1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/media/i2c/ccs/ccs-core.c 4 * 5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors 6 * 7 * Copyright (C) 2020 Intel Corporation 8 * Copyright (C) 2010--2012 Nokia Corporation 9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> 10 * 11 * Based on smiapp driver by Vimarsh Zutshi 12 * Based on jt8ev1.c by Vimarsh Zutshi 13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com> 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 19 #include <linux/firmware.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/module.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/property.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/slab.h> 26 #include <linux/smiapp.h> 27 #include <linux/v4l2-mediabus.h> 28 #include <media/v4l2-fwnode.h> 29 #include <media/v4l2-device.h> 30 #include <uapi/linux/ccs.h> 31 32 #include "ccs.h" 33 34 #define CCS_ALIGN_DIM(dim, flags) \ 35 ((flags) & V4L2_SEL_FLAG_GE \ 36 ? ALIGN((dim), 2) \ 37 : (dim) & ~1) 38 39 static struct ccs_limit_offset { 40 u16 lim; 41 u16 info; 42 } ccs_limit_offsets[CCS_L_LAST + 1]; 43 44 /* 45 * ccs_module_idents - supported camera modules 46 */ 47 static const struct ccs_module_ident ccs_module_idents[] = { 48 CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"), 49 CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"), 50 CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"), 51 CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), 52 CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), 53 CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), 54 CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"), 55 CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), 56 CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), 57 CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), 58 CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), 59 }; 60 61 #define CCS_DEVICE_FLAG_IS_SMIA BIT(0) 62 63 struct ccs_device { 64 unsigned char flags; 65 }; 66 67 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" }; 68 69 /* 70 * 71 * Dynamic Capability Identification 72 * 73 */ 74 75 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val) 76 { 77 switch (width) { 78 case sizeof(u8): 79 *(u8 *)ptr = val; 80 break; 81 case sizeof(u16): 82 *(u16 *)ptr = val; 83 break; 84 case sizeof(u32): 85 *(u32 *)ptr = val; 86 break; 87 } 88 } 89 90 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit, 91 unsigned int offset, void **__ptr) 92 { 93 const struct ccs_limit *linfo; 94 95 if (WARN_ON(limit >= CCS_L_LAST)) 96 return -EINVAL; 97 98 linfo = &ccs_limits[ccs_limit_offsets[limit].info]; 99 100 if (WARN_ON(!sensor->ccs_limits) || 101 WARN_ON(offset + ccs_reg_width(linfo->reg) > 102 ccs_limit_offsets[limit + 1].lim)) 103 return -EINVAL; 104 105 *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset; 106 107 return 0; 108 } 109 110 void ccs_replace_limit(struct ccs_sensor *sensor, 111 unsigned int limit, unsigned int offset, u32 val) 112 { 113 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 114 const struct ccs_limit *linfo; 115 void *ptr; 116 int ret; 117 118 ret = ccs_limit_ptr(sensor, limit, offset, &ptr); 119 if (ret) 120 return; 121 122 linfo = &ccs_limits[ccs_limit_offsets[limit].info]; 123 124 dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n", 125 linfo->reg, linfo->name, offset, val, val); 126 127 ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val); 128 } 129 130 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit, 131 unsigned int offset) 132 { 133 void *ptr; 134 u32 val; 135 int ret; 136 137 ret = ccs_limit_ptr(sensor, limit, offset, &ptr); 138 if (ret) 139 return 0; 140 141 switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) { 142 case sizeof(u8): 143 val = *(u8 *)ptr; 144 break; 145 case sizeof(u16): 146 val = *(u16 *)ptr; 147 break; 148 case sizeof(u32): 149 val = *(u32 *)ptr; 150 break; 151 default: 152 WARN_ON(1); 153 return 0; 154 } 155 156 return ccs_reg_conv(sensor, ccs_limits[limit].reg, val); 157 } 158 159 static int ccs_read_all_limits(struct ccs_sensor *sensor) 160 { 161 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 162 void *ptr, *alloc, *end; 163 unsigned int i, l; 164 int ret; 165 166 kfree(sensor->ccs_limits); 167 sensor->ccs_limits = NULL; 168 169 alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL); 170 if (!alloc) 171 return -ENOMEM; 172 173 end = alloc + ccs_limit_offsets[CCS_L_LAST].lim; 174 175 for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) { 176 u32 reg = ccs_limits[i].reg; 177 unsigned int width = ccs_reg_width(reg); 178 unsigned int j; 179 180 if (l == CCS_L_LAST) { 181 dev_err(&client->dev, 182 "internal error --- end of limit array\n"); 183 ret = -EINVAL; 184 goto out_err; 185 } 186 187 for (j = 0; j < ccs_limits[i].size / width; 188 j++, reg += width, ptr += width) { 189 u32 val; 190 191 ret = ccs_read_addr_noconv(sensor, reg, &val); 192 if (ret) 193 goto out_err; 194 195 if (ptr + width > end) { 196 dev_err(&client->dev, 197 "internal error --- no room for regs\n"); 198 ret = -EINVAL; 199 goto out_err; 200 } 201 202 if (!val && j) 203 break; 204 205 ccs_assign_limit(ptr, width, val); 206 207 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n", 208 reg, ccs_limits[i].name, val, val); 209 } 210 211 if (ccs_limits[i].flags & CCS_L_FL_SAME_REG) 212 continue; 213 214 l++; 215 ptr = alloc + ccs_limit_offsets[l].lim; 216 } 217 218 if (l != CCS_L_LAST) { 219 dev_err(&client->dev, 220 "internal error --- insufficient limits\n"); 221 ret = -EINVAL; 222 goto out_err; 223 } 224 225 sensor->ccs_limits = alloc; 226 227 if (CCS_LIM(sensor, SCALER_N_MIN) < 16) 228 ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16); 229 230 return 0; 231 232 out_err: 233 kfree(alloc); 234 235 return ret; 236 } 237 238 static int ccs_read_frame_fmt(struct ccs_sensor *sensor) 239 { 240 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 241 u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; 242 unsigned int i; 243 int pixel_count = 0; 244 int line_count = 0; 245 246 fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE); 247 fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE); 248 249 ncol_desc = (fmt_model_subtype 250 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK) 251 >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT; 252 nrow_desc = fmt_model_subtype 253 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK; 254 255 dev_dbg(&client->dev, "format_model_type %s\n", 256 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE 257 ? "2 byte" : 258 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE 259 ? "4 byte" : "is simply bad"); 260 261 dev_dbg(&client->dev, "%u column and %u row descriptors\n", 262 ncol_desc, nrow_desc); 263 264 for (i = 0; i < ncol_desc + nrow_desc; i++) { 265 u32 desc; 266 u32 pixelcode; 267 u32 pixels; 268 char *which; 269 char *what; 270 271 if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) { 272 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i); 273 274 pixelcode = 275 (desc 276 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK) 277 >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT; 278 pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK; 279 } else if (fmt_model_type 280 == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) { 281 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i); 282 283 pixelcode = 284 (desc 285 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK) 286 >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT; 287 pixels = desc & 288 CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK; 289 } else { 290 dev_dbg(&client->dev, 291 "invalid frame format model type %d\n", 292 fmt_model_type); 293 return -EINVAL; 294 } 295 296 if (i < ncol_desc) 297 which = "columns"; 298 else 299 which = "rows"; 300 301 switch (pixelcode) { 302 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: 303 what = "embedded"; 304 break; 305 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL: 306 what = "dummy"; 307 break; 308 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL: 309 what = "black"; 310 break; 311 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL: 312 what = "dark"; 313 break; 314 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: 315 what = "visible"; 316 break; 317 default: 318 what = "invalid"; 319 break; 320 } 321 322 dev_dbg(&client->dev, 323 "%s pixels: %d %s (pixelcode %u)\n", 324 what, pixels, which, pixelcode); 325 326 if (i < ncol_desc) { 327 if (pixelcode == 328 CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL) 329 sensor->visible_pixel_start = pixel_count; 330 pixel_count += pixels; 331 continue; 332 } 333 334 /* Handle row descriptors */ 335 switch (pixelcode) { 336 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: 337 if (sensor->embedded_end) 338 break; 339 sensor->embedded_start = line_count; 340 sensor->embedded_end = line_count + pixels; 341 break; 342 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: 343 sensor->image_start = line_count; 344 break; 345 } 346 line_count += pixels; 347 } 348 349 if (sensor->embedded_end > sensor->image_start) { 350 dev_dbg(&client->dev, 351 "adjusting image start line to %u (was %u)\n", 352 sensor->embedded_end, sensor->image_start); 353 sensor->image_start = sensor->embedded_end; 354 } 355 356 dev_dbg(&client->dev, "embedded data from lines %d to %d\n", 357 sensor->embedded_start, sensor->embedded_end); 358 dev_dbg(&client->dev, "image data starts at line %d\n", 359 sensor->image_start); 360 361 return 0; 362 } 363 364 static int ccs_pll_configure(struct ccs_sensor *sensor) 365 { 366 struct ccs_pll *pll = &sensor->pll; 367 int rval; 368 369 rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div); 370 if (rval < 0) 371 return rval; 372 373 rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div); 374 if (rval < 0) 375 return rval; 376 377 rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div); 378 if (rval < 0) 379 return rval; 380 381 rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier); 382 if (rval < 0) 383 return rval; 384 385 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & 386 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) { 387 /* Lane op clock ratio does not apply here. */ 388 rval = ccs_write(sensor, REQUESTED_LINK_RATE, 389 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz, 390 1000000 / 256 / 256) * 391 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? 392 sensor->pll.csi2.lanes : 1) << 393 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ? 394 1 : 0)); 395 if (rval < 0) 396 return rval; 397 } 398 399 if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS) 400 return 0; 401 402 rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div); 403 if (rval < 0) 404 return rval; 405 406 rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div); 407 if (rval < 0) 408 return rval; 409 410 if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL)) 411 return 0; 412 413 rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL); 414 if (rval < 0) 415 return rval; 416 417 rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV, 418 pll->op_fr.pre_pll_clk_div); 419 if (rval < 0) 420 return rval; 421 422 return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier); 423 } 424 425 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll) 426 { 427 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 428 struct ccs_pll_limits lim = { 429 .vt_fr = { 430 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV), 431 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV), 432 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ), 433 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ), 434 .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER), 435 .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER), 436 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ), 437 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ), 438 }, 439 .op_fr = { 440 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV), 441 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV), 442 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ), 443 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ), 444 .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER), 445 .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER), 446 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ), 447 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ), 448 }, 449 .op_bk = { 450 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV), 451 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV), 452 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV), 453 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV), 454 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ), 455 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ), 456 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ), 457 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ), 458 }, 459 .vt_bk = { 460 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV), 461 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV), 462 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV), 463 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV), 464 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ), 465 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ), 466 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ), 467 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ), 468 }, 469 .