xref: /openbmc/linux/drivers/media/i2c/ir-kbd-i2c.c (revision ba61bb17)
1 /*
2  *
3  * keyboard input driver for i2c IR remote controls
4  *
5  * Copyright (c) 2000-2003 Gerd Knorr <kraxel@bytesex.org>
6  * modified for PixelView (BT878P+W/FM) by
7  *      Michal Kochanowicz <mkochano@pld.org.pl>
8  *      Christoph Bartelmus <lirc@bartelmus.de>
9  * modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by
10  *      Ulrich Mueller <ulrich.mueller42@web.de>
11  * modified for em2820 based USB TV tuners by
12  *      Markus Rechberger <mrechberger@gmail.com>
13  * modified for DViCO Fusion HDTV 5 RT GOLD by
14  *      Chaogui Zhang <czhang1974@gmail.com>
15  * modified for MSI TV@nywhere Plus by
16  *      Henry Wong <henry@stuffedcow.net>
17  *      Mark Schultz <n9xmj@yahoo.com>
18  *      Brian Rogers <brian_rogers@comcast.net>
19  * modified for AVerMedia Cardbus by
20  *      Oldrich Jedlicka <oldium.pro@seznam.cz>
21  * Zilog Transmitter portions/ideas were derived from GPLv2+ sources:
22  *  - drivers/char/pctv_zilogir.[ch] from Hauppauge Broadway product
23  *	Copyright 2011 Hauppauge Computer works
24  *  - drivers/staging/media/lirc/lirc_zilog.c
25  *	Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de>
26  *	Michal Kochanowicz <mkochano@pld.org.pl>
27  *	Christoph Bartelmus <lirc@bartelmus.de>
28  *	Ulrich Mueller <ulrich.mueller42@web.de>
29  *	Stefan Jahn <stefan@lkcc.org>
30  *	Jerome Brock <jbrock@users.sourceforge.net>
31  *	Thomas Reitmayr (treitmayr@yahoo.com)
32  *	Mark Weaver <mark@npsl.co.uk>
33  *	Jarod Wilson <jarod@redhat.com>
34  *	Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net>
35  *
36  *  This program is free software; you can redistribute it and/or modify
37  *  it under the terms of the GNU General Public License as published by
38  *  the Free Software Foundation; either version 2 of the License, or
39  *  (at your option) any later version.
40  *
41  *  This program is distributed in the hope that it will be useful,
42  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
43  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
44  *  GNU General Public License for more details.
45  *
46  */
47 
48 #include <asm/unaligned.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 #include <linux/kernel.h>
52 #include <linux/string.h>
53 #include <linux/timer.h>
54 #include <linux/delay.h>
55 #include <linux/errno.h>
56 #include <linux/slab.h>
57 #include <linux/i2c.h>
58 #include <linux/workqueue.h>
59 
60 #include <media/rc-core.h>
61 #include <media/i2c/ir-kbd-i2c.h>
62 
63 #define FLAG_TX		1
64 #define FLAG_HDPVR	2
65 
66 static bool enable_hdpvr;
67 module_param(enable_hdpvr, bool, 0644);
68 
69 static int get_key_haup_common(struct IR_i2c *ir, enum rc_proto *protocol,
70 			       u32 *scancode, u8 *ptoggle, int size)
71 {
72 	unsigned char buf[6];
73 	int start, range, toggle, dev, code, ircode, vendor;
74 
75 	/* poll IR chip */
76 	if (size != i2c_master_recv(ir->c, buf, size))
77 		return -EIO;
78 
79 	if (buf[0] & 0x80) {
80 		int offset = (size == 6) ? 3 : 0;
81 
82 		/* split rc5 data block ... */
83 		start  = (buf[offset] >> 7) &    1;
84 		range  = (buf[offset] >> 6) &    1;
85 		toggle = (buf[offset] >> 5) &    1;
86 		dev    =  buf[offset]       & 0x1f;
87 		code   = (buf[offset+1] >> 2) & 0x3f;
88 
89 		/* rc5 has two start bits
90 		 * the first bit must be one
91 		 * the second bit defines the command range:
92 		 * 1 = 0-63, 0 = 64 - 127
93 		 */
94 		if (!start)
95 			/* no key pressed */
96 			return 0;
97 
98 		/* filter out invalid key presses */
99 		ircode = (start << 12) | (toggle << 11) | (dev << 6) | code;
