xref: /openbmc/linux/drivers/media/i2c/ks0127.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * Video Capture Driver (Video for Linux 1/2)
3  * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
4  *
5  * This module is an interface to the KS0127 video decoder chip.
6  *
7  * Copyright (C) 1999  Ryan Drake <stiletto@mediaone.net>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  *****************************************************************************
24  *
25  * Modified and extended by
26  *	Mike Bernson <mike@mlb.org>
27  *	Gerard v.d. Horst
28  *	Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
29  *	Gernot Ziegler <gz@lysator.liu.se>
30  *
31  * Version History:
32  * V1.0 Ryan Drake	   Initial version by Ryan Drake
33  * V1.1 Gerard v.d. Horst  Added some debugoutput, reset the video-standard
34  */
35 
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/kernel.h>
41 #include <linux/i2c.h>
42 #include <linux/videodev2.h>
43 #include <linux/slab.h>
44 #include <media/v4l2-device.h>
45 #include "ks0127.h"
46 
47 MODULE_DESCRIPTION("KS0127 video decoder driver");
48 MODULE_AUTHOR("Ryan Drake");
49 MODULE_LICENSE("GPL");
50 
51 /* Addresses */
52 #define I2C_KS0127_ADDON   0xD8
53 #define I2C_KS0127_ONBOARD 0xDA
54 
55 
56 /* ks0127 control registers */
57 #define KS_STAT     0x00
58 #define KS_CMDA     0x01
59 #define KS_CMDB     0x02
60 #define KS_CMDC     0x03
61 #define KS_CMDD     0x04
62 #define KS_HAVB     0x05
63 #define KS_HAVE     0x06
64 #define KS_HS1B     0x07
65 #define KS_HS1E     0x08
66 #define KS_HS2B     0x09
67 #define KS_HS2E     0x0a
68 #define KS_AGC      0x0b
69 #define KS_HXTRA    0x0c
70 #define KS_CDEM     0x0d
71 #define KS_PORTAB   0x0e
72 #define KS_LUMA     0x0f
73 #define KS_CON      0x10
74 #define KS_BRT      0x11
75 #define KS_CHROMA   0x12
76 #define KS_CHROMB   0x13
77 #define KS_DEMOD    0x14
78 #define KS_SAT      0x15
79 #define KS_HUE      0x16
80 #define KS_VERTIA   0x17
81 #define KS_VERTIB   0x18
82 #define KS_VERTIC   0x19
83 #define KS_HSCLL    0x1a
84 #define KS_HSCLH    0x1b
85 #define KS_VSCLL    0x1c
86 #define KS_VSCLH    0x1d
87 #define KS_OFMTA    0x1e
88 #define KS_OFMTB    0x1f
89 #define KS_VBICTL   0x20
90 #define KS_CCDAT2   0x21
91 #define KS_CCDAT1   0x22
92 #define KS_VBIL30   0x23
93 #define KS_VBIL74   0x24
94 #define KS_VBIL118  0x25
95 #define KS_VBIL1512 0x26
96 #define KS_TTFRAM   0x27
97 #define KS_TESTA    0x28
98 #define KS_UVOFFH   0x29
99 #define KS_UVOFFL   0x2a
100 #define KS_UGAIN    0x2b
101 #define KS_VGAIN    0x2c
102 #define KS_VAVB     0x2d
103 #define KS_VAVE     0x2e
104 #define KS_CTRACK   0x2f
105 #define KS_POLCTL   0x30
106 #define KS_REFCOD   0x31
107 #define KS_INVALY   0x32
108 #define KS_INVALU   0x33
109 #define KS_INVALV   0x34
110 #define KS_UNUSEY   0x35
111 #define KS_UNUSEU   0x36
112 #define KS_UNUSEV   0x37
113 #define KS_USRSAV   0x38
114 #define KS_USREAV   0x39
115 #define KS_SHS1A    0x3a
116 #define KS_SHS1B    0x3b
117 #define KS_SHS1C    0x3c
118 #define KS_CMDE     0x3d
119 #define KS_VSDEL    0x3e
120 #define KS_CMDF     0x3f
121 #define KS_GAMMA0   0x40
122 #define KS_GAMMA1   0x41
123 #define KS_GAMMA2   0x42
124 #define KS_GAMMA3   0x43
125 #define KS_GAMMA4   0x44
126 #define KS_GAMMA5   0x45
127 #define KS_GAMMA6   0x46
128 #define KS_GAMMA7   0x47