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN), 470 .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK), 471 }; 472 473 return ccs_pll_calculate(&client->dev, &lim, pll); 474 } 475 476 static int ccs_pll_update(struct ccs_sensor *sensor) 477 { 478 struct ccs_pll *pll = &sensor->pll; 479 int rval; 480 481 pll->binning_horizontal = sensor->binning_horizontal; 482 pll->binning_vertical = sensor->binning_vertical; 483 pll->link_freq = 484 sensor->link_freq->qmenu_int[sensor->link_freq->val]; 485 pll->scale_m = sensor->scale_m; 486 pll->bits_per_pixel = sensor->csi_format->compressed; 487 488 rval = ccs_pll_try(sensor, pll); 489 if (rval < 0) 490 return rval; 491 492 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray, 493 pll->pixel_rate_pixel_array); 494 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi); 495 496 return 0; 497 } 498 499 500 /* 501 * 502 * V4L2 Controls handling 503 * 504 */ 505 506 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor) 507 { 508 struct v4l2_ctrl *ctrl = sensor->exposure; 509 int max; 510 511 max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height 512 + sensor->vblank->val 513 - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN); 514 515 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max); 516 } 517 518 /* 519 * Order matters. 520 * 521 * 1. Bits-per-pixel, descending. 522 * 2. Bits-per-pixel compressed, descending. 523 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel 524 * orders must be defined. 525 */ 526 static const struct ccs_csi_data_format ccs_csi_data_formats[] = { 527 { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, }, 528 { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, }, 529 { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, }, 530 { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, }, 531 { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, }, 532 { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, }, 533 { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, }, 534 { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, }, 535 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, }, 536 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, }, 537 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, }, 538 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, }, 539 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, }, 540 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, }, 541 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, }, 542 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, }, 543 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, }, 544 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, }, 545 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, }, 546 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, }, 547 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, }, 548 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, }, 549 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, }, 550 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, }, 551 }; 552 553 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; 554 555 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \ 556 - (unsigned long)ccs_csi_data_formats) \ 557 / sizeof(*ccs_csi_data_formats)) 558 559 static u32 ccs_pixel_order(struct ccs_sensor *sensor) 560 { 561 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 562 int flip = 0; 563 564 if (sensor->hflip) { 565 if (sensor->hflip->val) 566 flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; 567 568 if (sensor->vflip->val) 569 flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; 570 } 571 572 flip ^= sensor->hvflip_inv_mask; 573 574 dev_dbg(&client->dev, "flip %d\n", flip); 575 return sensor->default_pixel_order ^ flip; 576 } 577 578 static void ccs_update_mbus_formats(struct ccs_sensor *sensor) 579 { 580 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 581 unsigned int csi_format_idx = 582 to_csi_format_idx(sensor->csi_format) & ~3; 583 unsigned int internal_csi_format_idx = 584 to_csi_format_idx(sensor->internal_csi_format) & ~3; 585 unsigned int pixel_order = ccs_pixel_order(sensor); 586 587 if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) + 588 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats))) 589 return; 590 591 sensor->mbus_frame_fmts = 592 sensor->default_mbus_frame_fmts << pixel_order; 593 sensor->csi_format = 594 &ccs_csi_data_formats[csi_format_idx + pixel_order]; 595 sensor->internal_csi_format = 596 &ccs_csi_data_formats[internal_csi_format_idx 597 + pixel_order]; 598 599 dev_dbg(&client->dev, "new pixel order %s\n", 600 pixel_order_str[pixel_order]); 601 } 602 603 static const char * const ccs_test_patterns[] = { 604 "Disabled", 605 "Solid Colour", 606 "Eight Vertical Colour Bars", 607 "Colour Bars With Fade to Grey", 608 "Pseudorandom Sequence (PN9)", 609 }; 610 611 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl) 612 { 613 struct ccs_sensor *sensor = 614 container_of(ctrl->handler, struct ccs_subdev, ctrl_handler) 615 ->sensor; 616 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 617 int pm_status; 618 u32 orient = 0; 619 unsigned int i; 620 int exposure; 621 int rval; 622 623 switch (ctrl->id) { 624 case V4L2_CID_HFLIP: 625 case V4L2_CID_VFLIP: 626 if (sensor->streaming) 627 return -EBUSY; 628 629 if (sensor->hflip->val) 630 orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; 631 632 if (sensor->vflip->val) 633 orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; 634 635 orient ^= sensor->hvflip_inv_mask; 636 637 ccs_update_mbus_formats(sensor); 638 639 break; 640 case V4L2_CID_VBLANK: 641 exposure = sensor->exposure->val; 642 643 __ccs_update_exposure_limits(sensor); 644 645 if (exposure > sensor->exposure->maximum) { 646 sensor->exposure->val = sensor->exposure->maximum; 647 rval = ccs_set_ctrl(sensor->exposure); 648 if (rval < 0) 649 return rval; 650 } 651 652 break; 653 case V4L2_CID_LINK_FREQ: 654 if (sensor->streaming) 655 return -EBUSY; 656 657 rval = ccs_pll_update(sensor); 658 if (rval) 659 return rval; 660 661 return 0; 662 case V4L2_CID_TEST_PATTERN: 663 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) 664 v4l2_ctrl_activate( 665 sensor->test_data[i], 666 ctrl->val == 667 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR); 668 669 break; 670 } 671 672 pm_status = pm_runtime_get_if_active(&client->dev, true); 673 if (!pm_status) 674 return 0; 675 676 switch (ctrl->id) { 677 case V4L2_CID_ANALOGUE_GAIN: 678 rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val); 679 680 break; 681 682 case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN: 683 rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val); 684 685 break; 686 687 case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN: 688 rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL, 689 ctrl->val); 690 691 break; 692 693 case V4L2_CID_DIGITAL_GAIN: 694 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == 695 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) { 696 rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL, 697 ctrl->val); 698 break; 699 } 700 701 rval = ccs_write_addr(sensor, 702 SMIAPP_REG_U16_DIGITAL_GAIN_GREENR, 703 ctrl->val); 704 if (rval) 705 break; 706 707 rval = ccs_write_addr(sensor, 708 SMIAPP_REG_U16_DIGITAL_GAIN_RED, 709 ctrl->val); 710 if (rval) 711 break; 712 713 rval = ccs_write_addr(sensor, 714 SMIAPP_REG_U16_DIGITAL_GAIN_BLUE, 715 ctrl->val); 716 if (rval) 717 break; 718 719 rval = ccs_write_addr(sensor, 720 SMIAPP_REG_U16_DIGITAL_GAIN_GREENB, 721 ctrl->val); 722 723 break; 724 case V4L2_CID_EXPOSURE: 725 rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val); 726 727 break; 728 case V4L2_CID_HFLIP: 729 case V4L2_CID_VFLIP: 730 rval = ccs_write(sensor, IMAGE_ORIENTATION, orient); 731 732 break; 733 case V4L2_CID_VBLANK: 734 rval = ccs_write(sensor, FRAME_LENGTH_LINES, 735 sensor->pixel_array->crop[ 736 CCS_PA_PAD_SRC].height 737 + ctrl->val); 738 739 break; 740 case V4L2_CID_HBLANK: 741 rval = ccs_write(sensor, LINE_LENGTH_PCK, 742 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width 743 + ctrl->val); 744 745 break; 746 case V4L2_CID_TEST_PATTERN: 747 rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val); 748 749 break; 750 case V4L2_CID_TEST_PATTERN_RED: 751 rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val); 752 753 break; 754 case V4L2_CID_TEST_PATTERN_GREENR: 755 rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val); 756 757 break; 758 case V4L2_CID_TEST_PATTERN_BLUE: 759 rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val); 760 761 break; 762 case V4L2_CID_TEST_PATTERN_GREENB: 763 rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val); 764 765 break; 766 case V4L2_CID_CCS_SHADING_CORRECTION: 767 rval = ccs_write(sensor, SHADING_CORRECTION_EN, 768 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE : 769 0); 770 771 if (!rval && sensor->luminance_level) 772 v4l2_ctrl_activate(sensor->luminance_level, ctrl->val); 773 774 break; 775 case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL: 776 rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val); 777 778 break; 779 case V4L2_CID_PIXEL_RATE: 780 /* For v4l2_ctrl_s_ctrl_int64() used internally. */ 781 rval = 0; 782 783 break; 784 default: 785 rval = -EINVAL; 786 } 787 788 if (pm_status > 0) { 789 pm_runtime_mark_last_busy(&client->dev); 790 pm_runtime_put_autosuspend(&client->dev); 791 } 792 793 return rval; 794 } 795 796 static const struct v4l2_ctrl_ops ccs_ctrl_ops = { 797 .s_ctrl = ccs_set_ctrl, 798 }; 799 800 static int ccs_init_controls(struct ccs_sensor *sensor) 801 { 802 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 803 int rval; 804 805 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17); 806 if (rval) 807 return rval; 808 809 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; 810 811 switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) { 812 case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: { 813 struct { 814 const char *name; 815 u32 id; 816 s32 value; 817 } const gain_ctrls[] = { 818 { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0, 819 CCS_LIM(sensor, ANALOG_GAIN_M0), }, 820 { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0, 821 CCS_LIM(sensor, ANALOG_GAIN_C0), }, 822 { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1, 823 CCS_LIM(sensor, ANALOG_GAIN_M1), }, 824 { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1, 825 CCS_LIM(sensor, ANALOG_GAIN_C1), }, 826 }; 827 struct v4l2_ctrl_config ctrl_cfg = { 828 .type = V4L2_CTRL_TYPE_INTEGER, 829 .ops = &ccs_ctrl_ops, 830 .flags = V4L2_CTRL_FLAG_READ_ONLY, 831 .step = 1, 832 }; 833 unsigned int i; 834 835 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { 836 ctrl_cfg.name = gain_ctrls[i].name; 837 ctrl_cfg.id = gain_ctrls[i].id; 838 ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def = 839 gain_ctrls[i].value; 840 841 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, 842 &ctrl_cfg, NULL); 843 } 844 845 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, 846 &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, 847 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN), 848 CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX), 849 max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP), 850 1U), 851 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN)); 852 } 853 break; 854 855 case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: { 856 struct { 857 const char *name; 858 u32 id; 859 u16 min, max, step; 860 } const gain_ctrls[] = { 861 { 862 "Analogue Linear Gain", 863 V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN, 864 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN), 865 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX), 866 max(CCS_LIM(sensor, 867 ANALOG_LINEAR_GAIN_STEP_SIZE), 868 1U), 869 }, 870 { 871 "Analogue Exponential Gain", 872 V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN, 873 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN), 874 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX), 875 max(CCS_LIM(sensor, 876 ANALOG_EXPONENTIAL_GAIN_STEP_SIZE), 877 1U), 878 }, 879 }; 880 struct v4l2_ctrl_config ctrl_cfg = { 881 .type = V4L2_CTRL_TYPE_INTEGER, 882 .ops = &ccs_ctrl_ops, 883 }; 884 unsigned int i; 885 886 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { 887 ctrl_cfg.name = gain_ctrls[i].name; 888 ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min; 