xref: /openbmc/linux/drivers/media/i2c/ccs/ccs-core.c (revision 9aa2cba7a275b2c0b10c95ea60aced015a5535e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/ccs/ccs-core.c
4  *
5  * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6  *
7  * Copyright (C) 2020 Intel Corporation
8  * Copyright (C) 2010--2012 Nokia Corporation
9  * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Based on smiapp driver by Vimarsh Zutshi
12  * Based on jt8ev1.c by Vimarsh Zutshi
13  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/smiapp.h>
27 #include <linux/v4l2-mediabus.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-device.h>
30 #include <uapi/linux/ccs.h>
31 
32 #include "ccs.h"
33 
34 #define CCS_ALIGN_DIM(dim, flags)	\
35 	((flags) & V4L2_SEL_FLAG_GE	\
36 	 ? ALIGN((dim), 2)		\
37 	 : (dim) & ~1)
38 
39 static struct ccs_limit_offset {
40 	u16	lim;
41 	u16	info;
42 } ccs_limit_offsets[CCS_L_LAST + 1];
43 
44 /*
45  * ccs_module_idents - supported camera modules
46  */
47 static const struct ccs_module_ident ccs_module_idents[] = {
48 	CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
49 	CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
50 	CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
51 	CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
52 	CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
53 	CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
54 	CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
55 	CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
56 	CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
57 	CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
58 	CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
59 };
60 
61 #define CCS_DEVICE_FLAG_IS_SMIA		BIT(0)
62 
63 struct ccs_device {
64 	unsigned char flags;
65 };
66 
67 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
68 
69 /*
70  *
71  * Dynamic Capability Identification
72  *
73  */
74 
75 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
76 {
77 	switch (width) {
78 	case sizeof(u8):
79 		*(u8 *)ptr = val;
80 		break;
81 	case sizeof(u16):
82 		*(u16 *)ptr = val;
83 		break;
84 	case sizeof(u32):
85 		*(u32 *)ptr = val;
86 		break;
87 	}
88 }
89 
90 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
91 			 unsigned int offset, void **__ptr)
92 {
93 	const struct ccs_limit *linfo;
94 
95 	if (WARN_ON(limit >= CCS_L_LAST))
96 		return -EINVAL;
97 
98 	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
99 
100 	if (WARN_ON(!sensor->ccs_limits) ||
101 	    WARN_ON(offset + ccs_reg_width(linfo->reg) >
102 		    ccs_limit_offsets[limit + 1].lim))
103 		return -EINVAL;
104 
105 	*__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
106 
107 	return 0;
108 }
109 
110 void ccs_replace_limit(struct ccs_sensor *sensor,
111 		       unsigned int limit, unsigned int offset, u32 val)
112 {
113 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
114 	const struct ccs_limit *linfo;
115 	void *ptr;
116 	int ret;
117 
118 	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
119 	if (ret)
120 		return;
121 
122 	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
123 
124 	dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
125 		linfo->reg, linfo->name, offset, val, val);
126 
127 	ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
128 }
129 
130 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
131 		  unsigned int offset)
132 {
133 	void *ptr;
134 	u32 val;
135 	int ret;
136 
137 	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
138 	if (ret)
139 		return 0;
140 
141 	switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
142 	case sizeof(u8):
143 		val = *(u8 *)ptr;
144 		break;
145 	case sizeof(u16):
146 		val = *(u16 *)ptr;
147 		break;
148 	case sizeof(u32):
149 		val = *(u32 *)ptr;
150 		break;
151 	default:
152 		WARN_ON(1);
153 		return 0;
154 	}
155 
156 	return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
157 }
158 
159 static int ccs_read_all_limits(struct ccs_sensor *sensor)
160 {
161 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
162 	void *ptr, *alloc, *end;
163 	unsigned int i, l;
164 	int ret;
165 
166 	kfree(sensor->ccs_limits);
167 	sensor->ccs_limits = NULL;
168 
169 	alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
170 	if (!alloc)
171 		return -ENOMEM;
172 
173 	end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
174 
175 	for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
176 		u32 reg = ccs_limits[i].reg;
177 		unsigned int width = ccs_reg_width(reg);
178 		unsigned int j;
179 
180 		if (l == CCS_L_LAST) {
181 			dev_err(&client->dev,
182 				"internal error --- end of limit array\n");
183 			ret = -EINVAL;
184 			goto out_err;
185 		}
186 
187 		for (j = 0; j < ccs_limits[i].size / width;
188 		     j++, reg += width, ptr += width) {
189 			u32 val;
190 
191 			ret = ccs_read_addr_noconv(sensor, reg, &val);
192 			if (ret)
193 				goto out_err;
194 
195 			if (ptr + width > end) {
196 				dev_err(&client->dev,
197 					"internal error --- no room for regs\n");
198 				ret = -EINVAL;
199 				goto out_err;
200 			}
201 
202 			if (!val && j)
203 				break;
204 
205 			ccs_assign_limit(ptr, width, val);
206 
207 			dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
208 				reg, ccs_limits[i].name, val, val);
209 		}
210 
211 		if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
212 			continue;
213 
214 		l++;
215 		ptr = alloc + ccs_limit_offsets[l].lim;
216 	}
217 
218 	if (l != CCS_L_LAST) {
219 		dev_err(&client->dev,
220 			"internal error --- insufficient limits\n");
221 		ret = -EINVAL;
222 		goto out_err;
223 	}
224 
225 	sensor->ccs_limits = alloc;
226 
227 	if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
228 		ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
229 
230 	return 0;
231 
232 out_err:
233 	kfree(alloc);
234 
235 	return ret;
236 }
237 
238 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
239 {
240 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
241 	u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
242 	unsigned int i;
243 	int pixel_count = 0;
244 	int line_count = 0;
245 
246 	fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
247 	fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
248 
249 	ncol_desc = (fmt_model_subtype
250 		     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
251 		>> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
252 	nrow_desc = fmt_model_subtype
253 		& CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
254 
255 	dev_dbg(&client->dev, "format_model_type %s\n",
256 		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
257 		? "2 byte" :
258 		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
259 		? "4 byte" : "is simply bad");
260 
261 	dev_dbg(&client->dev, "%u column and %u row descriptors\n",
262 		ncol_desc, nrow_desc);
263 
264 	for (i = 0; i < ncol_desc + nrow_desc; i++) {
265 		u32 desc;
266 		u32 pixelcode;
267 		u32 pixels;
268 		char *which;
269 		char *what;
270 
271 		if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
272 			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
273 
274 			pixelcode =
275 				(desc
276 				 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
277 				>> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
278 			pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
279 		} else if (fmt_model_type
280 			   == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
281 			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
282 
283 			pixelcode =
284 				(desc
285 				 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
286 				>> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
287 			pixels = desc &
288 				CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
289 		} else {
290 			dev_dbg(&client->dev,
291 				"invalid frame format model type %u\n",
292 				fmt_model_type);
293 			return -EINVAL;
294 		}
295 
296 		if (i < ncol_desc)
297 			which = "columns";
298 		else
299 			which = "rows";
300 
301 		switch (pixelcode) {
302 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
303 			what = "embedded";
304 			break;
305 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
306 			what = "dummy";
307 			break;
308 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
309 			what = "black";
310 			break;
311 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
312 			what = "dark";
313 			break;
314 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
315 			what = "visible";
316 			break;
317 		default:
318 			what = "invalid";
319 			break;
320 		}
321 
322 		dev_dbg(&client->dev,
323 			"%s pixels: %u %s (pixelcode %u)\n",
324 			what, pixels, which, pixelcode);
325 
326 		if (i < ncol_desc) {
327 			if (pixelcode ==
328 			    CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
329 				sensor->visible_pixel_start = pixel_count;
330 			pixel_count += pixels;
331 			continue;
332 		}
333 
334 		/* Handle row descriptors */
335 		switch (pixelcode) {
336 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
337 			if (sensor->embedded_end)
338 				break;
339 			sensor->embedded_start = line_count;
340 			sensor->embedded_end = line_count + pixels;
341 			break;
342 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
343 			sensor->image_start = line_count;
344 			break;
345 		}
346 		line_count += pixels;
347 	}
348 
349 	if (sensor->embedded_end > sensor->image_start) {
350 		dev_dbg(&client->dev,
351 			"adjusting image start line to %u (was %u)\n",
352 			sensor->embedded_end, sensor->image_start);
353 		sensor->image_start = sensor->embedded_end;
354 	}
355 
356 	dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
357 		sensor->embedded_start, sensor->embedded_end);
358 	dev_dbg(&client->dev, "image data starts at line %u\n",
359 		sensor->image_start);
360 
361 	return 0;
362 }
363 
364 static int ccs_pll_configure(struct ccs_sensor *sensor)
365 {
366 	struct ccs_pll *pll = &sensor->pll;
367 	int rval;
368 
369 	rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
370 	if (rval < 0)
371 		return rval;
372 
373 	rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
374 	if (rval < 0)
375 		return rval;
376 
377 	rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
378 	if (rval < 0)
379 		return rval;
380 
381 	rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
382 	if (rval < 0)
383 		return rval;
384 
385 	if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
386 	      CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
387 		/* Lane op clock ratio does not apply here. */
388 		rval = ccs_write(sensor, REQUESTED_LINK_RATE,
389 				 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
390 					      1000000 / 256 / 256) *
391 				 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
392 				  sensor->pll.csi2.lanes : 1) <<
393 				 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
394 				  1 : 0));
395 		if (rval < 0)
396 			return rval;
397 	}
398 
399 	if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
400 		return 0;
401 
402 	rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
403 	if (rval < 0)
404 		return rval;
405 
406 	rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
407 	if (rval < 0)
408 		return rval;
409 
410 	if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
411 		return 0;
412 
413 	rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
414 	if (rval < 0)
415 		return rval;
416 
417 	rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
418 			 pll->op_fr.pre_pll_clk_div);
419 	if (rval < 0)
420 		return rval;
421 
422 	return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
423 }
424 
425 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
426 {
427 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
428 	struct ccs_pll_limits lim = {
429 		.vt_fr = {
430 			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
431 			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
432 			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
433 			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
434 			.min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
435 			.max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
436 			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
437 			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
438 		},
439 		.op_fr = {
440 			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
441 			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
442 			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
443 			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
444 			.min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
445 			.max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
446 			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
447 			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
448 		},
449 		.op_bk = {
450 			 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
451 			 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
452 			 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
453 			 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
454 			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
455 			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
456 			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
457 			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
458 		 },
459 		.vt_bk = {
460 			 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
461 			 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
462 			 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
463 			 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
464 			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
465 			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
466 			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
467 			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
468 		 },
469 		.min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
470 		.min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
471 	};
472 
473 	return ccs_pll_calculate(&client->dev, &lim, pll);
474 }
475 
476 static int ccs_pll_update(struct ccs_sensor *sensor)
477 {
478 	struct ccs_pll *pll = &sensor->pll;
479 	int rval;
480 
481 	pll->binning_horizontal = sensor->binning_horizontal;
482 	pll->binning_vertical = sensor->binning_vertical;
483 	pll->link_freq =
484 		sensor->link_freq->qmenu_int[sensor->link_freq->val];
485 	pll->scale_m = sensor->scale_m;
486 	pll->bits_per_pixel = sensor->csi_format->compressed;
487 
488 	rval = ccs_pll_try(sensor, pll);
489 	if (rval < 0)
490 		return rval;
491 
492 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
493 				 pll->pixel_rate_pixel_array);
494 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
495 
496 	return 0;
497 }
498 
499 
500 /*
501  *
502  * V4L2 Controls handling
503  *
504  */
505 
506 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
507 {
508 	struct v4l2_ctrl *ctrl = sensor->exposure;
509 	int max;
510 
511 	max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
512 		+ sensor->vblank->val
513 		- CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
514 
515 	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
516 }
517 
518 /*
519  * Order matters.
520  *
521  * 1. Bits-per-pixel, descending.
522  * 2. Bits-per-pixel compressed, descending.
523  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
524  *    orders must be defined.
