52
141 #define KS_GAMMA19  0x53
142 #define KS_GAMMA20  0x54
143 #define KS_GAMMA21  0x55
144 #define KS_GAMMA22  0x56
145 #define KS_GAMMA23  0x57
146 #define KS_GAMMA24  0x58
147 #define KS_GAMMA25  0x59
148 #define KS_GAMMA26  0x5a
149 #define KS_GAMMA27  0x5b
150 #define KS_GAMMA28  0x5c
151 #define KS_GAMMA29  0x5d
152 #define KS_GAMMA30  0x5e
153 #define KS_GAMMA31  0x5f
154 #define KS_GAMMAD0  0x60
155 #define KS_GAMMAD1  0x61
156 #define KS_GAMMAD2  0x62
157 #define KS_GAMMAD3  0x63
158 #define KS_GAMMAD4  0x64
159 #define KS_GAMMAD5  0x65
160 #define KS_GAMMAD6  0x66
161 #define KS_GAMMAD7  0x67
162 #define KS_GAMMAD8  0x68
163 #define KS_GAMMAD9  0x69
164 #define KS_GAMMAD10 0x6a
165 #define KS_GAMMAD11 0x6b
166 #define KS_GAMMAD12 0x6c
167 #define KS_GAMMAD13 0x6d
168 #define KS_GAMMAD14 0x6e
169 #define KS_GAMMAD15 0x6f
170 #define KS_GAMMAD16 0x70
171 #define KS_GAMMAD17 0x71
172 #define KS_GAMMAD18 0x72
173 #define KS_GAMMAD19 0x73
174 #define KS_GAMMAD20 0x74
175 #define KS_GAMMAD21 0x75
176 #define KS_GAMMAD22 0x76
177 #define KS_GAMMAD23 0x77
178 #define KS_GAMMAD24 0x78
179 #define KS_GAMMAD25 0x79
180 #define KS_GAMMAD26 0x7a
181 #define KS_GAMMAD27 0x7b
182 #define KS_GAMMAD28 0x7c
183 #define KS_GAMMAD29 0x7d
184 #define KS_GAMMAD30 0x7e
185 #define KS_GAMMAD31 0x7f
186 
187 
188 /****************************************************************************
189 * mga_dev : represents one ks0127 chip.
190 ****************************************************************************/
191 
192 struct adjust {
193 	int	contrast;
194 	int	bright;
195 	int	hue;
196 	int	ugain;
197 	int	vgain;
198 };
199 
200 struct ks0127 {
201 	struct v4l2_subdev sd;
202 	v4l2_std_id	norm;
203 	int		ident;
204 	u8 		regs[256];
205 };
206 
207 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
208 {
209 	return container_of(sd, struct ks0127, sd);
210 }
211 
212 
213 static int debug; /* insmod parameter */
214 
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug output");
217 
218 static u8 reg_defaults[64];
219 
220 static void init_reg_defaults(void)
221 {
222 	static int initialized;
223 	u8 *table = reg_defaults;
224 
225 	if (initialized)
226 		return;
227 	initialized = 1;
228 
229 	table[KS_CMDA]     = 0x2c;  /* VSE=0, CCIR 601, autodetect standard */
230 	table[KS_CMDB]     = 0x12;  /* VALIGN=0, AGC control and input */
231 	table[KS_CMDC]     = 0x00;  /* Test options */
232 	/* clock & input select, write 1 to PORTA */
233 	table[KS_CMDD]     = 0x01;
234 	table[KS_HAVB]     = 0x00;  /* HAV Start Control */
235 	table[KS_HAVE]     = 0x00;  /* HAV End Control */
236 	table[KS_HS1B]     = 0x10;  /* HS1 Start Control */
237 	table[KS_HS1E]     = 0x00;  /* HS1 End Control */
238 	table[KS_HS2B]     = 0x00;  /* HS2 Start Control */
239 	table[KS_HS2E]     = 0x00;  /* HS2 End Control */
240 	table[KS_AGC]      = 0x53;  /* Manual setting for AGC */
241 	table[KS_HXTRA]    = 0x00;  /* Extra Bits for HAV and HS1/2 */
242 	table[KS_CDEM]     = 0x00;  /* Chroma Demodulation Control */
243 	table[KS_PORTAB]   = 0x0f;  /* port B is input, port A output GPPORT */
244 	table[KS_LUMA]     = 0x01;  /* Luma control */