889 ctrl_cfg.max = gain_ctrls[i].max; 890 ctrl_cfg.step = gain_ctrls[i].step; 891 ctrl_cfg.id = gain_ctrls[i].id; 892 893 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, 894 &ctrl_cfg, NULL); 895 } 896 } 897 } 898 899 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & 900 (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING | 901 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) { 902 const struct v4l2_ctrl_config ctrl_cfg = { 903 .name = "Shading Correction", 904 .type = V4L2_CTRL_TYPE_BOOLEAN, 905 .id = V4L2_CID_CCS_SHADING_CORRECTION, 906 .ops = &ccs_ctrl_ops, 907 .max = 1, 908 .step = 1, 909 }; 910 911 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, 912 &ctrl_cfg, NULL); 913 } 914 915 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & 916 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) { 917 const struct v4l2_ctrl_config ctrl_cfg = { 918 .name = "Luminance Correction Level", 919 .type = V4L2_CTRL_TYPE_BOOLEAN, 920 .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL, 921 .ops = &ccs_ctrl_ops, 922 .max = 255, 923 .step = 1, 924 .def = 128, 925 }; 926 927 sensor->luminance_level = 928 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, 929 &ctrl_cfg, NULL); 930 } 931 932 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == 933 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL || 934 CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == 935 SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL) 936 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, 937 &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN, 938 CCS_LIM(sensor, DIGITAL_GAIN_MIN), 939 CCS_LIM(sensor, DIGITAL_GAIN_MAX), 940 max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE), 941 1U), 942 0x100); 943 944 /* Exposure limits will be updated soon, use just something here. */ 945 sensor->exposure = v4l2_ctrl_new_std( 946 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, 947 V4L2_CID_EXPOSURE, 0, 0, 1, 0); 948 949 sensor->hflip = v4l2_ctrl_new_std( 950 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, 951 V4L2_CID_HFLIP, 0, 1, 1, 0); 952 sensor->vflip = v4l2_ctrl_new_std( 953 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, 954 V4L2_CID_VFLIP, 0, 1, 1, 0); 955 956 sensor->vblank = v4l2_ctrl_new_std( 957 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, 958 V4L2_CID_VBLANK, 0, 1, 1, 0); 959 960 if (sensor->vblank) 961 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; 962 963 sensor->hblank = v4l2_ctrl_new_std( 964 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, 965 V4L2_CID_HBLANK, 0, 1, 1, 0); 966 967 if (sensor->hblank) 968 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; 969 970 sensor->pixel_rate_parray = v4l2_ctrl_new_std( 971 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, 972 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); 973 974 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler, 975 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN, 976 ARRAY_SIZE(ccs_test_patterns) - 1, 977 0, 0, ccs_test_patterns); 978 979 if (sensor->pixel_array->ctrl_handler.error) { 980 dev_err(&client->dev, 981 "pixel array controls initialization failed (%d)\n", 982 sensor->pixel_array->ctrl_handler.error); 983 return sensor->pixel_array->ctrl_handler.error; 984 } 985 986 sensor->pixel_array->sd.ctrl_handler = 987 &sensor->pixel_array->ctrl_handler; 988 989 v4l2_ctrl_cluster(2, &sensor->hflip); 990 991 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); 992 if (rval) 993 return rval; 994 995 sensor->src->ctrl_handler.lock = &sensor->mutex; 996 997 sensor->pixel_rate_csi = v4l2_ctrl_new_std( 998 &sensor->src->ctrl_handler, &ccs_ctrl_ops, 999 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); 1000 1001 if (sensor->src->ctrl_handler.error) { 1002 dev_err(&client->dev, 1003 "src controls initialization failed (%d)\n", 1004 sensor->src->ctrl_handler.error); 1005 return sensor->src->ctrl_handler.error; 1006 } 1007 1008 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler; 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * For controls that require information on available media bus codes 1015 * and linke frequencies. 1016 */ 1017 static int ccs_init_late_controls(struct ccs_sensor *sensor) 1018 { 1019 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[ 1020 sensor->csi_format->compressed - sensor->compressed_min_bpp]; 1021 unsigned int i; 1022 1023 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) { 1024 int max_value = (1 << sensor->csi_format->width) - 1; 1025 1026 sensor->test_data[i] = v4l2_ctrl_new_std( 1027 &sensor->pixel_array->ctrl_handler, 1028 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i, 1029 0, max_value, 1, max_value); 1030 } 1031 1032 sensor->link_freq = v4l2_ctrl_new_int_menu( 1033 &sensor->src->ctrl_handler, &ccs_ctrl_ops, 1034 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs), 1035 __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock); 1036 1037 return sensor->src->ctrl_handler.error; 1038 } 1039 1040 static void ccs_free_controls(struct ccs_sensor *sensor) 1041 { 1042 unsigned int i; 1043 1044 for (i = 0; i < sensor->ssds_used; i++) 1045 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); 1046 } 1047 1048 static int ccs_get_mbus_formats(struct ccs_sensor *sensor) 1049 { 1050 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1051 struct ccs_pll *pll = &sensor->pll; 1052 u8 compressed_max_bpp = 0; 1053 unsigned int type, n; 1054 unsigned int i, pixel_order; 1055 int rval; 1056 1057 type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE); 1058 1059 dev_dbg(&client->dev, "data_format_model_type %d\n", type); 1060 1061 rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order); 1062 if (rval) 1063 return rval; 1064 1065 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { 1066 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); 1067 return -EINVAL; 1068 } 1069 1070 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, 1071 pixel_order_str[pixel_order]); 1072 1073 switch (type) { 1074 case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL: 1075 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; 1076 break; 1077 case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED: 1078 n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1; 1079 break; 1080 default: 1081 return -EINVAL; 1082 } 1083 1084 sensor->default_pixel_order = pixel_order; 1085 sensor->mbus_frame_fmts = 0; 1086 1087 for (i = 0; i < n; i++) { 1088 