129 #define KS_GAMMA8   0x48
130 #define KS_GAMMA9   0x49
131 #define KS_GAMMA10  0x4a
132 #define KS_GAMMA11  0x4b
133 #define KS_GAMMA12  0x4c
134 #define KS_GAMMA13  0x4d
135 #define KS_GAMMA14  0x4e
136 #define KS_GAMMA15  0x4f
137 #define KS_GAMMA16  0x50
138 #define KS_GAMMA17  0x51
139 #define KS_GAMMA18  0x52
140 #define KS_GAMMA19  0x53
141 #define KS_GAMMA20  0x54
142 #define KS_GAMMA21  0x55
143 #define KS_GAMMA22  0x56
144 #define KS_GAMMA23  0x57
145 #define KS_GAMMA24  0x58
146 #define KS_GAMMA25  0x59
147 #define KS_GAMMA26  0x5a
148 #define KS_GAMMA27  0x5b
149 #define KS_GAMMA28  0x5c
150 #define KS_GAMMA29  0x5d
151 #define KS_GAMMA30  0x5e
152 #define KS_GAMMA31  0x5f
153 #define KS_GAMMAD0  0x60
154 #define KS_GAMMAD1  0x61
155 #define KS_GAMMAD2  0x62
156 #define KS_GAMMAD3  0x63
157 #define KS_GAMMAD4  0x64
158 #define KS_GAMMAD5  0x65
159 #define KS_GAMMAD6  0x66
160 #define KS_GAMMAD7  0x67
161 #define KS_GAMMAD8  0x68
162 #define KS_GAMMAD9  0x69
163 #define KS_GAMMAD10 0x6a
164 #define KS_GAMMAD11 0x6b
165 #define KS_GAMMAD12 0x6c
166 #define KS_GAMMAD13 0x6d
167 #define KS_GAMMAD14 0x6e
168 #define KS_GAMMAD15 0x6f
169 #define KS_GAMMAD16 0x70
170 #define KS_GAMMAD17 0x71
171 #define KS_GAMMAD18 0x72
172 #define KS_GAMMAD19 0x73
173 #define KS_GAMMAD20 0x74
174 #define KS_GAMMAD21 0x75
175 #define KS_GAMMAD22 0x76
176 #define KS_GAMMAD23 0x77
177 #define KS_GAMMAD24 0x78
178 #define KS_GAMMAD25 0x79
179 #define KS_GAMMAD26 0x7a
180 #define KS_GAMMAD27 0x7b
181 #define KS_GAMMAD28 0x7c
182 #define KS_GAMMAD29 0x7d
183 #define KS_GAMMAD30 0x7e
184 #define KS_GAMMAD31 0x7f
185 
186 
187 /****************************************************************************
188 * mga_dev : represents one ks0127 chip.
189 ****************************************************************************/
190 
191 struct adjust {
192 	int	contrast;
193 	int	bright;
194 	int	hue;
195 	int	ugain;
196 	int	vgain;
197 };
198 
199 struct ks0127 {
200 	struct v4l2_subdev sd;
201 	v4l2_std_id	norm;
202 	u8 		regs[256];
203 };
204 
205 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
206 {
207 	return container_of(sd, struct ks0127, sd);
208 }
209 
210 
211 static int debug; /* insmod parameter */
212 
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug output");
215 
216 static u8 reg_defaults[64];
217 
218 static void init_reg_defaults(void)
219 {
220 	static int initialized;
221 	u8 *table = reg_defaults;
222 
223 	if (initialized)
224 		return;
225 	initialized = 1;
226 
227 	table[KS_CMDA]     = 0x2c;  /* VSE=0, CCIR 601, autodetect standard */
228 	table[KS_CMDB]     = 0x12;  /* VALIGN=0, AGC control and input */
229 	table[KS_CMDC]     = 0x00;  /* Test options */
230 	/* clock & input select, write 1 to PORTA */
231 	table[KS_CMDD]     = 0x01;
232 	table[KS_HAVB]     = 0x00;  /* HAV Start Control */
233 	table[KS_HAVE]     = 0x00;  /* HAV End Control */
234 	table[KS_HS1B]     = 0x10;  /* HS1 Start Control */
235 	table[KS_HS1E]     = 0x00;  /* HS1 End Control */
236 	table[KS_HS2B]     = 0x00;  /* HS2 Start Control */
237 	table[KS_HS2E]     = 0x00;  /* HS2 End Control */
238 	table[KS_AGC]      = 0x53;  /* Manual setting for AGC */
239 	table[KS_HXTRA]    = 0x00;  /* Extra Bits for HAV and HS1/2 */
240 	table[KS_CDEM]     = 0x00;  /* Chroma Demodulation Control */
