1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores 4 * 5 * Integrated Consumer Infrared Controller 6 * 7 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/kfifo.h> 12 #include <linux/module.h> 13 #include <media/drv-intf/cx25840.h> 14 #include <media/rc-core.h> 15 16 #include "cx25840-core.h" 17 18 static unsigned int ir_debug; 19 module_param(ir_debug, int, 0644); 20 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); 21 22 #define CX25840_IR_REG_BASE 0x200 23 24 #define CX25840_IR_CNTRL_REG 0x200 25 #define CNTRL_WIN_3_3 0x00000000 26 #define CNTRL_WIN_4_3 0x00000001 27 #define CNTRL_WIN_3_4 0x00000002 28 #define CNTRL_WIN_4_4 0x00000003 29 #define CNTRL_WIN 0x00000003 30 #define CNTRL_EDG_NONE 0x00000000 31 #define CNTRL_EDG_FALL 0x00000004 32 #define CNTRL_EDG_RISE 0x00000008 33 #define CNTRL_EDG_BOTH 0x0000000C 34 #define CNTRL_EDG 0x0000000C 35 #define CNTRL_DMD 0x00000010 36 #define CNTRL_MOD 0x00000020 37 #define CNTRL_RFE 0x00000040 38 #define CNTRL_TFE 0x00000080 39 #define CNTRL_RXE 0x00000100 40 #define CNTRL_TXE 0x00000200 41 #define CNTRL_RIC 0x00000400 42 #define CNTRL_TIC 0x00000800 43 #define CNTRL_CPL 0x00001000 44 #define CNTRL_LBM 0x00002000 45 #define CNTRL_R 0x00004000 46 47 #define CX25840_IR_TXCLK_REG 0x204 48 #define TXCLK_TCD 0x0000FFFF 49 50 #define CX25840_IR_RXCLK_REG 0x208 51 #define RXCLK_RCD 0x0000FFFF 52 53 #define CX25840_IR_CDUTY_REG 0x20C 54 #define CDUTY_CDC 0x0000000F 55 56 #define CX25840_IR_STATS_REG 0x210 57 #define STATS_RTO 0x00000001 58 #define STATS_ROR 0x00000002 59 #define STATS_RBY 0x00000004 60 #define STATS_TBY 0x00000008 61 #define STATS_RSR 0x00000010 62 #define STATS_TSR 0x00000020 63 64 #define CX25840_IR_IRQEN_REG 0x214 65 #define IRQEN_RTE 0x00000001 66 #define IRQEN_ROE 0x00000002 67 #define IRQEN_RSE 0x00000010 68 #define IRQEN_TSE 0x00000020 69 #define IRQEN_MSK 0x00000033 70 71 #define CX25840_IR_FILTR_REG 0x218 72 #define FILTR_LPF 0x0000FFFF 73 74 #define CX25840_IR_FIFO_REG 0x23C 75 #define FIFO_RXTX 0x0000FFFF 76 #define FIFO_RXTX_LVL 0x00010000 77 #define FIFO_RXTX_RTO 0x0001FFFF 78 #define FIFO_RX_NDV 0x00020000 79 #define FIFO_RX_DEPTH 8 80 #define FIFO_TX_DEPTH 8 81 82 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ 83 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) 84 85 /* 86 * We use this union internally for convenience, but callers to tx_write 87 * and rx_read will be expecting records of type struct ir_raw_event. 88 * Always ensure the size of this union is dictated by struct ir_raw_event. 89 */ 90 union cx25840_ir_fifo_rec { 91 u32 hw_fifo_data; 92 struct ir_raw_event ir_core_data; 93 }; 94 95 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) 96 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) 97 98 struct cx25840_ir_state { 99 struct i2c_client *c; 100 101 struct v4l2_subdev_ir_parameters rx_params; 102 struct mutex rx_params_lock; /* protects Rx parameter settings cache */ 103 atomic_t rxclk_divider; 104 atomic_t rx_invert; 105 106 struct kfifo rx_kfifo; 107 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ 108 109 struct v4l2_subdev_ir_parameters tx_params; 110 struct mutex tx_params_lock; /* protects Tx parameter settings cache */ 111 atomic_t txclk_divider; 112 }; 113 114 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) 115 { 116 struct cx25840_state *state = to_state(sd); 117 return state ? state->ir_state : NULL; 118 } 119 120 121 /* 122 * Rx and Tx Clock Divider register computations 123 * 124 * Note the largest clock divider value of 0xffff corresponds to: 125 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns 126 * which fits in 21 bits, so we'll use unsigned int for time arguments. 127 */ 128 static inline u16 count_to_clock_divider(unsigned int d) 129 { 130 if (d > RXCLK_RCD + 1) 131 d = RXCLK_RCD; 132 else if (d < 2) 133 d = 1; 134 else 135 d--; 136 return (u16) d; 137 } 138 139 static inline u16 carrier_freq_to_clock_divider(unsigned int freq) 140 { 141 return count_to_clock_divider( 142 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); 143 } 144 145 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) 146 { 147 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); 148 } 149 150 static inline unsigned int clock_divider_to_freq(unsigned int divider, 151 unsigned int rollovers) 152 { 153 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, 154 (divider + 1) * rollovers); 155 } 156 157 /* 158 * Low Pass Filter register calculations 159 * 160 * Note the largest count value of 0xffff corresponds to: 161 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns 162 * which fits in 21 bits, so we'll use unsigned int for time arguments. 