1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores 4 * 5 * Integrated Consumer Infrared Controller 6 * 7 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/kfifo.h> 12 #include <linux/module.h> 13 #include <media/drv-intf/cx25840.h> 14 #include <media/rc-core.h> 15 16 #include "cx25840-core.h" 17 18 static unsigned int ir_debug; 19 module_param(ir_debug, int, 0644); 20 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); 21 22 #define CX25840_IR_REG_BASE 0x200 23 24 #define CX25840_IR_CNTRL_REG 0x200 25 #define CNTRL_WIN_3_3 0x00000000 26 #define CNTRL_WIN_4_3 0x00000001 27 #define CNTRL_WIN_3_4 0x00000002 28 #define CNTRL_WIN_4_4 0x00000003 29 #define CNTRL_WIN 0x00000003 30 #define CNTRL_EDG_NONE 0x00000000 31 #define CNTRL_EDG_FALL 0x00000004 32 #define CNTRL_EDG_RISE 0x00000008 33 #define CNTRL_EDG_BOTH 0x0000000C 34 #define CNTRL_EDG 0x0000000C 35 #define CNTRL_DMD 0x00000010 36 #define CNTRL_MOD 0x00000020 37 #define CNTRL_RFE 0x00000040 38 #define CNTRL_TFE 0x00000080 39 #define CNTRL_RXE 0x00000100 40 #define CNTRL_TXE 0x00000200 41 #define CNTRL_RIC 0x00000400 42 #define CNTRL_TIC 0x00000800 43 #define CNTRL_CPL 0x00001000 44 #define CNTRL_LBM 0x00002000 45 #define CNTRL_R 0x00004000 46 47 #define CX25840_IR_TXCLK_REG 0x204 48 #define TXCLK_TCD 0x0000FFFF 49 50 #define CX25840_IR_RXCLK_REG 0x208 51 #define RXCLK_RCD 0x0000FFFF 52 53 #define CX25840_IR_CDUTY_REG 0x20C 54 #define CDUTY_CDC 0x0000000F 55 56 #define CX25840_IR_STATS_REG 0x210 57 #define STATS_RTO 0x00000001 58 #define STATS_ROR 0x00000002 59 #define STATS_RBY 0x00000004 60 #define STATS_TBY 0x00000008 61 #define STATS_RSR 0x00000010 62 #define STATS_TSR 0x00000020 63 64 #define CX25840_IR_IRQEN_REG 0x214 65 #define IRQEN_RTE 0x00000001 66 #define IRQEN_ROE 0x00000002 67 #define IRQEN_RSE 0x00000010 68 #define IRQEN_TSE 0x00000020 69 #define IRQEN_MSK 0x00000033 70 71 #define CX25840_IR_FILTR_REG 0x218 72 #define FILTR_LPF 0x0000FFFF 73 74 #define CX25840_IR_FIFO_REG 0x23C 75 #define FIFO_RXTX 0x0000FFFF 76 #define FIFO_RXTX_LVL 0x00010000 77 #define FIFO_RXTX_RTO 0x0001FFFF 78 #define FIFO_RX_NDV 0x00020000 79 #define FIFO_RX_DEPTH 8 80 #define FIFO_TX_DEPTH 8 81 82 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ 83 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) 84 85 /* 86 * We use this union internally for convenience, but callers to tx_write 87 * and rx_read will be expecting records of type struct ir_raw_event. 88 * Always ensure the size of this union is dictated by struct ir_raw_event. 89 */ 90 union cx25840_ir_fifo_rec { 91 u32 hw_fifo_data; 92 struct ir_raw_event ir_core_data; 93 }; 94 95 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) 96 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) 97 98 struct cx25840_ir_state { 99 struct i2c_client *c; 100 101 struct v4l2_subdev_ir_parameters rx_params; 102 struct mutex rx_params_lock; /* protects Rx parameter settings cache */ 103 atomic_t rxclk_divider; 104 atomic_t rx_invert; 105 106 struct kfifo rx_kfifo; 107 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ 108 109 struct v4l2_subdev_ir_parameters tx_params; 110 struct mutex tx_params_lock; /* protects Tx parameter settings cache */ 111 atomic_t txclk_divider; 112 }; 113 114 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) 115 { 116 struct cx25840_state *state = to_state(sd); 117 return state ? state->ir_state : NULL; 118 } 119 120 121 /* 122 * Rx and Tx Clock Divider register computations 123 * 124 * Note the largest clock divider value of 0xffff corresponds to: 125 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns 126 * which fits in 21 bits, so we'll use unsigned int for time arguments. 127 */ 128 static inline u16 count_to_clock_divider(unsigned int d) 129 { 130 if (d > RXCLK_RCD + 1) 131 d = RXCLK_RCD; 132 else if (d < 2) 133 d = 1; 134 else 135 d--; 136 return (u16) d; 137 } 138 139 static inline u16 ns_to_clock_divider(unsigned int ns) 140 { 141 return count_to_clock_divider( 142 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 143 } 144 145 static inline unsigned int clock_divider_to_ns(unsigned int divider) 146 { 147 /* Period of the Rx or Tx clock in ns */ 148 return DIV_ROUND_CLOSEST((divider + 1) * 1000, 149 CX25840_IR_REFCLK_FREQ / 1000000); 150 } 151 152 static inline u16 carrier_freq_to_clock_divider(unsigned int freq) 153 { 154 return count_to_clock_divider( 155 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); 156 } 157 158 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) 159 { 160 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); 161 } 162 163 static inline u16 freq_to_clock_divider(unsigned int freq, 164 unsigned int rollovers) 165 { 166 return count_to_clock_divider( 167 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers)); 168 } 169 170 static inline unsigned int clock_divider_to_freq(unsigned int divider, 171 unsigned int rollovers) 172 { 173 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, 174 (divider + 1) * rollovers); 175 } 176 177 /* 178 * Low Pass Filter register calculations 179 * 180 * Note the largest count value of 0xffff corresponds to: 181 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns 182 * which fits in 21 bits, so we'll use unsigned int for time arguments. 