1 /* 2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores 3 * 4 * Integrated Consumer Infrared Controller 5 * 6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/kfifo.h> 21 #include <linux/module.h> 22 #include <media/drv-intf/cx25840.h> 23 #include <media/rc-core.h> 24 25 #include "cx25840-core.h" 26 27 static unsigned int ir_debug; 28 module_param(ir_debug, int, 0644); 29 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); 30 31 #define CX25840_IR_REG_BASE 0x200 32 33 #define CX25840_IR_CNTRL_REG 0x200 34 #define CNTRL_WIN_3_3 0x00000000 35 #define CNTRL_WIN_4_3 0x00000001 36 #define CNTRL_WIN_3_4 0x00000002 37 #define CNTRL_WIN_4_4 0x00000003 38 #define CNTRL_WIN 0x00000003 39 #define CNTRL_EDG_NONE 0x00000000 40 #define CNTRL_EDG_FALL 0x00000004 41 #define CNTRL_EDG_RISE 0x00000008 42 #define CNTRL_EDG_BOTH 0x0000000C 43 #define CNTRL_EDG 0x0000000C 44 #define CNTRL_DMD 0x00000010 45 #define CNTRL_MOD 0x00000020 46 #define CNTRL_RFE 0x00000040 47 #define CNTRL_TFE 0x00000080 48 #define CNTRL_RXE 0x00000100 49 #define CNTRL_TXE 0x00000200 50 #define CNTRL_RIC 0x00000400 51 #define CNTRL_TIC 0x00000800 52 #define CNTRL_CPL 0x00001000 53 #define CNTRL_LBM 0x00002000 54 #define CNTRL_R 0x00004000 55 56 #define CX25840_IR_TXCLK_REG 0x204 57 #define TXCLK_TCD 0x0000FFFF 58 59 #define CX25840_IR_RXCLK_REG 0x208 60 #define RXCLK_RCD 0x0000FFFF 61 62 #define CX25840_IR_CDUTY_REG 0x20C 63 #define CDUTY_CDC 0x0000000F 64 65 #define CX25840_IR_STATS_REG 0x210 66 #define STATS_RTO 0x00000001 67 #define STATS_ROR 0x00000002 68 #define STATS_RBY 0x00000004 69 #define STATS_TBY 0x00000008 70 #define STATS_RSR 0x00000010 71 #define STATS_TSR 0x00000020 72 73 #define CX25840_IR_IRQEN_REG 0x214 74 #define IRQEN_RTE 0x00000001 75 #define IRQEN_ROE 0x00000002 76 #define IRQEN_RSE 0x00000010 77 #define IRQEN_TSE 0x00000020 78 #define IRQEN_MSK 0x00000033 79 80 #define CX25840_IR_FILTR_REG 0x218 81 #define FILTR_LPF 0x0000FFFF 82 83 #define CX25840_IR_FIFO_REG 0x23C 84 #define FIFO_RXTX 0x0000FFFF 85 #define FIFO_RXTX_LVL 0x00010000 86 #define FIFO_RXTX_RTO 0x0001FFFF 87 #define FIFO_RX_NDV 0x00020000 88 #define FIFO_RX_DEPTH 8 89 #define FIFO_TX_DEPTH 8 90 91 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ 92 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) 93 94 /* 95 * We use this union internally for convenience, but callers to tx_write 96 * and rx_read will be expecting records of type struct ir_raw_event. 97 * Always ensure the size of this union is dictated by struct ir_raw_event. 98 */ 99 union cx25840_ir_fifo_rec { 100 u32 hw_fifo_data; 101 struct ir_raw_event ir_core_data; 102 }; 103 104 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) 105 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) 106 107 struct cx25840_ir_state { 108 struct i2c_client *c; 109 110 struct v4l2_subdev_ir_parameters rx_params; 111 struct mutex rx_params_lock; /* protects Rx parameter settings cache */ 112 atomic_t rxclk_divider; 113 atomic_t rx_invert; 114 115 struct kfifo rx_kfifo; 116 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ 117 118 struct v4l2_subdev_ir_parameters tx_params; 119 struct mutex tx_params_lock; /* protects Tx parameter settings cache */ 120 atomic_t txclk_divider; 121 }; 122 123 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) 124 { 125 struct cx25840_state *state = to_state(sd); 126 return state ? state->ir_state : NULL; 127 } 128 129 130 /* 131 * Rx and Tx Clock Divider register computations 132 * 133 * Note the largest clock divider value of 0xffff corresponds to: 134 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns 135 * which fits in 21 bits, so we'll use unsigned int for time arguments. 136 */ 137 static inline u16 count_to_clock_divider(unsigned int d) 138 { 139 if (d > RXCLK_RCD + 1) 140 d = RXCLK_RCD; 141 else if (d < 2) 142 d = 1; 143 else 144 d--; 145 return (u16) d; 146 } 147 148 static inline u16 ns_to_clock_divider(unsigned int ns) 149 { 150 return count_to_clock_divider( 151 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 152 } 153 154 static inline unsigned int clock_divider_to_ns(unsigned int divider) 155 { 156 /* Period of the Rx or Tx clock in ns */ 157 return DIV_ROUND_CLOSEST((divider + 1) * 1000, 158 CX25840_IR_REFCLK_FREQ / 1000000); 159 } 160 161 static inline u16 carrier_freq_to_clock_divider(unsigned int freq) 162 { 163 return count_to_clock_divider( 164 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); 165 } 166 167 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) 168 { 169 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); 170 } 171 172 static inline u16 freq_to_clock_divider(unsigned int freq, 173 unsigned int rollovers) 174 { 175 return count_to_clock_divider( 176 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers)); 177 } 178 179 static inline unsigned int clock_divider_to_freq(unsigned int divider, 180 unsigned int rollovers) 181 { 182 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, 183 (divider + 1) * rollovers); 184 } 185 186 /* 187 * Low Pass Filter register calculations 188 * 189 * Note the largest count value of 0xffff corresponds to: 190 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns 191 * which fits in 21 bits, so we'll use unsigned int for time arguments. 