245 	table[KS_CON]      = 0x00;  /* Contrast Control */
246 	table[KS_BRT]      = 0x00;  /* Brightness Control */
247 	table[KS_CHROMA]   = 0x2a;  /* Chroma control A */
248 	table[KS_CHROMB]   = 0x90;  /* Chroma control B */
249 	table[KS_DEMOD]    = 0x00;  /* Chroma Demodulation Control & Status */
250 	table[KS_SAT]      = 0x00;  /* Color Saturation Control*/
251 	table[KS_HUE]      = 0x00;  /* Hue Control */
252 	table[KS_VERTIA]   = 0x00;  /* Vertical Processing Control A */
253 	/* Vertical Processing Control B, luma 1 line delayed */
254 	table[KS_VERTIB]   = 0x12;
255 	table[KS_VERTIC]   = 0x0b;  /* Vertical Processing Control C */
256 	table[KS_HSCLL]    = 0x00;  /* Horizontal Scaling Ratio Low */
257 	table[KS_HSCLH]    = 0x00;  /* Horizontal Scaling Ratio High */
258 	table[KS_VSCLL]    = 0x00;  /* Vertical Scaling Ratio Low */
259 	table[KS_VSCLH]    = 0x00;  /* Vertical Scaling Ratio High */
260 	/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
261 	table[KS_OFMTA]    = 0x30;
262 	table[KS_OFMTB]    = 0x00;  /* Output Control B */
263 	/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
264 	table[KS_VBICTL]   = 0x5d;
265 	table[KS_CCDAT2]   = 0x00;  /* Read Only register */
266 	table[KS_CCDAT1]   = 0x00;  /* Read Only register */
267 	table[KS_VBIL30]   = 0xa8;  /* VBI data decoding options */
268 	table[KS_VBIL74]   = 0xaa;  /* VBI data decoding options */
269 	table[KS_VBIL118]  = 0x2a;  /* VBI data decoding options */
270 	table[KS_VBIL1512] = 0x00;  /* VBI data decoding options */
271 	table[KS_TTFRAM]   = 0x00;  /* Teletext frame alignment pattern */
272 	table[KS_TESTA]    = 0x00;  /* test register, shouldn't be written */
273 	table[KS_UVOFFH]   = 0x00;  /* UV Offset Adjustment High */
274 	table[KS_UVOFFL]   = 0x00;  /* UV Offset Adjustment Low */
275 	table[KS_UGAIN]    = 0x00;  /* U Component Gain Adjustment */
276 	table[KS_VGAIN]    = 0x00;  /* V Component Gain Adjustment */
277 	table[KS_VAVB]     = 0x07;  /* VAV Begin */
278 	table[KS_VAVE]     = 0x00;  /* VAV End */
279 	table[KS_CTRACK]   = 0x00;  /* Chroma Tracking Control */
280 	table[KS_POLCTL]   = 0x41;  /* Timing Signal Polarity Control */
281 	table[KS_REFCOD]   = 0x80;  /* Reference Code Insertion Control */
282 	table[KS_INVALY]   = 0x10;  /* Invalid Y Code */
283 	table[KS_INVALU]   = 0x80;  /* Invalid U Code */
284 	table[KS_INVALV]   = 0x80;  /* Invalid V Code */
285 	table[KS_UNUSEY]   = 0x10;  /* Unused Y Code */
286 	table[KS_UNUSEU]   = 0x80;  /* Unused U Code */
287 	table[KS_UNUSEV]   = 0x80;  /* Unused V Code */
288 	table[KS_USRSAV]   = 0x00;  /* reserved */
289 	table[KS_USREAV]   = 0x00;  /* reserved */
290 	table[KS_SHS1A]    = 0x00;  /* User Defined SHS1 A */
291 	/* User Defined SHS1 B, ALT656=1 on 0127B */
292 	table[KS_SHS1B]    = 0x80;
293 	table[KS_SHS1C]    = 0x00;  /* User Defined SHS1 C */
294 	table[KS_CMDE]     = 0x00;  /* Command Register E */
295 	table[KS_VSDEL]    = 0x00;  /* VS Delay Control */
296 	/* Command Register F, update -immediately- */
297 	/* (there might come no vsync)*/
298 	table[KS_CMDF]     = 0x02;
299 }
300 
301 
302 /* We need to manually read because of a bug in the KS0127 chip.