100 		if ((ircode & 0x1fff) == 0x1fff)
101 			return 0;
102 
103 		if (!range)
104 			code += 64;
105 
106 		dev_dbg(&ir->rc->dev,
107 			"ir hauppauge (rc5): s%d r%d t%d dev=%d code=%d\n",
108 			start, range, toggle, dev, code);
109 
110 		*protocol = RC_PROTO_RC5;
111 		*scancode = RC_SCANCODE_RC5(dev, code);
112 		*ptoggle = toggle;
113 
114 		return 1;
115 	} else if (size == 6 && (buf[0] & 0x40)) {
116 		code = buf[4];
117 		dev = buf[3];
118 		vendor = get_unaligned_be16(buf + 1);
119 
120 		if (vendor == 0x800f) {
121 			*ptoggle = (dev & 0x80) != 0;
122 			*protocol = RC_PROTO_RC6_MCE;
123 			dev &= 0x7f;
124 			dev_dbg(&ir->rc->dev,
125 				"ir hauppauge (rc6-mce): t%d vendor=%d dev=%d code=%d\n",
126 				*ptoggle, vendor, dev, code);
127 		} else {
128 			*ptoggle = 0;
129 			*protocol = RC_PROTO_RC6_6A_32;
130 			dev_dbg(&ir->rc->dev,
131 				"ir hauppauge (rc6-6a-32): vendor=%d dev=%d code=%d\n",
132 				vendor, dev, code);
133 		}
134 
135 		*scancode = RC_SCANCODE_RC6_6A(vendor, dev, code);
136 
137 		return 1;
138 	}
139 
140 	return 0;
141 }
142 
143 static int get_key_haup(struct IR_i2c *ir, enum rc_proto *protocol,
144 			u32 *scancode, u8 *toggle)
145 {
146 	return get_key_haup_common(ir, protocol, scancode, toggle, 3);
147 }
148 
149 static int get_key_haup_xvr(struct IR_i2c *ir, enum rc_proto *protocol,
150 			    u32 *scancode, u8 *toggle)
151 {
152 	int ret;
153 	unsigned char buf[1] = { 0 };
154 
155 	/*
156 	 * This is the same apparent "are you ready?" poll command observed
157 	 * watching Windows driver traffic and implemented in lirc_zilog. With
158 	 * this added, we get far saner remote behavior with z8 chips on usb
159 	 * connected devices, even with the default polling interval of 100ms.
160 	 */
161 	ret = i2c_master_send(ir->c, buf, 1);
162 	if (ret != 1)
163 		return (ret < 0) ? ret : -EINVAL;
164 
165 	return get_key_haup_common(ir, protocol, scancode, toggle, 6);
166 }
167 
168 static int get_key_pixelview(struct IR_i2c *ir, enum rc_proto *protocol,
169 			     u32 *scancode, u8 *toggle)
170 {
171 	int rc;
172 	unsigned char b;
173 
174 	/* poll IR chip */
175 	rc = i2c_master_recv(ir->c, &b, 1);
176 	if (rc != 1) {
177 		dev_dbg(&ir->rc->dev, "read error\n");
178 		if (rc < 0)
179 			return rc;
180 		return -EIO;
181 	}
182 
183 	*protocol = RC_PROTO_OTHER;
184 	*scancode = b;
185 	*toggle = 0;
186 	return 1;
187 }
188 
189 static int get_key_fusionhdtv(struct IR_i2c *ir, enum rc_proto *protocol,
190 			      u32 *scancode, u8 *toggle)
191 {
192 	int rc;
193 	unsigned char buf[4];
194 
195 	/* poll IR chip */
196 	rc = i2c_master_recv(ir->c, buf, 4);
197 	if (rc != 4) {
198 		dev_dbg(&ir->rc->dev, "read error\n");
199 		if (rc < 0)
200 			return rc;
201 		return -EIO;
202 	}
203 
204 	if (buf[0] != 0 || buf[1] != 0 || buf[2] != 0 || buf[3] != 0)
205 		dev_dbg(&ir->rc->dev, "%s: %*ph\n", __func__, 4, buf);
206 
207 	/* no key pressed or signal from other ir remote */
208 	if(buf[0] != 0x1 ||  buf[1] != 0xfe)
209 		return 0;
210 
211 	*protocol = RC_PROTO_UNKNOWN;
212 	*scancode = buf[2];
213 	*toggle = 0;
214 	return 1;
215 }
216 
217 static int get_key_knc1(struct IR_i2c *ir, enum rc_proto *protocol,
218 			u32 *scancode, u8 *toggle)
219 {
220 	int rc;
221 	unsigned char b;
222 
223 	/* poll IR chip */
224 	rc = i2c_master_recv(ir->c, &b, 1);
225 	if (rc != 1) {
226 		dev_dbg(&ir->rc->dev, "read error\n");
227 		if (rc < 0)
228 			return rc;
229 		return -EIO;
230 	}
231 
232 	/* it seems that 0xFE indicates that a button is still hold
233 	   down, while 0xff indicates that no button is hold
234 	   down. 0xfe sequences are sometimes interrupted by 0xFF */