525  */
526 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
527 	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
528 	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
529 	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
530 	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
531 	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
532 	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
533 	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
534 	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
535 	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
536 	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
537 	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
538 	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
539 	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
540 	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
541 	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
542 	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
543 	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
544 	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
545 	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
546 	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
547 	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
548 	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
549 	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
550 	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
551 };
552 
553 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
554 
555 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
556 				 - (unsigned long)ccs_csi_data_formats) \
557 				/ sizeof(*ccs_csi_data_formats))
558 
559 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
560 {
561 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
562 	int flip = 0;
563 
564 	if (sensor->hflip) {
565 		if (sensor->hflip->val)
566 			flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
567 
568 		if (sensor->vflip->val)
569 			flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
570 	}
571 
572 	dev_dbg(&client->dev, "flip %u\n", flip);
573 	return sensor->default_pixel_order ^ flip;
574 }
575 
576 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
577 {
578 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
579 	unsigned int csi_format_idx =
580 		to_csi_format_idx(sensor->csi_format) & ~3;
581 	unsigned int internal_csi_format_idx =
582 		to_csi_format_idx(sensor->internal_csi_format) & ~3;
583 	unsigned int pixel_order = ccs_pixel_order(sensor);
584 
585 	if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
586 			 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
587 		return;
588 
589 	sensor->mbus_frame_fmts =
590 		sensor->default_mbus_frame_fmts << pixel_order;
591 	sensor->csi_format =
592 		&ccs_csi_data_formats[csi_format_idx + pixel_order];
593 	sensor->internal_csi_format =
594 		&ccs_csi_data_formats[internal_csi_format_idx
595 					 + pixel_order];
596 
597 	dev_dbg(&client->dev, "new pixel order %s\n",
598 		pixel_order_str[pixel_order]);
599 }
600 
601 static const char * const ccs_test_patterns[] = {
602 	"Disabled",
603 	"Solid Colour",
604 	"Eight Vertical Colour Bars",
605 	"Colour Bars With Fade to Grey",
606 	"Pseudorandom Sequence (PN9)",
607 };
608 
609 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
610 {
611 	struct ccs_sensor *sensor =
612 		container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
613 			->sensor;
614 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
615 	int pm_status;
616 	u32 orient = 0;
617 	unsigned int i;
618 	int exposure;
619 	int rval;
620 
621 	switch (ctrl->id) {
622 	case V4L2_CID_HFLIP:
623 	case V4L2_CID_VFLIP:
624 		if (sensor->streaming)
625 			return -EBUSY;
626 
627 		if (sensor->hflip->val)
628 			orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
629 
630 		if (sensor->vflip->val)
631 			orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
632 
633 		ccs_update_mbus_formats(sensor);
634 
635 		break;
636 	case V4L2_CID_VBLANK:
637 		exposure = sensor->exposure->val;
638 
639 		__ccs_update_exposure_limits(sensor);
640 
641 		if (exposure > sensor->exposure->maximum) {
642 			sensor->exposure->val =	sensor->exposure->maximum;
643 			rval = ccs_set_ctrl(sensor->exposure);
644 			if (rval < 0)
645 				return rval;
646 		}
647 
648 		break;
649 	case V4L2_CID_LINK_FREQ:
650 		if (sensor->streaming)
651 			return -EBUSY;
652 
653 		rval = ccs_pll_update(sensor);
654 		if (rval)
655 			return rval;
656 
657 		return 0;
658 	case V4L2_CID_TEST_PATTERN:
659 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
660 			v4l2_ctrl_activate(
661 				sensor->test_data[i],
662 				ctrl->val ==
663 				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
664 
665 		break;
666 	}
667 
668 	pm_status = pm_runtime_get_if_active(&client->dev, true);
669 	if (!pm_status)
670 		return 0;
671 
672 	switch (ctrl->id) {
673 	case V4L2_CID_ANALOGUE_GAIN:
674 		rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
675 
676 		break;
677 
678 	case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
679 		rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
680 
681 		break;
682 
683 	case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
684 		rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
685 				 ctrl->val);
686 
687 		break;
688 
689 	case V4L2_CID_DIGITAL_GAIN:
690 		if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
691 		    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
692 			rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
693 					 ctrl->val);
694 			break;
695 		}
696 
697 		rval = ccs_write_addr(sensor,
698 				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
699 				      ctrl->val);
700 		if (rval)
701 			break;
702 
703 		rval = ccs_write_addr(sensor,
704 				      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
705 				      ctrl->val);
706 		if (rval)
707 			break;
708 
709 		rval = ccs_write_addr(sensor,
710 				      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
711 				      ctrl->val);
712 		if (rval)
713 			break;
714 
715 		rval = ccs_write_addr(sensor,
716 				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
717 				      ctrl->val);
718 
719 		break;
720 	case V4L2_CID_EXPOSURE:
721 		rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
722 
723 		break;
724 	case V4L2_CID_HFLIP:
725 	case V4L2_CID_VFLIP:
726 		rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
727 
728 		break;
729 	case V4L2_CID_VBLANK:
730 		rval = ccs_write(sensor, FRAME_LENGTH_LINES,
731 				 sensor->pixel_array->crop[
732 					 CCS_PA_PAD_SRC].height
733 				 + ctrl->val);
734 
735 		break;
736 	case V4L2_CID_HBLANK:
737 		rval = ccs_write(sensor, LINE_LENGTH_PCK,
738 				 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
739 				 + ctrl->val);
740 
741 		break;
742 	case V4L2_CID_TEST_PATTERN:
743 		rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
744 
745 		break;
746 	case V4L2_CID_TEST_PATTERN_RED:
747 		rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
748 
749 		break;
750 	case V4L2_CID_TEST_PATTERN_GREENR:
751 		rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
752 
753 		break;
754 	case V4L2_CID_TEST_PATTERN_BLUE:
755 		rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
756 
757 		break;
758 	case V4L2_CID_TEST_PATTERN_GREENB:
759 		rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
760 
761 		break;
762 	case V4L2_CID_CCS_SHADING_CORRECTION:
763 		rval = ccs_write(sensor, SHADING_CORRECTION_EN,
764 				 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
765 				 0);
766 
767 		if (!rval && sensor->luminance_level)
768 			v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
769 
770 		break;
771 	case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
772 		rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
773 
774 		break;
775 	case V4L2_CID_PIXEL_RATE:
776 		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
777 		rval = 0;
778 
779 		break;
780 	default:
781 		rval = -EINVAL;
782 	}
783 
784 	if (pm_status > 0) {
785 		pm_runtime_mark_last_busy(&client->dev);
786 		pm_runtime_put_autosuspend(&client->dev);
787 	}
788 
789 	return rval;
790 }
791 
792 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
793 	.s_ctrl = ccs_set_ctrl,
794 };
795 
796 static int ccs_init_controls(struct ccs_sensor *sensor)
797 {
798 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
799 	struct v4l2_fwnode_device_properties props;
800 	int rval;
801 
802 	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
803 	if (rval)
804 		return rval;
805 
806 	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
807 
808 	rval = v4l2_fwnode_device_parse(&client->dev, &props);
809 	if (rval)
810 		return rval;
811 
812 	rval = v4l2_ctrl_new_fwnode_properties(&sensor->pixel_array->ctrl_handler,
813 					       &ccs_ctrl_ops, &props);
814 	if (rval)
815 		return rval;
816 
817 	switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
818 	case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
819 		struct {
820 			const char *name;
821 			u32 id;
822 			s32 value;
823 		} const gain_ctrls[] = {
824 			{ "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
825 			  CCS_LIM(sensor, ANALOG_GAIN_M0), },
826 			{ "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
827 			  CCS_LIM(sensor, ANALOG_GAIN_C0), },
828 			{ "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
829 			  CCS_LIM(sensor, ANALOG_GAIN_M1), },
830 			{ "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
831 			  CCS_LIM(sensor, ANALOG_GAIN_C1), },
832 		};
833 		struct v4l2_ctrl_config ctrl_cfg = {
834 			.type = V4L2_CTRL_TYPE_INTEGER,
835 			.ops = &ccs_ctrl_ops,
836 			.flags = V4L2_CTRL_FLAG_READ_ONLY,
837 			.step = 1,
838 		};
839 		unsigned int i;
840 
841 		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
842 			ctrl_cfg.name = gain_ctrls[i].name;
843 			ctrl_cfg.id = gain_ctrls[i].id;
844 			ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
845 				gain_ctrls[i].value;
846 
847 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
848 					     &ctrl_cfg, NULL);
849 		}
850 
851 		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
852 				  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
853 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
854 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
855 				  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
856 				      1U),
857 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
858 	}
859 		break;
860 
861 	case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
862 		struct {
863 			const char *name;
864 			u32 id;
865 			u16 min, max, step;
866 		} const gain_ctrls[] = {
867 			{
868 				"Analogue Linear Gain",
869 				V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
870 				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
871 				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
872 				max(CCS_LIM(sensor,
873 					    ANALOG_LINEAR_GAIN_STEP_SIZE),
874 				    1U),
875 			},
876 			{
877 				"Analogue Exponential Gain",
878 				V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
879 				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
880 				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
881 				max(CCS_LIM(sensor,
882 					    ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
883 				    1U),
884 			},
885 		};
886 		struct v4l2_ctrl_config ctrl_cfg = {
887 			.type = V4L2_CTRL_TYPE_INTEGER,
888 			.ops = &ccs_ctrl_ops,
889 		};
890 		unsigned int i;
891 
892 		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
893 			ctrl_cfg.name = gain_ctrls[i].name;
894 			ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
895 			ctrl_cfg.max = gain_ctrls[i].max;
896 			ctrl_cfg.step = gain_ctrls[i].step;
897 			ctrl_cfg.id = gain_ctrls[i].id;
898 
899 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
900 					     &ctrl_cfg, NULL);
901 		}
902 	}
903 	}
904 
905 	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
906 	    (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
907 	     CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
908 		const struct v4l2_ctrl_config ctrl_cfg = {
909 			.name = "Shading Correction",
910 			.type = V4L2_CTRL_TYPE_BOOLEAN,
911 			.id = V4L2_CID_CCS_SHADING_CORRECTION,
912 			.ops = &ccs_ctrl_ops,
913 			.max = 1,
914 			.step = 1,
915 		};
916 
917 		v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
918 				     &ctrl_cfg, NULL);
919 	}
920 
921 	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
922 	    CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
923 		const struct v4l2_ctrl_config ctrl_cfg = {
924 			.name = "Luminance Correction Level",
925 			.type = V4L2_CTRL_TYPE_BOOLEAN,
926 			.id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
927 			.ops = &ccs_ctrl_ops,
928 			.max = 255,
929 			.step = 1,
930 			.def = 128,
931 		};
932 
933 		sensor->luminance_level =
934 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
935 					     &ctrl_cfg, NULL);
936 	}
937 
938 	if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
939 	    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
940 	    CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
941 	    SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
942 		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
943 				  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
944 				  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
945 				  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
946 				  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
947 				      1U),
948 				  0x100);
949 
950 	/* Exposure limits will be updated soon, use just something here. */
951 	sensor->exposure = v4l2_ctrl_new_std(
952 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
953 		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
954 
955 	sensor->hflip = v4l2_ctrl_new_std(
956 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
957 		V4L2_CID_HFLIP, 0, 1, 1, 0);
958 	sensor->vflip = v4l2_ctrl_new_std(
959 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
960 		V4L2_CID_VFLIP, 0, 1, 1, 0);
961 
962 	sensor->vblank = v4l2_ctrl_new_std(
963 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
964 		V4L2_CID_VBLANK, 0, 1, 1, 0);
965 
966 	if (sensor->vblank)
967 		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
968 
969 	sensor->hblank = v4l2_ctrl_new_std(
970 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
971 		V4L2_CID_HBLANK, 0, 1, 1, 0);
972 
973 	if (sensor->hblank)
974 		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
975 
976 	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
977 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
978 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
979 
980 	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
981 				     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
982 				     ARRAY_SIZE(ccs_test_patterns) - 1,
983 				     0, 0, ccs_test_patterns);
984 
985 	if (sensor->pixel_array->ctrl_handler.error) {
986 		dev_err(&client->dev,
987 			"pixel array controls initialization failed (%d)\n",
988 			sensor->pixel_array->ctrl_handler.error);
989 		return sensor->pixel_array->ctrl_handler.error;
990 	}
991 
992 	sensor->pixel_array->sd.ctrl_handler =
993 		&sensor->pixel_array->ctrl_handler;
994 
995 	v4l2_ctrl_cluster(2, &sensor->hflip);
996 
997 	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
998 	if (rval)
999 		return rval;
1000 
1001 	sensor->src->ctrl_handler.lock = &sensor->mutex;
1002 
1003 	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1004 		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1005 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1006 
1007 	if (sensor->src->ctrl_handler.error) {
1008 		dev_err(&client->dev,
1009 			"src controls initialization failed (%d)\n",
1010 			sensor->src->ctrl_handler.error);
1011 		return sensor->src->ctrl_handler.error;
1012 	}
1013 
1014 	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  * For controls that require information on available media bus codes
1021  * and linke frequencies.