192 */ 193 static inline u16 count_to_lpf_count(unsigned int d) 194 { 195 if (d > FILTR_LPF) 196 d = FILTR_LPF; 197 else if (d < 4) 198 d = 0; 199 return (u16) d; 200 } 201 202 static inline u16 ns_to_lpf_count(unsigned int ns) 203 { 204 return count_to_lpf_count( 205 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 206 } 207 208 static inline unsigned int lpf_count_to_ns(unsigned int count) 209 { 210 /* Duration of the Low Pass Filter rejection window in ns */ 211 return DIV_ROUND_CLOSEST(count * 1000, 212 CX25840_IR_REFCLK_FREQ / 1000000); 213 } 214 215 static inline unsigned int lpf_count_to_us(unsigned int count) 216 { 217 /* Duration of the Low Pass Filter rejection window in us */ 218 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); 219 } 220 221 /* 222 * FIFO register pulse width count computations 223 */ 224 static u32 clock_divider_to_resolution(u16 divider) 225 { 226 /* 227 * Resolution is the duration of 1 tick of the readable portion of 228 * of the pulse width counter as read from the FIFO. The two lsb's are 229 * not readable, hence the << 2. This function returns ns. 230 */ 231 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, 232 CX25840_IR_REFCLK_FREQ / 1000000); 233 } 234 235 static u64 pulse_width_count_to_ns(u16 count, u16 divider) 236 { 237 u64 n; 238 u32 rem; 239 240 /* 241 * The 2 lsb's of the pulse width timer count are not readable, hence 242 * the (count << 2) | 0x3 243 */ 244 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ 245 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ 246 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) 247 n++; 248 return n; 249 } 250 251 #if 0 252 /* Keep as we will need this for Transmit functionality */ 253 static u16 ns_to_pulse_width_count(u32 ns, u16 divider) 254 { 255 u64 n; 256 u32 d; 257 u32 rem; 258 259 /* 260 * The 2 lsb's of the pulse width timer count are not accessible, hence 261 * the (1 << 2) 262 */ 263 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ 264 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ 265 rem = do_div(n, d); 266 if (rem >= d / 2) 267 n++; 268 269 if (n > FIFO_RXTX) 270 n = FIFO_RXTX; 271 else if (n == 0) 272 n = 1; 273 return (u16) n; 274 } 275 276 #endif 277 static unsigned int pulse_width_count_to_us(u16 count, u16 divider) 278 { 279 u64 n; 280 u32 rem; 281 282 /* 283 * The 2 lsb's of the pulse width timer count are not readable, hence 284 * the (count << 2) | 0x3 285 */ 286 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ 287 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ 288 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) 289 n++; 290 return (unsigned int) n; 291 } 292 293 /* 294 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts 295 * 296 * The total pulse clock count is an 18 bit pulse width timer count as the most 297 * significant part and (up to) 16 bit clock divider count as a modulus. 298 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse 299 * width timer count's least significant bit. 300 */ 301 static u64 ns_to_pulse_clocks(u32 ns) 302 { 303 u64 clocks; 304 u32 rem; 305 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ 306 rem = do_div(clocks, 1000); /* /1000 = cycles */ 307 if (rem >= 1000 / 2) 308 clocks++; 309 return clocks; 310 } 311 312 static u16 pulse_clocks_to_clock_divider(u64 count) 313 { 314 do_div(count, (FIFO_RXTX << 2) | 0x3); 315 316 /* net result needs to be rounded down and decremented by 1 */ 317 if (count > RXCLK_RCD + 1) 318 count = RXCLK_RCD; 319 else if (count < 2) 320 count = 1; 321 else 322 count--; 323 return (u16) count; 324 } 325 326 /* 327 * IR Control Register helpers 328 */ 329 enum tx_fifo_watermark { 330 TX_FIFO_HALF_EMPTY = 0, 331 TX_FIFO_EMPTY = CNTRL_TIC, 332 }; 333 334 enum rx_fifo_watermark { 335 RX_FIFO_HALF_FULL = 0, 336 RX_FIFO_NOT_EMPTY = CNTRL_RIC, 337 }; 338 339 static inline void control_tx_irq_watermark(struct i2c_client *c, 340 enum tx_fifo_watermark level) 341 { 342 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); 343 } 344 345 static inline void control_rx_irq_watermark(struct i2c_client *c, 346 enum rx_fifo_watermark level) 347 { 348 