235 
236 	dev_dbg(&ir->rc->dev, "key %02x\n", b);
237 
238 	if (b == 0xff)
239 		return 0;
240 
241 	if (b == 0xfe)
242 		/* keep old data */
243 		return 1;
244 
245 	*protocol = RC_PROTO_UNKNOWN;
246 	*scancode = b;
247 	*toggle = 0;
248 	return 1;
249 }
250 
251 static int get_key_avermedia_cardbus(struct IR_i2c *ir, enum rc_proto *protocol,
252 				     u32 *scancode, u8 *toggle)
253 {
254 	unsigned char subaddr, key, keygroup;
255 	struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0,
256 				   .buf = &subaddr, .len = 1},
257 				 { .addr = ir->c->addr, .flags = I2C_M_RD,
258 				  .buf = &key, .len = 1} };
259 	subaddr = 0x0d;
260 	if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
261 		dev_dbg(&ir->rc->dev, "read error\n");
262 		return -EIO;
263 	}
264 
265 	if (key == 0xff)
266 		return 0;
267 
268 	subaddr = 0x0b;
269 	msg[1].buf = &keygroup;
270 	if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
271 		dev_dbg(&ir->rc->dev, "read error\n");
272 		return -EIO;
273 	}
274 
275 	if (keygroup == 0xff)
276 		return 0;
277 
278 	dev_dbg(&ir->rc->dev, "read key 0x%02x/0x%02x\n", key, keygroup);
279 	if (keygroup < 2 || keygroup > 4) {
280 		dev_warn(&ir->rc->dev, "warning: invalid key group 0x%02x for key 0x%02x\n",
281 			 keygroup, key);
282 	}
283 	key |= (keygroup & 1) << 6;
284 
285 	*protocol = RC_PROTO_UNKNOWN;
286 	*scancode = key;
287 	if (ir->c->addr == 0x41) /* AVerMedia EM78P153 */
288 		*scancode |= keygroup << 8;
289 	*toggle = 0;
290 	return 1;
291 }
292 
293 /* ----------------------------------------------------------------------- */
294 
295 static int ir_key_poll(struct IR_i2c *ir)
296 {
297 	enum rc_proto protocol;
298 	u32 scancode;
299 	u8 toggle;
300 	int rc;
301 
302 	dev_dbg(&ir->rc->dev, "%s\n", __func__);
303 	rc = ir->get_key(ir, &protocol, &scancode, &toggle);
304 	if (rc < 0) {
305 		dev_warn(&ir->rc->dev, "error %d\n", rc);
306 		return rc;
307 	}
308 
309 	if (rc) {
310 		dev_dbg(&ir->rc->dev, "%s: proto = 0x%04x, scancode = 0x%08x\n",
311 			__func__, protocol, scancode);
312 		rc_keydown(ir->rc, protocol, scancode, toggle);
313 	}
314 	return 0;
315 }
316 
317 static void ir_work(struct work_struct *work)
318 {
319 	int rc;
320 	struct IR_i2c *ir = container_of(work, struct IR_i2c, work.work);
321 
322 	/*
323 	 * If the transmit code is holding the lock, skip polling for
324 	 * IR, we'll get it to it next time round
325 	 */
326 	if (mutex_trylock(&ir->lock)) {
327 		rc = ir_key_poll(ir);
328 		mutex_unlock(&ir->lock);
329 		if (rc == -ENODEV) {
330 			rc_unregister_device(ir->rc);
331 			ir->rc = NULL;
332 			return;
333 		}
334 	}
335 
336 	schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling_interval));
337 }
338 
339 static int ir_open(struct rc_dev *dev)
340 {
341 	struct IR_i2c *ir = dev->priv;
342 
343 	schedule_delayed_work(&ir->work, 0);
344 
345 	return 0;
346 }
347 
348 static void ir_close(struct rc_dev *dev)
349 {
350 	struct IR_i2c *ir = dev->priv;
351 
352 	cancel_delayed_work_sync(&ir->work);
353 }
354 
355 /* Zilog Transmit Interface */
356 #define XTAL_FREQ		18432000
357 
358 #define ZILOG_SEND		0x80
359 #define ZILOG_UIR_END		0x40
360 #define ZILOG_INIT_END		0x20
361 #define ZILOG_LIR_END		0x10
362 
363 #define ZILOG_STATUS_OK		0x80
364 #define ZILOG_STATUS_TX		0x40
365 #define ZILOG_STATUS_SET	0x20
366 
367 /*
368  * As you can see here, very few different lengths of pulse and space
369  * can be encoded. This means that the hardware does not work well with
370  * recorded IR. It's best to work with generated IR, like from ir-ctl or
371  * the in-kernel encoders.