183 */ 184 static inline u16 count_to_lpf_count(unsigned int d) 185 { 186 if (d > FILTR_LPF) 187 d = FILTR_LPF; 188 else if (d < 4) 189 d = 0; 190 return (u16) d; 191 } 192 193 static inline u16 ns_to_lpf_count(unsigned int ns) 194 { 195 return count_to_lpf_count( 196 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 197 } 198 199 static inline unsigned int lpf_count_to_ns(unsigned int count) 200 { 201 /* Duration of the Low Pass Filter rejection window in ns */ 202 return DIV_ROUND_CLOSEST(count * 1000, 203 CX25840_IR_REFCLK_FREQ / 1000000); 204 } 205 206 static inline unsigned int lpf_count_to_us(unsigned int count) 207 { 208 /* Duration of the Low Pass Filter rejection window in us */ 209 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); 210 } 211 212 /* 213 * FIFO register pulse width count computations 214 */ 215 static u32 clock_divider_to_resolution(u16 divider) 216 { 217 /* 218 * Resolution is the duration of 1 tick of the readable portion of 219 * of the pulse width counter as read from the FIFO. The two lsb's are 220 * not readable, hence the << 2. This function returns ns. 221 */ 222 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, 223 CX25840_IR_REFCLK_FREQ / 1000000); 224 } 225 226 static u64 pulse_width_count_to_ns(u16 count, u16 divider) 227 { 228 u64 n; 229 u32 rem; 230 231 /* 232 * The 2 lsb's of the pulse width timer count are not readable, hence 233 * the (count << 2) | 0x3 234 */ 235 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ 236 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ 237 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) 238 n++; 239 return n; 240 } 241 242 #if 0 243 /* Keep as we will need this for Transmit functionality */ 244 static u16 ns_to_pulse_width_count(u32 ns, u16 divider) 245 { 246 u64 n; 247 u32 d; 248 u32 rem; 249 250 /* 251 * The 2 lsb's of the pulse width timer count are not accessible, hence 252 * the (1 << 2) 253 */ 254 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ 255 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ 256 rem = do_div(n, d); 257 if (rem >= d / 2) 258 n++; 259 260 if (n > FIFO_RXTX) 261 n = FIFO_RXTX; 262 else if (n == 0) 263 n = 1; 264 return (u16) n; 265 } 266 267 #endif 268 static unsigned int pulse_width_count_to_us(u16 count, u16 divider) 269 { 270 u64 n; 271 u32 rem; 272 273 /* 274 * The 2 lsb's of the pulse width timer count are not readable, hence 275 * the (count << 2) | 0x3 276 */ 277 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ 278 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ 279 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) 280 n++; 281 return (unsigned int) n; 282 } 283 284 /* 285 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts 286 * 287 * The total pulse clock count is an 18 bit pulse width timer count as the most 288 * significant part and (up to) 16 bit clock divider count as a modulus. 289 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse 290 * width timer count's least significant bit. 291 */ 292 static u64 ns_to_pulse_clocks(u32 ns) 293 { 294 u64 clocks; 295 u32 rem; 296 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ 297 rem = do_div(clocks, 1000); /* /1000 = cycles */ 298 if (rem >= 1000 / 2) 299 clocks++; 300 return clocks; 301 } 302 303 static u16 pulse_clocks_to_clock_divider(u64 count) 304 { 305 do_div(count, (FIFO_RXTX << 2) | 0x3); 306 307 /* net result needs to be rounded down and decremented by 1 */ 308 if (count > RXCLK_RCD + 1) 309 count = RXCLK_RCD; 310 else if (count < 2) 311 count = 1; 312 else 313 count--; 314 return (u16) count; 315 } 316 317 /* 318 * IR Control Register helpers 319 */ 320 enum tx_fifo_watermark { 321 TX_FIFO_HALF_EMPTY = 0, 322 TX_FIFO_EMPTY = CNTRL_TIC, 323 }; 324 325 enum rx_fifo_watermark { 326 RX_FIFO_HALF_FULL = 0, 327 RX_FIFO_NOT_EMPTY = CNTRL_RIC, 328 }; 329 330 static inline void control_tx_irq_watermark(struct i2c_client *c, 331 enum tx_fifo_watermark level) 332 { 333 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); 334 } 335 336 static inline void control_rx_irq_watermark(struct i2c_client *c, 337 enum rx_fifo_watermark level) 338 { 339 