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); 349 } 350 351 static inline void control_tx_enable(struct i2c_client *c, bool enable) 352 { 353 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), 354 enable ? (CNTRL_TXE | CNTRL_TFE) : 0); 355 } 356 357 static inline void control_rx_enable(struct i2c_client *c, bool enable) 358 { 359 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), 360 enable ? (CNTRL_RXE | CNTRL_RFE) : 0); 361 } 362 363 static inline void control_tx_modulation_enable(struct i2c_client *c, 364 bool enable) 365 { 366 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, 367 enable ? CNTRL_MOD : 0); 368 } 369 370 static inline void control_rx_demodulation_enable(struct i2c_client *c, 371 bool enable) 372 { 373 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, 374 enable ? CNTRL_DMD : 0); 375 } 376 377 static inline void control_rx_s_edge_detection(struct i2c_client *c, 378 u32 edge_types) 379 { 380 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, 381 edge_types & CNTRL_EDG_BOTH); 382 } 383 384 static void control_rx_s_carrier_window(struct i2c_client *c, 385 unsigned int carrier, 386 unsigned int *carrier_range_low, 387 unsigned int *carrier_range_high) 388 { 389 u32 v; 390 unsigned int c16 = carrier * 16; 391 392 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { 393 v = CNTRL_WIN_3_4; 394 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); 395 } else { 396 v = CNTRL_WIN_3_3; 397 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); 398 } 399 400 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { 401 v |= CNTRL_WIN_4_3; 402 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); 403 } else { 404 v |= CNTRL_WIN_3_3; 405 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); 406 } 407 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); 408 } 409 410 static inline void control_tx_polarity_invert(struct i2c_client *c, 411 bool invert) 412 { 413 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, 414 invert ? CNTRL_CPL : 0); 415 } 416 417 /* 418 * IR Rx & Tx Clock Register helpers 419 */ 420 static unsigned int txclk_tx_s_carrier(struct i2c_client *c, 421 unsigned int freq, 422 u16 *divider) 423 { 424 *divider = carrier_freq_to_clock_divider(freq); 425 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); 426 return clock_divider_to_carrier_freq(*divider); 427 } 428 429 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, 430 unsigned int freq, 431 u16 *divider) 432 { 433 *divider = carrier_freq_to_clock_divider(freq); 434 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); 435 return clock_divider_to_carrier_freq(*divider); 436 } 437 438 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, 439 u16 *divider) 440 { 441 u64 pulse_clocks; 442 443 if (ns > IR_MAX_DURATION) 444 ns = IR_MAX_DURATION; 445 pulse_clocks = ns_to_pulse_clocks(ns); 446 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 447 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); 448 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 449 } 450 451 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, 452 u16 *divider) 453 { 454 u64 pulse_clocks; 455 456 if (ns > IR_MAX_DURATION) 457 ns = IR_MAX_DURATION; 458 pulse_clocks = ns_to_pulse_clocks(ns); 459 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 460 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); 461 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 462 } 463 464 /* 465 * IR Tx Carrier Duty Cycle register helpers 466 */ 467 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, 468 unsigned int duty_cycle) 469 { 470 u32 n; 471 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ 472 if (n != 0) 473 n--; 474 if (n > 15) 475 n = 15; 476 cx25840_write4(c, CX25840_IR_CDUTY_REG, n); 477 return DIV_ROUND_CLOSEST((n + 1) * 100, 16); 478 } 479 480 /* 481 * IR Filter Register helpers 482 */ 483 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) 484 { 485 u32 count = ns_to_lpf_count(min_width_ns); 486 cx25840_write4(c, CX25840_IR_FILTR_REG, count); 487 return lpf_count_to_ns(count); 488 } 489 490 /* 491 * IR IRQ Enable Register helpers 492 */ 493 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) 494 { 495 struct cx25840_state *state = to_state(sd); 496 497 if (is_cx23885(state) || is_cx23887(state)) 498 mask ^= IRQEN_MSK; 499 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); 500 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, 501 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); 502 } 503 504 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) 505 { 506 struct cx25840_state *state = to_state(sd); 507 508 if (is_cx23885(state) || is_cx23887(state)) 509 mask ^= IRQEN_MSK; 510 mask &= IRQEN_TSE; 511 