372  */
373 struct code_block {
374 	u8	length;
375 	u16	pulse[7];	/* not aligned */
376 	u8	carrier_pulse;
377 	u8	carrier_space;
378 	u16	space[8];	/* not aligned */
379 	u8	codes[61];
380 	u8	csum[2];
381 } __packed;
382 
383 static int send_data_block(struct IR_i2c *ir, int cmd,
384 			   struct code_block *code_block)
385 {
386 	int i, j, ret;
387 	u8 buf[5], *p;
388 
389 	p = &code_block->length;
390 	for (i = 0; p < code_block->csum; i++)
391 		code_block->csum[i & 1] ^= *p++;
392 
393 	p = &code_block->length;
394 
395 	for (i = 0; i < sizeof(*code_block);) {
396 		int tosend = sizeof(*code_block) - i;
397 
398 		if (tosend > 4)
399 			tosend = 4;
400 		buf[0] = i + 1;
401 		for (j = 0; j < tosend; ++j)
402 			buf[1 + j] = p[i + j];
403 		dev_dbg(&ir->rc->dev, "%*ph", tosend + 1, buf);
404 		ret = i2c_master_send(ir->tx_c, buf, tosend + 1);
405 		if (ret != tosend + 1) {
406 			dev_dbg(&ir->rc->dev,
407 				"i2c_master_send failed with %d\n", ret);
408 			return ret < 0 ? ret : -EIO;
409 		}
410 		i += tosend;
411 	}
412 
413 	buf[0] = 0;
414 	buf[1] = cmd;
415 	ret = i2c_master_send(ir->tx_c, buf, 2);
416 	if (ret != 2) {
417 		dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
418 		return ret < 0 ? ret : -EIO;
419 	}
420 
421 	usleep_range(2000, 5000);
422 
423 	ret = i2c_master_send(ir->tx_c, buf, 1);
424 	if (ret != 1) {
425 		dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
426 		return ret < 0 ? ret : -EIO;
427 	}
428 
429 	return 0;
430 }
431 
432 static int zilog_init(struct IR_i2c *ir)
433 {
434 	struct code_block code_block = { .length = sizeof(code_block) };
435 	u8 buf[4];
436 	int ret;
437 
438 	put_unaligned_be16(0x1000, &code_block.pulse[3]);
439 
440 	ret = send_data_block(ir, ZILOG_INIT_END, &code_block);
441 	if (ret)
442 		return ret;
443 
444 	ret = i2c_master_recv(ir->tx_c, buf, 4);
445 	if (ret != 4) {
446 		dev_err(&ir->c->dev, "failed to retrieve firmware version: %d\n",
447 			ret);
448 		return ret < 0 ? ret : -EIO;
449 	}
450 
451 	dev_info(&ir->c->dev, "Zilog/Hauppauge IR blaster firmware version %d.%d.%d\n",
452 		 buf[1], buf[2], buf[3]);
453 
454 	return 0;
455 }
456 
457 /*
458  * If the last slot for pulse is the same as the current slot for pulse,
459  * then use slot no 7.
460  */
461 static void copy_codes(u8 *dst, u8 *src, unsigned int count)
462 {
463 	u8 c, last = 0xff;
464 
465 	while (count--) {
466 		c = *src++;
467 		if ((c & 0xf0) == last) {
468 			*dst++ = 0x70 | (c & 0xf);
469 		} else {
470 			*dst++ = c;
471 			last = c & 0xf0;
472 		}
473 	}
474 }
475 
476 /*
477  * When looking for repeats, we don't care about the trailing space. This
478  * is set to the shortest possible anyway.