1022  */
1023 static int ccs_init_late_controls(struct ccs_sensor *sensor)
1024 {
1025 	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1026 		sensor->csi_format->compressed - sensor->compressed_min_bpp];
1027 	unsigned int i;
1028 
1029 	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1030 		int max_value = (1 << sensor->csi_format->width) - 1;
1031 
1032 		sensor->test_data[i] = v4l2_ctrl_new_std(
1033 				&sensor->pixel_array->ctrl_handler,
1034 				&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1035 				0, max_value, 1, max_value);
1036 	}
1037 
1038 	sensor->link_freq = v4l2_ctrl_new_int_menu(
1039 		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1040 		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1041 		__ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1042 
1043 	return sensor->src->ctrl_handler.error;
1044 }
1045 
1046 static void ccs_free_controls(struct ccs_sensor *sensor)
1047 {
1048 	unsigned int i;
1049 
1050 	for (i = 0; i < sensor->ssds_used; i++)
1051 		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1052 }
1053 
1054 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1055 {
1056 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1057 	struct ccs_pll *pll = &sensor->pll;
1058 	u8 compressed_max_bpp = 0;
1059 	unsigned int type, n;
1060 	unsigned int i, pixel_order;
1061 	int rval;
1062 
1063 	type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1064 
1065 	dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1066 
1067 	rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1068 	if (rval)
1069 		return rval;
1070 
1071 	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1072 		dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1073 		return -EINVAL;
1074 	}
1075 
1076 	dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1077 		pixel_order_str[pixel_order]);
1078 
1079 	switch (type) {
1080 	case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1081 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1082 		break;
1083 	case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1084 		n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1085 		break;
1086 	default:
1087 		return -EINVAL;
1088 	}
1089 
1090 	sensor->default_pixel_order = pixel_order;
1091 	sensor->mbus_frame_fmts = 0;
1092 
1093 	for (i = 0; i < n; i++) {
1094 		unsigned int fmt, j;
1095 
1096 		fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1097 
1098 		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1099 			i, fmt >> 8, (u8)fmt);
1100 
1101 		for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1102 			const struct ccs_csi_data_format *f =
1103 				&ccs_csi_data_formats[j];
1104 
1105 			if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1106 				continue;
1107 
1108 			if (f->width != fmt >>
1109 			    CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1110 			    f->compressed !=
1111 			    (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1112 				continue;
1113 
1114 			dev_dbg(&client->dev, "jolly good! %u\n", j);
1115 
1116 			sensor->default_mbus_frame_fmts |= 1 << j;
1117 		}
1118 	}
1119 
1120 	/* Figure out which BPP values can be used with which formats. */
1121 	pll->binning_horizontal = 1;
1122 	pll->binning_vertical = 1;
1123 	pll->scale_m = sensor->scale_m;
1124 
1125 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1126 		sensor->compressed_min_bpp =
1127 			min(ccs_csi_data_formats[i].compressed,
1128 			    sensor->compressed_min_bpp);
1129 		compressed_max_bpp =
1130 			max(ccs_csi_data_formats[i].compressed,
1131 			    compressed_max_bpp);
1132 	}
1133 
1134 	sensor->valid_link_freqs = devm_kcalloc(
1135 		&client->dev,
1136 		compressed_max_bpp - sensor->compressed_min_bpp + 1,
1137 		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1138 	if (!sensor->valid_link_freqs)
1139 		return -ENOMEM;
1140 
1141 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1142 		const struct ccs_csi_data_format *f =
1143 			&ccs_csi_data_formats[i];
1144 		unsigned long *valid_link_freqs =
1145 			&sensor->valid_link_freqs[
1146 				f->compressed - sensor->compressed_min_bpp];
1147 		unsigned int j;
1148 
1149 		if (!(sensor->default_mbus_frame_fmts & 1 << i))
1150 			continue;
1151 
1152 		pll->bits_per_pixel = f->compressed;
1153 
1154 		for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1155 			pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1156 
1157 			rval = ccs_pll_try(sensor, pll);
1158 			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1159 				pll->link_freq, pll->bits_per_pixel,
1160 				rval ? "not ok" : "ok");
1161 			if (rval)
1162 				continue;
1163 
1164 			set_bit(j, valid_link_freqs);
1165 		}
1166 
1167 		if (!*valid_link_freqs) {
1168 			dev_info(&client->dev,
1169 				 "no valid link frequencies for %u bpp\n",
1170 				 f->compressed);
1171 			sensor->default_mbus_frame_fmts &= ~BIT(i);
1172 			continue;
1173 		}
1174 
1175 		if (!sensor->csi_format
1176 		    || f->width > sensor->csi_format->width
1177 		    || (f->width == sensor->csi_format->width
1178 			&& f->compressed > sensor->csi_format->compressed)) {
1179 			sensor->csi_format = f;
1180 			sensor->internal_csi_format = f;
1181 		}
1182 	}
1183 
1184 	if (!sensor->csi_format) {
1185 		dev_err(&client->dev, "no supported mbus code found\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	ccs_update_mbus_formats(sensor);
1190 
1191 	return 0;
1192 }
1193 
1194 static void ccs_update_blanking(struct ccs_sensor *sensor)
1195 {
1196 	struct v4l2_ctrl *vblank = sensor->vblank;
1197 	struct v4l2_ctrl *hblank = sensor->hblank;
1198 	u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1199 	int min, max;
1200 
1201 	if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1202 		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1203 		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1204 		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1205 		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1206 		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1207 	} else {
1208 		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1209 		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1210 		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1211 		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1212 		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1213 	}
1214 
1215 	min = max_t(int,
1216 		    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1217 		    min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
1218 	max = max_fll -	sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
1219 
1220 	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1221 
1222 	min = max_t(int,
1223 		    min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
1224 		    min_lbp);
1225 	max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
1226 
1227 	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1228 
1229 	__ccs_update_exposure_limits(sensor);
1230 }
1231 
1232 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1233 {
1234 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1235 	int rval;
1236 
1237 	rval = ccs_pll_update(sensor);
1238 	if (rval < 0)
1239 		return rval;
1240 
1241 	/* Output from pixel array, including blanking */
1242 	ccs_update_blanking(sensor);
1243 
1244 	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1245 	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1246 
1247 	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1248 		sensor->pll.pixel_rate_pixel_array /
1249 		((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
1250 		  + sensor->hblank->val) *
1251 		 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
1252 		  + sensor->vblank->val) / 100));
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  *
1259  * SMIA++ NVM handling
1260  *
1261  */
1262 
1263 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1264 			     u8 *status)
1265 {
1266 	unsigned int i;
1267 	int rval;
1268 	u32 s;
1269 
1270 	*status = 0;
1271 
1272 	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1273 	if (rval)
1274 		return rval;
1275 
1276 	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1277 			 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1278 	if (rval)
1279 		return rval;
1280 
1281 	rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1282 	if (rval)
1283 		return rval;
1284 
1285 	if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1286 		*status = s;
1287 		return -ENODATA;
1288 	}
1289 
1290 	if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1291 	    CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1292 		for (i = 1000; i > 0; i--) {
1293 			if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1294 				break;
1295 
1296 			rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1297 			if (rval)
1298 				return rval;
1299 		}
1300 
1301 		if (!i)
1302 			return -ETIMEDOUT;
1303 	}
1304 
1305 	for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1306 		u32 v;
1307 
1308 		rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1309 		if (rval)
1310 			return rval;
1311 
1312 		*nvm++ = v;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1319 			size_t nvm_size)
1320 {
1321 	u8 status = 0;
1322 	u32 p;
1323 	int rval = 0, rval2;
1324 
1325 	for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1326 		     && !rval; p++) {
1327 		rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1328 		nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1329 	}
1330 
1331 	if (rval == -ENODATA &&
1332 	    status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1333 		rval = 0;
1334 
1335 	rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1336 	if (rval < 0)
1337 		return rval;
1338 	else
1339 		return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1340 }
1341 
1342 /*
1343  *
1344  * SMIA++ CCI address control
1345  *
1346  */
1347 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1348 {
1349 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1350 	int rval;
1351 	u32 val;
1352 
1353 	client->addr = sensor->hwcfg.i2c_addr_dfl;
1354 
1355 	rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1356 			 sensor->hwcfg.i2c_addr_alt << 1);
1357 	if (rval)
1358 		return rval;
1359 
1360 	client->addr = sensor->hwcfg.i2c_addr_alt;
1361 
1362 	/* verify addr change went ok */
1363 	rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1364 	if (rval)
1365 		return rval;
1366 
1367 	if (val != sensor->hwcfg.i2c_addr_alt << 1)
1368 		return -ENODEV;
1369 
1370 	return 0;
1371 }
1372 
1373 /*
1374  *
1375  * SMIA++ Mode Control
1376  *
1377  */
1378 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1379 {
1380 	struct ccs_flash_strobe_parms *strobe_setup;
1381 	unsigned int ext_freq = sensor->hwcfg.ext_clk;
1382 	u32 tmp;
1383 	u32 strobe_adjustment;
1384 	u32 strobe_width_high_rs;
1385 	int rval;
1386 
1387 	strobe_setup = sensor->hwcfg.strobe_setup;
1388 
1389 	/*
1390 	 * How to calculate registers related to strobe length. Please
1391 	 * do not change, or if you do at least know what you're
1392 	 * doing. :-)
1393 	 *
1394 	 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1395 	 *
1396 	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1397 	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1398 	 *
1399 	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1400 	 * flash_strobe_adjustment E N, [1 - 0xff]
1401 	 *
1402 	 * The formula above is written as below to keep it on one
1403 	 * line:
1404 	 *
1405 	 * l / 10^6 = w / e * a
1406 	 *
1407 	 * Let's mark w * a by x:
1408 	 *
1409 	 * x = w * a
1410 	 *
1411 	 * Thus, we get:
1412 	 *
1413 	 * x = l * e / 10^6
1414 	 *
1415 	 * The strobe width must be at least as long as requested,
1416 	 * thus rounding upwards is needed.
1417 	 *
1418 	 * x = (l * e + 10^6 - 1) / 10^6
1419 	 * -----------------------------
1420 	 *
1421 	 * Maximum possible accuracy is wanted at all times. Thus keep
1422 	 * a as small as possible.
1423 	 *
1424 	 * Calculate a, assuming maximum w, with rounding upwards:
1425 	 *
1426 	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1427 	 * -------------------------------------
1428 	 *
1429 	 * Thus, we also get w, with that a, with rounding upwards:
1430 	 *
1431 	 * w = (x + a - 1) / a
1432 	 * -------------------
1433 	 *
1434 	 * To get limits:
1435 	 *
1436 	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1437 	 *
1438 	 * Substituting maximum x to the original formula (with rounding),
1439 	 * the maximum l is thus
1440 	 *
1441 	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1442 	 *
1443 	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1444 	 * --------------------------------------------------
1445 	 *
1446 	 * flash_strobe_length must be clamped between 1 and
1447 	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1448 	 *
1449 	 * Then,
1450 	 *
1451 	 * flash_strobe_adjustment = ((flash_strobe_length *
1452 	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1453 	 *
1454 	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1455 	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1456 	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1457 	 */
1458 	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1459 		      1000000 + 1, ext_freq);
1460 	strobe_setup->strobe_width_high_us =
1461 		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1462 
1463 	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1464 			1000000 - 1), 1000000ULL);
1465 	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1466 	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1467 				strobe_adjustment;
1468 
1469 	rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1470 	if (rval < 0)
1471 		goto out;
1472 
1473 	rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1474 	if (rval < 0)
1475 		goto out;
1476 
1477 	rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1478 			 strobe_width_high_rs);
1479 	if (rval < 0)
1480 		goto out;
1481 
1482 	rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1483 			 strobe_setup->strobe_delay);
1484 	if (rval < 0)
1485 		goto out;
1486 
1487 	rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1488 			 strobe_setup->stobe_start_point);
1489 	if (rval < 0)
1490 		goto out;
1491 
1492 	rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1493 
1494 out:
1495 	sensor->hwcfg.strobe_setup->trigger = 0;
1496 
1497 	return rval;
1498 }
1499 
1500 /* -----------------------------------------------------------------------------
1501  * Power management
1502  */
1503 
1504 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1505 {
1506 	int rval;
1507 
1508 	rval = ccs_write_data_regs(sensor,
1509 				   sensor->sdata.sensor_manufacturer_regs,
1510 				   sensor->sdata.num_sensor_manufacturer_regs);
1511 	if (rval)
1512 		return rval;
1513 
1514 	return ccs_write_data_regs(sensor,
1515 				   sensor->mdata.module_manufacturer_regs,
1516 				   sensor->mdata.num_module_manufacturer_regs);
1517 }
1518 
1519 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1520 {
1521 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1522 	u8 val;
1523 
1524 	if (!sensor->ccs_limits)
1525 		return 0;
1526 
1527 	if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1528 	    CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1529 		val = CCS_PHY_CTRL_AUTO;
1530 	} else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1531 		   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1532 		val = CCS_PHY_CTRL_UI;
1533 	} else {
1534 		dev_err(&client->dev, "manual PHY control not supported\n");
1535 		return -EINVAL;
1536 	}
1537 
1538 	return ccs_write(sensor, PHY_CTRL, val);
1539 }
1540 
1541 static int ccs_power_on(struct device *dev)
1542 {
1543 	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1544 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1545 	/*
1546 	 * The sub-device related to the I2C device is always the
1547 	 * source one, i.e. ssds[0].
1548 	 */
1549 	struct ccs_sensor *sensor =
1550 		container_of(ssd, struct ccs_sensor, ssds[0]);
1551 	const struct ccs_device *ccsdev = device_get_match_data(dev);
1552 	int rval;
1553 
1554 	rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1555 				     sensor->regulators);
1556 	if (rval) {
1557 		dev_err(dev, "failed to enable vana regulator\n");
1558 		return rval;
1559 	}
1560 
1561 	if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1562 		unsigned int sleep;
1563 
1564 		rval = clk_prepare_enable(sensor->ext_clk);
1565 		if (rval < 0) {
1566 			dev_dbg(dev, "failed to enable xclk\n");
1567 			goto out_xclk_fail;
1568 		}
1569 
1570 		gpiod_set_value(sensor->reset, 0);
1571 		gpiod_set_value(sensor->xshutdown, 1);
1572 
1573 		if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1574 			sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1575 		else
1576 			sleep = 5000;
1577 
1578 		usleep_range(sleep, sleep);
1579 	}
1580 
1581 	/*
1582 	 * Failures to respond to the address change command have been noticed.
1583 	 * Those failures seem to be caused by the sensor requiring a longer
1584 	 * boot time than advertised. An additional 10ms delay seems to work
1585 	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1586 	 * unnecessary. The failures need to be investigated to find a proper
1587 	 * fix, and a delay will likely need to be added here if the I2C write
1588 	 * retry hack is reverted before the root cause of the boot time issue
1589 	 * is found.