303  *
304  * An explanation from kayork@mail.utexas.edu:
305  *
306  * During I2C reads, the KS0127 only samples for a stop condition
307  * during the place where the acknowledge bit should be. Any standard
308  * I2C implementation (correctly) throws in another clock transition
309  * at the 9th bit, and the KS0127 will not recognize the stop condition
310  * and will continue to clock out data.
311  *
312  * So we have to do the read ourself.  Big deal.
313  *	   workaround in i2c-algo-bit
314  */
315 
316 
317 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
318 {
319 	struct i2c_client *client = v4l2_get_subdevdata(sd);
320 	char val = 0;
321 	struct i2c_msg msgs[] = {
322 		{
323 			.addr = client->addr,
324 			.len = sizeof(reg),
325 			.buf = &reg
326 		},
327 		{
328 			.addr = client->addr,
329 			.flags = I2C_M_RD | I2C_M_NO_RD_ACK,
330 			.len = sizeof(val),
331 			.buf = &val
332 		}
333 	};
334 	int ret;
335 
336 	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
337 	if (ret != ARRAY_SIZE(msgs))
338 		v4l2_dbg(1, debug, sd, "read error\n");
339 
340 	return val;
341 }
342 
343 
344 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
345 {
346 	struct i2c_client *client = v4l2_get_subdevdata(sd);
347 	struct ks0127 *ks = to_ks0127(sd);
348 	char msg[] = { reg, val };
349 
350 	if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
351 		v4l2_dbg(1, debug, sd, "write error\n");
352 
353 	ks->regs[reg] = val;
354 }
355 
356 
357 /* generic bit-twiddling */
358 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
359 {
360 	struct ks0127 *ks = to_ks0127(sd);
361 
362 	u8 val = ks->regs[reg];
363 	val = (val & and_v) | or_v;
364 	ks0127_write(sd, reg, val);
365 }
366 
367 
368 
369 /****************************************************************************
370 * ks0127 private api
371 ****************************************************************************/
372 static void ks0127_init(struct v4l2_subdev *sd)
373 {
374 	struct ks0127 *ks = to_ks0127(sd);
375 	u8 *table = reg_defaults;
376 	int i;
377 
378 	ks->ident = V4L2_IDENT_KS0127;
379 
380 	v4l2_dbg(1, debug, sd, "reset\n");
381 	msleep(1);
382 
383 	/* initialize all registers to known values */
384 	/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
385 
386 	for (i = 1; i < 33; i++)
387 		ks0127_write(sd, i, table[i]);
388 
389 	for (i = 35; i < 40; i++)
390 		ks0127_write(sd, i, table[i]);
391 
392 	for (i = 41; i < 56; i++)
393 		ks0127_write(sd, i, table[i]);
394 
395 	for (i = 58; i < 64; i++)
396 		ks0127_write(sd, i, table[i]);
397 
398 
399 	if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
400 		ks->ident = V4L2_IDENT_KS0122S;
401 		v4l2_dbg(1, debug, sd, "ks0122s found\n");
402 		return;
403 	}
404 
405 	switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
406 	case 0:
407 		v4l2_dbg(1, debug, sd, "ks0127 found\n");
408 		break;
409 
410 	case 9:
411 		ks->ident = V4L2_IDENT_KS0127B;
412 		v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
413 		break;
414 
415 	default:
416 		v4l2_dbg(1, debug, sd, "unknown revision\n");
417 		break;
418 	}
419 }
420 
421 static int ks0127_s_routing(struct v4l2_subdev *sd,
422 			    u32 input, u32 output, u32 config)
423 {
424 	struct ks0127 *ks = to_ks0127(sd);
425 
426 	switch (input) {
427 	case KS_INPUT_COMPOSITE_1:
428 	case KS_INPUT_COMPOSITE_2:
429 	case KS_INPUT_COMPOSITE_3:
430 	case KS_INPUT_COMPOSITE_4:
431 	case KS_INPUT_COMPOSITE_5:
432 	case KS_INPUT_COMPOSITE_6:
433 		v4l2_dbg(1, debug, sd,
434 			"s_routing %d: Composite\n", input);
435 		/* autodetect 50/60 Hz */
436 		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
437 		/* VSE=0 */
438 		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
439 		/* set input line */
440 		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
441 		/* non-freerunning mode */
442 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
443 		/* analog input */
444 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
445 		/* enable chroma demodulation */
446 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
447 		/* chroma trap, HYBWR=1 */
448 		ks0127_and_or(sd, KS_LUMA,   0x00,
449 			       (reg_defaults[KS_LUMA])|0x0c);
450 		/* scaler fullbw, luma comb off */
451 		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
452 		/* manual chroma comb .25 .5 .25 */
453 		ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
454 
455 		/* chroma path delay */
456 		ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
457 