479  */
480 static int cmp_no_trail(u8 *a, u8 *b, unsigned int count)
481 {
482 	while (--count) {
483 		if (*a++ != *b++)
484 			return 1;
485 	}
486 
487 	return (*a & 0xf0) - (*b & 0xf0);
488 }
489 
490 static int find_slot(u16 *array, unsigned int size, u16 val)
491 {
492 	int i;
493 
494 	for (i = 0; i < size; i++) {
495 		if (get_unaligned_be16(&array[i]) == val) {
496 			return i;
497 		} else if (!array[i]) {
498 			put_unaligned_be16(val, &array[i]);
499 			return i;
500 		}
501 	}
502 
503 	return -1;
504 }
505 
506 static int zilog_ir_format(struct rc_dev *rcdev, unsigned int *txbuf,
507 			   unsigned int count, struct code_block *code_block)
508 {
509 	struct IR_i2c *ir = rcdev->priv;
510 	int rep, i, l, p = 0, s, c = 0;
511 	bool repeating;
512 	u8 codes[174];
513 
514 	code_block->carrier_pulse = DIV_ROUND_CLOSEST(
515 			ir->duty_cycle * XTAL_FREQ / 1000, ir->carrier);
516 	code_block->carrier_space = DIV_ROUND_CLOSEST(
517 			(100 - ir->duty_cycle) * XTAL_FREQ / 1000, ir->carrier);
518 
519 	for (i = 0; i < count; i++) {
520 		if (c >= ARRAY_SIZE(codes) - 1) {
521 			dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
522 			return -EINVAL;
523 		}
524 
525 		/*
526 		 * Lengths more than 142220us cannot be encoded; also
527 		 * this checks for multiply overflow
528 		 */
529 		if (txbuf[i] > 142220)
530 			return -EINVAL;
531 
532 		l = DIV_ROUND_CLOSEST((XTAL_FREQ / 1000) * txbuf[i], 40000);
533 
534 		if (i & 1) {
535 			s = find_slot(code_block->space,
536 				      ARRAY_SIZE(code_block->space), l);
537 			if (s == -1) {
538 				dev_warn(&rcdev->dev, "Too many different lengths spaces, cannot transmit");
539 				return -EINVAL;
540 			}
541 
542 			/* We have a pulse and space */
543 			codes[c++] = (p << 4) | s;
544 		} else {
545 			p = find_slot(code_block->pulse,
546 				      ARRAY_SIZE(code_block->pulse), l);
547 			if (p == -1) {
548 				dev_warn(&rcdev->dev, "Too many different lengths pulses, cannot transmit");
549 				return -EINVAL;
550 			}
551 		}
552 	}
553 
554 	/* We have to encode the trailing pulse. Find the shortest space */
555 	s = 0;
556 	for (i = 1; i < ARRAY_SIZE(code_block->space); i++) {
557 		u16 d = get_unaligned_be16(&code_block->space[i]);
558 
559 		if (get_unaligned_be16(&code_block->space[s]) > d)
560 			s = i;
561 	}
562 
563 	codes[c++] = (p << 4) | s;
564 
565 	dev_dbg(&rcdev->dev, "generated %d codes\n", c);
566 
567 	/*
568 	 * Are the last N codes (so pulse + space) repeating 3 times?
569 	 * if so we can shorten the codes list and use code 0xc0 to repeat
570 	 * them.