1590 	 */
1591 
1592 	if (!sensor->reset && !sensor->xshutdown) {
1593 		u8 retry = 100;
1594 		u32 reset;
1595 
1596 		rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1597 		if (rval < 0) {
1598 			dev_err(dev, "software reset failed\n");
1599 			goto out_cci_addr_fail;
1600 		}
1601 
1602 		do {
1603 			rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1604 			reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1605 			if (reset)
1606 				break;
1607 
1608 			usleep_range(1000, 2000);
1609 		} while (--retry);
1610 
1611 		if (!reset) {
1612 			dev_err(dev, "software reset failed\n");
1613 			rval = -EIO;
1614 			goto out_cci_addr_fail;
1615 		}
1616 	}
1617 
1618 	if (sensor->hwcfg.i2c_addr_alt) {
1619 		rval = ccs_change_cci_addr(sensor);
1620 		if (rval) {
1621 			dev_err(dev, "cci address change error\n");
1622 			goto out_cci_addr_fail;
1623 		}
1624 	}
1625 
1626 	rval = ccs_write(sensor, COMPRESSION_MODE,
1627 			 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1628 	if (rval) {
1629 		dev_err(dev, "compression mode set failed\n");
1630 		goto out_cci_addr_fail;
1631 	}
1632 
1633 	rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1634 			 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1635 	if (rval) {
1636 		dev_err(dev, "extclk frequency set failed\n");
1637 		goto out_cci_addr_fail;
1638 	}
1639 
1640 	rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1641 	if (rval) {
1642 		dev_err(dev, "csi lane mode set failed\n");
1643 		goto out_cci_addr_fail;
1644 	}
1645 
1646 	rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1647 			 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1648 	if (rval) {
1649 		dev_err(dev, "fast standby set failed\n");
1650 		goto out_cci_addr_fail;
1651 	}
1652 
1653 	rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1654 			 sensor->hwcfg.csi_signalling_mode);
1655 	if (rval) {
1656 		dev_err(dev, "csi signalling mode set failed\n");
1657 		goto out_cci_addr_fail;
1658 	}
1659 
1660 	rval = ccs_update_phy_ctrl(sensor);
1661 	if (rval < 0)
1662 		goto out_cci_addr_fail;
1663 
1664 	rval = ccs_write_msr_regs(sensor);
1665 	if (rval)
1666 		goto out_cci_addr_fail;
1667 
1668 	rval = ccs_call_quirk(sensor, post_poweron);
1669 	if (rval) {
1670 		dev_err(dev, "post_poweron quirks failed\n");
1671 		goto out_cci_addr_fail;
1672 	}
1673 
1674 	return 0;
1675 
1676 out_cci_addr_fail:
1677 	gpiod_set_value(sensor->reset, 1);
1678 	gpiod_set_value(sensor->xshutdown, 0);
1679 	clk_disable_unprepare(sensor->ext_clk);
1680 
1681 out_xclk_fail:
1682 	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1683 			       sensor->regulators);
1684 
1685 	return rval;
1686 }
1687 
1688 static int ccs_power_off(struct device *dev)
1689 {
1690 	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1691 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1692 	struct ccs_sensor *sensor =
1693 		container_of(ssd, struct ccs_sensor, ssds[0]);
1694 
1695 	/*
1696 	 * Currently power/clock to lens are enable/disabled separately
1697 	 * but they are essentially the same signals. So if the sensor is
1698 	 * powered off while the lens is powered on the sensor does not
1699 	 * really see a power off and next time the cci address change
1700 	 * will fail. So do a soft reset explicitly here.
1701 	 */
1702 	if (sensor->hwcfg.i2c_addr_alt)
1703 		ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1704 
1705 	gpiod_set_value(sensor->reset, 1);
1706 	gpiod_set_value(sensor->xshutdown, 0);
1707 	clk_disable_unprepare(sensor->ext_clk);
1708 	usleep_range(5000, 5000);
1709 	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1710 			       sensor->regulators);
1711 	sensor->streaming = false;
1712 
1713 	return 0;
1714 }
1715 
1716 /* -----------------------------------------------------------------------------
1717  * Video stream management
1718  */
1719 
1720 static int ccs_start_streaming(struct ccs_sensor *sensor)
1721 {
1722 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1723 	unsigned int binning_mode;
1724 	int rval;
1725 
1726 	mutex_lock(&sensor->mutex);
1727 
1728 	rval = ccs_write(sensor, CSI_DATA_FORMAT,
1729 			 (sensor->csi_format->width << 8) |
1730 			 sensor->csi_format->compressed);
1731 	if (rval)
1732 		goto out;
1733 
1734 	/* Binning configuration */
1735 	if (sensor->binning_horizontal == 1 &&
1736 	    sensor->binning_vertical == 1) {
1737 		binning_mode = 0;
1738 	} else {
1739 		u8 binning_type =
1740 			(sensor->binning_horizontal << 4)
1741 			| sensor->binning_vertical;
1742 
1743 		rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1744 		if (rval < 0)
1745 			goto out;
1746 
1747 		binning_mode = 1;
1748 	}
1749 	rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1750 	if (rval < 0)
1751 		goto out;
1752 
1753 	/* Set up PLL */
1754 	rval = ccs_pll_configure(sensor);
1755 	if (rval)
1756 		goto out;
1757 
1758 	/* Analog crop start coordinates */
1759 	rval = ccs_write(sensor, X_ADDR_START,
1760 			 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
1761 	if (rval < 0)
1762 		goto out;
1763 
1764 	rval = ccs_write(sensor, Y_ADDR_START,
1765 			 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
1766 	if (rval < 0)
1767 		goto out;
1768 
1769 	/* Analog crop end coordinates */
1770 	rval = ccs_write(
1771 		sensor, X_ADDR_END,
1772 		sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
1773 		+ sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
1774 	if (rval < 0)
1775 		goto out;
1776 
1777 	rval = ccs_write(
1778 		sensor, Y_ADDR_END,
1779 		sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
1780 		+ sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
1781 	if (rval < 0)
1782 		goto out;
1783 
1784 	/*
1785 	 * Output from pixel array, including blanking, is set using
1786 	 * controls below. No need to set here.
1787 	 */
1788 
1789 	/* Digital crop */
1790 	if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1791 	    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1792 		rval = ccs_write(
1793 			sensor, DIGITAL_CROP_X_OFFSET,
1794 			sensor->scaler->crop[CCS_PAD_SINK].left);
1795 		if (rval < 0)
1796 			goto out;
1797 
1798 		rval = ccs_write(
1799 			sensor, DIGITAL_CROP_Y_OFFSET,
1800 			sensor->scaler->crop[CCS_PAD_SINK].top);
1801 		if (rval < 0)
1802 			goto out;
1803 
1804 		rval = ccs_write(
1805 			sensor, DIGITAL_CROP_IMAGE_WIDTH,
1806 			sensor->scaler->crop[CCS_PAD_SINK].width);
1807 		if (rval < 0)
1808 			goto out;
1809 
1810 		rval = ccs_write(
1811 			sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1812 			sensor->scaler->crop[CCS_PAD_SINK].height);
1813 		if (rval < 0)
1814 			goto out;
1815 	}
1816 
1817 	/* Scaling */
1818 	if (CCS_LIM(sensor, SCALING_CAPABILITY)
1819 	    != CCS_SCALING_CAPABILITY_NONE) {
1820 		rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1821 		if (rval < 0)
1822 			goto out;
1823 
1824 		rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1825 		if (rval < 0)
1826 			goto out;
1827 	}
1828 
1829 	/* Output size from sensor */
1830 	rval = ccs_write(sensor, X_OUTPUT_SIZE,
1831 			 sensor->src->crop[CCS_PAD_SRC].width);
1832 	if (rval < 0)
1833 		goto out;
1834 	rval = ccs_write(sensor, Y_OUTPUT_SIZE,
1835 			 sensor->src->crop[CCS_PAD_SRC].height);
1836 	if (rval < 0)
1837 		goto out;
1838 
1839 	if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1840 	    (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1841 	     SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1842 	    sensor->hwcfg.strobe_setup != NULL &&
1843 	    sensor->hwcfg.strobe_setup->trigger != 0) {
1844 		rval = ccs_setup_flash_strobe(sensor);
1845 		if (rval)
1846 			goto out;
1847 	}
1848 
1849 	rval = ccs_call_quirk(sensor, pre_streamon);
1850 	if (rval) {
1851 		dev_err(&client->dev, "pre_streamon quirks failed\n");
1852 		goto out;
1853 	}
1854 
1855 	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1856 
1857 out:
1858 	mutex_unlock(&sensor->mutex);
1859 
1860 	return rval;
1861 }
1862 
1863 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1864 {
1865 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1866 	int rval;
1867 
1868 	mutex_lock(&sensor->mutex);
1869 	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1870 	if (rval)
1871 		goto out;
1872 
1873 	rval = ccs_call_quirk(sensor, post_streamoff);
1874 	if (rval)
1875 		dev_err(&client->dev, "post_streamoff quirks failed\n");
1876 
1877 out:
1878 	mutex_unlock(&sensor->mutex);
1879 	return rval;
1880 }
1881 
1882 /* -----------------------------------------------------------------------------
1883  * V4L2 subdev video operations
1884  */
1885 
1886 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1887 {
1888 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1889 	int rval;
1890 
1891 	/*
1892 	 * It can't use pm_runtime_resume_and_get() here, as the driver
1893 	 * relies at the returned value to detect if the device was already
1894 	 * active or not.
1895 	 */
1896 	rval = pm_runtime_get_sync(&client->dev);
1897 	if (rval < 0)
1898 		goto error;
1899 
1900 	/* Device was already active, so don't set controls */
1901 	if (rval == 1)
1902 		return 0;
1903 
1904 	/* Restore V4L2 controls to the previously suspended device */
1905 	rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1906 	if (rval)
1907 		goto error;
1908 
1909 	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1910 	if (rval)
1911 		goto error;
1912 
1913 	/* Keep PM runtime usage_count incremented on success */
1914 	return 0;
1915 error:
1916 	pm_runtime_put(&client->dev);
1917 	return rval;
1918 }
1919 
1920 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1921 {
1922 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1923 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1924 	int rval;
1925 
1926 	if (sensor->streaming == enable)
1927 		return 0;
1928 
1929 	if (!enable) {
1930 		ccs_stop_streaming(sensor);
1931 		sensor->streaming = false;
1932 		pm_runtime_mark_last_busy(&client->dev);
1933 		pm_runtime_put_autosuspend(&client->dev);
1934 
1935 		return 0;
1936 	}
1937 
1938 	rval = ccs_pm_get_init(sensor);
1939 	if (rval)
1940 		return rval;
1941 
1942 	sensor->streaming = true;
1943 
1944 	rval = ccs_start_streaming(sensor);
1945 	if (rval < 0) {
1946 		sensor->streaming = false;
1947 		pm_runtime_mark_last_busy(&client->dev);
1948 		pm_runtime_put_autosuspend(&client->dev);
1949 	}
1950 
1951 	return rval;
1952 }
1953 
1954 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1955 {
1956 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1957 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1958 	int rval;
1959 
1960 	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1961 		switch (sensor->hwcfg.csi_signalling_mode) {
1962 		case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1963 			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1964 			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1965 				return -EACCES;
1966 			break;
1967 		case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1968 			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1969 			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1970 				return -EACCES;
1971 			break;
1972 		default:
1973 			return -EACCES;
1974 		}
1975 	}
1976 
1977 	rval = ccs_pm_get_init(sensor);
1978 	if (rval)
1979 		return rval;
1980 
1981 	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1982 		rval = ccs_write(sensor, MANUAL_LP_CTRL,
1983 				 CCS_MANUAL_LP_CTRL_ENABLE);
1984 		if (rval)
1985 			pm_runtime_put(&client->dev);
1986 	}
1987 
1988 	return rval;
1989 }
1990 
1991 static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1992 {
1993 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1994 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1995 
1996 	return pm_runtime_put(&client->dev);
1997 }
1998 
1999 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
2000 			      struct v4l2_subdev_state *sd_state,
2001 			      struct v4l2_subdev_mbus_code_enum *code)
2002 {
2003 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2004 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2005 	unsigned int i;
2006 	int idx = -1;
2007 	int rval = -EINVAL;
2008 
2009 	mutex_lock(&sensor->mutex);
2010 
2011 	dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
2012 		subdev->name, code->pad, code->index);
2013 
2014 	if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2015 		if (code->index)
2016 			goto out;
2017 
2018 		code->code = sensor->internal_csi_format->code;
2019 		rval = 0;
2020 		goto out;
2021 	}
2022 
2023 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2024 		if (sensor->mbus_frame_fmts & (1 << i))
2025 			idx++;
2026 
2027 		if (idx == code->index) {
2028 			code->code = ccs_csi_data_formats[i].code;
2029 			dev_err(&client->dev, "found index %u, i %u, code %x\n",
2030 				code->index, i, code->code);
2031 			rval = 0;
2032 			break;
2033 		}
2034 	}
2035 
2036 out:
2037 	mutex_unlock(&sensor->mutex);
2038 
2039 	return rval;
2040 }
2041 
2042 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2043 {
2044 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2045 
2046 	if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2047 		return sensor->csi_format->code;
2048 	else
2049 		return sensor->internal_csi_format->code;
2050 }
2051 
2052 static int __ccs_get_format(struct v4l2_subdev *subdev,
2053 			    struct v4l2_subdev_state *sd_state,
2054 			    struct v4l2_subdev_format *fmt)
2055 {
2056 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2057 
2058 	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
2059 		fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state,
2060 							  fmt->pad);
2061 	} else {
2062 		struct v4l2_rect *r;
2063 
2064 		if (fmt->pad == ssd->source_pad)
2065 			r = &ssd->crop[ssd->source_pad];
2066 		else
2067 			r = &ssd->sink_fmt;
2068 
2069 		fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2070 		fmt->format.width = r->width;
2071 		fmt->format.height = r->height;
2072 		fmt->format.field = V4L2_FIELD_NONE;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static int ccs_get_format(struct v4l2_subdev *subdev,
2079 			  struct v4l2_subdev_state *sd_state,
2080 			  struct v4l2_subdev_format *fmt)
2081 {
2082 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2083 	int rval;
2084 
2085 	mutex_lock(&sensor->mutex);
2086 	rval = __ccs_get_format(subdev, sd_state, fmt);
2087 	mutex_unlock(&sensor->mutex);
2088 
2089 	return rval;
2090 }
2091 
2092 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2093 				 struct v4l2_subdev_state *sd_state,
2094 				 struct v4l2_rect **crops,
2095 				 struct v4l2_rect **comps, int which)
2096 {
2097 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2098 	unsigned int i;
2099 
2100 	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2101 		if (crops)
2102 			for (i = 0; i < subdev->entity.num_pads; i++)
2103 				crops[i] = &ssd->crop[i];
2104 		if (comps)
2105 			*comps = &ssd->compose;
2106 	} else {
2107 		if (crops) {
2108 			for (i = 0; i < subdev->entity.num_pads; i++)
2109 				crops[i] = v4l2_subdev_get_try_crop(subdev,
2110 								    sd_state,
2111 								    i);
2112 		}
2113 		if (comps)
2114 			*comps = v4l2_subdev_get_try_compose(subdev, sd_state,
2115 							     CCS_PAD_SINK);
2116 	}
2117 }
2118 
2119 /* Changes require propagation only on sink pad. */
2120 static void ccs_propagate(struct v4l2_subdev *subdev,
2121 			  struct v4l2_subdev_state *sd_state, int which,
2122 			  int target)
2123 {
2124 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2125 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2126 	struct v4l2_rect *comp, *crops[CCS_PADS];
2127 
2128 	ccs_get_crop_compose(subdev, sd_state, crops, &comp, which);
2129 
2130 	switch (target) {
2131 	case V4L2_SEL_TGT_CROP:
2132 		comp->width = crops[CCS_PAD_SINK]->width;
2133 		comp->height = crops[CCS_PAD_SINK]->height;
2134 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2135 			if (ssd == sensor->scaler) {
2136 				sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2137 				sensor->scaling_mode =
2138 					CCS_SCALING_MODE_NO_SCALING;
2139 			} else if (ssd == sensor->binner) {
2140 				sensor->binning_horizontal = 1;
2141 				sensor->binning_vertical = 1;
2142 			}
2143 		}
2144 		fallthrough;
2145 	case V4L2_SEL_TGT_COMPOSE:
2146 		*crops[CCS_PAD_SRC] = *comp;
2147 		break;
2148 	default:
2149 		WARN_ON_ONCE(1);
2150 	}
2151 }
2152 
2153 static const struct ccs_csi_data_format
2154 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2155 {
2156 	unsigned int i;
2157 
2158 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2159 		if (sensor->mbus_frame_fmts & (1 << i) &&
2160 		    ccs_csi_data_formats[i].code == code)
2161 			return &ccs_csi_data_formats[i];
2162 	}
2163 
2164 	return sensor->csi_format;
2165 }
2166 
2167 static int ccs_set_format_source(struct v4l2_subdev *subdev,
2168 				 struct v4l2_subdev_state *sd_state,
2169 				 struct v4l2_subdev_format *fmt)
2170 {
2171 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2172 	const struct ccs_csi_data_format *csi_format,
2173 		*old_csi_format = sensor->csi_format;
2174 	unsigned long *valid_link_freqs;
2175 	u32 code = fmt->format.code;
2176 	unsigned int i;
2177 	int rval;
2178 
2179 	rval = __ccs_get_format(subdev, sd_state, fmt);
2180 	if (rval)
2181 		return rval;
2182 
2183 	/*
2184 	 * Media bus code is changeable on src subdev's source pad. On
2185 	 * other source pads we just get format here.