241 	table[KS_PORTAB]   = 0x0f;  /* port B is input, port A output GPPORT */
242 	table[KS_LUMA]     = 0x01;  /* Luma control */
243 	table[KS_CON]      = 0x00;  /* Contrast Control */
244 	table[KS_BRT]      = 0x00;  /* Brightness Control */
245 	table[KS_CHROMA]   = 0x2a;  /* Chroma control A */
246 	table[KS_CHROMB]   = 0x90;  /* Chroma control B */
247 	table[KS_DEMOD]    = 0x00;  /* Chroma Demodulation Control & Status */
248 	table[KS_SAT]      = 0x00;  /* Color Saturation Control*/
249 	table[KS_HUE]      = 0x00;  /* Hue Control */
250 	table[KS_VERTIA]   = 0x00;  /* Vertical Processing Control A */
251 	/* Vertical Processing Control B, luma 1 line delayed */
252 	table[KS_VERTIB]   = 0x12;
253 	table[KS_VERTIC]   = 0x0b;  /* Vertical Processing Control C */
254 	table[KS_HSCLL]    = 0x00;  /* Horizontal Scaling Ratio Low */
255 	table[KS_HSCLH]    = 0x00;  /* Horizontal Scaling Ratio High */
256 	table[KS_VSCLL]    = 0x00;  /* Vertical Scaling Ratio Low */
257 	table[KS_VSCLH]    = 0x00;  /* Vertical Scaling Ratio High */
258 	/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
259 	table[KS_OFMTA]    = 0x30;
260 	table[KS_OFMTB]    = 0x00;  /* Output Control B */
261 	/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
262 	table[KS_VBICTL]   = 0x5d;
263 	table[KS_CCDAT2]   = 0x00;  /* Read Only register */
264 	table[KS_CCDAT1]   = 0x00;  /* Read Only register */
265 	table[KS_VBIL30]   = 0xa8;  /* VBI data decoding options */
266 	table[KS_VBIL74]   = 0xaa;  /* VBI data decoding options */
267 	table[KS_VBIL118]  = 0x2a;  /* VBI data decoding options */
268 	table[KS_VBIL1512] = 0x00;  /* VBI data decoding options */
269 	table[KS_TTFRAM]   = 0x00;  /* Teletext frame alignment pattern */
270 	table[KS_TESTA]    = 0x00;  /* test register, shouldn't be written */
271 	table[KS_UVOFFH]   = 0x00;  /* UV Offset Adjustment High */
272 	table[KS_UVOFFL]   = 0x00;  /* UV Offset Adjustment Low */
273 	table[KS_UGAIN]    = 0x00;  /* U Component Gain Adjustment */
274 	table[KS_VGAIN]    = 0x00;  /* V Component Gain Adjustment */
275 	table[KS_VAVB]     = 0x07;  /* VAV Begin */
276 	table[KS_VAVE]     = 0x00;  /* VAV End */
277 	table[KS_CTRACK]   = 0x00;  /* Chroma Tracking Control */
278 	table[KS_POLCTL]   = 0x41;  /* Timing Signal Polarity Control */
279 	table[KS_REFCOD]   = 0x80;  /* Reference Code Insertion Control */
280 	table[KS_INVALY]   = 0x10;  /* Invalid Y Code */
281 	table[KS_INVALU]   = 0x80;  /* Invalid U Code */
282 	table[KS_INVALV]   = 0x80;  /* Invalid V Code */
283 	table[KS_UNUSEY]   = 0x10;  /* Unused Y Code */
284 	table[KS_UNUSEU]   = 0x80;  /* Unused U Code */
285 	table[KS_UNUSEV]   = 0x80;  /* Unused V Code */
286 	table[KS_USRSAV]   = 0x00;  /* reserved */
287 	table[KS_USREAV]   = 0x00;  /* reserved */
288 	table[KS_SHS1A]    = 0x00;  /* User Defined SHS1 A */
289 	/* User Defined SHS1 B, ALT656=1 on 0127B */
290 	table[KS_SHS1B]    = 0x80;
291 	table[KS_SHS1C]    = 0x00;  /* User Defined SHS1 C */
292 	table[KS_CMDE]     = 0x00;  /* Command Register E */
293 	table[KS_VSDEL]    = 0x00;  /* VS Delay Control */
294 	/* Command Register F, update -immediately- */
295 	/* (there might come no vsync)*/
296 	table[KS_CMDF]     = 0x02;
297 }
298 
299 
300 /* We need to manually read because of a bug in the KS0127 chip.