571 	 */
572 	repeating = false;
573 
574 	for (rep = c / 3; rep >= 1; rep--) {
575 		if (!memcmp(&codes[c - rep * 3], &codes[c - rep * 2], rep) &&
576 		    !cmp_no_trail(&codes[c - rep], &codes[c - rep * 2], rep)) {
577 			repeating = true;
578 			break;
579 		}
580 	}
581 
582 	if (repeating) {
583 		/* first copy any leading non-repeating */
584 		int leading = c - rep * 3;
585 
586 		if (leading >= ARRAY_SIZE(code_block->codes) - 3 - rep) {
587 			dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
588 			return -EINVAL;
589 		}
590 
591 		dev_dbg(&rcdev->dev, "found trailing %d repeat\n", rep);
592 		copy_codes(code_block->codes, codes, leading);
593 		code_block->codes[leading] = 0x82;
594 		copy_codes(code_block->codes + leading + 1, codes + leading,
595 			   rep);
596 		c = leading + 1 + rep;
597 		code_block->codes[c++] = 0xc0;
598 	} else {
599 		if (c >= ARRAY_SIZE(code_block->codes) - 3) {
600 			dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
601 			return -EINVAL;
602 		}
603 
604 		dev_dbg(&rcdev->dev, "found no trailing repeat\n");
605 		code_block->codes[0] = 0x82;
606 		copy_codes(code_block->codes + 1, codes, c);
607 		c++;
608 		code_block->codes[c++] = 0xc4;
609 	}
610 
611 	while (c < ARRAY_SIZE(code_block->codes))
612 		code_block->codes[c++] = 0x83;
613 
614 	return 0;
615 }
616 
617 static int zilog_tx(struct rc_dev *rcdev, unsigned int *txbuf,
618 		    unsigned int count)
619 {
620 	struct IR_i2c *ir = rcdev->priv;
621 	struct code_block code_block = { .length = sizeof(code_block) };
622 	u8 buf[2];
623 	int ret, i;
624 
625 	ret = zilog_ir_format(rcdev, txbuf, count, &code_block);
626 	if (ret)
627 		return ret;
628 
629 	ret = mutex_lock_interruptible(&ir->lock);
630 	if (ret)
631 		return ret;
632 
633 	ret = send_data_block(ir, ZILOG_UIR_END, &code_block);
634 	if (ret)
635 		goto out_unlock;
636 
637 	ret = i2c_master_recv(ir->tx_c, buf, 1);
638 	if (ret != 1) {
639 		dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
640 		goto out_unlock;
641 	}
642 
643 	dev_dbg(&ir->rc->dev, "code set status: %02x\n", buf[0]);
644 
645 	if (buf[0] != (ZILOG_STATUS_OK | ZILOG_STATUS_SET)) {
646 		dev_err(&ir->rc->dev, "unexpected IR TX response %02x\n",
647 			buf[0]);
648 		ret = -EIO;
649 		goto out_unlock;
650 	}
651 
652 	buf[0] = 0x00;
653 	buf[1] = ZILOG_SEND;
654 
655 	ret = i2c_master_send(ir->tx_c, buf, 2);
656 	if (ret != 2) {
657 		dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
658 		if (ret >= 0)
659 			ret = -EIO;
660 		goto out_unlock;
661 	}
662 
663 	dev_dbg(&ir->rc->dev, "send command sent\n");
664 
665 	/*
666 	 * This bit NAKs until the device is ready, so we retry it
667 	 * sleeping a bit each time.  This seems to be what the windows
668 	 * driver does, approximately.
669 	 * Try for up to 1s.
670 	 */
671 	for (i = 0; i < 20; ++i) {
672 		set_current_state(TASK_UNINTERRUPTIBLE);
673 		schedule_timeout(msecs_to_jiffies(50));
674 		ret = i2c_master_send(ir->tx_c, buf, 1);
675 		if (ret == 1)
676 			break;
677 		dev_dbg(&ir->rc->dev,
678 			"NAK expected: i2c_master_send failed with %d (try %d)\n",
679 			ret, i + 1);
680 	}
681 
682 	if (ret != 1) {
683 		dev_err(&ir->rc->dev,
684 			"IR TX chip never got ready: last i2c_master_send failed with %d\n",
685 			ret);
686 		if (ret >= 0)
687 			ret = -EIO;
688 		goto out_unlock;
689 	}
690 
691 	i = i2c_master_recv(ir->tx_c, buf, 1);
692 	if (i != 1) {
693 		dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
694 		ret = -EIO;
695 		goto out_unlock;
696 	} else if (buf[0] != ZILOG_STATUS_OK) {
697 		dev_err(&ir->rc->dev, "unexpected IR TX response #2: %02x\n",
698 			buf[0]);
699 		ret = -EIO;
700 		goto out_unlock;
701 	}