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); 512 } 513 514 /* 515 * V4L2 Subdevice IR Ops 516 */ 517 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) 518 { 519 struct cx25840_state *state = to_state(sd); 520 struct cx25840_ir_state *ir_state = to_ir_state(sd); 521 struct i2c_client *c = NULL; 522 unsigned long flags; 523 524 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; 525 unsigned int i, j, k; 526 u32 events, v; 527 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; 528 u32 cntrl, irqen, stats; 529 530 *handled = false; 531 if (ir_state == NULL) 532 return -ENODEV; 533 534 c = ir_state->c; 535 536 /* Only support the IR controller for the CX2388[57] AV Core for now */ 537 if (!(is_cx23885(state) || is_cx23887(state))) 538 return -ENODEV; 539 540 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); 541 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); 542 if (is_cx23885(state) || is_cx23887(state)) 543 irqen ^= IRQEN_MSK; 544 stats = cx25840_read4(c, CX25840_IR_STATS_REG); 545 546 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ 547 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ 548 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ 549 ror = stats & STATS_ROR; /* Rx FIFO Over Run */ 550 551 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ 552 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ 553 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ 554 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ 555 556 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", 557 tsr ? "tsr" : " ", rsr ? "rsr" : " ", 558 rto ? "rto" : " ", ror ? "ror" : " ", 559 stats & STATS_TBY ? "tby" : " ", 560 stats & STATS_RBY ? "rby" : " "); 561 562 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", 563 tse ? "tse" : " ", rse ? "rse" : " ", 564 rte ? "rte" : " ", roe ? "roe" : " "); 565 566 /* 567 * Transmitter interrupt service 568 */ 569 if (tse && tsr) { 570 /* 571 * TODO: 572 * Check the watermark threshold setting 573 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo 574 * Push the data to the hardware FIFO. 575 * If there was nothing more to send in the tx_kfifo, disable 576 * the TSR IRQ and notify the v4l2_device. 577 * If there was something in the tx_kfifo, check the tx_kfifo 578 * level and notify the v4l2_device, if it is low. 579 */ 580 /* For now, inhibit TSR interrupt until Tx is implemented */ 581 irqenable_tx(sd, 0); 582 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; 583 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); 584 *handled = true; 585 } 586 587 /* 588 * Receiver interrupt service 589 */ 590 kror = 0; 591 if ((rse && rsr) || (rte && rto)) { 592 /* 593 * Receive data on RSR to clear the STATS_RSR. 594 * Receive data on RTO, since we may not have yet hit the RSR 595 * watermark when we receive the RTO. 596 */ 597 for (i = 0, v = FIFO_RX_NDV; 598 (v & FIFO_RX_NDV) && !kror; i = 0) { 599 for (j = 0; 600 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { 601 v = cx25840_read4(c, CX25840_IR_FIFO_REG); 602 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; 603 i++; 604 } 605 if (i == 0) 606 break; 607 j = i * sizeof(union cx25840_ir_fifo_rec); 608 k = kfifo_in_locked(&ir_state->rx_kfifo, 609 (unsigned char *) rx_data, j, 610 &ir_state->rx_kfifo_lock); 611 if (k != j) 612 kror++; /* rx_kfifo over run */ 613 } 614 *handled = true; 615 } 616 617 events = 0; 618 v = 0; 619 if (kror) { 620 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; 621 v4l2_err(sd, "IR receiver software FIFO overrun\n"); 622 } 623 if (roe && ror) { 624 /* 625 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear 626 * the Rx FIFO Over Run status (STATS_ROR) 627 */ 628 v |= CNTRL_RFE; 629 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; 630 v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); 631 } 632 if (rte && rto) { 633 /* 634 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear 635 * the Rx Pulse Width Timer Time Out (STATS_RTO) 636 */ 637 v |= CNTRL_RXE; 638 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; 639 } 640 if (v) { 641 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ 642 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); 643 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); 644 *handled = true; 645 } 646 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); 647 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) 648 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; 649 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); 650 651 if (events) 652 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); 653 return 0; 654 } 655 656 /* Receiver */ 657 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, 658 