2186 	 */
2187 	if (subdev != &sensor->src->sd)
2188 		return 0;
2189 
2190 	csi_format = ccs_validate_csi_data_format(sensor, code);
2191 
2192 	fmt->format.code = csi_format->code;
2193 
2194 	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2195 		return 0;
2196 
2197 	sensor->csi_format = csi_format;
2198 
2199 	if (csi_format->width != old_csi_format->width)
2200 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2201 			__v4l2_ctrl_modify_range(
2202 				sensor->test_data[i], 0,
2203 				(1 << csi_format->width) - 1, 1, 0);
2204 
2205 	if (csi_format->compressed == old_csi_format->compressed)
2206 		return 0;
2207 
2208 	valid_link_freqs =
2209 		&sensor->valid_link_freqs[sensor->csi_format->compressed
2210 					  - sensor->compressed_min_bpp];
2211 
2212 	__v4l2_ctrl_modify_range(
2213 		sensor->link_freq, 0,
2214 		__fls(*valid_link_freqs), ~*valid_link_freqs,
2215 		__ffs(*valid_link_freqs));
2216 
2217 	return ccs_pll_update(sensor);
2218 }
2219 
2220 static int ccs_set_format(struct v4l2_subdev *subdev,
2221 			  struct v4l2_subdev_state *sd_state,
2222 			  struct v4l2_subdev_format *fmt)
2223 {
2224 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2225 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2226 	struct v4l2_rect *crops[CCS_PADS];
2227 
2228 	mutex_lock(&sensor->mutex);
2229 
2230 	if (fmt->pad == ssd->source_pad) {
2231 		int rval;
2232 
2233 		rval = ccs_set_format_source(subdev, sd_state, fmt);
2234 
2235 		mutex_unlock(&sensor->mutex);
2236 
2237 		return rval;
2238 	}
2239 
2240 	/* Sink pad. Width and height are changeable here. */
2241 	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2242 	fmt->format.width &= ~1;
2243 	fmt->format.height &= ~1;
2244 	fmt->format.field = V4L2_FIELD_NONE;
2245 
2246 	fmt->format.width =
2247 		clamp(fmt->format.width,
2248 		      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2249 		      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2250 	fmt->format.height =
2251 		clamp(fmt->format.height,
2252 		      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2253 		      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2254 
2255 	ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which);
2256 
2257 	crops[ssd->sink_pad]->left = 0;
2258 	crops[ssd->sink_pad]->top = 0;
2259 	crops[ssd->sink_pad]->width = fmt->format.width;
2260 	crops[ssd->sink_pad]->height = fmt->format.height;
2261 	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2262 		ssd->sink_fmt = *crops[ssd->sink_pad];
2263 	ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2264 
2265 	mutex_unlock(&sensor->mutex);
2266 
2267 	return 0;
2268 }
2269 
2270 /*
2271  * Calculate goodness of scaled image size compared to expected image
2272  * size and flags provided.
2273  */
2274 #define SCALING_GOODNESS		100000
2275 #define SCALING_GOODNESS_EXTREME	100000000
2276 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2277 			    int h, int ask_h, u32 flags)
2278 {
2279 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2280 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2281 	int val = 0;
2282 
2283 	w &= ~1;
2284 	ask_w &= ~1;
2285 	h &= ~1;
2286 	ask_h &= ~1;
2287 
2288 	if (flags & V4L2_SEL_FLAG_GE) {
2289 		if (w < ask_w)
2290 			val -= SCALING_GOODNESS;
2291 		if (h < ask_h)
2292 			val -= SCALING_GOODNESS;
2293 	}
2294 
2295 	if (flags & V4L2_SEL_FLAG_LE) {
2296 		if (w > ask_w)
2297 			val -= SCALING_GOODNESS;
2298 		if (h > ask_h)
2299 			val -= SCALING_GOODNESS;
2300 	}
2301 
2302 	val -= abs(w - ask_w);
2303 	val -= abs(h - ask_h);
2304 
2305 	if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2306 		val -= SCALING_GOODNESS_EXTREME;
2307 
2308 	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2309 		w, ask_w, h, ask_h, val);
2310 
2311 	return val;
2312 }
2313 
2314 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2315 				   struct v4l2_subdev_state *sd_state,
2316 				   struct v4l2_subdev_selection *sel,
2317 				   struct v4l2_rect **crops,
2318 				   struct v4l2_rect *comp)
2319 {
2320 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2321 	unsigned int i;
2322 	unsigned int binh = 1, binv = 1;
2323 	int best = scaling_goodness(
2324 		subdev,
2325 		crops[CCS_PAD_SINK]->width, sel->r.width,
2326 		crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2327 
2328 	for (i = 0; i < sensor->nbinning_subtypes; i++) {
2329 		int this = scaling_goodness(
2330 			subdev,
2331 			crops[CCS_PAD_SINK]->width
2332 			/ sensor->binning_subtypes[i].horizontal,
2333 			sel->r.width,
2334 			crops[CCS_PAD_SINK]->height
2335 			/ sensor->binning_subtypes[i].vertical,
2336 			sel->r.height, sel->flags);
2337 
2338 		if (this > best) {
2339 			binh = sensor->binning_subtypes[i].horizontal;
2340 			binv = sensor->binning_subtypes[i].vertical;
2341 			best = this;
2342 		}
2343 	}
2344 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2345 		sensor->binning_vertical = binv;
2346 		sensor->binning_horizontal = binh;
2347 	}
2348 
2349 	sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2350 	sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2351 }
2352 
2353 /*
2354  * Calculate best scaling ratio and mode for given output resolution.
2355  *
2356  * Try all of these: horizontal ratio, vertical ratio and smallest
2357  * size possible (horizontally).
2358  *
2359  * Also try whether horizontal scaler or full scaler gives a better
2360  * result.
2361  */
2362 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2363 				   struct v4l2_subdev_state *sd_state,
2364 				   struct v4l2_subdev_selection *sel,
2365 				   struct v4l2_rect **crops,
2366 				   struct v4l2_rect *comp)
2367 {
2368 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2369 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2370 	u32 min, max, a, b, max_m;
2371 	u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2372 	int mode = CCS_SCALING_MODE_HORIZONTAL;
2373 	u32 try[4];
2374 	u32 ntry = 0;
2375 	unsigned int i;
2376 	int best = INT_MIN;
2377 
2378 	sel->r.width = min_t(unsigned int, sel->r.width,
2379 			     crops[CCS_PAD_SINK]->width);
2380 	sel->r.height = min_t(unsigned int, sel->r.height,
2381 			      crops[CCS_PAD_SINK]->height);
2382 
2383 	a = crops[CCS_PAD_SINK]->width
2384 		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2385 	b = crops[CCS_PAD_SINK]->height
2386 		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2387 	max_m = crops[CCS_PAD_SINK]->width
2388 		* CCS_LIM(sensor, SCALER_N_MIN)
2389 		/ CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2390 
2391 	a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2392 		  CCS_LIM(sensor, SCALER_M_MAX));
2393 	b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2394 		  CCS_LIM(sensor, SCALER_M_MAX));
2395 	max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2396 		      CCS_LIM(sensor, SCALER_M_MAX));
2397 
2398 	dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2399 
2400 	min = min(max_m, min(a, b));
2401 	max = min(max_m, max(a, b));
2402 
2403 	try[ntry] = min;
2404 	ntry++;
2405 	if (min != max) {
2406 		try[ntry] = max;
2407 		ntry++;
2408 	}
2409 	if (max != max_m) {
2410 		try[ntry] = min + 1;
2411 		ntry++;
2412 		if (min != max) {
2413 			try[ntry] = max + 1;
2414 			ntry++;
2415 		}
2416 	}
2417 
2418 	for (i = 0; i < ntry; i++) {
2419 		int this = scaling_goodness(
2420 			subdev,
2421 			crops[CCS_PAD_SINK]->width
2422 			/ try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2423 			sel->r.width,
2424 			crops[CCS_PAD_SINK]->height,
2425 			sel->r.height,
2426 			sel->flags);
2427 
2428 		dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2429 
2430 		if (this > best) {
2431 			scale_m = try[i];
2432 			mode = CCS_SCALING_MODE_HORIZONTAL;
2433 			best = this;
2434 		}
2435 
2436 		if (CCS_LIM(sensor, SCALING_CAPABILITY)
2437 		    == CCS_SCALING_CAPABILITY_HORIZONTAL)
2438 			continue;
2439 
2440 		this = scaling_goodness(
2441 			subdev, crops[CCS_PAD_SINK]->width
2442 			/ try[i]
2443 			* CCS_LIM(sensor, SCALER_N_MIN),
2444 			sel->r.width,
2445 			crops[CCS_PAD_SINK]->height
2446 			/ try[i]
2447 			* CCS_LIM(sensor, SCALER_N_MIN),
2448 			sel->r.height,
2449 			sel->flags);
2450 
2451 		if (this > best) {
2452 			scale_m = try[i];
2453 			mode = SMIAPP_SCALING_MODE_BOTH;
2454 			best = this;
2455 		}
2456 	}
2457 
2458 	sel->r.width =
2459 		(crops[CCS_PAD_SINK]->width
2460 		 / scale_m
2461 		 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2462 	if (mode == SMIAPP_SCALING_MODE_BOTH)
2463 		sel->r.height =
2464 			(crops[CCS_PAD_SINK]->height
2465 			 / scale_m
2466 			 * CCS_LIM(sensor, SCALER_N_MIN))
2467 			& ~1;
2468 	else
2469 		sel->r.height = crops[CCS_PAD_SINK]->height;
2470 
2471 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2472 		sensor->scale_m = scale_m;
2473 		sensor->scaling_mode = mode;
2474 	}
2475 }
2476 /* We're only called on source pads. This function sets scaling. */
2477 static int ccs_set_compose(struct v4l2_subdev *subdev,
2478 			   struct v4l2_subdev_state *sd_state,
2479 			   struct v4l2_subdev_selection *sel)
2480 {
2481 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2482 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2483 	struct v4l2_rect *comp, *crops[CCS_PADS];
2484 
2485 	ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2486 
2487 	sel->r.top = 0;
2488 	sel->r.left = 0;
2489 
2490 	if (ssd == sensor->binner)
2491 		ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2492 	else
2493 		ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2494 
2495 	*comp = sel->r;
2496 	ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2497 
2498 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2499 		return ccs_pll_blanking_update(sensor);
2500 
2501 	return 0;
2502 }
2503 
2504 static int __ccs_sel_supported(struct v4l2_subdev *subdev,
2505 			       struct v4l2_subdev_selection *sel)
2506 {
2507 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2508 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2509 
2510 	/* We only implement crop in three places. */
2511 	switch (sel->target) {
2512 	case V4L2_SEL_TGT_CROP:
2513 	case V4L2_SEL_TGT_CROP_BOUNDS:
2514 		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2515 			return 0;
2516 		if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2517 			return 0;
2518 		if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2519 		    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2520 		    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2521 			return 0;
2522 		return -EINVAL;
2523 	case V4L2_SEL_TGT_NATIVE_SIZE:
2524 		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2525 			return 0;
2526 		return -EINVAL;
2527 	case V4L2_SEL_TGT_COMPOSE:
2528 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2529 		if (sel->pad == ssd->source_pad)
2530 			return -EINVAL;
2531 		if (ssd == sensor->binner)
2532 			return 0;
2533 		if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2534 		    != CCS_SCALING_CAPABILITY_NONE)
2535 			return 0;
2536 		fallthrough;
2537 	default:
2538 		return -EINVAL;
2539 	}
2540 }
2541 
2542 static int ccs_set_crop(struct v4l2_subdev *subdev,
2543 			struct v4l2_subdev_state *sd_state,
2544 			struct v4l2_subdev_selection *sel)
2545 {
2546 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2547 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2548 	struct v4l2_rect *src_size, *crops[CCS_PADS];