163 */ 164 static inline u16 count_to_lpf_count(unsigned int d) 165 { 166 if (d > FILTR_LPF) 167 d = FILTR_LPF; 168 else if (d < 4) 169 d = 0; 170 return (u16) d; 171 } 172 173 static inline u16 ns_to_lpf_count(unsigned int ns) 174 { 175 return count_to_lpf_count( 176 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); 177 } 178 179 static inline unsigned int lpf_count_to_ns(unsigned int count) 180 { 181 /* Duration of the Low Pass Filter rejection window in ns */ 182 return DIV_ROUND_CLOSEST(count * 1000, 183 CX25840_IR_REFCLK_FREQ / 1000000); 184 } 185 186 static inline unsigned int lpf_count_to_us(unsigned int count) 187 { 188 /* Duration of the Low Pass Filter rejection window in us */ 189 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); 190 } 191 192 /* 193 * FIFO register pulse width count computations 194 */ 195 static u32 clock_divider_to_resolution(u16 divider) 196 { 197 /* 198 * Resolution is the duration of 1 tick of the readable portion of 199 * of the pulse width counter as read from the FIFO. The two lsb's are 200 * not readable, hence the << 2. This function returns ns. 201 */ 202 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, 203 CX25840_IR_REFCLK_FREQ / 1000000); 204 } 205 206 static u64 pulse_width_count_to_ns(u16 count, u16 divider) 207 { 208 u64 n; 209 u32 rem; 210 211 /* 212 * The 2 lsb's of the pulse width timer count are not readable, hence 213 * the (count << 2) | 0x3 214 */ 215 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ 216 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ 217 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) 218 n++; 219 return n; 220 } 221 222 #if 0 223 /* Keep as we will need this for Transmit functionality */ 224 static u16 ns_to_pulse_width_count(u32 ns, u16 divider) 225 { 226 u64 n; 227 u32 d; 228 u32 rem; 229 230 /* 231 * The 2 lsb's of the pulse width timer count are not accessible, hence 232 * the (1 << 2) 233 */ 234 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ 235 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ 236 rem = do_div(n, d); 237 if (rem >= d / 2) 238 n++; 239 240 if (n > FIFO_RXTX) 241 n = FIFO_RXTX; 242 else if (n == 0) 243 n = 1; 244 return (u16) n; 245 } 246 247 #endif 248 static unsigned int pulse_width_count_to_us(u16 count, u16 divider) 249 { 250 u64 n; 251 u32 rem; 252 253 /* 254 * The 2 lsb's of the pulse width timer count are not readable, hence 255 * the (count << 2) | 0x3 256 */ 257 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ 258 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ 259 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) 260 n++; 261 return (unsigned int) n; 262 } 263 264 /* 265 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts 266 * 267 * The total pulse clock count is an 18 bit pulse width timer count as the most 268 * significant part and (up to) 16 bit clock divider count as a modulus. 269 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse 270 * width timer count's least significant bit. 271 */ 272 static u64 ns_to_pulse_clocks(u32 ns) 273 { 274 u64 clocks; 275 u32 rem; 276 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ 277 rem = do_div(clocks, 1000); /* /1000 = cycles */ 278 if (rem >= 1000 / 2) 279 clocks++; 280 return clocks; 281 } 282 283 static u16 pulse_clocks_to_clock_divider(u64 count) 284 { 285 do_div(count, (FIFO_RXTX << 2) | 0x3); 286 287 /* net result needs to be rounded down and decremented by 1 */ 288 if (count > RXCLK_RCD + 1) 289 count = RXCLK_RCD; 290 else if (count < 2) 291 count = 1; 292 else 293 count--; 294 return (u16) count; 295 } 296 297 /* 298 * IR Control Register helpers 299 */ 300 enum tx_fifo_watermark { 301 TX_FIFO_HALF_EMPTY = 0, 302 TX_FIFO_EMPTY = CNTRL_TIC, 303 }; 304 305 enum rx_fifo_watermark { 306 RX_FIFO_HALF_FULL = 0, 307 RX_FIFO_NOT_EMPTY = CNTRL_RIC, 308 }; 309 310 static inline void control_tx_irq_watermark(struct i2c_client *c, 311 enum tx_fifo_watermark level) 312 { 313 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); 314 } 315 316 static inline void control_rx_irq_watermark(struct i2c_client *c, 317 enum rx_fifo_watermark level) 318 { 319 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); 320 } 321 322 static inline void control_tx_enable(struct i2c_client *c, bool enable) 323 { 324 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), 325 enable ? (CNTRL_TXE | CNTRL_TFE) : 0); 326 } 327 328 static inline void control_rx_enable(struct i2c_client *c, bool enable) 329 { 330 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), 331 enable ? (CNTRL_RXE | CNTRL_RFE) : 0); 332 } 333 334 