ssize_t *num) 659 { 660 struct cx25840_ir_state *ir_state = to_ir_state(sd); 661 bool invert; 662 u16 divider; 663 unsigned int i, n; 664 union cx25840_ir_fifo_rec *p; 665 unsigned u, v, w; 666 667 if (ir_state == NULL) 668 return -ENODEV; 669 670 invert = (bool) atomic_read(&ir_state->rx_invert); 671 divider = (u16) atomic_read(&ir_state->rxclk_divider); 672 673 n = count / sizeof(union cx25840_ir_fifo_rec) 674 * sizeof(union cx25840_ir_fifo_rec); 675 if (n == 0) { 676 *num = 0; 677 return 0; 678 } 679 680 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, 681 &ir_state->rx_kfifo_lock); 682 683 n /= sizeof(union cx25840_ir_fifo_rec); 684 *num = n * sizeof(union cx25840_ir_fifo_rec); 685 686 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { 687 688 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { 689 /* Assume RTO was because of no IR light input */ 690 u = 0; 691 w = 1; 692 } else { 693 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; 694 if (invert) 695 u = u ? 0 : 1; 696 w = 0; 697 } 698 699 v = (unsigned) pulse_width_count_to_ns( 700 (u16) (p->hw_fifo_data & FIFO_RXTX), divider); 701 if (v > IR_MAX_DURATION) 702 v = IR_MAX_DURATION; 703 704 init_ir_raw_event(&p->ir_core_data); 705 p->ir_core_data.pulse = u; 706 p->ir_core_data.duration = v; 707 p->ir_core_data.timeout = w; 708 709 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n", 710 v, u ? "mark" : "space", w ? "(timed out)" : ""); 711 if (w) 712 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); 713 } 714 return 0; 715 } 716 717 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, 718 struct v4l2_subdev_ir_parameters *p) 719 { 720 struct cx25840_ir_state *ir_state = to_ir_state(sd); 721 722 if (ir_state == NULL) 723 return -ENODEV; 724 725 mutex_lock(&ir_state->rx_params_lock); 726 memcpy(p, &ir_state->rx_params, 727 sizeof(struct v4l2_subdev_ir_parameters)); 728 mutex_unlock(&ir_state->rx_params_lock); 729 return 0; 730 } 731 732 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) 733 { 734 struct cx25840_ir_state *ir_state = to_ir_state(sd); 735 struct i2c_client *c; 736 737 if (ir_state == NULL) 738 return -ENODEV; 739 740 c = ir_state->c; 741 mutex_lock(&ir_state->rx_params_lock); 742 743 /* Disable or slow down all IR Rx circuits and counters */ 744 irqenable_rx(sd, 0); 745 control_rx_enable(c, false); 746 control_rx_demodulation_enable(c, false); 747 control_rx_s_edge_detection(c, CNTRL_EDG_NONE); 748 filter_rx_s_min_width(c, 0); 749 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); 750 751 ir_state->rx_params.shutdown = true; 752 753 mutex_unlock(&ir_state->rx_params_lock); 754 return 0; 755 } 756 757 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, 758 struct v4l2_subdev_ir_parameters *p) 759 { 760 struct cx25840_ir_state *ir_state = to_ir_state(sd); 761 struct i2c_client *c; 762 struct v4l2_subdev_ir_parameters *o; 763 u16 rxclk_divider; 764 765 if (ir_state == NULL) 766 return -ENODEV; 767 768 if (p->shutdown) 769 return cx25840_ir_rx_shutdown(sd); 770 771 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 772 return -ENOSYS; 773 774 c = ir_state->c; 775 o = &ir_state->rx_params; 776 777 mutex_lock(&ir_state->rx_params_lock); 778 779 o->shutdown = p->shutdown; 780 781 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 782 o->mode = p->mode; 783 784 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); 785 o->bytes_per_data_element = p->bytes_per_data_element; 786 787 /* Before we tweak the hardware, we have to disable the receiver */ 788 irqenable_rx(sd, 0); 789 control_rx_enable(c, false); 790 791 control_rx_demodulation_enable(c, p->modulation); 792 o->modulation = p->modulation; 793 794 if (p->modulation) { 795 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, 796 &rxclk_divider); 797 798 o->carrier_freq = p->carrier_freq; 799 800 p->duty_cycle = 50; 801 o->duty_cycle = p->duty_cycle; 802 803 control_rx_s_carrier_window(c, p->carrier_freq, 804 &p->carrier_range_lower, 805 &p->carrier_range_upper); 806 o->carrier_range_lower = p->carrier_range_lower; 807 o->carrier_range_upper = p->carrier_range_upper; 808 809 p->max_pulse_width = 810 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); 811 } else { 812 p->max_pulse_width = 813 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, 814 &rxclk_divider); 815 } 816 o->max_pulse_width = p->max_pulse_width; 817 atomic_set(&ir_state->rxclk_divider, rxclk_divider); 818 819 p->noise_filter_min_width = 820 filter_rx_s_min_width(c, p->noise_filter_min_width); 821 o->noise_filter_min_width = p->noise_filter_min_width; 822 823 p->resolution = clock_divider_to_resolution(rxclk_divider); 824 o->resolution = p->resolution; 825 826 /* FIXME - make this dependent