702 	dev_dbg(&ir->rc->dev, "transmit complete\n");
703 
704 	/* Oh good, it worked */
705 	ret = count;
706 out_unlock:
707 	mutex_unlock(&ir->lock);
708 
709 	return ret;
710 }
711 
712 static int zilog_tx_carrier(struct rc_dev *dev, u32 carrier)
713 {
714 	struct IR_i2c *ir = dev->priv;
715 
716 	if (carrier > 500000 || carrier < 20000)
717 		return -EINVAL;
718 
719 	ir->carrier = carrier;
720 
721 	return 0;
722 }
723 
724 static int zilog_tx_duty_cycle(struct rc_dev *dev, u32 duty_cycle)
725 {
726 	struct IR_i2c *ir = dev->priv;
727 
728 	ir->duty_cycle = duty_cycle;
729 
730 	return 0;
731 }
732 
733 static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id)
734 {
735 	char *ir_codes = NULL;
736 	const char *name = NULL;
737 	u64 rc_proto = RC_PROTO_BIT_UNKNOWN;
738 	struct IR_i2c *ir;
739 	struct rc_dev *rc = NULL;
740 	struct i2c_adapter *adap = client->adapter;
741 	unsigned short addr = client->addr;
742 	bool probe_tx = (id->driver_data & FLAG_TX) != 0;
743 	int err;
744 
745 	if ((id->driver_data & FLAG_HDPVR) && !enable_hdpvr) {
746 		dev_err(&client->dev, "IR for HDPVR is known to cause problems during recording, use enable_hdpvr modparam to enable\n");
747 		return -ENODEV;
748 	}
749 
750 	ir = devm_kzalloc(&client->dev, sizeof(*ir), GFP_KERNEL);
751 	if (!ir)
752 		return -ENOMEM;
753 
754 	ir->c = client;
755 	ir->polling_interval = DEFAULT_POLLING_INTERVAL;
756 	i2c_set_clientdata(client, ir);
757 
758 	switch(addr) {
759 	case 0x64:
760 		name        = "Pixelview";
761 		ir->get_key = get_key_pixelview;
762 		rc_proto    = RC_PROTO_BIT_OTHER;
763 		ir_codes    = RC_MAP_EMPTY;
764 		break;
765 	case 0x18:
766 	case 0x1f:
767 	case 0x1a:
768 		name        = "Hauppauge";
769 		ir->get_key = get_key_haup;
770 		rc_proto    = RC_PROTO_BIT_RC5;
771 		ir_codes    = RC_MAP_HAUPPAUGE;
772 		break;
773 	case 0x30:
774 		name        = "KNC One";
775 		ir->get_key = get_key_knc1;
776 		rc_proto    = RC_PROTO_BIT_OTHER;
777 		ir_codes    = RC_MAP_EMPTY;
778 		break;
779 	case 0x6b:
780 		name        = "FusionHDTV";
781 		ir->get_key = get_key_fusionhdtv;
782 		rc_proto    = RC_PROTO_BIT_UNKNOWN;
783 		ir_codes    = RC_MAP_FUSIONHDTV_MCE;
784 		break;
785 	case 0x40:
786 		name        = "AVerMedia Cardbus remote";
787 		ir->get_key = get_key_avermedia_cardbus;
788 		rc_proto    = RC_PROTO_BIT_OTHER;
789 		ir_codes    = RC_MAP_AVERMEDIA_CARDBUS;
790 		break;
791 	case 0x41:
792 		name        = "AVerMedia EM78P153";
793 		ir->get_key = get_key_avermedia_cardbus;
794 		rc_proto    = RC_PROTO_BIT_OTHER;
795 		/* RM-KV remote, seems to be same as RM-K6 */
796 		ir_codes    = RC_MAP_AVERMEDIA_M733A_RM_K6;
797 		break;
798 	case 0x71:
799 		name        = "Hauppauge/Zilog Z8";
800 		ir->get_key = get_key_haup_xvr;
801 		rc_proto    = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
802 							RC_PROTO_BIT_RC6_6A_32;
803 		ir_codes    = RC_MAP_HAUPPAUGE;
804 		probe_tx = true;
805 		break;
806 	}
807 
808 	/* Let the caller override settings */
809 	if (client->dev.platform_data) {
810 		const struct IR_i2c_init_data *init_data =
811 						client->dev.platform_data;
812 
813 		ir_codes = init_data->ir_codes;
814 		rc = init_data->rc_dev;
815 
816 		name = init_data->name;
817 		if (init_data->type)
818 			rc_proto = init_data->type;
819 
820 		if (init_data->polling_interval)
821 			ir->polling_interval = init_data->polling_interval;
822 
823 		switch (init_data->internal_get_key_func) {
824 		case IR_KBD_GET_KEY_CUSTOM:
825 			/* The bridge driver provided us its own function */
826 			ir->get_key = init_data->get_key;
827 			break;
828 		case IR_KBD_GET_KEY_PIXELVIEW:
829 			ir->get_key = get_key_pixelview;
830 			break;