static inline void control_tx_modulation_enable(struct i2c_client *c, 335 bool enable) 336 { 337 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, 338 enable ? CNTRL_MOD : 0); 339 } 340 341 static inline void control_rx_demodulation_enable(struct i2c_client *c, 342 bool enable) 343 { 344 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, 345 enable ? CNTRL_DMD : 0); 346 } 347 348 static inline void control_rx_s_edge_detection(struct i2c_client *c, 349 u32 edge_types) 350 { 351 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, 352 edge_types & CNTRL_EDG_BOTH); 353 } 354 355 static void control_rx_s_carrier_window(struct i2c_client *c, 356 unsigned int carrier, 357 unsigned int *carrier_range_low, 358 unsigned int *carrier_range_high) 359 { 360 u32 v; 361 unsigned int c16 = carrier * 16; 362 363 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { 364 v = CNTRL_WIN_3_4; 365 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); 366 } else { 367 v = CNTRL_WIN_3_3; 368 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); 369 } 370 371 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { 372 v |= CNTRL_WIN_4_3; 373 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); 374 } else { 375 v |= CNTRL_WIN_3_3; 376 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); 377 } 378 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); 379 } 380 381 static inline void control_tx_polarity_invert(struct i2c_client *c, 382 bool invert) 383 { 384 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, 385 invert ? CNTRL_CPL : 0); 386 } 387 388 /* 389 * IR Rx & Tx Clock Register helpers 390 */ 391 static unsigned int txclk_tx_s_carrier(struct i2c_client *c, 392 unsigned int freq, 393 u16 *divider) 394 { 395 *divider = carrier_freq_to_clock_divider(freq); 396 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); 397 return clock_divider_to_carrier_freq(*divider); 398 } 399 400 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, 401 unsigned int freq, 402 u16 *divider) 403 { 404 *divider = carrier_freq_to_clock_divider(freq); 405 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); 406 return clock_divider_to_carrier_freq(*divider); 407 } 408 409 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, 410 u16 *divider) 411 { 412 u64 pulse_clocks; 413 414 if (ns > IR_MAX_DURATION) 415 ns = IR_MAX_DURATION; 416 pulse_clocks = ns_to_pulse_clocks(ns); 417 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 418 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); 419 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 420 } 421 422 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, 423 u16 *divider) 424 { 425 u64 pulse_clocks; 426 427 if (ns > IR_MAX_DURATION) 428 ns = IR_MAX_DURATION; 429 pulse_clocks = ns_to_pulse_clocks(ns); 430 *divider = pulse_clocks_to_clock_divider(pulse_clocks); 431 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); 432 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); 433 } 434 435 /* 436 * IR Tx Carrier Duty Cycle register helpers 437 */ 438 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, 439 unsigned int duty_cycle) 440 { 441 u32 n; 442 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ 443 if (n != 0) 444 n--; 445 if (n > 15) 446 n = 15; 447 cx25840_write4(c, CX25840_IR_CDUTY_REG, n); 448 return DIV_ROUND_CLOSEST((n + 1) * 100, 16); 449 } 450 451 /* 452 * IR Filter Register helpers 453 */ 454 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) 455 { 456 u32 count = ns_to_lpf_count(min_width_ns); 457 cx25840_write4(c, CX25840_IR_FILTR_REG, count); 458 return lpf_count_to_ns(count); 459 } 460 461 /* 462 * IR IRQ Enable Register helpers 463 */ 464 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) 465 { 466 struct cx25840_state *state = to_state(sd); 467 468 if (is_cx23885(state) || is_cx23887(state)) 469 mask ^= IRQEN_MSK; 470 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); 471 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, 472 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); 473 } 474 475 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) 476 { 477 struct cx25840_state *state = to_state(sd); 478 479 if (is_cx23885(state) || is_cx23887(state)) 480 mask ^= IRQEN_MSK; 481 mask &= IRQEN_TSE; 482 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); 483 } 484 485 /* 486 * V4L2 Subdevice IR Ops 487 */ 488 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) 489 { 490 struct cx25840_state *state = to_state(sd); 491 struct cx25840_ir_state *ir_state = to_ir_state(sd); 492 struct i2c_client *c = NULL; 493 unsigned long flags; 494 495 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; 496 unsigned int i, j, k; 497 u32 events, v; 498 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; 499 u32 cntrl, irqen, stats; 500 501 *handled = false; 502 if (ir_state == NULL) 503 return -ENODEV; 504 505 c = ir_state->c; 506 507 /* Only support the IR controller for the CX2388[57] AV Core for now */ 508 if (!