2549 	struct v4l2_rect _r;
2550 
2551 	ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which);
2552 
2553 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2554 		if (sel->pad == ssd->sink_pad)
2555 			src_size = &ssd->sink_fmt;
2556 		else
2557 			src_size = &ssd->compose;
2558 	} else {
2559 		if (sel->pad == ssd->sink_pad) {
2560 			_r.left = 0;
2561 			_r.top = 0;
2562 			_r.width = v4l2_subdev_get_try_format(subdev,
2563 							      sd_state,
2564 							      sel->pad)
2565 				->width;
2566 			_r.height = v4l2_subdev_get_try_format(subdev,
2567 							       sd_state,
2568 							       sel->pad)
2569 				->height;
2570 			src_size = &_r;
2571 		} else {
2572 			src_size = v4l2_subdev_get_try_compose(
2573 				subdev, sd_state, ssd->sink_pad);
2574 		}
2575 	}
2576 
2577 	if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2578 		sel->r.left = 0;
2579 		sel->r.top = 0;
2580 	}
2581 
2582 	sel->r.width = min(sel->r.width, src_size->width);
2583 	sel->r.height = min(sel->r.height, src_size->height);
2584 
2585 	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2586 	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2587 
2588 	*crops[sel->pad] = sel->r;
2589 
2590 	if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2591 		ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2592 
2593 	return 0;
2594 }
2595 
2596 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2597 {
2598 	r->top = 0;
2599 	r->left = 0;
2600 	r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2601 	r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2602 }
2603 
2604 static int __ccs_get_selection(struct v4l2_subdev *subdev,
2605 			       struct v4l2_subdev_state *sd_state,
2606 			       struct v4l2_subdev_selection *sel)
2607 {
2608 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2609 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2610 	struct v4l2_rect *comp, *crops[CCS_PADS];
2611 	struct v4l2_rect sink_fmt;
2612 	int ret;
2613 
2614 	ret = __ccs_sel_supported(subdev, sel);
2615 	if (ret)
2616 		return ret;
2617 
2618 	ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which);
2619 
2620 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2621 		sink_fmt = ssd->sink_fmt;
2622 	} else {
2623 		struct v4l2_mbus_framefmt *fmt =
2624 			v4l2_subdev_get_try_format(subdev, sd_state,
2625 						   ssd->sink_pad);
2626 
2627 		sink_fmt.left = 0;
2628 		sink_fmt.top = 0;
2629 		sink_fmt.width = fmt->width;
2630 		sink_fmt.height = fmt->height;
2631 	}
2632 
2633 	switch (sel->target) {
2634 	case V4L2_SEL_TGT_CROP_BOUNDS:
2635 	case V4L2_SEL_TGT_NATIVE_SIZE:
2636 		if (ssd == sensor->pixel_array)
2637 			ccs_get_native_size(ssd, &sel->r);
2638 		else if (sel->pad == ssd->sink_pad)
2639 			sel->r = sink_fmt;
2640 		else
2641 			sel->r = *comp;
2642 		break;
2643 	case V4L2_SEL_TGT_CROP:
2644 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2645 		sel->r = *crops[sel->pad];
2646 		break;
2647 	case V4L2_SEL_TGT_COMPOSE:
2648 		sel->r = *comp;
2649 		break;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 static int ccs_get_selection(struct v4l2_subdev *subdev,
2656 			     struct v4l2_subdev_state *sd_state,
2657 			     struct v4l2_subdev_selection *sel)
2658 {
2659 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2660 	int rval;
2661 
2662 	mutex_lock(&sensor->mutex);
2663 	rval = __ccs_get_selection(subdev, sd_state, sel);
2664 	mutex_unlock(&sensor->mutex);
2665 
2666 	return rval;
2667 }
2668 
2669 static int ccs_set_selection(struct v4l2_subdev *subdev,
2670 			     struct v4l2_subdev_state *sd_state,
2671 			     struct v4l2_subdev_selection *sel)
2672 {
2673 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2674 	int ret;
2675 
2676 	ret = __ccs_sel_supported(subdev, sel);
2677 	if (ret)
2678 		return ret;
2679 
2680 	mutex_lock(&sensor->mutex);
2681 
2682 	sel->r.left = max(0, sel->r.left & ~1);
2683 	sel->r.top = max(0, sel->r.top & ~1);
2684 	sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2685 	sel->r.height =	CCS_ALIGN_DIM(sel->r.height, sel->flags);
2686 
2687 	sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2688 			     sel->r.width);
2689 	sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2690 			      sel->r.height);
2691 
2692 	switch (sel->target) {
2693 	case V4L2_SEL_TGT_CROP:
2694 		ret = ccs_set_crop(subdev, sd_state, sel);
2695 		break;
2696 	case V4L2_SEL_TGT_COMPOSE:
2697 		ret = ccs_set_compose(subdev, sd_state, sel);
2698 		break;
2699 	default:
2700 		ret = -EINVAL;
2701 	}
2702 
2703 	mutex_unlock(&sensor->mutex);
2704 	return ret;
2705 }
2706 
2707 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2708 {
2709 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2710 
2711 	*frames = sensor->frame_skip;
2712 	return 0;
2713 }
2714 
2715 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2716 {
2717 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2718 
2719 	*lines = sensor->image_start;
2720 
2721 	return 0;
2722 }
2723 
2724 /* -----------------------------------------------------------------------------
2725  * sysfs attributes
2726  */
2727 
2728 static ssize_t
2729 nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2730 {
2731 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2732 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2733 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2734 	int rval;
2735 
2736 	if (!sensor->dev_init_done)
2737 		return -EBUSY;
2738 
2739 	rval = ccs_pm_get_init(sensor);
2740 	if (rval < 0)
2741 		return -ENODEV;
2742 
2743 	rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2744 	if (rval < 0) {
2745 		pm_runtime_put(&client->dev);
2746 		dev_err(&client->dev, "nvm read failed\n");
2747 		return -ENODEV;
2748 	}
2749 
2750 	pm_runtime_mark_last_busy(&client->dev);
2751 	pm_runtime_put_autosuspend(&client->dev);
2752 
2753 	/*
2754 	 * NVM is still way below a PAGE_SIZE, so we can safely
2755 	 * assume this for now.
2756 	 */
2757 	return rval;
2758 }
2759 static DEVICE_ATTR_RO(nvm);
2760 
2761 static ssize_t
2762 ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2763 {
2764 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2765 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2766 	struct ccs_module_info *minfo = &sensor->minfo;
2767 
2768 	if (minfo->mipi_manufacturer_id)
2769 		return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2770 				    minfo->mipi_manufacturer_id, minfo->model_id,
2771 				    minfo->revision_number) + 1;
2772 	else
2773 		return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2774 				    minfo->smia_manufacturer_id, minfo->model_id,
2775 				    minfo->revision_number) + 1;
2776 }
2777 static DEVICE_ATTR_RO(ident);
2778 
2779 /* -----------------------------------------------------------------------------
2780  * V4L2 subdev core operations
2781  */
2782 
2783 static int ccs_identify_module(struct ccs_sensor *sensor)
2784 {
2785 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2786 	struct ccs_module_info *minfo = &sensor->minfo;
2787 	unsigned int i;
2788 	u32 rev;
2789 	int rval = 0;
2790 
2791 	/* Module info */
2792 	rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2793 			&minfo->mipi_manufacturer_id);
2794 	if (!rval && !minfo->mipi_manufacturer_id)
2795 		rval = ccs_read_addr_8only(sensor,
2796 					   SMIAPP_REG_U8_MANUFACTURER_ID,
2797 					   &minfo->smia_manufacturer_id);
2798 	if (!rval)
2799 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2800 					   &minfo->model_id);
2801 	if (!rval)
2802 		rval = ccs_read_addr_8only(sensor,
2803 					   CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2804 					   &rev);
2805 	if (!rval) {
2806 		rval = ccs_read_addr_8only(sensor,
2807 					   CCS_R_MODULE_REVISION_NUMBER_MINOR,
2808 					   &minfo->revision_number);
2809 		minfo->revision_number |= rev << 8;
2810 	}
2811 	if (!rval)
2812 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2813 					   &minfo->module_year);
2814 	if (!rval)
2815 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2816 					   &minfo->module_month);
2817 	if (!rval)
2818 		rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2819 					   &minfo->module_day);
2820 
2821 	/* Sensor info */
2822 	if (!rval)
2823 		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2824 				&minfo->sensor_mipi_manufacturer_id);
2825 	if (!rval && !minfo->sensor_mipi_manufacturer_id)
2826 		rval = ccs_read_addr_8only(sensor,
2827 					   CCS_R_SENSOR_MANUFACTURER_ID,
2828 					   &minfo->sensor_smia_manufacturer_id);
2829 	if (!rval)
2830 		rval = ccs_read_addr_8only(sensor,
2831 					   CCS_R_SENSOR_MODEL_ID,
2832 					   &minfo->sensor_model_id);
2833 	if (!rval)
2834 		rval = ccs_read_addr_8only(sensor,
2835 					   CCS_R_SENSOR_REVISION_NUMBER,
2836 					   &minfo->sensor_revision_number);
2837 	if (!rval && !minfo->sensor_revision_number)
2838 		rval = ccs_read_addr_8only(sensor,
2839 					   CCS_R_SENSOR_REVISION_NUMBER_16,
2840 					   &minfo->sensor_revision_number);
2841 	if (!rval)
2842 		rval = ccs_read_addr_8only(sensor,
2843 					   CCS_R_SENSOR_FIRMWARE_VERSION,
2844 					   &minfo->sensor_firmware_version);
2845 
2846 	/* SMIA */
2847 	if (!rval)
2848 		rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2849 	if (!rval && !minfo->ccs_version)
2850 		rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2851 					   &minfo->smia_version);
2852 	if (!rval && !minfo->ccs_version)
2853 		rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2854 					   &minfo->smiapp_version);
2855 
2856 	if (rval) {
2857 		dev_err(&client->dev, "sensor detection failed\n");
2858 		return -ENODEV;
2859 	}
2860 
2861 	if (minfo->mipi_manufacturer_id)
2862 		dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2863 			minfo->mipi_manufacturer_id, minfo->model_id);
2864 	else
2865 		dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2866 			minfo->smia_manufacturer_id, minfo->model_id);
2867 
2868 	dev_dbg(&client->dev,
2869 		"module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2870 		minfo->revision_number, minfo->module_year, minfo->module_month,
2871 		minfo->module_day);
2872 
2873 	if (minfo->sensor_mipi_manufacturer_id)
2874 		dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2875 			minfo->sensor_mipi_manufacturer_id,
2876 			minfo->sensor_model_id);
2877 	else
2878 		dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2879 			minfo->sensor_smia_manufacturer_id,
2880 			minfo->sensor_model_id);
2881 
2882 	dev_dbg(&client->dev,
2883 		"sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2884 		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2885 
2886 	if (minfo->ccs_version) {
2887 		dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2888 			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2889 			>> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2890 			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2891 		minfo->name = CCS_NAME;
2892 	} else {
2893 		dev_dbg(&client->dev,
2894 			"smia version %2.2d smiapp version %2.2d\n",
2895 			minfo->smia_version, minfo->smiapp_version);
2896 		minfo->name = SMIAPP_NAME;
2897 		/*
2898 		 * Some modules have bad data in the lvalues below. Hope the
2899 		 * rvalues have better stuff. The lvalues are module
2900 		 * parameters whereas the rvalues are sensor parameters.