301  *
302  * An explanation from kayork@mail.utexas.edu:
303  *
304  * During I2C reads, the KS0127 only samples for a stop condition
305  * during the place where the acknowledge bit should be. Any standard
306  * I2C implementation (correctly) throws in another clock transition
307  * at the 9th bit, and the KS0127 will not recognize the stop condition
308  * and will continue to clock out data.
309  *
310  * So we have to do the read ourself.  Big deal.
311  *	   workaround in i2c-algo-bit
312  */
313 
314 
315 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
316 {
317 	struct i2c_client *client = v4l2_get_subdevdata(sd);
318 	char val = 0;
319 	struct i2c_msg msgs[] = {
320 		{
321 			.addr = client->addr,
322 			.len = sizeof(reg),
323 			.buf = &reg
324 		},
325 		{
326 			.addr = client->addr,
327 			.flags = I2C_M_RD | I2C_M_NO_RD_ACK,
328 			.len = sizeof(val),
329 			.buf = &val
330 		}
331 	};
332 	int ret;
333 
334 	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
335 	if (ret != ARRAY_SIZE(msgs))
336 		v4l2_dbg(1, debug, sd, "read error\n");
337 
338 	return val;
339 }
340 
341 
342 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
343 {
344 	struct i2c_client *client = v4l2_get_subdevdata(sd);
345 	struct ks0127 *ks = to_ks0127(sd);
346 	char msg[] = { reg, val };
347 
348 	if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
349 		v4l2_dbg(1, debug, sd, "write error\n");
350 
351 	ks->regs[reg] = val;
352 }
353 
354 
355 /* generic bit-twiddling */
356 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
357 {
358 	struct ks0127 *ks = to_ks0127(sd);
359 
360 	u8 val = ks->regs[reg];
361 	val = (val & and_v) | or_v;
362 	ks0127_write(sd, reg, val);
363 }
364 
365 
366 
367 /****************************************************************************
368 * ks0127 private api
369 ****************************************************************************/
370 static void ks0127_init(struct v4l2_subdev *sd)
371 {
372 	u8 *table = reg_defaults;
373 	int i;
374 
375 	v4l2_dbg(1, debug, sd, "reset\n");
376 	msleep(1);
377 
378 	/* initialize all registers to known values */
379 	/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
380 
381 	for (i = 1; i < 33; i++)
382 		ks0127_write(sd, i, table[i]);
383 
384 	for (i = 35; i < 40; i++)
385 		ks0127_write(sd, i, table[i]);
386 
387 	for (i = 41; i < 56; i++)
388 		ks0127_write(sd, i, table[i]);
389 
390 	for (i = 58; i < 64; i++)
391 		ks0127_write(sd, i, table[i]);
392 
393 
394 	if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
395 		v4l2_dbg(1, debug, sd, "ks0122s found\n");
396 		return;
397 	}
398 
399 	switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
400 	case 0:
401 		v4l2_dbg(1, debug, sd, "ks0127 found\n");
402 		break;
403 
404 	case 9:
405 		v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
406 		break;
407 
408 	default:
409 		v4l2_dbg(1, debug, sd, "unknown revision\n");
410 		break;
411 	}
412 }
413 
414 static int ks0127_s_routing(struct v4l2_subdev *sd,
415 			    u32 input, u32 output, u32 config)
416 {
417 	struct ks0127 *ks = to_ks0127(sd);
418 
419 	switch (input) {
420 	case KS_INPUT_COMPOSITE_1:
421 	case KS_INPUT_COMPOSITE_2:
422 	case KS_INPUT_COMPOSITE_3:
423 	case KS_INPUT_COMPOSITE_4:
424 	case KS_INPUT_COMPOSITE_5:
425 	case KS_INPUT_COMPOSITE_6:
426 		v4l2_dbg(1, debug, sd,
427 			"s_routing %d: Composite\n", input);
428 		/* autodetect 50/60 Hz */
429 		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
430 		/* VSE=0 */
431 		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
432 		/* set input line */
433 		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
434 		/* non-freerunning mode */
435 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
436 		/* analog input */
437 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
438 		/* enable chroma demodulation */
439 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
440 		/* chroma trap, HYBWR=1 */
441 		ks0127_and_or(sd, KS_LUMA,   0x00,
442 			       (reg_defaults[KS_LUMA])|0x0c);
443 		/* scaler fullbw, luma comb off */
444 		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
445 		/* manual chroma comb .25 .5 .25 */
446 		ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
447 
448 		/* chroma path delay */
449 		ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
450 