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); 340 } 341 342 static inline void control_tx_enable(struct i2c_client *c, bool enable) 343 { 344 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), 345 enable ? (CNTRL_TXE | CNTRL_TFE) : 0); 346 } 347 348 static inline void control_rx_enable(struct i2c_client *c, bool enable) 349 { 350 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), 351 enable ? (CNTRL_RXE | CNTRL_RFE) : 0); 352 } 353 354 static inline void control_tx_modulation_enable(struct i2c_client *c, 355 bool enable) 356 { 357 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, 358 enable ? CNTRL_MOD : 0); 359 } 360 361 static inline void control_rx_demodulation_enable(struct i2c_client *c, 362 bool enable) 363 { 364 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, 365 enable ? CNTRL_DMD : 0); 366 } 367 368 static inline void control_rx_s_edge_detection(struct i2c_client *c, 369 u32 edge_types) 370 { 371 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, 372 edge_types & CNTRL_EDG_BOTH); 373 } 374 375 static void control_rx_s_carrier_window(struct i2c_client *c, 376 unsigned int carrier, 377 unsigned int *carrier_range_low, 378 unsigned int *carrier_range_high) 379 { 380 u32 v; 381 unsigned int c16 = carrier * 16; 382 383 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { 384 v = CNTRL_WIN_3_4; 385 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); 386 } else { 387 v = CNTRL_WIN_3_3; 388 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); 389 } 390 391 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { 392 v |= CNTRL_WIN_4_3; 393 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); 394 } else { 395 v |= CNTRL_WIN_3_3; 396 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); 397 } 398 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); 399 } 400 401 static inline void control_tx_polarity_invert(struct i2c_client *c, 402 bool invert) 403 { 404 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, 405 invert ? CNTRL_CPL : 0); 406 } 407 408 /* 409 * IR Rx & Tx Clock Register helpers 410 */ 411 static unsigned int txclk_tx_s_carrier(struct i2c_client *c, 412 unsigned int freq, 413 u16 *divider) 414 { 415 *divider = carrier_freq_to_clock_divider(freq); 416 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); 417 return clock_divider_to_carrier_freq(*divider); 418 } 419 420 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, 421 unsigned int freq, 422 u16 *divider) 423 { 424 *divider = carrier_freq_to_clock_divider(freq); 425 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); 426 return clock_divider_to_carrier_freq(*divider); 427 } 428 429 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, 430 u16 *divider) 431 { 432 u64 pulse_clocks; 433 434 if (ns > IR_MAX_DURATION) 435 ns = IR_MAX_DURATION; 436 pulse_clocks = ns_to_pulse_clocks(ns); 437 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 438 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); 439 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 440 } 441 442 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, 443 u16 *divider) 444 { 445 u64 pulse_clocks; 446 447 if (ns > IR_MAX_DURATION) 448 ns = IR_MAX_DURATION; 449 pulse_clocks = ns_to_pulse_clocks(ns); 450 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 451 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); 452 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 453 } 454 455 /* 456 * IR Tx Carrier Duty Cycle register helpers 457 */ 458 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, 459 unsigned int duty_cycle) 460 { 461 u32 n; 462 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ 463 if (n != 0) 464 n--; 465 if (n > 15) 466 n = 15; 467 cx25840_write4(c, CX25840_IR_CDUTY_REG, n); 468 return DIV_ROUND_CLOSEST((n + 1) * 100, 16); 469 } 470 471 /* 472 * IR Filter Register helpers 473 */ 474 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) 475 { 476 u32 count = ns_to_lpf_count(min_width_ns); 477 cx25840_write4(c, CX25840_IR_FILTR_REG, count); 478 return lpf_count_to_ns(count); 479 } 480 481 /* 482 * IR IRQ Enable Register helpers 483 */ 484 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) 485 { 486 struct cx25840_state *state = to_state(sd); 487 488 if (is_cx23885(state) || is_cx23887(state)) 489 mask ^= IRQEN_MSK; 490 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); 491 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, 492 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); 493 } 494 495 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) 496 { 497 struct cx25840_state *state = to_state(sd); 498 499 if (is_cx23885(state) || is_cx23887(state)) 500 mask ^= IRQEN_MSK; 501 mask &= IRQEN_TSE; 