2901 		 */
2902 		if (minfo->sensor_smia_manufacturer_id &&
2903 		    !minfo->smia_manufacturer_id && !minfo->model_id) {
2904 			minfo->smia_manufacturer_id =
2905 				minfo->sensor_smia_manufacturer_id;
2906 			minfo->model_id = minfo->sensor_model_id;
2907 			minfo->revision_number = minfo->sensor_revision_number;
2908 		}
2909 	}
2910 
2911 	for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2912 		if (ccs_module_idents[i].mipi_manufacturer_id &&
2913 		    ccs_module_idents[i].mipi_manufacturer_id
2914 		    != minfo->mipi_manufacturer_id)
2915 			continue;
2916 		if (ccs_module_idents[i].smia_manufacturer_id &&
2917 		    ccs_module_idents[i].smia_manufacturer_id
2918 		    != minfo->smia_manufacturer_id)
2919 			continue;
2920 		if (ccs_module_idents[i].model_id != minfo->model_id)
2921 			continue;
2922 		if (ccs_module_idents[i].flags
2923 		    & CCS_MODULE_IDENT_FLAG_REV_LE) {
2924 			if (ccs_module_idents[i].revision_number_major
2925 			    < (minfo->revision_number >> 8))
2926 				continue;
2927 		} else {
2928 			if (ccs_module_idents[i].revision_number_major
2929 			    != (minfo->revision_number >> 8))
2930 				continue;
2931 		}
2932 
2933 		minfo->name = ccs_module_idents[i].name;
2934 		minfo->quirk = ccs_module_idents[i].quirk;
2935 		break;
2936 	}
2937 
2938 	if (i >= ARRAY_SIZE(ccs_module_idents))
2939 		dev_warn(&client->dev,
2940 			 "no quirks for this module; let's hope it's fully compliant\n");
2941 
2942 	dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2943 
2944 	return 0;
2945 }
2946 
2947 static const struct v4l2_subdev_ops ccs_ops;
2948 static const struct v4l2_subdev_internal_ops ccs_internal_ops;
2949 static const struct media_entity_operations ccs_entity_ops;
2950 
2951 static int ccs_register_subdev(struct ccs_sensor *sensor,
2952 			       struct ccs_subdev *ssd,
2953 			       struct ccs_subdev *sink_ssd,
2954 			       u16 source_pad, u16 sink_pad, u32 link_flags)
2955 {
2956 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2957 	int rval;
2958 
2959 	if (!sink_ssd)
2960 		return 0;
2961 
2962 	rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2963 	if (rval) {
2964 		dev_err(&client->dev, "media_entity_pads_init failed\n");
2965 		return rval;
2966 	}
2967 
2968 	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2969 	if (rval) {
2970 		dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2971 		return rval;
2972 	}
2973 
2974 	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2975 				     &sink_ssd->sd.entity, sink_pad,
2976 				     link_flags);
2977 	if (rval) {
2978 		dev_err(&client->dev, "media_create_pad_link failed\n");
2979 		v4l2_device_unregister_subdev(&ssd->sd);
2980 		return rval;
2981 	}
2982 
2983 	return 0;
2984 }
2985 
2986 static void ccs_unregistered(struct v4l2_subdev *subdev)
2987 {
2988 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2989 	unsigned int i;
2990 
2991 	for (i = 1; i < sensor->ssds_used; i++)
2992 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2993 }
2994 
2995 static int ccs_registered(struct v4l2_subdev *subdev)
2996 {
2997 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2998 	int rval;
2999 
3000 	if (sensor->scaler) {
3001 		rval = ccs_register_subdev(sensor, sensor->binner,
3002 					   sensor->scaler,
3003 					   CCS_PAD_SRC, CCS_PAD_SINK,
3004 					   MEDIA_LNK_FL_ENABLED |
3005 					   MEDIA_LNK_FL_IMMUTABLE);
3006 		if (rval < 0)
3007 			return rval;
3008 	}
3009 
3010 	rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
3011 				   CCS_PA_PAD_SRC, CCS_PAD_SINK,
3012 				   MEDIA_LNK_FL_ENABLED |
3013 				   MEDIA_LNK_FL_IMMUTABLE);
3014 	if (rval)
3015 		goto out_err;
3016 
3017 	return 0;
3018 
3019 out_err:
3020 	ccs_unregistered(subdev);
3021 
3022 	return rval;
3023 }
3024 
3025 static void ccs_cleanup(struct ccs_sensor *sensor)
3026 {
3027 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3028 
3029 	device_remove_file(&client->dev, &dev_attr_nvm);
3030 	device_remove_file(&client->dev, &dev_attr_ident);
3031 
3032 	ccs_free_controls(sensor);
3033 }
3034 
3035 static void ccs_create_subdev(struct ccs_sensor *sensor,
3036 			      struct ccs_subdev *ssd, const char *name,
3037 			      unsigned short num_pads, u32 function)
3038 {
3039 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
3040 
3041 	if (!ssd)
3042 		return;
3043 
3044 	if (ssd != sensor->src)
3045 		v4l2_subdev_init(&ssd->sd, &ccs_ops);
3046 
3047 	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3048 	ssd->sd.entity.function = function;
3049 	ssd->sensor = sensor;
3050 
3051 	ssd->npads = num_pads;
3052 	ssd->source_pad = num_pads - 1;
3053 
3054 	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
3055 
3056 	ccs_get_native_size(ssd, &ssd->sink_fmt);
3057 
3058 	ssd->compose.width = ssd->sink_fmt.width;
3059 	ssd->compose.height = ssd->sink_fmt.height;
3060 	ssd->crop[ssd->source_pad] = ssd->compose;
3061 	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3062 	if (ssd != sensor->pixel_array) {
3063 		ssd->crop[ssd->sink_pad] = ssd->compose;
3064 		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
3065 	}
3066 
3067 	ssd->sd.entity.ops = &ccs_entity_ops;
3068 
3069 	if (ssd == sensor->src)
3070 		return;
3071 
3072 	ssd->sd.internal_ops = &ccs_internal_ops;
3073 	ssd->sd.owner = THIS_MODULE;
3074 	ssd->sd.dev = &client->dev;
3075 	v4l2_set_subdevdata(&ssd->sd, client);
3076 }
3077 
3078 static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
3079 {
3080 	struct ccs_subdev *ssd = to_ccs_subdev(sd);
3081 	struct ccs_sensor *sensor = ssd->sensor;
3082 	unsigned int i;
3083 
3084 	mutex_lock(&sensor->mutex);
3085 
3086 	for (i = 0; i < ssd->npads; i++) {
3087 		struct v4l2_mbus_framefmt *try_fmt =
3088 			v4l2_subdev_get_try_format(sd, fh->state, i);
3089 		struct v4l2_rect *try_crop =
3090 			v4l2_subdev_get_try_crop(sd, fh->state, i);
3091 		struct v4l2_rect *try_comp;
3092 
3093 		ccs_get_native_size(ssd, try_crop);
3094 
3095 		try_fmt->width = try_crop->width;
3096 		try_fmt->height = try_crop->height;
3097 		try_fmt->code = sensor->internal_csi_format->code;
3098 		try_fmt->field = V4L2_FIELD_NONE;
3099 
3100 		if (ssd == sensor->pixel_array)
3101 			continue;
3102 
3103 		try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i);
3104 		*try_comp = *try_crop;
3105 	}
3106 
3107 	mutex_unlock(&sensor->mutex);
3108 
3109 	return 0;
3110 }
3111 
3112 static const struct v4l2_subdev_video_ops ccs_video_ops = {
3113 	.s_stream = ccs_set_stream,
3114 	.pre_streamon = ccs_pre_streamon,
3115 	.post_streamoff = ccs_post_streamoff,
3116 };
3117 
3118 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3119 	.enum_mbus_code = ccs_enum_mbus_code,
3120 	.get_fmt = ccs_get_format,
3121 	.set_fmt = ccs_set_format,
3122 	.get_selection = ccs_get_selection,
3123 	.set_selection = ccs_set_selection,
3124 };
3125 
3126 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3127 	.g_skip_frames = ccs_get_skip_frames,
3128 	.g_skip_top_lines = ccs_get_skip_top_lines,
3129 };
3130 
3131 static const struct v4l2_subdev_ops ccs_ops = {
3132 	.video = &ccs_video_ops,
3133 	.pad = &ccs_pad_ops,
3134 	.sensor = &ccs_sensor_ops,
3135 };
3136 
3137 static const struct media_entity_operations ccs_entity_ops = {
3138 	.link_validate = v4l2_subdev_link_validate,
3139 };
3140 
3141 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3142 	.registered = ccs_registered,
3143 	.unregistered = ccs_unregistered,
3144 	.open = ccs_open,
3145 };
3146 
3147 static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
3148 	.open = ccs_open,
3149 };
3150 
3151 /* -----------------------------------------------------------------------------
3152  * I2C Driver
3153  */
3154 
3155 static int __maybe_unused ccs_suspend(struct device *dev)
3156 {
3157 	struct i2c_client *client = to_i2c_client(dev);
3158 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3159 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3160 	bool streaming = sensor->streaming;
3161 	int rval;
3162 
3163 	rval = pm_runtime_resume_and_get(dev);
3164 	if (rval < 0)
3165 		return rval;
3166 
3167 	if (sensor->streaming)
3168 		ccs_stop_streaming(sensor);
3169 
3170 	/* save state for resume */
3171 	sensor->streaming = streaming;
3172 
3173 	return 0;
3174 }
3175 
3176 static int __maybe_unused ccs_resume(struct device *dev)
3177 {
3178 	struct i2c_client *client = to_i2c_client(dev);
3179 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3180 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3181 	int rval = 0;
3182 
3183 	pm_runtime_put(dev);
3184 
3185 	if (sensor->streaming)
3186 		rval = ccs_start_streaming(sensor);
3187 
3188 	return rval;
3189 }
3190 
3191 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3192 {
3193 	struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3194 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3195 	struct fwnode_handle *ep;
3196 	struct fwnode_handle *fwnode = dev_fwnode(dev);
3197 	unsigned int i;
3198 	int rval;
3199 
3200 	ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3201 					     FWNODE_GRAPH_ENDPOINT_NEXT);
3202 	if (!ep)
3203 		return -ENODEV;
3204 
3205 	/*
3206 	 * Note that we do need to rely on detecting the bus type between CSI-2
3207 	 * D-PHY and CCP2 as the old bindings did not require it.
3208 	 */
3209 	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3210 	if (rval)
3211 		goto out_err;
3212 
3213 	switch (bus_cfg.bus_type) {
3214 	case V4L2_MBUS_CSI2_DPHY:
3215 		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3216 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3217 		break;
3218 	case V4L2_MBUS_CSI2_CPHY:
3219 		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3220 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3221 		break;
3222 	case V4L2_MBUS_CSI1:
3223 	case V4L2_MBUS_CCP2:
3224 		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3225 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3226 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3227 		hwcfg->lanes = 1;
3228 		break;
3229 	default:
3230 		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3231 		rval = -EINVAL;
3232 		goto out_err;
3233 	}
3234 
3235 	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3236 					&hwcfg->ext_clk);
3237 	if (rval)
3238 		dev_info(dev, "can't get clock-frequency\n");
3239 
3240 	dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3241 		hwcfg->csi_signalling_mode);
3242 
3243 	if (!bus_cfg.nr_of_link_frequencies) {
3244 		dev_warn(dev, "no link frequencies defined\n");
3245 		rval = -EINVAL;
3246 		goto out_err;
3247 	}
3248 
3249 	hwcfg->op_sys_clock = devm_kcalloc(
3250 		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3251 		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3252 	if (!hwcfg->op_sys_clock) {
3253 		rval = -ENOMEM;
3254 		goto out_err;
3255 	}
3256 
3257 	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3258 		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3259 		dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3260 	}
3261 
3262 	v4l2_fwnode_endpoint_free(&bus_cfg);
3263 	fwnode_handle_put(ep);
3264 
3265 	return 0;
3266 
3267 out_err:
3268 	v4l2_fwnode_endpoint_free(&bus_cfg);
3269 	fwnode_handle_put(ep);
3270 
3271 	return rval;
3272 }
3273 
3274 static int ccs_firmware_name(struct i2c_client *client,
3275 			     struct ccs_sensor *sensor, char *filename,
3276 			     size_t filename_size, bool is_module)
3277 {
3278 	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3279 	bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3280 	bool is_smiapp = sensor->minfo.smiapp_version;
3281 	u16 manufacturer_id;
3282 	u16 model_id;
3283 	u16 revision_number;
3284 
3285 	/*
3286 	 * Old SMIA is module-agnostic. Its sensor identification is based on
3287 	 * what now are those of the module.
3288 	 */
3289 	if (is_module || (!is_ccs && !is_smiapp)) {
3290 		manufacturer_id = is_ccs ?
3291 			sensor->minfo.mipi_manufacturer_id :
3292 			sensor->minfo.smia_manufacturer_id;
3293 		model_id = sensor->minfo.model_id;
3294 		revision_number = sensor->minfo.revision_number;
3295 	} else {
3296 		manufacturer_id = is_ccs ?
3297 			sensor->minfo.sensor_mipi_manufacturer_id :
3298 			sensor->minfo.sensor_smia_manufacturer_id;
3299 		model_id = sensor->minfo.sensor_model_id;
3300 		revision_number = sensor->minfo.sensor_revision_number;
3301 	}
3302 
3303 	return snprintf(filename, filename_size,
3304 			"ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3305 			is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3306 			is_module || (!is_ccs && !is_smiapp) ?