458 		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
459 		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
460 		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
461 		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
462 		break;
463 
464 	case KS_INPUT_SVIDEO_1:
465 	case KS_INPUT_SVIDEO_2:
466 	case KS_INPUT_SVIDEO_3:
467 		v4l2_dbg(1, debug, sd,
468 			"s_routing %d: S-Video\n", input);
469 		/* autodetect 50/60 Hz */
470 		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
471 		/* VSE=0 */
472 		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
473 		/* set input line */
474 		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
475 		/* non-freerunning mode */
476 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
477 		/* analog input */
478 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
479 		/* enable chroma demodulation */
480 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
481 		ks0127_and_or(sd, KS_LUMA, 0x00,
482 			       reg_defaults[KS_LUMA]);
483 		/* disable luma comb */
484 		ks0127_and_or(sd, KS_VERTIA, 0x08,
485 			       (reg_defaults[KS_VERTIA]&0xf0)|0x01);
486 		ks0127_and_or(sd, KS_VERTIC, 0x0f,
487 			       reg_defaults[KS_VERTIC]&0xf0);
488 
489 		ks0127_and_or(sd, KS_CHROMB, 0x0f,
490 			       reg_defaults[KS_CHROMB]&0xf0);
491 
492 		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
493 		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
494 		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
495 		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
496 		break;
497 
498 	case KS_INPUT_YUV656:
499 		v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
500 		if (ks->norm & V4L2_STD_525_60)
501 			/* force 60 Hz */
502 			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x03);
503 		else
504 			/* force 50 Hz */
505 			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x02);
506 
507 		ks0127_and_or(sd, KS_CMDA,   0xff, 0x40); /* VSE=1 */
508 		/* set input line and VALIGN */
509 		ks0127_and_or(sd, KS_CMDB,   0xb0, (input | 0x40));
510 		/* freerunning mode, */
511 		/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0  VMEM=1*/
512 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x87);
513 		/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
514 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x08);
515 		/* disable chroma demodulation */
516 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
517 		/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
518 		ks0127_and_or(sd, KS_LUMA,   0x00, 0x71);
519 		ks0127_and_or(sd, KS_VERTIC, 0x0f,
520 			       reg_defaults[KS_VERTIC]&0xf0);
521 
522 		/* scaler fullbw, luma comb off */
523 		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
524 
525 		ks0127_and_or(sd, KS_CHROMB, 0x0f,
526 			       reg_defaults[KS_CHROMB]&0xf0);
527 
528 		ks0127_and_or(sd, KS_CON, 0x00, 0x00);
529 		ks0127_and_or(sd, KS_BRT, 0x00, 32);	/* spec: 34 */
530 			/* spec: 229 (e5) */
531 		ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
532 		ks0127_and_or(sd, KS_HUE, 0x00, 0);
533 
534 		ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
535 		ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
536 
537 		/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
538 		ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
539 		ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
540 		break;
541 
542 	default:
543 		v4l2_dbg(1, debug, sd,
544 			"s_routing: Unknown input %d\n", input);
545 		break;
546 	}
547 
548 	/* hack: CDMLPF sometimes spontaneously switches on; */
549 	/* force back off */
550 	ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
551 	return 0;
552 }
553 
554 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
555 {
556 	struct ks0127 *ks = to_ks0127(sd);
557 
558 	/* Set to automatic SECAM/Fsc mode */
559 	ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
560 
561 	ks->norm = std;
562 	if (std & V4L2_STD_NTSC) {
563 		v4l2_dbg(1, debug, sd,
564 			"s_std: NTSC_M\n");
565 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
566 	} else if (std & V4L2_STD_PAL_N) {
567 		v4l2_dbg(1, debug, sd,
568 			"s_std: NTSC_N (fixme)\n");
569 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
570 	} else if (std & V4L2_STD_PAL) {
571 		v4l2_dbg(1, debug, sd,
572 			"s_std: PAL_N\n");
573 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
574 	} else if (std & V4L2_STD_PAL_M) {
575 		v4l2_dbg(1, debug, sd,
576 			"s_std: PAL_M (fixme)\n");