502 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); 503 } 504 505 /* 506 * V4L2 Subdevice IR Ops 507 */ 508 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) 509 { 510 struct cx25840_state *state = to_state(sd); 511 struct cx25840_ir_state *ir_state = to_ir_state(sd); 512 struct i2c_client *c = NULL; 513 unsigned long flags; 514 515 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; 516 unsigned int i, j, k; 517 u32 events, v; 518 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; 519 u32 cntrl, irqen, stats; 520 521 *handled = false; 522 if (ir_state == NULL) 523 return -ENODEV; 524 525 c = ir_state->c; 526 527 /* Only support the IR controller for the CX2388[57] AV Core for now */ 528 if (!(is_cx23885(state) || is_cx23887(state))) 529 return -ENODEV; 530 531 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); 532 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); 533 if (is_cx23885(state) || is_cx23887(state)) 534 irqen ^= IRQEN_MSK; 535 stats = cx25840_read4(c, CX25840_IR_STATS_REG); 536 537 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ 538 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ 539 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ 540 ror = stats & STATS_ROR; /* Rx FIFO Over Run */ 541 542 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ 543 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */ 544 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ 545 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ 546 547 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", 548 tsr ? "tsr" : " ", rsr ? "rsr" : " ", 549 rto ? "rto" : " ", ror ? "ror" : " ", 550 stats & STATS_TBY ? "tby" : " ", 551 stats & STATS_RBY ? "rby" : " "); 552 553 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", 554 tse ? "tse" : " ", rse ? "rse" : " ", 555 rte ? "rte" : " ", roe ? "roe" : " "); 556 557 /* 558 * Transmitter interrupt service 559 */ 560 if (tse && tsr) { 561 /* 562 * TODO: 563 * Check the watermark threshold setting 564 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo 565 * Push the data to the hardware FIFO. 566 * If there was nothing more to send in the tx_kfifo, disable 567 * the TSR IRQ and notify the v4l2_device. 568 * If there was something in the tx_kfifo, check the tx_kfifo 569 * level and notify the v4l2_device, if it is low. 570 */ 571 /* For now, inhibit TSR interrupt until Tx is implemented */ 572 irqenable_tx(sd, 0); 573 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; 574 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); 575 *handled = true; 576 } 577 578 /* 579 * Receiver interrupt service 580 */ 581 kror = 0; 582 if ((rse && rsr) || (rte && rto)) { 583 /* 584 * Receive data on RSR to clear the STATS_RSR. 585 * Receive data on RTO, since we may not have yet hit the RSR 586 * watermark when we receive the RTO. 587 */ 588 for (i = 0, v = FIFO_RX_NDV; 589 (v & FIFO_RX_NDV) && !kror; i = 0) { 590 for (j = 0; 591 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { 592 v = cx25840_read4(c, CX25840_IR_FIFO_REG); 593 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; 594 i++; 595 } 596 if (i == 0) 597 break; 598 j = i * sizeof(union cx25840_ir_fifo_rec); 599 k = kfifo_in_locked(&ir_state->rx_kfifo, 600 (unsigned char *) rx_data, j, 601 &ir_state->rx_kfifo_lock); 602 if (k != j) 603 kror++; /* rx_kfifo over run */ 604 } 605 *handled = true; 606 } 607 608 events = 0; 609 v = 0; 610 if (kror) { 611 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; 612 v4l2_err(sd, "IR receiver software FIFO overrun\n"); 613 } 614 if (roe && ror) { 615 /* 616 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear 617 * the Rx FIFO Over Run status (STATS_ROR) 618 */ 619 v |= CNTRL_RFE; 620 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; 621 v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); 622 } 623 if (rte && rto) { 624 /* 625 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear 626 * the Rx Pulse Width Timer Time Out (STATS_RTO) 627 */ 628 v |= CNTRL_RXE; 629 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; 630 } 631 if (v) { 632 /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */ 633 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); 634 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); 635 *handled = true; 636 } 637 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); 638 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) 639 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; 640 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); 641 642 if (events) 643 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); 644 return 0; 645 } 646 647 /* Receiver */ 648 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, 