unsigned int fmt, j; 1089 1090 fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i); 1091 1092 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n", 1093 i, fmt >> 8, (u8)fmt); 1094 1095 for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) { 1096 const struct ccs_csi_data_format *f = 1097 &ccs_csi_data_formats[j]; 1098 1099 if (f->pixel_order != CCS_PIXEL_ORDER_GRBG) 1100 continue; 1101 1102 if (f->width != fmt >> 1103 CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT || 1104 f->compressed != 1105 (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK)) 1106 continue; 1107 1108 dev_dbg(&client->dev, "jolly good! %d\n", j); 1109 1110 sensor->default_mbus_frame_fmts |= 1 << j; 1111 } 1112 } 1113 1114 /* Figure out which BPP values can be used with which formats. */ 1115 pll->binning_horizontal = 1; 1116 pll->binning_vertical = 1; 1117 pll->scale_m = sensor->scale_m; 1118 1119 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { 1120 sensor->compressed_min_bpp = 1121 min(ccs_csi_data_formats[i].compressed, 1122 sensor->compressed_min_bpp); 1123 compressed_max_bpp = 1124 max(ccs_csi_data_formats[i].compressed, 1125 compressed_max_bpp); 1126 } 1127 1128 sensor->valid_link_freqs = devm_kcalloc( 1129 &client->dev, 1130 compressed_max_bpp - sensor->compressed_min_bpp + 1, 1131 sizeof(*sensor->valid_link_freqs), GFP_KERNEL); 1132 if (!sensor->valid_link_freqs) 1133 return -ENOMEM; 1134 1135 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { 1136 const struct ccs_csi_data_format *f = 1137 &ccs_csi_data_formats[i]; 1138 unsigned long *valid_link_freqs = 1139 &sensor->valid_link_freqs[ 1140 f->compressed - sensor->compressed_min_bpp]; 1141 unsigned int j; 1142 1143 if (!(sensor->default_mbus_frame_fmts & 1 << i)) 1144 continue; 1145 1146 pll->bits_per_pixel = f->compressed; 1147 1148 for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) { 1149 pll->link_freq = sensor->hwcfg.op_sys_clock[j]; 1150 1151 rval = ccs_pll_try(sensor, pll); 1152 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n", 1153 pll->link_freq, pll->bits_per_pixel, 1154 rval ? "not ok" : "ok"); 1155 if (rval) 1156 continue; 1157 1158 set_bit(j, valid_link_freqs); 1159 } 1160 1161 if (!*valid_link_freqs) { 1162 dev_info(&client->dev, 1163 "no valid link frequencies for %u bpp\n", 1164 f->compressed); 1165 sensor->default_mbus_frame_fmts &= ~BIT(i); 1166 continue; 1167 } 1168 1169 if (!sensor->csi_format 1170 || f->width > sensor->csi_format->width 1171 || (f->width == sensor->csi_format->width 1172 && f->compressed > sensor->csi_format->compressed)) { 1173 sensor->csi_format = f; 1174 sensor->internal_csi_format = f; 1175 } 1176 } 1177 1178 if (!sensor->csi_format) { 1179 dev_err(&client->dev, "no supported mbus code found\n"); 1180 return -EINVAL; 1181 } 1182 1183 ccs_update_mbus_formats(sensor); 1184 1185 return 0; 1186 } 1187 1188 static void ccs_update_blanking(struct ccs_sensor *sensor) 1189 { 1190 struct v4l2_ctrl *vblank = sensor->vblank; 1191 struct v4l2_ctrl *hblank = sensor->hblank; 1192 u16 min_fll, max_fll, min_llp, max_llp, min_lbp; 1193 int min, max; 1194 1195 if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) { 1196 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN); 1197 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN); 1198 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN); 1199 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN); 1200 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN); 1201 } else { 1202 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES); 1203 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES); 1204 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK); 1205 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK); 1206 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK); 1207 } 1208 1209 min = max_t(int, 1210 CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES), 1211 min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height); 1212 max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height; 1213 1214 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min); 1215 1216 min = max_t(int, 1217 min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width, 1218 min_lbp); 1219 max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width; 1220 1221 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min); 1222 1223 __ccs_update_exposure_limits(sensor); 1224 } 1225 1226 static int ccs_pll_blanking_update(struct ccs_sensor *sensor) 1227 { 1228 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1229 int rval; 1230 1231 rval = ccs_pll_update(sensor); 1232 if (rval < 0) 1233 return rval; 1234 1235 /* Output from pixel array, including blanking */ 1236 ccs_update_blanking(sensor); 1237 1238 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); 1239 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); 1240 1241 dev_dbg(&client->dev, "real timeperframe\t100/%d\n", 1242 sensor->pll.pixel_rate_pixel_array / 1243 ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width 1244 + sensor->hblank->val) * 1245 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height 1246 + sensor->vblank->val) / 100)); 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * 1253 * SMIA++ NVM handling 1254 * 1255 */ 1256 1257 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm, 1258 u8 *status) 1259 { 1260 unsigned int i; 1261 int rval; 1262 u32 s; 1263 1264 *status = 0; 1265 1266 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p); 1267 if (rval) 1268 return rval; 1269 1270 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 1271 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE); 1272 if (rval) 1273 return rval; 1274 1275 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); 1276 if (rval) 1277 return rval; 1278 1279 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) { 1280 *status = s; 1281 return -ENODATA; 1282 } 1283 1284 if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & 1285 CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) { 1286 for (i = 1000; i > 0; i--) { 1287 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY) 1288 break; 1289 1290 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); 1291 if (rval) 1292 return rval; 1293 } 1294 1295 if (!i) 1296 return -ETIMEDOUT; 1297 } 1298 1299 for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) { 1300 u32 v; 1301 1302 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v); 1303 if (rval) 1304 return rval; 1305 1306 *nvm++ = v; 1307 } 1308 1309 return 0; 1310 } 1311 1312 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm, 1313 size_t nvm_size) 1314 { 1315 u8 status = 0; 1316 u32 p; 1317 int rval = 0, rval2; 1318 1319 for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1) 1320 && !rval; p++) { 1321 rval = ccs_read_nvm_page(sensor, p, nvm, &status); 1322 nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1; 1323 } 1324 1325 if (rval == -ENODATA && 1326 status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) 1327 rval = 0; 1328 1329 rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0); 1330 if (rval < 0) 1331 return rval; 1332 else 1333 return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1); 1334 } 1335 1336 /* 1337 * 1338 * SMIA++ CCI address control 1339 * 1340 */ 1341 static int ccs_change_cci_addr(struct ccs_sensor *sensor) 1342 { 1343 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1344 int rval; 1345 u32 val; 1346 1347 client->addr = sensor->hwcfg.i2c_addr_dfl; 1348 1349 rval = ccs_write(sensor, CCI_ADDRESS_CTRL, 1350 sensor->hwcfg.i2c_addr_alt << 1); 1351 if (rval) 1352 return rval; 1353 1354 client->addr = sensor->hwcfg.i2c_addr_alt; 1355 1356 /* verify addr change went ok */ 1357 rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val); 1358 if (rval) 1359 return rval; 1360 1361 if (val != sensor->hwcfg.i2c_addr_alt << 1) 1362 return -ENODEV; 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * 1369 * SMIA++ Mode Control 1370 * 1371 */ 1372 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor) 1373 { 1374 struct ccs_flash_strobe_parms *strobe_setup; 1375 unsigned int ext_freq = sensor->hwcfg.ext_clk; 1376 u32 tmp; 1377 u32 strobe_adjustment; 1378 u32 strobe_width_high_rs; 1379 int rval; 1380 1381 strobe_setup = sensor->hwcfg.strobe_setup; 1382 1383 /* 1384 * How to calculate registers related to strobe length. Please 1385 * do not change, or if you do at least know what you're 1386 * doing. :-) 1387 * 1388 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25 1389 * 1390 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl 1391 * / EXTCLK freq [Hz]) * flash_strobe_adjustment 1392 * 1393 * tFlash_strobe_width_ctrl E N, [1 - 0xffff] 1394 * flash_strobe_adjustment E N, [1 - 0xff] 1395 * 1396 * The formula above is written as below to keep it on one 1397 * line: 1398 * 1399 * l / 10^6 = w / e * a 1400 * 1401 * Let's mark w * a by x: 1402 * 1403 * x = w * a 1404 * 1405 * Thus, we get: 1406 * 1407 * x = l * e / 10^6 1408 * 1409 * The strobe width must be at least as long as requested, 1410 * thus rounding upwards is needed. 1411 * 1412 * x = (l * e + 10^6 - 1) / 10^6 1413 * ----------------------------- 1414 * 1415 * Maximum possible accuracy is wanted at all times. Thus keep 1416 * a as small as possible. 1417 * 1418 * Calculate a, assuming maximum w, with rounding upwards: 1419 * 1420 * a = (x + (2^16 - 1) - 1) / (2^16 - 1) 1421 * ------------------------------------- 1422 * 1423 * Thus, we also get w, with that a, with rounding upwards: 1424 * 1425 * w = (x + a - 1) / a 1426 * ------------------- 1427 * 1428 * To get limits: 1429 * 1430 * x E [1, (2^16 - 1) * (2^8 - 1)] 1431 * 1432 * Substituting maximum x to the original formula (with rounding), 1433 * the maximum l is thus 1434 * 1435 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 1436 * 1437 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e 1438 * -------------------------------------------------- 1439 * 1440 * flash_strobe_length must be clamped between 1 and 1441 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. 1442 * 1443 * Then, 1444 * 1445 * flash_strobe_adjustment = ((flash_strobe_length * 1446 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) 1447 * 1448 * tFlash_strobe_width_ctrl = ((flash_strobe_length * 1449 * EXTCLK freq + 10^6 - 1) / 10^6 + 1450 * flash_strobe_adjustment - 1) / flash_strobe_adjustment 1451 */ 1452 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - 1453 1000000 + 1, ext_freq); 1454 strobe_setup->strobe_width_high_us = 1455 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); 1456 1457 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + 1458 1000000 - 1), 1000000ULL); 1459 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); 1460 strobe_width_high_rs = (tmp + strobe_adjustment - 1) / 1461 strobe_adjustment; 1462 1463 rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode); 1464 if (rval < 0) 1465 goto out; 1466 1467 rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment); 1468 if (rval < 0) 1469 goto out; 1470 1471 rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, 1472 strobe_width_high_rs); 1473 if (rval < 0) 1474 goto out; 1475 1476 rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL, 1477 strobe_setup->strobe_delay); 1478 if (rval < 0) 1479 goto out; 1480 1481 rval = ccs_write(sensor, FLASH_STROBE_START_POINT, 1482 strobe_setup->stobe_start_point); 1483 if (rval < 0) 1484 goto out; 1485 1486 rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger); 1487 1488 out: 1489 sensor->hwcfg.strobe_setup->trigger = 0; 1490 1491 return rval; 1492 } 1493 1494 /* ----------------------------------------------------------------------------- 1495 * Power management 1496 */ 1497 1498 static int ccs_write_msr_regs(struct ccs_sensor *sensor) 1499 { 1500 int rval; 1501 1502 rval = ccs_write_data_regs(sensor, 1503 sensor->sdata.sensor_manufacturer_regs, 1504 sensor->sdata.num_sensor_manufacturer_regs); 1505 if (rval) 1506 return rval; 1507 1508 return ccs_write_data_regs(sensor, 1509 sensor->mdata.module_manufacturer_regs, 1510 sensor->mdata.num_module_manufacturer_regs); 1511 } 1512 1513 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor) 1514 { 1515 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1516 u8 val; 1517 1518 if (!sensor->ccs_limits) 1519 return 0; 1520 1521 if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & 1522 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) { 1523 val = CCS_PHY_CTRL_AUTO; 1524 } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & 1525 CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) { 1526 val = CCS_PHY_CTRL_UI; 1527 } else { 1528 dev_err(&client->dev, "manual PHY control not supported\n"); 1529 return -EINVAL; 1530 } 1531 1532 return ccs_write(sensor, PHY_CTRL, val); 1533 } 1534 1535 static int ccs_power_on(struct device *dev) 1536 { 1537 struct v4l2_subdev *subdev = dev_get_drvdata(dev); 1538 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 1539 /* 1540 * The sub-device related to the I2C device is always the 1541 * source one, i.e. ssds[0]. 