(is_cx23885(state) || is_cx23887(state))) 509 return -ENODEV; 510 511 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); 512 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); 513 if (is_cx23885(state) || is_cx23887(state)) 514 irqen ^= IRQEN_MSK; 515 stats = cx25840_read4(c, CX25840_IR_STATS_REG); 516 517 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ 518 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ 519 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ 520 ror = stats & STATS_ROR; /* Rx FIFO Over Run */ 521 522 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ 523 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */ 524 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ 525 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ 526 527 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", 528 tsr ? "tsr" : " ", rsr ? "rsr" : " ", 529 rto ? "rto" : " ", ror ? "ror" : " ", 530 stats & STATS_TBY ? "tby" : " ", 531 stats & STATS_RBY ? "rby" : " "); 532 533 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", 534 tse ? "tse" : " ", rse ? "rse" : " ", 535 rte ? "rte" : " ", roe ? "roe" : " "); 536 537 /* 538 * Transmitter interrupt service 539 */ 540 if (tse && tsr) { 541 /* 542 * TODO: 543 * Check the watermark threshold setting 544 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo 545 * Push the data to the hardware FIFO. 546 * If there was nothing more to send in the tx_kfifo, disable 547 * the TSR IRQ and notify the v4l2_device. 548 * If there was something in the tx_kfifo, check the tx_kfifo 549 * level and notify the v4l2_device, if it is low. 550 */ 551 /* For now, inhibit TSR interrupt until Tx is implemented */ 552 irqenable_tx(sd, 0); 553 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; 554 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); 555 *handled = true; 556 } 557 558 /* 559 * Receiver interrupt service 560 */ 561 kror = 0; 562 if ((rse && rsr) || (rte && rto)) { 563 /* 564 * Receive data on RSR to clear the STATS_RSR. 565 * Receive data on RTO, since we may not have yet hit the RSR 566 * watermark when we receive the RTO. 567 */ 568 for (i = 0, v = FIFO_RX_NDV; 569 (v & FIFO_RX_NDV) && !kror; i = 0) { 570 for (j = 0; 571 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { 572 v = cx25840_read4(c, CX25840_IR_FIFO_REG); 573 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; 574 i++; 575 } 576 if (i == 0) 577 break; 578 j = i * sizeof(union cx25840_ir_fifo_rec); 579 k = kfifo_in_locked(&ir_state->rx_kfifo, 580 (unsigned char *) rx_data, j, 581 &ir_state->rx_kfifo_lock); 582 if (k != j) 583 kror++; /* rx_kfifo over run */ 584 } 585 *handled = true; 586 } 587 588 events = 0; 589 v = 0; 590 if (kror) { 591 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; 592 v4l2_err(sd, "IR receiver software FIFO overrun\n"); 593 } 594 if (roe && ror) { 595 /* 596 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear 597 * the Rx FIFO Over Run status (STATS_ROR) 598 */ 599 v |= CNTRL_RFE; 600 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; 601 v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); 602 } 603 if (rte && rto) { 604 /* 605 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear 606 * the Rx Pulse Width Timer Time Out (STATS_RTO) 607 */ 608 v |= CNTRL_RXE; 609 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; 610 } 611 if (v) { 612 /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */ 613 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); 614 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); 615 *handled = true; 616 } 617 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); 618 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) 619 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; 620 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); 621 622 if (events) 623 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); 624 return 0; 625 } 626 627 /* Receiver */ 628 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, 629 ssize_t *num) 630 { 631 struct cx25840_ir_state *ir_state = to_ir_state(sd); 632 bool invert; 633 u16 divider; 634 unsigned int i, n; 635 union cx25840_ir_fifo_rec *p; 636 unsigned u, v, w; 637 638 if (ir_state == NULL) 639 return -ENODEV; 640 641 invert = (bool) atomic_read(&ir_state->rx_invert); 642 divider = (u16) atomic_read(&ir_state->rxclk_divider); 643 644 n = count / sizeof(union cx25840_ir_fifo_rec) 645 * sizeof(union cx25840_ir_fifo_rec); 646 if (n == 0) { 647 *num = 0; 648 return 0; 649 } 650 651 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, 652 &ir_state->rx_kfifo_lock); 653 654 n /= sizeof(union cx25840_ir_fifo_rec); 655 *num = n * sizeof(union cx25840_ir_fifo_rec); 656 657 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { 658 659 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { 660 /* Assume RTO was because of no IR light input */ 661 u = 0; 662 w = 1; 663 } else { 664 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; 665 if (invert) 666 u = u ? 0 : 1; 667 w = 0; 668 } 669 670 v = (unsigned) pulse_width_count_to_ns( 671 (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000; 672 if (v > IR_MAX_DURATION) 673 v = IR_MAX_DURATION; 674 675 p->ir_core_data = (struct ir_raw_event) 676 { .pulse = u, .duration = v, .timeout = w }; 677 678 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n", 679 v, u ? "mark" : "space", w ? "(timed out)" : ""); 680 if (w) 681 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); 682 } 683 return 0; 684 } 685 686 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, 687 struct v4l2_subdev_ir_parameters *p) 688 { 689 struct cx25840_ir_state *ir_state = to_ir_state(sd); 690 691 if (ir_state == NULL) 692 return -ENODEV; 693 694 mutex_lock(&ir_state->rx_params_lock); 695 memcpy(p, &ir_state->rx_params, 696 sizeof(struct v4l2_subdev_ir_parameters)); 697 mutex_unlock(&ir_state->rx_params_lock); 698 return 0; 699 } 700 701 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) 702 { 703 struct cx25840_ir_state *ir_state = to_ir_state(sd); 704 struct i2c_client *c; 705 706 if (ir_state == NULL) 707 return -ENODEV; 708 709 c = ir_state->c; 710 mutex_lock(&ir_state->rx_params_lock); 711 712 /* Disable or slow down all IR Rx circuits and counters */ 713 irqenable_rx(sd, 0); 714 control_rx_enable(c, false); 715 control_rx_demodulation_enable(c, false); 716 control_rx_s_edge_detection(c, CNTRL_EDG_NONE); 717 filter_rx_s_min_width(c, 0); 718 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); 719 720 ir_state->rx_params.shutdown = true; 721 722 mutex_unlock(&ir_state->rx_params_lock); 723 return 0; 724 } 725 726 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, 727 struct v4l2_subdev_ir_parameters *p) 728 { 729 struct cx25840_ir_state *ir_state = to_ir_state(sd); 730 struct i2c_client *c; 731 struct v4l2_subdev_ir_parameters *o; 732 u16 rxclk_divider; 733 734 if (ir_state == NULL) 735 return -ENODEV; 736 737 if (p->shutdown) 738 return cx25840_ir_rx_shutdown(sd); 739 740 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 741 return -ENOSYS; 742 743 c = ir_state->c; 744 o = &ir_state->rx_params; 745 746 mutex_lock(&ir_state->rx_params_lock); 747 748 o->shutdown = p->shutdown; 749 750 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 751 o->mode = p->mode; 752 753 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); 754 o->bytes_per_data_element = p->bytes_per_data_element; 755 756 /* Before we tweak the hardware, we have to disable the receiver */ 757 irqenable_rx(sd, 0); 758 control_rx_enable(c, false); 759 760 control_rx_demodulation_enable(c, p->modulation); 761 o->modulation = p->modulation; 762 763 if (p->modulation) { 764 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, 765 &rxclk_divider); 766 767 o->carrier_freq = p->carrier_freq; 768 769 p->duty_cycle = 50; 770 o->duty_cycle = p->duty_cycle; 771 772 control_rx_s_carrier_window(c, p->carrier_freq, 773 &p->carrier_range_lower, 774 &p->carrier_range_upper); 775 o->carrier_range_lower = p->carrier_range_lower; 776 o->carrier_range_upper = p->carrier_range_upper; 777 778 p->max_pulse_width = 779 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); 780 } else { 781 p->max_pulse_width = 782 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, 783 &rxclk_divider); 784 } 785 o->max_pulse_width = p->max_pulse_width; 786 atomic_set(&ir_state->rxclk_divider, rxclk_divider); 787 788 p->noise_filter_min_width = 789 filter_rx_s_min_width(c, p->noise_filter_min_width); 790 o->noise_filter_min_width = p->noise_filter_min_width; 791 792 p->resolution = clock_divider_to_resolution(rxclk_divider); 793 o->resolution = p->resolution; 794 795 /* FIXME - make this dependent on resolution for better performance */ 796 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); 797 798 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); 799 800 o->invert_level = p->invert_level; 801 