649 ssize_t *num) 650 { 651 struct cx25840_ir_state *ir_state = to_ir_state(sd); 652 bool invert; 653 u16 divider; 654 unsigned int i, n; 655 union cx25840_ir_fifo_rec *p; 656 unsigned u, v, w; 657 658 if (ir_state == NULL) 659 return -ENODEV; 660 661 invert = (bool) atomic_read(&ir_state->rx_invert); 662 divider = (u16) atomic_read(&ir_state->rxclk_divider); 663 664 n = count / sizeof(union cx25840_ir_fifo_rec) 665 * sizeof(union cx25840_ir_fifo_rec); 666 if (n == 0) { 667 *num = 0; 668 return 0; 669 } 670 671 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, 672 &ir_state->rx_kfifo_lock); 673 674 n /= sizeof(union cx25840_ir_fifo_rec); 675 *num = n * sizeof(union cx25840_ir_fifo_rec); 676 677 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { 678 679 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { 680 /* Assume RTO was because of no IR light input */ 681 u = 0; 682 w = 1; 683 } else { 684 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; 685 if (invert) 686 u = u ? 0 : 1; 687 w = 0; 688 } 689 690 v = (unsigned) pulse_width_count_to_ns( 691 (u16) (p->hw_fifo_data & FIFO_RXTX), divider); 692 if (v > IR_MAX_DURATION) 693 v = IR_MAX_DURATION; 694 695 p->ir_core_data = (struct ir_raw_event) 696 { .pulse = u, .duration = v, .timeout = w }; 697 698 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n", 699 v, u ? "mark" : "space", w ? "(timed out)" : ""); 700 if (w) 701 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); 702 } 703 return 0; 704 } 705 706 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, 707 struct v4l2_subdev_ir_parameters *p) 708 { 709 struct cx25840_ir_state *ir_state = to_ir_state(sd); 710 711 if (ir_state == NULL) 712 return -ENODEV; 713 714 mutex_lock(&ir_state->rx_params_lock); 715 memcpy(p, &ir_state->rx_params, 716 sizeof(struct v4l2_subdev_ir_parameters)); 717 mutex_unlock(&ir_state->rx_params_lock); 718 return 0; 719 } 720 721 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) 722 { 723 struct cx25840_ir_state *ir_state = to_ir_state(sd); 724 struct i2c_client *c; 725 726 if (ir_state == NULL) 727 return -ENODEV; 728 729 c = ir_state->c; 730 mutex_lock(&ir_state->rx_params_lock); 731 732 /* Disable or slow down all IR Rx circuits and counters */ 733 irqenable_rx(sd, 0); 734 control_rx_enable(c, false); 735 control_rx_demodulation_enable(c, false); 736 control_rx_s_edge_detection(c, CNTRL_EDG_NONE); 737 filter_rx_s_min_width(c, 0); 738 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); 739 740 ir_state->rx_params.shutdown = true; 741 742 mutex_unlock(&ir_state->rx_params_lock); 743 return 0; 744 } 745 746 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, 747 struct v4l2_subdev_ir_parameters *p) 748 { 749 struct cx25840_ir_state *ir_state = to_ir_state(sd); 750 struct i2c_client *c; 751 struct v4l2_subdev_ir_parameters *o; 752 u16 rxclk_divider; 753 754 if (ir_state == NULL) 755 return -ENODEV; 756 757 if (p->shutdown) 758 return cx25840_ir_rx_shutdown(sd); 759 760 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 761 return -ENOSYS; 762 763 c = ir_state->c; 764 o = &ir_state->rx_params; 765 766 mutex_lock(&ir_state->rx_params_lock); 767 768 o->shutdown = p->shutdown; 769 770 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 771 o->mode = p->mode; 772 773 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); 774 o->bytes_per_data_element = p->bytes_per_data_element; 775 776 /* Before we tweak the hardware, we have to disable the receiver */ 777 irqenable_rx(sd, 0); 778 control_rx_enable(c, false); 779 780 control_rx_demodulation_enable(c, p->modulation); 781 o->modulation = p->modulation; 782 783 if (p->modulation) { 784 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, 785 &rxclk_divider); 786 787 o->carrier_freq = p->carrier_freq; 788 789 p->duty_cycle = 50; 790 o->duty_cycle = p->duty_cycle; 791 792 control_rx_s_carrier_window(c, p->carrier_freq, 793 &p->carrier_range_lower, 794 &p->carrier_range_upper); 795 o->carrier_range_lower = p->carrier_range_lower; 796 o->carrier_range_upper = p->carrier_range_upper; 797 798 p->max_pulse_width = 799 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); 800 } else { 801 p->max_pulse_width = 802 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, 803 &rxclk_divider); 804 } 805 o->max_pulse_width = p->max_pulse_width; 806 atomic_set(&ir_state->rxclk_divider, rxclk_divider); 807 808 p->noise_filter_min_width = 809 filter_rx_s_min_width(c, p->noise_filter_min_width); 810 o->noise_filter_min_width = p->noise_filter_min_width; 811 812 p->resolution = clock_divider_to_resolution(rxclk_divider); 813 o->resolution = p->resolution; 814 815 /* FIXME - make this dependent on resolution