831 		case IR_KBD_GET_KEY_HAUP:
832 			ir->get_key = get_key_haup;
833 			break;
834 		case IR_KBD_GET_KEY_KNC1:
835 			ir->get_key = get_key_knc1;
836 			break;
837 		case IR_KBD_GET_KEY_FUSIONHDTV:
838 			ir->get_key = get_key_fusionhdtv;
839 			break;
840 		case IR_KBD_GET_KEY_HAUP_XVR:
841 			ir->get_key = get_key_haup_xvr;
842 			break;
843 		case IR_KBD_GET_KEY_AVERMEDIA_CARDBUS:
844 			ir->get_key = get_key_avermedia_cardbus;
845 			break;
846 		}
847 	}
848 
849 	if (!rc) {
850 		/*
851 		 * If platform_data doesn't specify rc_dev, initialize it
852 		 * internally
853 		 */
854 		rc = rc_allocate_device(RC_DRIVER_SCANCODE);
855 		if (!rc)
856 			return -ENOMEM;
857 	}
858 	ir->rc = rc;
859 
860 	/* Make sure we are all setup before going on */
861 	if (!name || !ir->get_key || !rc_proto || !ir_codes) {
862 		dev_warn(&client->dev, "Unsupported device at address 0x%02x\n",
863 			 addr);
864 		err = -ENODEV;
865 		goto err_out_free;
866 	}
867 
868 	ir->ir_codes = ir_codes;
869 
870 	snprintf(ir->phys, sizeof(ir->phys), "%s/%s", dev_name(&adap->dev),
871 		 dev_name(&client->dev));
872 
873 	/*
874 	 * Initialize input_dev fields
875 	 * It doesn't make sense to allow overriding them via platform_data
876 	 */
877 	rc->input_id.bustype = BUS_I2C;
878 	rc->input_phys       = ir->phys;
879 	rc->device_name	     = name;
880 	rc->dev.parent       = &client->dev;
881 	rc->priv             = ir;
882 	rc->open             = ir_open;
883 	rc->close            = ir_close;
884 
885 	/*
886 	 * Initialize the other fields of rc_dev
887 	 */
888 	rc->map_name       = ir->ir_codes;
889 	rc->allowed_protocols = rc_proto;
890 	if (!rc->driver_name)
891 		rc->driver_name = KBUILD_MODNAME;
892 
893 	mutex_init(&ir->lock);
894 
895 	INIT_DELAYED_WORK(&ir->work, ir_work);
896 
897 	if (probe_tx) {
898 		ir->tx_c = i2c_new_dummy(client->adapter, 0x70);
899 		if (!ir->tx_c) {
900 			dev_err(&client->dev, "failed to setup tx i2c address");
901 		} else if (!zilog_init(ir)) {
902 			ir->carrier = 38000;
903 			ir->duty_cycle = 40;
904 			rc->tx_ir = zilog_tx;
905 			rc->s_tx_carrier = zilog_tx_carrier;
906 			rc->s_tx_duty_cycle = zilog_tx_duty_cycle;
907 		}
908 	}
909 
910 	err = rc_register_device(rc);
911 	if (err)
912 		goto err_out_free;
913 
914 	return 0;
915 
916  err_out_free:
917 	if (ir->tx_c)
918 		i2c_unregister_device(ir->tx_c);
919 
920 	/* Only frees rc if it were allocated internally */
921 	rc_free_device(rc);
922 	return err;
923 }
924 
925 static int ir_remove(struct i2c_client *client)
926 {
927 	struct IR_i2c *ir = i2c_get_clientdata(client);
928 
929 	/* kill outstanding polls */
930 	cancel_delayed_work_sync(&ir->work);
931 
932 	if (ir->tx_c)
933 		i2c_unregister_device(ir->tx_c);
934 
935 	/* unregister device */
936 	rc_unregister_device(ir->rc);
937 
938 	/* free memory */
939 	return 0;
940 }
941 
942 static const struct i2c_device_id ir_kbd_id[] = {
943 	/* Generic entry for any IR receiver */
944 	{ "ir_video", 0 },
945 	/* IR device specific entries should be added here */
946 	{ "ir_z8f0811_haup", FLAG_TX },
947 	{ "ir_z8f0811_hdpvr", FLAG_TX | FLAG_HDPVR },
948 	{ }
949 };
950 MODULE_DEVICE_TABLE(i2c, ir_kbd_id);
951 
952 static struct i2c_driver ir_kbd_driver = {
953 	.driver = {
954 		.name   = "ir-kbd-i2c",
955 	},
956 	.probe          = ir_probe,
957 	.remove         = ir_remove,
958 	.id_table       = ir_kbd_id,
959 };
960 
961 module_i2c_driver(ir_kbd_driver);
962 
963 /* ----------------------------------------------------------------------- */
964 
965 MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller");
966 MODULE_DESCRIPTION("input driver for i2c IR remote controls");
967 MODULE_LICENSE("GPL");
968