atomic_set(&ir_state->rx_invert, p->invert_level); 802 803 o->interrupt_enable = p->interrupt_enable; 804 o->enable = p->enable; 805 if (p->enable) { 806 unsigned long flags; 807 808 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); 809 kfifo_reset(&ir_state->rx_kfifo); 810 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); 811 if (p->interrupt_enable) 812 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); 813 control_rx_enable(c, p->enable); 814 } 815 816 mutex_unlock(&ir_state->rx_params_lock); 817 return 0; 818 } 819 820 /* Transmitter */ 821 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, 822 ssize_t *num) 823 { 824 struct cx25840_ir_state *ir_state = to_ir_state(sd); 825 826 if (ir_state == NULL) 827 return -ENODEV; 828 829 #if 0 830 /* 831 * FIXME - the code below is an incomplete and untested sketch of what 832 * may need to be done. The critical part is to get 4 (or 8) pulses 833 * from the tx_kfifo, or converted from ns to the proper units from the 834 * input, and push them off to the hardware Tx FIFO right away, if the 835 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in 836 * a less critical timeframe. Also watch out for overruning the 837 * tx_kfifo - don't let it happen and let the caller know not all his 838 * pulses were written. 839 */ 840 u32 *ns_pulse = (u32 *) buf; 841 unsigned int n; 842 u32 fifo_pulse[FIFO_TX_DEPTH]; 843 u32 mark; 844 845 /* Compute how much we can fit in the tx kfifo */ 846 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); 847 n = min(n, (unsigned int) count); 848 n /= sizeof(u32); 849 850 /* FIXME - turn on Tx Fifo service interrupt 851 * check hardware fifo level, and other stuff 852 */ 853 for (i = 0; i < n; ) { 854 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { 855 mark = ns_pulse[i] & LEVEL_MASK; 856 fifo_pulse[j] = ns_to_pulse_width_count( 857 ns_pulse[i] & 858 ~LEVEL_MASK, 859 ir_state->txclk_divider); 860 if (mark) 861 fifo_pulse[j] &= FIFO_RXTX_LVL; 862 i++; 863 } 864 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, 865 j * sizeof(u32)); 866 } 867 *num = n * sizeof(u32); 868 #else 869 /* For now enable the Tx FIFO Service interrupt & pretend we did work */ 870 irqenable_tx(sd, IRQEN_TSE); 871 *num = count; 872 #endif 873 return 0; 874 } 875 876 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, 877 struct v4l2_subdev_ir_parameters *p) 878 { 879 struct cx25840_ir_state *ir_state = to_ir_state(sd); 880 881 if (ir_state == NULL) 882 return -ENODEV; 883 884 mutex_lock(&ir_state->tx_params_lock); 885 memcpy(p, &ir_state->tx_params, 886 sizeof(struct v4l2_subdev_ir_parameters)); 887 mutex_unlock(&ir_state->tx_params_lock); 888 return 0; 889 } 890 891 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) 892 { 893 struct cx25840_ir_state *ir_state = to_ir_state(sd); 894 struct i2c_client *c; 895 896 if (ir_state == NULL) 897 return -ENODEV; 898 899 c = ir_state->c; 900 mutex_lock(&ir_state->tx_params_lock); 901 902 /* Disable or slow down all IR Tx circuits and counters */ 903 irqenable_tx(sd, 0); 904 control_tx_enable(c, false); 905 control_tx_modulation_enable(c, false); 906 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); 907 908 ir_state->tx_params.shutdown = true; 909 910 mutex_unlock(&ir_state->tx_params_lock); 911 return 0; 912 } 913 914 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, 915 struct v4l2_subdev_ir_parameters *p) 916 { 917 struct cx25840_ir_state *ir_state = to_ir_state(sd); 918 struct i2c_client *c; 919 struct v4l2_subdev_ir_parameters *o; 920 u16 txclk_divider; 921 922 if (ir_state == NULL) 923 return -ENODEV; 924 925 if (p->shutdown) 926 return cx25840_ir_tx_shutdown(sd); 927 928 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) 929 return -ENOSYS; 930 931 c = ir_state->c; 932 o = &ir_state->tx_params; 933 mutex_lock(&ir_state->tx_params_lock); 934 935 o->shutdown = p->shutdown; 936 937 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; 938 o->mode = p->mode; 939 940 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); 941 o->bytes_per_data_element = p->bytes_per_data_element; 942 943 /* Before we tweak the hardware, we have to disable the transmitter */ 944 irqenable_tx(sd, 0); 945 control_tx_enable(c, false); 946 947 control_tx_modulation_enable(c, p->modulation); 948 o->modulation = p->modulation; 949 950 if (p->modulation) { 951 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, 952 &txclk_divider); 953 o->carrier_freq = p->carrier_freq; 954 955 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); 956 o->duty_cycle = p->duty_cycle; 957 958 p->max_pulse_width = 959 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); 