for better performance */ 816 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); 817 818 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); 819 820 o->invert_level = p->invert_level; 821 atomic_set(&ir_state->rx_invert, p->invert_level); 822 823 o->interrupt_enable = p->interrupt_enable; 824 o->enable = p->enable; 825 if (p->enable) { 826 unsigned long flags; 827 828 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); 829 kfifo_reset(&ir_state->rx_kfifo); 830 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); 831 if (p->interrupt_enable) 832 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); 833 control_rx_enable(c, p->enable); 834 } 835 836 mutex_unlock(&ir_state->rx_params_lock); 837 return 0; 838 } 839 840 /* Transmitter */ 841 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, 842 ssize_t *num) 843 { 844 struct cx25840_ir_state *ir_state = to_ir_state(sd); 845 846 if (ir_state == NULL) 847 return -ENODEV; 848 849 #if 0 850 /* 851 * FIXME - the code below is an incomplete and untested sketch of what 852 * may need to be done. The critical part is to get 4 (or 8) pulses 853 * from the tx_kfifo, or converted from ns to the proper units from the 854 * input, and push them off to the hardware Tx FIFO right away, if the 855 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in 856 * a less critical timeframe. Also watch out for overruning the 857 * tx_kfifo - don't let it happen and let the caller know not all his 858 * pulses were written. 859 */ 860 u32 *ns_pulse = (u32 *) buf; 861 unsigned int n; 862 u32 fifo_pulse[FIFO_TX_DEPTH]; 863 u32 mark; 864 865 /* Compute how much we can fit in the tx kfifo */ 866 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); 867 n = min(n, (unsigned int) count); 868 n /= sizeof(u32); 869 870 /* FIXME - turn on Tx Fifo service interrupt 871 * check hardware fifo level, and other stuff 872 */ 873 for (i = 0; i < n; ) { 874 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { 875 mark = ns_pulse[i] & LEVEL_MASK; 876 fifo_pulse[j] = ns_to_pulse_width_count( 877 ns_pulse[i] & 878 ~LEVEL_MASK, 879 ir_state->txclk_divider); 880 if (mark) 881 fifo_pulse[j] &= FIFO_RXTX_LVL; 882 i++; 883 } 884 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, 885 j * sizeof(u32)); 886 } 887 *num = n * sizeof(u32); 888 #else 889 /* For now enable the Tx FIFO Service interrupt & pretend we did work */ 890 irqenable_tx(sd, IRQEN_TSE); 891 *num = count; 892 #endif 893 return 0; 894 } 895 896 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, 897 struct v4l2_subdev_ir_parameters *p) 898 { 899 struct cx25840_ir_state *ir_state = to_ir_state(sd); 900 901 if (ir_state == NULL) 902 return -ENODEV; 903 904 mutex_lock(&ir_state->tx_params_lock); 905 memcpy(p, &ir_state->tx_params, 906 sizeof(struct v4l2_subdev_ir_parameters)); 907 mutex_unlock(&ir_state->tx_params_lock); 908 return 0; 909 } 910 911 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) 912 { 913 struct cx25840_ir_state *ir_state = to_ir_state(sd); 914 struct i2c_client *c; 915 916 if (ir_state == NULL) 917 return -ENODEV; 918 919 c = ir_state->c; 920 mutex_lock(&ir_state->tx_params_lock); 921 922 /* Disable or slow down all IR Tx circuits and counters */ 923 irqenable_tx(sd, 0); 924 control_tx_enable(c, false); 925 control_tx_modulation_enable(c, false); 926 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); 927 928 ir_state->tx_params.shutdown = true; 929 930 mutex_unlock(&ir_state->tx_params_lock); 931 return 0; 932 } 933 934 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, 935 struct v4l2_subdev_ir_parameters *p) 936 { 937 struct cx25840_ir_state *ir_state = to_ir_state(sd); 938 struct i2c_client *c; 939 struct v4l2_subdev_ir_parameters *o; 940 u16 txclk_divider; 941 942 if (ir_state == NULL) 943 return -ENODEV; 944 945 if (p->shutdown) 946 return cx25840_ir_tx_shutdown(sd); 947 948 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 949 return -ENOSYS; 950 951 c = ir_state->c; 952 o = &ir_state->tx_params; 953 mutex_lock(&ir_state->tx_params_lock); 954 955 o->shutdown = p->shutdown; 956 957 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 958 o->mode = p->mode; 959 960 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); 961 o->bytes_per_data_element = p->bytes_per_data_element; 962 963 /* Before we tweak the hardware, we have to disable the transmitter */ 964 irqenable_tx(sd, 0); 965 control_tx_enable(c, false); 966 967 control_tx_modulation_enable(c, p->modulation); 968 o->modulation = p->modulation; 969 970 if (p->modulation) { 971 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, 972 &txclk_divider); 973 o->carrier_freq = p->carrier_freq; 974 975 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); 