451 		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
452 		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
453 		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
454 		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
455 		break;
456 
457 	case KS_INPUT_SVIDEO_1:
458 	case KS_INPUT_SVIDEO_2:
459 	case KS_INPUT_SVIDEO_3:
460 		v4l2_dbg(1, debug, sd,
461 			"s_routing %d: S-Video\n", input);
462 		/* autodetect 50/60 Hz */
463 		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
464 		/* VSE=0 */
465 		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
466 		/* set input line */
467 		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
468 		/* non-freerunning mode */
469 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
470 		/* analog input */
471 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
472 		/* enable chroma demodulation */
473 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
474 		ks0127_and_or(sd, KS_LUMA, 0x00,
475 			       reg_defaults[KS_LUMA]);
476 		/* disable luma comb */
477 		ks0127_and_or(sd, KS_VERTIA, 0x08,
478 			       (reg_defaults[KS_VERTIA]&0xf0)|0x01);
479 		ks0127_and_or(sd, KS_VERTIC, 0x0f,
480 			       reg_defaults[KS_VERTIC]&0xf0);
481 
482 		ks0127_and_or(sd, KS_CHROMB, 0x0f,
483 			       reg_defaults[KS_CHROMB]&0xf0);
484 
485 		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
486 		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
487 		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
488 		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
489 		break;
490 
491 	case KS_INPUT_YUV656:
492 		v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
493 		if (ks->norm & V4L2_STD_525_60)
494 			/* force 60 Hz */
495 			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x03);
496 		else
497 			/* force 50 Hz */
498 			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x02);
499 
500 		ks0127_and_or(sd, KS_CMDA,   0xff, 0x40); /* VSE=1 */
501 		/* set input line and VALIGN */
502 		ks0127_and_or(sd, KS_CMDB,   0xb0, (input | 0x40));
503 		/* freerunning mode, */
504 		/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0  VMEM=1*/
505 		ks0127_and_or(sd, KS_CMDC,   0x70, 0x87);
506 		/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
507 		ks0127_and_or(sd, KS_CMDD,   0x03, 0x08);
508 		/* disable chroma demodulation */
509 		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
510 		/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
511 		ks0127_and_or(sd, KS_LUMA,   0x00, 0x71);
512 		ks0127_and_or(sd, KS_VERTIC, 0x0f,
513 			       reg_defaults[KS_VERTIC]&0xf0);
514 
515 		/* scaler fullbw, luma comb off */
516 		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
517 
518 		ks0127_and_or(sd, KS_CHROMB, 0x0f,
519 			       reg_defaults[KS_CHROMB]&0xf0);
520 
521 		ks0127_and_or(sd, KS_CON, 0x00, 0x00);
522 		ks0127_and_or(sd, KS_BRT, 0x00, 32);	/* spec: 34 */
523 			/* spec: 229 (e5) */
524 		ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
525 		ks0127_and_or(sd, KS_HUE, 0x00, 0);
526 
527 		ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
528 		ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
529 
530 		/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
531 		ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
532 		ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
533 		break;
534 
535 	default:
536 		v4l2_dbg(1, debug, sd,
537 			"s_routing: Unknown input %d\n", input);
538 		break;
539 	}
540 
541 	/* hack: CDMLPF sometimes spontaneously switches on; */
542 	/* force back off */
543 	ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
544 	return 0;
545 }
546 
547 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
548 {
549 	struct ks0127 *ks = to_ks0127(sd);
550 
551 	/* Set to automatic SECAM/Fsc mode */
552 	ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
553 
554 	ks->norm = std;
555 	if (std & V4L2_STD_NTSC) {
556 		v4l2_dbg(1, debug, sd,
557 			"s_std: NTSC_M\n");
558 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
559 	} else if (std & V4L2_STD_PAL_N) {
560 		v4l2_dbg(1, debug, sd,
561 			"s_std: NTSC_N (fixme)\n");
562 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
563 	} else if (std & V4L2_STD_PAL) {
564 		v4l2_dbg(1, debug, sd,
565 			"s_std: PAL_N\n");
566 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