960 } else { 961 p->max_pulse_width = 962 txclk_tx_s_max_pulse_width(c, p->max_pulse_width, 963 &txclk_divider); 964 } 965 o->max_pulse_width = p->max_pulse_width; 966 atomic_set(&ir_state->txclk_divider, txclk_divider); 967 968 p->resolution = clock_divider_to_resolution(txclk_divider); 969 o->resolution = p->resolution; 970 971 /* FIXME - make this dependent on resolution for better performance */ 972 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); 973 974 control_tx_polarity_invert(c, p->invert_carrier_sense); 975 o->invert_carrier_sense = p->invert_carrier_sense; 976 977 /* 978 * FIXME: we don't have hardware help for IO pin level inversion 979 * here like we have on the CX23888. 980 * Act on this with some mix of logical inversion of data levels, 981 * carrier polarity, and carrier duty cycle. 982 */ 983 o->invert_level = p->invert_level; 984 985 o->interrupt_enable = p->interrupt_enable; 986 o->enable = p->enable; 987 if (p->enable) { 988 /* reset tx_fifo here */ 989 if (p->interrupt_enable) 990 irqenable_tx(sd, IRQEN_TSE); 991 control_tx_enable(c, p->enable); 992 } 993 994 mutex_unlock(&ir_state->tx_params_lock); 995 return 0; 996 } 997 998 999 /* 1000 * V4L2 Subdevice Core Ops support 1001 */ 1002 int cx25840_ir_log_status(struct v4l2_subdev *sd) 1003 { 1004 struct cx25840_state *state = to_state(sd); 1005 struct i2c_client *c = state->c; 1006 char *s; 1007 int i, j; 1008 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; 1009 1010 /* The CX23888 chip doesn't have an IR controller on the A/V core */ 1011 if (is_cx23888(state)) 1012 return 0; 1013 1014 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); 1015 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; 1016 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; 1017 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; 1018 stats = cx25840_read4(c, CX25840_IR_STATS_REG); 1019 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); 1020 if (is_cx23885(state) || is_cx23887(state)) 1021 irqen ^= IRQEN_MSK; 1022 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; 1023 1024 v4l2_info(sd, "IR Receiver:\n"); 1025 v4l2_info(sd, "\tEnabled: %s\n", 1026 cntrl & CNTRL_RXE ? "yes" : "no"); 1027 v4l2_info(sd, "\tDemodulation from a carrier: %s\n", 1028 cntrl & CNTRL_DMD ? "enabled" : "disabled"); 1029 v4l2_info(sd, "\tFIFO: %s\n", 1030 cntrl & CNTRL_RFE ? "enabled" : "disabled"); 1031 switch (cntrl & CNTRL_EDG) { 1032 case CNTRL_EDG_NONE: 1033 s = "disabled"; 1034 break; 1035 case CNTRL_EDG_FALL: 1036 s = "falling edge"; 1037 break; 1038 case CNTRL_EDG_RISE: 1039 s = "rising edge"; 1040 break; 1041 case CNTRL_EDG_BOTH: 1042 s = "rising & falling edges"; 1043 break; 1044 default: 1045 s = "??? edge"; 1046 break; 1047 } 1048 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); 1049 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", 1050 cntrl & CNTRL_R ? "not loaded" : "overflow marker"); 1051 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1052 cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); 1053 v4l2_info(sd, "\tLoopback mode: %s\n", 1054 cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); 1055 if (cntrl & CNTRL_DMD) { 1056 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", 1057 clock_divider_to_carrier_freq(rxclk)); 1058 switch (cntrl & CNTRL_WIN) { 1059 case CNTRL_WIN_3_3: 1060 i = 3; 1061 j = 3; 1062 break; 1063 case CNTRL_WIN_4_3: 1064 i = 4; 1065 j = 3; 1066 break; 1067 case CNTRL_WIN_3_4: 1068 i = 3; 1069 j = 4; 1070 break; 1071 case CNTRL_WIN_4_4: 1072 i = 4; 1073 j = 4; 1074 break; 1075 default: 1076 i = 0; 1077 j = 0; 1078 break; 1079 } 1080 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n", 1081 i, j, 1082 clock_divider_to_freq(rxclk, 16 + j), 1083 clock_divider_to_freq(rxclk, 16 - i)); 1084 } 1085 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", 1086 pulse_width_count_to_us(FIFO_RXTX, rxclk), 1087 pulse_width_count_to_ns(FIFO_RXTX, rxclk)); 1088 v4l2_info(sd, "\tLow pass filter: %s\n", 1089 filtr ? "enabled" : "disabled"); 1090 if (filtr) 1091 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n", 1092 lpf_count_to_us(filtr), 1093 lpf_count_to_ns(filtr)); 1094 v4l2_info(sd, "\tPulse width timer timed-out: %s\n", 1095 stats & STATS_RTO ? "yes" : "no"); 1096 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", 1097 irqen & IRQEN_RTE ? "enabled" : "disabled"); 1098 v4l2_info(sd, "\tFIFO overrun: %s\n", 1099 stats & STATS_ROR ? "yes" : "no"); 1100 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", 1101 irqen & IRQEN_ROE ? "enabled" : "disabled"); 1102 v4l2_info(sd, "\tBusy: %s\n", 1103 stats & STATS_RBY ? "yes" : "no"); 1104 v4l2_info(sd, "\tFIFO service requested: %s\n", 1105 stats & STATS_RSR ? "yes" : "no"); 1106 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1107 irqen & IRQEN_RSE ? "enabled" : "disabled"); 1108 1109 v4l2_info(sd, "IR Transmitter:\n"); 1110 v4l2_info(sd, "\tEnabled: %s\n", 1111 cntrl & CNTRL_TXE ? "yes" : "no"); 1112 v4l2_info(sd, "\tModulation onto a carrier: %s\n", 1113 cntrl & CNTRL_MOD ? "enabled" : "disabled"); 1114 v4l2_info(sd, "\tFIFO: %s\n", 1115 cntrl & CNTRL_TFE ? "enabled" : "disabled"); 1116 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", 1117 cntrl & CNTRL_TIC ? "not empty" : "half full or less"); 1118 v4l2_info(sd, "\tCarrier polarity: %s\n", 1119 cntrl & CNTRL_CPL ? "space:burst mark:noburst" 1120 : "space:noburst mark:burst"); 1121 if (cntrl & CNTRL_MOD) { 1122 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", 1123 clock_divider_to_carrier_freq(txclk)); 1124 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", 1125 cduty + 1); 1126 } 1127 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", 1128 pulse_width_count_to_us(FIFO_RXTX, txclk), 1129 pulse_width_count_to_ns(FIFO_RXTX, txclk)); 1130 v4l2_info(sd, "\tBusy: %s\n", 1131 stats & STATS_TBY ? "yes" : "no"); 1132 v4l2_info(sd, "\tFIFO service requested: %s\n", 1133 stats & STATS_TSR ? "yes" : "no"); 1134 v4l2_info(sd, "\tFIFO service request interrupt: %s\n", 1135 irqen & IRQEN_TSE ? "enabled" : "disabled"); 1136 1137 return 0; 1138 } 1139 1140 1141 const struct v4l2_subdev_ir_ops cx25840_ir_ops = { 1142 .rx_read = cx25840_ir_rx_read, 1143 .rx_g_parameters = cx25840_ir_rx_g_parameters, 1144 .rx_s_parameters = cx25840_ir_rx_s_parameters, 1145 1146 .tx_write = cx25840_ir_tx_write, 1147 .tx_g_parameters = cx25840_ir_tx_g_parameters, 1148 .tx_s_parameters = cx25840_ir_tx_s_parameters, 1149 }; 1150 1151 1152 static const struct v4l2_subdev_ir_parameters default_rx_params = { 1153 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), 1154 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1155 1156 .enable = false, 1157 .interrupt_enable = false, 1158 .shutdown = true, 1159 1160 .modulation = true, 1161 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ 1162 1163 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ 1164 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ 1165 .noise_filter_min_width = 333333, /* ns */ 1166 .carrier_range_lower = 35000, 1167 .carrier_range_upper = 37000, 1168 .invert_level = false, 1169 }; 1170 1171 static const struct v4l2_subdev_ir_parameters default_tx_params = { 1172 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), 1173 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, 1174 1175 .enable = false, 1176 .interrupt_enable = false, 1177 .shutdown = true, 1178 1179 .modulation = true, 1180 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ 1181 .duty_cycle = 25, /* 25 % - RC-5 carrier */ 1182 .invert_level = false, 1183 .invert_carrier_sense = false, 1184 }; 1185 1186 int cx25840_ir_probe(struct v4l2_subdev *sd) 1187 { 1188 struct cx25840_state *state = to_state(sd); 1189 struct cx25840_ir_state *ir_state; 1190 struct v4l2_subdev_ir_parameters default_params; 1191 1192 /* Only init the IR controller for the CX2388[57] AV Core for now */ 1193 if (!(is_cx23885(state) || is_cx23887(state))) 1194 return 0; 1195 1196 ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL); 1197 if (ir_state == NULL) 1198 return -ENOMEM; 1199 1200 spin_lock_init(&ir_state->rx_kfifo_lock); 1201 if (kfifo_alloc(&ir_state->rx_kfifo, 1202 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) 1203 return -ENOMEM; 1204 1205 ir_state->c = state->c; 1206 state->ir_state = ir_state; 1207 1208 /* Ensure no interrupts arrive yet */ 1209 if (is_cx23885(state) || is_cx23887(state)) 1210 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); 1211 else 1212 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); 1213 1214 mutex_init(&ir_state->rx_params_lock); 1215 default_params = default_rx_params; 1216 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); 1217 1218 mutex_init(&ir_state->tx_params_lock); 1219 default_params = default_tx_params; 1220 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); 1221 1222 return 0; 1223 } 1224 1225 int cx25840_ir_remove(struct v4l2_subdev *sd) 1226 { 1227 struct cx25840_state *state = to_state(sd); 1228 struct cx25840_ir_state *ir_state = to_ir_state(sd); 1229 1230 if (ir_state == NULL) 1231 return -ENODEV; 1232 1233 cx25840_ir_rx_shutdown(sd); 1234 cx25840_ir_tx_shutdown(sd); 1235 1236 kfifo_free(&ir_state->rx_kfifo); 1237 state->ir_state = NULL; 1238 return 0; 1239 } 1240