976 o->duty_cycle = p->duty_cycle; 977 978 p->max_pulse_width = 979 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); 980 } else { 981 p->max_pulse_width = 982 txclk_tx_s_max_pulse_width(c, p->max_pulse_width, 983 &txclk_divider); 984 } 985 o->max_pulse_width = p->max_pulse_width; 986 atomic_set(&ir_state->txclk_divider, txclk_divider); 987 988 p->resolution = clock_divider_to_resolution(txclk_divider); 989 o->resolution = p->resolution; 990 991 /* FIXME - make this dependent on resolution for better performance */ 992 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); 993 994 control_tx_polarity_invert(c, p->invert_carrier_sense); 995 o->invert_carrier_sense = p->invert_carrier_sense; 996 997 /* 998 * FIXME: we don't have hardware help for IO pin level inversion 999 * here like we have on the CX23888. 1000 * Act on this with some mix of logical inversion of data levels, 1001 * carrier polarity, and carrier duty cycle. 1002 */ 1003 o->invert_level = p->invert_level; 1004 1005 o->interrupt_enable = p->interrupt_enable; 1006 o->enable = p->enable; 1007 if (p->enable) { 1008 /* reset tx_fifo here */ 1009 if (p->interrupt_enable) 1010 irqenable_tx(sd, IRQEN_TSE); 1011 control_tx_enable(c, p->enable); 1012 } 1013 1014 mutex_unlock(&ir_state->tx_params_lock); 1015 return 0; 1016 } 1017 1018 1019 /* 1020 * V4L2 Subdevice Core Ops support 1021 */ 1022 int cx25840_ir_log_status(struct v4l2_subdev *sd) 1023 { 1024 struct cx25840_state *state = to_state(sd); 1025 struct i2c_client *c = state->c; 1026 char *s; 1027 int i, j; 1028 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; 1029 1030 /* The CX23888 chip doesn't have an IR controller on the A/V core */ 1031 if (is_cx23888(state)) 1032 return 0; 1033 1034 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); 1035 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; 1036 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; 1037 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; 1038 stats = cx25840_read4(c, CX25840_IR_STATS_REG); 1039 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); 1040 if (is_cx23885(state) || is_cx23887(state)) 1041 irqen ^= IRQEN_MSK; 1042 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; 1043 1044 v4l2_info(sd, "IR Receiver:\n"); 1045 v4l2_info(sd, "\tEnabled: %s\n", 1046 cntrl & CNTRL_RXE ? "yes" : "no"); 1047 v4l2_info(sd, "\tDemodulation from a carrier: %s\n", 1048 cntrl & CNTRL_DMD ? "enabled" : "disabled"); 1049 v4l2_info(sd, "\tFIFO: %s\n", 1050 cntrl & CNTRL_RFE ? "enabled" : "disabled"); 1051 switch (cntrl & CNTRL_EDG) { 1052 case CNTRL_EDG_NONE: 1053 s = "disabled"; 1054 break; 1055 case CNTRL_EDG_FALL: 1056 s = "falling edge"; 1057 break; 1058 case CNTRL_EDG_RISE: 1059 s = "rising edge"; 1060 break; 1061 case CNTRL_EDG_BOTH: 1062 s = "rising & falling edges"; 1063 break; 1064 default: 1065 s = "??? edge"; 1066 break; 1067 } 1068 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); 1069 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", 1070 cntrl & CNTRL_R ? "not loaded" : "overflow marker"); 1071 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1072 cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); 1073 v4l2_info(sd, "\tLoopback mode: %s\n", 1074 cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); 1075 if (cntrl & CNTRL_DMD) { 1076 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", 1077 clock_divider_to_carrier_freq(rxclk)); 1078 switch (cntrl & CNTRL_WIN) { 1079 case CNTRL_WIN_3_3: 1080 i = 3; 1081 j = 3; 1082 break; 1083 case CNTRL_WIN_4_3: 1084 i = 4; 1085 j = 3; 1086 break; 1087 case CNTRL_WIN_3_4: 1088 i = 3; 1089 j = 4; 1090 break; 1091 case CNTRL_WIN_4_4: 1092 i = 4; 1093 j = 4; 1094 break; 1095 default: 1096 i = 0; 1097 j = 0; 1098 break; 1099 } 1100 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n", 1101 i, j, 1102 clock_divider_to_freq(rxclk, 16 + j), 1103 clock_divider_to_freq(rxclk, 16 - i)); 1104 } 1105 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", 1106 pulse_width_count_to_us(FIFO_RXTX, rxclk), 1107 pulse_width_count_to_ns(FIFO_RXTX, rxclk)); 1108 v4l2_info(sd, "\tLow pass filter: %s\n", 1109 filtr ? "enabled" : "disabled"); 1110 if (filtr) 1111 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n", 1112 lpf_count_to_us(filtr), 1113 lpf_count_to_ns(filtr)); 1114 v4l2_info(sd, "\tPulse width timer timed-out: %s\n", 1115 stats & STATS_RTO ? "yes" : "no"); 1116 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", 1117 irqen & IRQEN_RTE ? "enabled" : "disabled"); 1118 v4l2_info(sd, "\tFIFO overrun: %s\n", 1119 stats & STATS_ROR ? "yes" : "no"); 1120 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", 1121 irqen & IRQEN_ROE ? "enabled" : "disabled"); 1122 v4l2_info(sd, "\tBusy: %s\n", 1123 stats & STATS_RBY ? "yes" : "no"); 1124 v4l2_info(sd, "\tFIFO service requested: %s\n", 1125 stats & STATS_RSR ? "yes" : "no"); 1126 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1127 irqen & IRQEN_RSE ? "enabled" : "disabled"); 1128 1129 v4l2_info(sd, "IR Transmitter:\n"); 1130 v4l2_info(sd, "\tEnabled: %s\n", 1131 cntrl & CNTRL_TXE ? "yes" : "no"); 1132 v4l2_info(sd, "\tModulation onto a carrier: %s\n", 1133 cntrl & CNTRL_MOD ? "enabled" : "disabled"); 1134 v4l2_info(sd, "\tFIFO: %s\n", 1135 cntrl & CNTRL_TFE ? "enabled" : "disabled"); 1136 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1137 cntrl & CNTRL_TIC ? "not empty" : "half full or less"); 1138 v4l2_info(sd, "\tCarrier polarity: %s\n", 1139 cntrl & CNTRL_CPL ? "space:burst mark:noburst" 1140 : "space:noburst mark:burst"); 1141 if (cntrl & CNTRL_MOD) { 1142 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", 1143 clock_divider_to_carrier_freq(txclk)); 1144 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", 1145 cduty + 1); 1146 } 1147 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", 1148 pulse_width_count_to_us(FIFO_RXTX, txclk), 1149 pulse_width_count_to_ns(FIFO_RXTX, txclk)); 1150 v4l2_info(sd, "\tBusy: %s\n", 1151 stats & STATS_TBY ? "yes" : "no"); 1152 v4l2_info(sd, "\tFIFO service requested: %s\n", 1153 stats & STATS_TSR ? "yes" : "no"); 1154 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1155 irqen & IRQEN_TSE ? "enabled" : "disabled"); 1156 1157 return 0; 1158 } 1159 1160 1161 const struct v4l2_subdev_ir_ops cx25840_ir_ops = { 1162 .rx_read = cx25840_ir_rx_read, 1163 .rx_g_parameters = cx25840_ir_rx_g_parameters, 1164 .rx_s_parameters = cx25840_ir_rx_s_parameters, 1165 1166 .tx_write = cx25840_ir_tx_write, 1167 .tx_g_parameters = cx25840_ir_tx_g_parameters, 1168 .tx_s_parameters = cx25840_ir_tx_s_parameters, 1169 }; 1170 1171 1172 static const struct v4l2_subdev_ir_parameters default_rx_params = { 1173 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), 1174 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1175 1176 .enable = false, 1177 .interrupt_enable = false, 1178 .shutdown = true, 1179 1180 .modulation = true, 1181 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ 1182 1183 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ 1184 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ 1185 .noise_filter_min_width = 333333, /* ns */ 1186 .carrier_range_lower = 35000, 1187 .carrier_range_upper = 37000, 1188 .invert_level = false, 1189 }; 1190 1191 static const struct v4l2_subdev_ir_parameters default_tx_params = { 1192 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), 1193 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1194 1195 .enable = false, 1196 .interrupt_enable = false, 1197 .shutdown = true, 1198 1199 .modulation = true, 1200 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ 1201 .duty_cycle = 25, /* 25 % - RC-5 carrier */ 1202 .invert_level = false, 1203 .invert_carrier_sense = false, 1204 }; 1205 1206 int cx25840_ir_probe(struct v4l2_subdev *sd) 1207 { 1208 struct cx25840_state *state = to_state(sd); 1209 struct cx25840_ir_state *ir_state; 1210 struct v4l2_subdev_ir_parameters default_params; 1211 1212 /* Only init the IR controller for the CX2388[57] AV Core for now */ 1213 if (!(is_cx23885(state) || is_cx23887(state))) 1214 return 0; 1215 1216 ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL); 1217 if (ir_state == NULL) 1218 return -ENOMEM; 1219 1220 spin_lock_init(&ir_state->rx_kfifo_lock); 1221 if (kfifo_alloc(&ir_state->rx_kfifo, 1222 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) 1223 return -ENOMEM; 1224 1225 ir_state->c = state->c; 1226 state->ir_state = ir_state; 1227 1228 /* Ensure no interrupts arrive yet */ 1229 if (is_cx23885(state) || is_cx23887(state)) 1230 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); 1231 else 1232 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); 1233 1234 mutex_init(&ir_state->rx_params_lock); 1235 default_params = default_rx_params; 1236 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); 1237 1238 mutex_init(&ir_state->tx_params_lock); 1239 default_params = default_tx_params; 1240 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); 1241 1242 return 0; 1243 } 1244 1245 int cx25840_ir_remove(struct v4l2_subdev *sd) 1246 { 1247 struct cx25840_state *state = to_state(sd); 1248 struct cx25840_ir_state *ir_state = to_ir_state(sd); 1249 1250 if (ir_state == NULL) 1251 return -ENODEV; 1252 1253 cx25840_ir_rx_shutdown(sd); 1254 cx25840_ir_tx_shutdown(sd); 1255 1256 kfifo_free(&ir_state->rx_kfifo); 1257 state->ir_state = NULL; 1258 return 0; 1259 } 1260