3307 				"module" : "sensor",
3308 			is_ccs ? 4 : 2, manufacturer_id, model_id,
3309 			!is_ccs && !is_module ? 2 : 4, revision_number);
3310 }
3311 
3312 static int ccs_probe(struct i2c_client *client)
3313 {
3314 	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3315 	struct ccs_sensor *sensor;
3316 	const struct firmware *fw;
3317 	char filename[40];
3318 	unsigned int i;
3319 	int rval;
3320 
3321 	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3322 	if (sensor == NULL)
3323 		return -ENOMEM;
3324 
3325 	rval = ccs_get_hwconfig(sensor, &client->dev);
3326 	if (rval)
3327 		return rval;
3328 
3329 	sensor->src = &sensor->ssds[sensor->ssds_used];
3330 
3331 	v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3332 	sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3333 
3334 	sensor->regulators = devm_kcalloc(&client->dev,
3335 					  ARRAY_SIZE(ccs_regulators),
3336 					  sizeof(*sensor->regulators),
3337 					  GFP_KERNEL);
3338 	if (!sensor->regulators)
3339 		return -ENOMEM;
3340 
3341 	for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3342 		sensor->regulators[i].supply = ccs_regulators[i];
3343 
3344 	rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3345 				       sensor->regulators);
3346 	if (rval) {
3347 		dev_err(&client->dev, "could not get regulators\n");
3348 		return rval;
3349 	}
3350 
3351 	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3352 	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3353 		dev_info(&client->dev, "no clock defined, continuing...\n");
3354 		sensor->ext_clk = NULL;
3355 	} else if (IS_ERR(sensor->ext_clk)) {
3356 		dev_err(&client->dev, "could not get clock (%ld)\n",
3357 			PTR_ERR(sensor->ext_clk));
3358 		return -EPROBE_DEFER;
3359 	}
3360 
3361 	if (sensor->ext_clk) {
3362 		if (sensor->hwcfg.ext_clk) {
3363 			unsigned long rate;
3364 
3365 			rval = clk_set_rate(sensor->ext_clk,
3366 					    sensor->hwcfg.ext_clk);
3367 			if (rval < 0) {
3368 				dev_err(&client->dev,
3369 					"unable to set clock freq to %u\n",
3370 					sensor->hwcfg.ext_clk);
3371 				return rval;
3372 			}
3373 
3374 			rate = clk_get_rate(sensor->ext_clk);
3375 			if (rate != sensor->hwcfg.ext_clk) {
3376 				dev_err(&client->dev,
3377 					"can't set clock freq, asked for %u but got %lu\n",
3378 					sensor->hwcfg.ext_clk, rate);
3379 				return -EINVAL;
3380 			}
3381 		} else {
3382 			sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3383 			dev_dbg(&client->dev, "obtained clock freq %u\n",
3384 				sensor->hwcfg.ext_clk);
3385 		}
3386 	} else if (sensor->hwcfg.ext_clk) {
3387 		dev_dbg(&client->dev, "assuming clock freq %u\n",
3388 			sensor->hwcfg.ext_clk);
3389 	} else {
3390 		dev_err(&client->dev, "unable to obtain clock freq\n");
3391 		return -EINVAL;
3392 	}
3393 
3394 	if (!sensor->hwcfg.ext_clk) {
3395 		dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3396 		return -EINVAL;
3397 	}
3398 
3399 	sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3400 						GPIOD_OUT_HIGH);
3401 	if (IS_ERR(sensor->reset))
3402 		return PTR_ERR(sensor->reset);
3403 	/* Support old users that may have used "xshutdown" property. */
3404 	if (!sensor->reset)
3405 		sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3406 							    "xshutdown",
3407 							    GPIOD_OUT_LOW);
3408 	if (IS_ERR(sensor->xshutdown))
3409 		return PTR_ERR(sensor->xshutdown);
3410 
3411 	rval = ccs_power_on(&client->dev);
3412 	if (rval < 0)
3413 		return rval;
3414 
3415 	mutex_init(&sensor->mutex);
3416 
3417 	rval = ccs_identify_module(sensor);
3418 	if (rval) {
3419 		rval = -ENODEV;
3420 		goto out_power_off;
3421 	}
3422 
3423 	rval = ccs_firmware_name(client, sensor, filename, sizeof(filename),
3424 				 false);
3425 	if (rval >= sizeof(filename)) {
3426 		rval = -ENOMEM;
3427 		goto out_power_off;
3428 	}
3429 
3430 	rval = request_firmware(&fw, filename, &client->dev);
3431 	if (!rval) {
3432 		ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3433 			       true);
3434 		release_firmware(fw);
3435 	}
3436 
3437 	if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3438 	    sensor->minfo.smiapp_version) {
3439 		rval = ccs_firmware_name(client, sensor, filename,
3440 					 sizeof(filename), true);
3441 		if (rval >= sizeof(filename)) {
3442 			rval = -ENOMEM;
3443 			goto out_release_sdata;
3444 		}
3445 
3446 		rval = request_firmware(&fw, filename, &client->dev);
3447 		if (!rval) {
3448 			ccs_data_parse(&sensor->mdata, fw->data, fw->size,
3449 				       &client->dev, true);
3450 			release_firmware(fw);
3451 		}
3452 	}
3453 
3454 	rval = ccs_read_all_limits(sensor);
3455 	if (rval)
3456 		goto out_release_mdata;
3457 
3458 	rval = ccs_read_frame_fmt(sensor);
3459 	if (rval) {
3460 		rval = -ENODEV;
3461 		goto out_free_ccs_limits;
3462 	}
3463 
3464 	rval = ccs_update_phy_ctrl(sensor);
3465 	if (rval < 0)
3466 		goto out_free_ccs_limits;
3467 
3468 	rval = ccs_call_quirk(sensor, limits);
3469 	if (rval) {
3470 		dev_err(&client->dev, "limits quirks failed\n");
3471 		goto out_free_ccs_limits;
3472 	}
3473 
3474 	if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3475 		sensor->nbinning_subtypes =
3476 			min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3477 			      CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3478 
3479 		for (i = 0; i < sensor->nbinning_subtypes; i++) {
3480 			sensor->binning_subtypes[i].horizontal =
3481 				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3482 				CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3483 			sensor->binning_subtypes[i].vertical =
3484 				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3485 				CCS_BINNING_SUB_TYPE_ROW_MASK;
3486 
3487 			dev_dbg(&client->dev, "binning %xx%x\n",
3488 				sensor->binning_subtypes[i].horizontal,
3489 				sensor->binning_subtypes[i].vertical);
3490 		}
3491 	}
3492 	sensor->binning_horizontal = 1;
3493 	sensor->binning_vertical = 1;
3494 
3495 	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3496 		dev_err(&client->dev, "sysfs ident entry creation failed\n");
3497 		rval = -ENOENT;
3498 		goto out_free_ccs_limits;
3499 	}
3500 
3501 	if (sensor->minfo.smiapp_version &&
3502 	    CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3503 	    CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3504 		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3505 			dev_err(&client->dev, "sysfs nvm entry failed\n");
3506 			rval = -EBUSY;
3507 			goto out_cleanup;
3508 		}
3509 	}
3510 
3511 	if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3512 	    !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3513 	    !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3514 	    !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3515 		/* No OP clock branch */
3516 		sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3517 	} else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3518 		   != CCS_SCALING_CAPABILITY_NONE ||
3519 		   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3520 		   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3521 		/* We have a scaler or digital crop. */
3522 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
3523 		sensor->ssds_used++;
3524 	}
3525 	sensor->binner = &sensor->ssds[sensor->ssds_used];
3526 	sensor->ssds_used++;
3527 	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3528 	sensor->ssds_used++;
3529 
3530 	sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3531 
3532 	/* prepare PLL configuration input values */
3533 	sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3534 	sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3535 	if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3536 	    CCS_CLOCK_CALCULATION_LANE_SPEED) {
3537 		sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3538 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3539 		    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3540 			sensor->pll.vt_lanes =
3541 				CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3542 			sensor->pll.op_lanes =
3543 				CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3544 			sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3545 		} else {
3546 			sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3547 			sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3548 		}
3549 	}
3550 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3551 	    CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3552 		sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3553 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3554 	    CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3555 		sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3556 	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3557 	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3558 		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3559 	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3560 	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3561 		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3562 				     CCS_PLL_FLAG_FIFO_OVERRATING;
3563 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3564 	    CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3565 		if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3566 		    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3567 			u32 v;
3568 
3569 			/* Use sensor default in PLL mode selection */
3570 			rval = ccs_read(sensor, PLL_MODE, &v);
3571 			if (rval)
3572 				goto out_cleanup;
3573 
3574 			if (v == CCS_PLL_MODE_DUAL)
3575 				sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3576 		} else {
3577 			sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3578 		}
3579 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3580 		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3581 			sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3582 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3583 		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3584 			sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3585 	}
3586 	sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3587 	sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3588 	sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3589 
3590 	ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
3591 			  MEDIA_ENT_F_PROC_VIDEO_SCALER);
3592 	ccs_create_subdev(sensor, sensor->binner, " binner", 2,
3593 			  MEDIA_ENT_F_PROC_VIDEO_SCALER);
3594 	ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3595 			  MEDIA_ENT_F_CAM_SENSOR);
3596 
3597 	rval = ccs_init_controls(sensor);
3598 	if (rval < 0)
3599 		goto out_cleanup;
3600 
3601 	rval = ccs_call_quirk(sensor, init);
3602 	if (rval)
3603 		goto out_cleanup;
3604 
3605 	rval = ccs_get_mbus_formats(sensor);
3606 	if (rval) {
3607 		rval = -ENODEV;
3608 		goto out_cleanup;
3609 	}
3610 
3611 	rval = ccs_init_late_controls(sensor);
3612 	if (rval) {
3613 		rval = -ENODEV;
3614 		goto out_cleanup;
3615 	}
3616 
3617 	mutex_lock(&sensor->mutex);
3618 	rval = ccs_pll_blanking_update(sensor);
3619 	mutex_unlock(&sensor->mutex);
3620 	if (rval) {
3621 		dev_err(&client->dev, "update mode failed\n");
3622 		goto out_cleanup;
3623 	}
3624 
3625 	sensor->streaming = false;
3626 	sensor->dev_init_done = true;
3627 
3628 	rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3629 				 sensor->src->pads);
3630 	if (rval < 0)
3631 		goto out_media_entity_cleanup;
3632 
3633 	rval = ccs_write_msr_regs(sensor);
3634 	if (rval)
3635 		goto out_media_entity_cleanup;
3636 
3637 	pm_runtime_set_active(&client->dev);
3638 	pm_runtime_get_noresume(&client->dev);
3639 	pm_runtime_enable(&client->dev);
3640 
3641 	rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3642 	if (rval < 0)
3643 		goto out_disable_runtime_pm;
3644 
3645 	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3646 	pm_runtime_use_autosuspend(&client->dev);
3647 	pm_runtime_put_autosuspend(&client->dev);
3648 
3649 	return 0;
3650 
3651 out_disable_runtime_pm:
3652 	pm_runtime_put_noidle(&client->dev);
3653 	pm_runtime_disable(&client->dev);
3654 
3655 out_media_entity_cleanup:
3656 	media_entity_cleanup(&sensor->src->sd.entity);
3657 
3658 out_cleanup:
3659 	ccs_cleanup(sensor);
3660 
3661 out_release_mdata:
3662 	kvfree(sensor->mdata.backing);
3663 
3664 out_release_sdata:
3665 	kvfree(sensor->sdata.backing);
3666 
3667 out_free_ccs_limits:
3668 	kfree(sensor->ccs_limits);
3669 
3670 out_power_off:
3671 	ccs_power_off(&client->dev);
3672 	mutex_destroy(&sensor->mutex);
3673 
3674 	return rval;
3675 }
3676 
3677 static void ccs_remove(struct i2c_client *client)
3678 {
3679 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3680 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3681 	unsigned int i;
3682 
3683 	v4l2_async_unregister_subdev(subdev);
3684 
3685 	pm_runtime_disable(&client->dev);
3686 	if (!pm_runtime_status_suspended(&client->dev))
3687 		ccs_power_off(&client->dev);
3688 	pm_runtime_set_suspended(&client->dev);
3689 
3690 	for (i = 0; i < sensor->ssds_used; i++) {
3691 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3692 		media_entity_cleanup(&sensor->ssds[i].sd.entity);
3693 	}
3694 	ccs_cleanup(sensor);
3695 	mutex_destroy(&sensor->mutex);
3696 	kfree(sensor->ccs_limits);
3697 	kvfree(sensor->sdata.backing);
3698 	kvfree(sensor->mdata.backing);
3699 }
3700 
3701 static const struct ccs_device smia_device = {
3702 	.flags = CCS_DEVICE_FLAG_IS_SMIA,
3703 };
3704 
3705 static const struct ccs_device ccs_device = {};
3706 
3707 static const struct acpi_device_id ccs_acpi_table[] = {
3708 	{ .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3709 	{ },
3710 };
3711 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3712 
3713 static const struct of_device_id ccs_of_table[] = {
3714 	{ .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3715 	{ .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3716 	{ .compatible = "mipi-ccs", .data = &ccs_device },
3717 	{ .compatible = "nokia,smia", .data = &smia_device },
3718 	{ },
3719 };
3720 MODULE_DEVICE_TABLE(of, ccs_of_table);
3721 
3722 static const struct dev_pm_ops ccs_pm_ops = {
3723 	SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
3724 	SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3725 };
3726 
3727 static struct i2c_driver ccs_i2c_driver = {
3728 	.driver	= {
3729 		.acpi_match_table = ccs_acpi_table,
3730 		.of_match_table = ccs_of_table,
3731 		.name = CCS_NAME,
3732 		.pm = &ccs_pm_ops,
3733 	},
3734 	.probe = ccs_probe,
3735 	.remove	= ccs_remove,
3736 };
3737 
3738 static int ccs_module_init(void)
3739 {
3740 	unsigned int i, l;
3741 
3742 	for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3743 		if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3744 			ccs_limit_offsets[l + 1].lim =
3745 				ALIGN(ccs_limit_offsets[l].lim +
3746 				      ccs_limits[i].size,
3747 				      ccs_reg_width(ccs_limits[i + 1].reg));
3748 			ccs_limit_offsets[l].info = i;
3749 			l++;
3750 		} else {
3751 			ccs_limit_offsets[l].lim += ccs_limits[i].size;
3752 		}
3753 	}
3754 
3755 	if (WARN_ON(ccs_limits[i].size))
3756 		return -EINVAL;
3757 
3758 	if (WARN_ON(l != CCS_L_LAST))
3759 		return -EINVAL;
3760 
3761 	return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3762 }
3763 
3764 static void ccs_module_cleanup(void)
3765 {
3766 	i2c_del_driver(&ccs_i2c_driver);
3767 }
3768 
3769 module_init(ccs_module_init);
3770 module_exit(ccs_module_cleanup);
3771 
3772 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3773 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3774 MODULE_LICENSE("GPL v2");
3775 MODULE_ALIAS("smiapp");
3776