on resolution for better performance */ 827 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); 828 829 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); 830 831 o->invert_level = p->invert_level; 832 atomic_set(&ir_state->rx_invert, p->invert_level); 833 834 o->interrupt_enable = p->interrupt_enable; 835 o->enable = p->enable; 836 if (p->enable) { 837 unsigned long flags; 838 839 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); 840 kfifo_reset(&ir_state->rx_kfifo); 841 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); 842 if (p->interrupt_enable) 843 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); 844 control_rx_enable(c, p->enable); 845 } 846 847 mutex_unlock(&ir_state->rx_params_lock); 848 return 0; 849 } 850 851 /* Transmitter */ 852 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, 853 ssize_t *num) 854 { 855 struct cx25840_ir_state *ir_state = to_ir_state(sd); 856 857 if (ir_state == NULL) 858 return -ENODEV; 859 860 #if 0 861 /* 862 * FIXME - the code below is an incomplete and untested sketch of what 863 * may need to be done. The critical part is to get 4 (or 8) pulses 864 * from the tx_kfifo, or converted from ns to the proper units from the 865 * input, and push them off to the hardware Tx FIFO right away, if the 866 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in 867 * a less critical timeframe. Also watch out for overruning the 868 * tx_kfifo - don't let it happen and let the caller know not all his 869 * pulses were written. 870 */ 871 u32 *ns_pulse = (u32 *) buf; 872 unsigned int n; 873 u32 fifo_pulse[FIFO_TX_DEPTH]; 874 u32 mark; 875 876 /* Compute how much we can fit in the tx kfifo */ 877 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); 878 n = min(n, (unsigned int) count); 879 n /= sizeof(u32); 880 881 /* FIXME - turn on Tx Fifo service interrupt 882 * check hardware fifo level, and other stuff 883 */ 884 for (i = 0; i < n; ) { 885 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { 886 mark = ns_pulse[i] & LEVEL_MASK; 887 fifo_pulse[j] = ns_to_pulse_width_count( 888 ns_pulse[i] & 889 ~LEVEL_MASK, 890 ir_state->txclk_divider); 891 if (mark) 892 fifo_pulse[j] &= FIFO_RXTX_LVL; 893 i++; 894 } 895 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, 896 j * sizeof(u32)); 897 } 898 *num = n * sizeof(u32); 899 #else 900 /* For now enable the Tx FIFO Service interrupt & pretend we did work */ 901 irqenable_tx(sd, IRQEN_TSE); 902 *num = count; 903 #endif 904 return 0; 905 } 906 907 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, 908 struct v4l2_subdev_ir_parameters *p) 909 { 910 struct cx25840_ir_state *ir_state = to_ir_state(sd); 911 912 if (ir_state == NULL) 913 return -ENODEV; 914 915 mutex_lock(&ir_state->tx_params_lock); 916 memcpy(p, &ir_state->tx_params, 917 sizeof(struct v4l2_subdev_ir_parameters)); 918 mutex_unlock(&ir_state->tx_params_lock); 919 return 0; 920 } 921 922 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) 923 { 924 struct cx25840_ir_state *ir_state = to_ir_state(sd); 925 struct i2c_client *c; 926 927 if (ir_state == NULL) 928 return -ENODEV; 929 930 c = ir_state->c; 931 mutex_lock(&ir_state->tx_params_lock); 932 933 /* Disable or slow down all IR Tx circuits and counters */ 934 irqenable_tx(sd, 0); 935 control_tx_enable(c, false); 936 control_tx_modulation_enable(c, false); 937 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); 938 939 ir_state->tx_params.shutdown = true; 940 941 mutex_unlock(&ir_state->tx_params_lock); 942 return 0; 943 } 944 945 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, 946 struct v4l2_subdev_ir_parameters *p) 947 { 948 struct cx25840_ir_state *ir_state = to_ir_state(sd); 949 struct i2c_client *c; 950 struct v4l2_subdev_ir_parameters *o; 951 u16 txclk_divider; 952 953 if (ir_state == NULL) 954 return -ENODEV; 955 956 if (p->shutdown) 957 return cx25840_ir_tx_shutdown(sd); 958 959 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 960 return -ENOSYS; 961 962 c = ir_state->c; 963 o = &ir_state->tx_params; 964 mutex_lock(&ir_state->tx_params_lock); 965 966 o->shutdown = p->shutdown; 967 968 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 969 o->mode = p->mode; 970 971 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); 972 o->bytes_per_data_element = p->bytes_per_data_element; 973 974 /* Before we tweak the hardware, we have to disable the transmitter */ 975 irqenable_tx(sd, 0); 976 control_tx_enable(c, false); 977 978 control_tx_modulation_enable(c, p->modulation); 979 o->modulation = p->modulation; 980 981 if (p->modulation) { 982 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, 983 &txclk_divider); 984 o->carrier_freq = p->carrier_freq; 985 986 