567 	} else if (std & V4L2_STD_PAL_M) {
568 		v4l2_dbg(1, debug, sd,
569 			"s_std: PAL_M (fixme)\n");
570 		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
571 	} else if (std & V4L2_STD_SECAM) {
572 		v4l2_dbg(1, debug, sd,
573 			"s_std: SECAM\n");
574 
575 		/* set to secam autodetection */
576 		ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
577 		ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
578 		schedule_timeout_interruptible(HZ/10+1);
579 
580 		/* did it autodetect? */
581 		if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
582 			/* force to secam mode */
583 			ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
584 	} else {
585 		v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
586 			       (unsigned long long)std);
587 	}
588 	return 0;
589 }
590 
591 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
592 {
593 	v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
594 	if (enable) {
595 		/* All output pins on */
596 		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
597 		/* Obey the OEN pin */
598 		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
599 	} else {
600 		/* Video output pins off */
601 		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
602 		/* Ignore the OEN pin */
603 		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
604 	}
605 	return 0;
606 }
607 
608 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
609 {
610 	int stat = V4L2_IN_ST_NO_SIGNAL;
611 	u8 status;
612 	v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
613 
614 	status = ks0127_read(sd, KS_STAT);
615 	if (!(status & 0x20))		 /* NOVID not set */
616 		stat = 0;
617 	if (!(status & 0x01)) {		      /* CLOCK set */
618 		stat |= V4L2_IN_ST_NO_COLOR;
619 		std = V4L2_STD_UNKNOWN;
620 	} else {
621 		if ((status & 0x08))		   /* PALDET set */
622 			std &= V4L2_STD_PAL;
623 		else
624 			std &= V4L2_STD_NTSC;
625 	}
626 	if ((status & 0x10))		   /* PALDET set */
627 		std &= V4L2_STD_525_60;
628 	else
629 		std &= V4L2_STD_625_50;
630 	if (pstd)
631 		*pstd = std;
632 	if (pstatus)
633 		*pstatus = stat;
634 	return 0;
635 }
636 
637 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
638 {
639 	v4l2_dbg(1, debug, sd, "querystd\n");
640 	return ks0127_status(sd, NULL, std);
641 }
642 
643 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
644 {
645 	v4l2_dbg(1, debug, sd, "g_input_status\n");
646 	return ks0127_status(sd, status, NULL);
647 }
648 
649 /* ----------------------------------------------------------------------- */
650 
651 static const struct v4l2_subdev_video_ops ks0127_video_ops = {
652 	.s_std = ks0127_s_std,
653 	.s_routing = ks0127_s_routing,
654 	.s_stream = ks0127_s_stream,
655 	.querystd = ks0127_querystd,
656 	.g_input_status = ks0127_g_input_status,
657 };
658 
659 static const struct v4l2_subdev_ops ks0127_ops = {
660 	.video = &ks0127_video_ops,
661 };
662 
663 /* ----------------------------------------------------------------------- */
664 
665 
666 static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
667 {
668 	struct ks0127 *ks;
669 	struct v4l2_subdev *sd;
670 
671 	v4l_info(client, "%s chip found @ 0x%x (%s)\n",
672 		client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
673 		client->addr << 1, client->adapter->name);
674 
675 	ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
676 	if (ks == NULL)
677 		return -ENOMEM;
678 	sd = &ks->sd;
679 	v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
680 
681 	/* power up */
682 	init_reg_defaults();
683 	ks0127_write(sd, KS_CMDA, 0x2c);
684 	mdelay(10);
685 
686 	/* reset the device */
687 	ks0127_init(sd);
688 	return 0;
689 }
690 
691 static int ks0127_remove(struct i2c_client *client)
692 {
693 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
694 
695 	v4l2_device_unregister_subdev(sd);
696 	ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
697 	ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
698 	return 0;
699 }
700 
701 static const struct i2c_device_id ks0127_id[] = {
702 	{ "ks0127", 0 },
703 	{ "ks0127b", 0 },
704 	{ "ks0122s", 0 },
705 	{ }
706 };
707 MODULE_DEVICE_TABLE(i2c, ks0127_id);
708 
709 static struct i2c_driver ks0127_driver = {
710 	.driver = {
711 		.name	= "ks0127",
712 	},
713 	.probe		= ks0127_probe,
714 	.remove		= ks0127_remove,
715 	.id_table	= ks0127_id,
716 };
717 
718 module_i2c_driver(ks0127_driver);
719