577 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
578 	} else if (std & V4L2_STD_SECAM) {
579 		v4l2_dbg(1, debug, sd,
580 			"s_std: SECAM\n");
581 
582 		/* set to secam autodetection */
583 		ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
584 		ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
585 		schedule_timeout_interruptible(HZ/10+1);
586 
587 		/* did it autodetect? */
588 		if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
589 			/* force to secam mode */
590 			ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
591 	} else {
592 		v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
593 			       (unsigned long long)std);
594 	}
595 	return 0;
596 }
597 
598 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
599 {
600 	v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
601 	if (enable) {
602 		/* All output pins on */
603 		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
604 		/* Obey the OEN pin */
605 		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
606 	} else {
607 		/* Video output pins off */
608 		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
609 		/* Ignore the OEN pin */
610 		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
611 	}
612 	return 0;
613 }
614 
615 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
616 {
617 	int stat = V4L2_IN_ST_NO_SIGNAL;
618 	u8 status;
619 	v4l2_std_id std = V4L2_STD_ALL;
620 
621 	status = ks0127_read(sd, KS_STAT);
622 	if (!(status & 0x20))		 /* NOVID not set */
623 		stat = 0;
624 	if (!(status & 0x01))		      /* CLOCK set */
625 		stat |= V4L2_IN_ST_NO_COLOR;
626 	if ((status & 0x08))		   /* PALDET set */
627 		std = V4L2_STD_PAL;
628 	else
629 		std = V4L2_STD_NTSC;
630 	if (pstd)
631 		*pstd = std;
632 	if (pstatus)
633 		*pstatus = stat;
634 	return 0;
635 }
636 
637 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
638 {
639 	v4l2_dbg(1, debug, sd, "querystd\n");
640 	return ks0127_status(sd, NULL, std);
641 }
642 
643 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
644 {
645 	v4l2_dbg(1, debug, sd, "g_input_status\n");
646 	return ks0127_status(sd, status, NULL);
647 }
648 
649 static int ks0127_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip)
650 {
651 	struct i2c_client *client = v4l2_get_subdevdata(sd);
652 	struct ks0127 *ks = to_ks0127(sd);
653 
654 	return v4l2_chip_ident_i2c_client(client, chip, ks->ident, 0);
655 }
656 
657 /* ----------------------------------------------------------------------- */
658 
659 static const struct v4l2_subdev_core_ops ks0127_core_ops = {
660 	.g_chip_ident = ks0127_g_chip_ident,
661 	.s_std = ks0127_s_std,
662 };
663 
664 static const struct v4l2_subdev_video_ops ks0127_video_ops = {
665 	.s_routing = ks0127_s_routing,
666 	.s_stream = ks0127_s_stream,
667 	.querystd = ks0127_querystd,
668 	.g_input_status = ks0127_g_input_status,
669 };
670 
671 static const struct v4l2_subdev_ops ks0127_ops = {
672 	.core = &ks0127_core_ops,
673 	.video = &ks0127_video_ops,
674 };
675 
676 /* ----------------------------------------------------------------------- */
677 
678 
679 static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
680 {
681 	struct ks0127 *ks;
682 	struct v4l2_subdev *sd;
683 
684 	v4l_info(client, "%s chip found @ 0x%x (%s)\n",
685 		client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
686 		client->addr << 1, client->adapter->name);
687 
688 	ks = kzalloc(sizeof(*ks), GFP_KERNEL);
689 	if (ks == NULL)
690 		return -ENOMEM;
691 	sd = &ks->sd;
692 	v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
693 
694 	/* power up */
695 	init_reg_defaults();
696 	ks0127_write(sd, KS_CMDA, 0x2c);
697 	mdelay(10);
698 
699 	/* reset the device */
700 	ks0127_init(sd);
701 	return 0;
702 }
703 
704 static int ks0127_remove(struct i2c_client *client)
705 {
706 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
707 
708 	v4l2_device_unregister_subdev(sd);
709 	ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
710 	ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
711 	kfree(to_ks0127(sd));
712 	return 0;
713 }
714 
715 static const struct i2c_device_id ks0127_id[] = {
716 	{ "ks0127", 0 },
717 	{ "ks0127b", 0 },
718 	{ "ks0122s", 0 },
719 	{ }
720 };
721 MODULE_DEVICE_TABLE(i2c, ks0127_id);
722 
723 static struct i2c_driver ks0127_driver = {
724 	.driver = {
725 		.owner	= THIS_MODULE,
726 		.name	= "ks0127",
727 	},
728 	.probe		= ks0127_probe,
729 	.remove		= ks0127_remove,
730 	.id_table	= ks0127_id,
731 };
732 
733 module_i2c_driver(ks0127_driver);
734