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); 987 o->duty_cycle = p->duty_cycle; 988 989 p->max_pulse_width = 990 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); 991 } else { 992 p->max_pulse_width = 993 txclk_tx_s_max_pulse_width(c, p->max_pulse_width, 994 &txclk_divider); 995 } 996 o->max_pulse_width = p->max_pulse_width; 997 atomic_set(&ir_state->txclk_divider, txclk_divider); 998 999 p->resolution = clock_divider_to_resolution(txclk_divider); 1000 o->resolution = p->resolution; 1001 1002 /* FIXME - make this dependent on resolution for better performance */ 1003 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); 1004 1005 control_tx_polarity_invert(c, p->invert_carrier_sense); 1006 o->invert_carrier_sense = p->invert_carrier_sense; 1007 1008 /* 1009 * FIXME: we don't have hardware help for IO pin level inversion 1010 * here like we have on the CX23888. 1011 * Act on this with some mix of logical inversion of data levels, 1012 * carrier polarity, and carrier duty cycle. 1013 */ 1014 o->invert_level = p->invert_level; 1015 1016 o->interrupt_enable = p->interrupt_enable; 1017 o->enable = p->enable; 1018 if (p->enable) { 1019 /* reset tx_fifo here */ 1020 if (p->interrupt_enable) 1021 irqenable_tx(sd, IRQEN_TSE); 1022 control_tx_enable(c, p->enable); 1023 } 1024 1025 mutex_unlock(&ir_state->tx_params_lock); 1026 return 0; 1027 } 1028 1029 1030 /* 1031 * V4L2 Subdevice Core Ops support 1032 */ 1033 int cx25840_ir_log_status(struct v4l2_subdev *sd) 1034 { 1035 struct cx25840_state *state = to_state(sd); 1036 struct i2c_client *c = state->c; 1037 char *s; 1038 int i, j; 1039 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; 1040 1041 /* The CX23888 chip doesn't have an IR controller on the A/V core */ 1042 if (is_cx23888(state)) 1043 return 0; 1044 1045 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); 1046 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; 1047 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; 1048 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; 1049 stats = cx25840_read4(c, CX25840_IR_STATS_REG); 1050 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); 1051 if (is_cx23885(state) || is_cx23887(state)) 1052 irqen ^= IRQEN_MSK; 1053 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; 1054 1055 v4l2_info(sd, "IR Receiver:\n"); 1056 v4l2_info(sd, "\tEnabled: %s\n", 1057 cntrl & CNTRL_RXE ? "yes" : "no"); 1058 v4l2_info(sd, "\tDemodulation from a carrier: %s\n", 1059 cntrl & CNTRL_DMD ? "enabled" : "disabled"); 1060 v4l2_info(sd, "\tFIFO: %s\n", 1061 cntrl & CNTRL_RFE ? "enabled" : "disabled"); 1062 switch (cntrl & CNTRL_EDG) { 1063 case CNTRL_EDG_NONE: 1064 s = "disabled"; 1065 break; 1066 case CNTRL_EDG_FALL: 1067 s = "falling edge"; 1068 break; 1069 case CNTRL_EDG_RISE: 1070 s = "rising edge"; 1071 break; 1072 case CNTRL_EDG_BOTH: 1073 s = "rising & falling edges"; 1074 break; 1075 default: 1076 s = "??? edge"; 1077 break; 1078 } 1079 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); 1080 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", 1081 cntrl & CNTRL_R ? "not loaded" : "overflow marker"); 1082 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1083 cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); 1084 v4l2_info(sd, "\tLoopback mode: %s\n", 1085 cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); 1086 if (cntrl & CNTRL_DMD) { 1087 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", 1088 clock_divider_to_carrier_freq(rxclk)); 1089 switch (cntrl & CNTRL_WIN) { 1090 case CNTRL_WIN_3_3: 1091 i = 3; 1092 j = 3; 1093 break; 1094 case CNTRL_WIN_4_3: 1095 i = 4; 1096 j = 3; 1097 break; 1098 case CNTRL_WIN_3_4: 1099 i = 3; 1100 j = 4; 1101 break; 1102 case CNTRL_WIN_4_4: 1103 i = 4; 1104 j = 4; 1105 break; 1106 default: 1107 i = 0; 1108 j = 0; 1109 break; 1110 } 1111 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n", 1112 i, j, 1113 clock_divider_to_freq(rxclk, 16 + j), 1114 clock_divider_to_freq(rxclk, 16 - i)); 1115 } 1116 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", 1117 pulse_width_count_to_us(FIFO_RXTX, rxclk), 1118 pulse_width_count_to_ns(FIFO_RXTX, rxclk)); 1119 v4l2_info(sd, "\tLow pass filter: %s\n", 1120 filtr ? "enabled" : "disabled"); 1121 if (filtr) 1122 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n", 1123 lpf_count_to_us(filtr), 1124 lpf_count_to_ns(filtr)); 1125 v4l2_info(sd, "\tPulse width timer timed-out: %s\n", 1126 stats & STATS_RTO ? "yes" : "no"); 1127 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", 1128 irqen & IRQEN_RTE ? "enabled" : "disabled"); 1129 v4l2_info(sd, "\tFIFO overrun: %s\n", 1130 stats & STATS_ROR ? "yes" : "no"); 1131 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", 1132 irqen & IRQEN_ROE ? "enabled" : "disabled"); 1133 v4l2_info(sd, "\tBusy: %s\n", 1134 stats & STATS_RBY ? "yes" : "no"); 1135 v4l2_info(sd, "\tFIFO service requested: %s\n", 1136 stats & STATS_RSR ? "yes" : "no"); 1137 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1138 irqen & IRQEN_RSE ? "enabled" : "disabled"); 1139 1140 v4l2_info(sd, "IR Transmitter:\n"); 1141 v4l2_info(sd, "\tEnabled: %s\n", 1142 cntrl & CNTRL_TXE ? "yes" : "no"); 1143 v4l2_info(sd, "\tModulation onto a carrier: %s\n", 1144 cntrl & CNTRL_MOD ? "enabled" : "disabled"); 1145 v4l2_info(sd, "\tFIFO: %s\n", 1146 cntrl & CNTRL_TFE ? "enabled" : "disabled"); 1147 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1148 cntrl & CNTRL_TIC ? "not empty" : "half full or less"); 1149 v4l2_info(sd, "\tCarrier polarity: %s\n", 1150 cntrl & CNTRL_CPL ? "space:burst mark:noburst" 1151 : "space:noburst mark:burst"); 1152 if (cntrl & CNTRL_MOD) { 1153 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", 1154 clock_divider_to_carrier_freq(txclk)); 1155 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", 1156 cduty + 1); 1157 } 1158 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", 1159 pulse_width_count_to_us(FIFO_RXTX, txclk), 1160 pulse_width_count_to_ns(FIFO_RXTX, txclk)); 1161 v4l2_info(sd, "\tBusy: %s\n", 1162 stats & STATS_TBY ? "yes" : "no"); 1163 v4l2_info(sd, "\tFIFO service requested: %s\n", 1164 stats & STATS_TSR ? "yes" : "no"); 1165 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1166 irqen & IRQEN_TSE ? "enabled" : "disabled"); 1167 1168 return 0; 1169 } 1170 1171 1172 const struct v4l2_subdev_ir_ops cx25840_ir_ops = { 1173 .rx_read = cx25840_ir_rx_read, 1174 .rx_g_parameters = cx25840_ir_rx_g_parameters, 1175 .rx_s_parameters = cx25840_ir_rx_s_parameters, 1176 1177 .tx_write = cx25840_ir_tx_write, 1178 .tx_g_parameters = cx25840_ir_tx_g_parameters, 1179 .tx_s_parameters = cx25840_ir_tx_s_parameters, 1180 }; 1181 1182 1183 static const struct v4l2_subdev_ir_parameters default_rx_params = { 1184 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), 1185 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1186 1187 .enable = false, 1188 .interrupt_enable = false, 1189 .shutdown = true, 1190 1191 .modulation = true, 1192 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ 1193 1194 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ 1195 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ 1196 .noise_filter_min_width = 333333, /* ns */ 1197 .carrier_range_lower = 35000, 1198 .carrier_range_upper = 37000, 1199 .invert_level = false, 1200 }; 1201 1202 static const struct v4l2_subdev_ir_parameters default_tx_params = { 1203 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), 1204 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1205 1206 .enable = false, 1207 .interrupt_enable = false, 1208 .shutdown = true, 1209 1210 .modulation = true, 1211 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ 1212 .duty_cycle = 25, /* 25 % - RC-5 carrier */ 1213 .invert_level = false, 1214 .invert_carrier_sense = false, 1215 }; 1216 1217 int cx25840_ir_probe(struct v4l2_subdev *sd) 1218 { 1219 struct cx25840_state *state = to_state(sd); 1220 struct cx25840_ir_state *ir_state; 1221 struct v4l2_subdev_ir_parameters default_params; 1222 1223 /* Only init the IR controller for the CX2388[57] AV Core for now */ 1224 if (!(is_cx23885(state) || is_cx23887(state))) 1225 return 0; 1226 1227 ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL); 1228 if (ir_state == NULL) 1229 return -ENOMEM; 1230 1231 spin_lock_init(&ir_state->rx_kfifo_lock); 1232 if (kfifo_alloc(&ir_state->rx_kfifo, 1233 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) 1234 return -ENOMEM; 1235 1236 ir_state->c = state->c; 1237 state->ir_state = ir_state; 1238 1239 /* Ensure no interrupts arrive yet */ 1240 if (is_cx23885(state) || is_cx23887(state)) 1241 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); 1242 else 1243 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); 1244 1245 mutex_init(&ir_state->rx_params_lock); 1246 default_params = default_rx_params; 1247 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); 1248 1249 mutex_init(&ir_state->tx_params_lock); 1250 default_params = default_tx_params; 1251 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); 1252 1253 return 0; 1254 } 1255 1256 int cx25840_ir_remove(struct v4l2_subdev *sd) 1257 { 1258 struct cx25840_state *state = to_state(sd); 1259 struct cx25840_ir_state *ir_state = to_ir_state(sd); 1260 1261 if (ir_state == NULL) 1262 return -ENODEV; 1263 1264 cx25840_ir_rx_shutdown(sd); 1265 cx25840_ir_tx_shutdown(sd); 1266 1267 kfifo_free(&ir_state->rx_kfifo); 1268 state->ir_state = NULL; 1269 return 0; 1270 } 1271