1542 */ 1543 struct ccs_sensor *sensor = 1544 container_of(ssd, struct ccs_sensor, ssds[0]); 1545 const struct ccs_device *ccsdev = device_get_match_data(dev); 1546 int rval; 1547 1548 rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators), 1549 sensor->regulators); 1550 if (rval) { 1551 dev_err(dev, "failed to enable vana regulator\n"); 1552 return rval; 1553 } 1554 1555 if (sensor->reset || sensor->xshutdown || sensor->ext_clk) { 1556 unsigned int sleep; 1557 1558 rval = clk_prepare_enable(sensor->ext_clk); 1559 if (rval < 0) { 1560 dev_dbg(dev, "failed to enable xclk\n"); 1561 goto out_xclk_fail; 1562 } 1563 1564 gpiod_set_value(sensor->reset, 0); 1565 gpiod_set_value(sensor->xshutdown, 1); 1566 1567 if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) 1568 sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk); 1569 else 1570 sleep = 5000; 1571 1572 usleep_range(sleep, sleep); 1573 } 1574 1575 /* 1576 * Failures to respond to the address change command have been noticed. 1577 * Those failures seem to be caused by the sensor requiring a longer 1578 * boot time than advertised. An additional 10ms delay seems to work 1579 * around the issue, but the SMIA++ I2C write retry hack makes the delay 1580 * unnecessary. The failures need to be investigated to find a proper 1581 * fix, and a delay will likely need to be added here if the I2C write 1582 * retry hack is reverted before the root cause of the boot time issue 1583 * is found. 1584 */ 1585 1586 if (!sensor->reset && !sensor->xshutdown) { 1587 u8 retry = 100; 1588 u32 reset; 1589 1590 rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); 1591 if (rval < 0) { 1592 dev_err(dev, "software reset failed\n"); 1593 goto out_cci_addr_fail; 1594 } 1595 1596 do { 1597 rval = ccs_read(sensor, SOFTWARE_RESET, &reset); 1598 reset = !rval && reset == CCS_SOFTWARE_RESET_OFF; 1599 if (reset) 1600 break; 1601 1602 usleep_range(1000, 2000); 1603 } while (--retry); 1604 1605 if (!reset) 1606 return -EIO; 1607 } 1608 1609 if (sensor->hwcfg.i2c_addr_alt) { 1610 rval = ccs_change_cci_addr(sensor); 1611 if (rval) { 1612 dev_err(dev, "cci address change error\n"); 1613 goto out_cci_addr_fail; 1614 } 1615 } 1616 1617 rval = ccs_write(sensor, COMPRESSION_MODE, 1618 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE); 1619 if (rval) { 1620 dev_err(dev, "compression mode set failed\n"); 1621 goto out_cci_addr_fail; 1622 } 1623 1624 rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ, 1625 sensor->hwcfg.ext_clk / (1000000 / (1 << 8))); 1626 if (rval) { 1627 dev_err(dev, "extclk frequency set failed\n"); 1628 goto out_cci_addr_fail; 1629 } 1630 1631 rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1); 1632 if (rval) { 1633 dev_err(dev, "csi lane mode set failed\n"); 1634 goto out_cci_addr_fail; 1635 } 1636 1637 rval = ccs_write(sensor, FAST_STANDBY_CTRL, 1638 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION); 1639 if (rval) { 1640 dev_err(dev, "fast standby set failed\n"); 1641 goto out_cci_addr_fail; 1642 } 1643 1644 rval = ccs_write(sensor, CSI_SIGNALING_MODE, 1645 sensor->hwcfg.csi_signalling_mode); 1646 if (rval) { 1647 dev_err(dev, "csi signalling mode set failed\n"); 1648 goto out_cci_addr_fail; 1649 } 1650 1651 rval = ccs_update_phy_ctrl(sensor); 1652 if (rval < 0) 1653 goto out_cci_addr_fail; 1654 1655 rval = ccs_write_msr_regs(sensor); 1656 if (rval) 1657 goto out_cci_addr_fail; 1658 1659 rval = ccs_call_quirk(sensor, post_poweron); 1660 if (rval) { 1661 dev_err(dev, "post_poweron quirks failed\n"); 1662 goto out_cci_addr_fail; 1663 } 1664 1665 return 0; 1666 1667 out_cci_addr_fail: 1668 gpiod_set_value(sensor->reset, 1); 1669 gpiod_set_value(sensor->xshutdown, 0); 1670 clk_disable_unprepare(sensor->ext_clk); 1671 1672 out_xclk_fail: 1673 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), 1674 sensor->regulators); 1675 1676 return rval; 1677 } 1678 1679 static int ccs_power_off(struct device *dev) 1680 { 1681 struct v4l2_subdev *subdev = dev_get_drvdata(dev); 1682 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 1683 struct ccs_sensor *sensor = 1684 container_of(ssd, struct ccs_sensor, ssds[0]); 1685 1686 /* 1687 * Currently power/clock to lens are enable/disabled separately 1688 * but they are essentially the same signals. So if the sensor is 1689 * powered off while the lens is powered on the sensor does not 1690 * really see a power off and next time the cci address change 1691 * will fail. So do a soft reset explicitly here. 1692 */ 1693 if (sensor->hwcfg.i2c_addr_alt) 1694 ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); 1695 1696 gpiod_set_value(sensor->reset, 1); 1697 gpiod_set_value(sensor->xshutdown, 0); 1698 clk_disable_unprepare(sensor->ext_clk); 1699 usleep_range(5000, 5000); 1700 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), 1701 sensor->regulators); 1702 sensor->streaming = false; 1703 1704 return 0; 1705 } 1706 1707 /* ----------------------------------------------------------------------------- 1708 * Video stream management 1709 */ 1710 1711 static int ccs_start_streaming(struct ccs_sensor *sensor) 1712 { 1713 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1714 unsigned int binning_mode; 1715 int rval; 1716 1717 mutex_lock(&sensor->mutex); 1718 1719 rval = ccs_write(sensor, CSI_DATA_FORMAT, 1720 (sensor->csi_format->width << 8) | 1721 sensor->csi_format->compressed); 1722 if (rval) 1723 goto out; 1724 1725 /* Binning configuration */ 1726 if (sensor->binning_horizontal == 1 && 1727 sensor->binning_vertical == 1) { 1728 binning_mode = 0; 1729 } else { 1730 u8 binning_type = 1731 (sensor->binning_horizontal << 4) 1732 | sensor->binning_vertical; 1733 1734 rval = ccs_write(sensor, BINNING_TYPE, binning_type); 1735 if (rval < 0) 1736 goto out; 1737 1738 binning_mode = 1; 1739 } 1740 rval = ccs_write(sensor, BINNING_MODE, binning_mode); 1741 if (rval < 0) 1742 goto out; 1743 1744 /* Set up PLL */ 1745 rval = ccs_pll_configure(sensor); 1746 if (rval) 1747 goto out; 1748 1749 /* Analog crop start coordinates */ 1750 rval = ccs_write(sensor, X_ADDR_START, 1751 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left); 1752 if (rval < 0) 1753 goto out; 1754 1755 rval = ccs_write(sensor, Y_ADDR_START, 1756 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top); 1757 if (rval < 0) 1758 goto out; 1759 1760 /* Analog crop end coordinates */ 1761 rval = ccs_write( 1762 sensor, X_ADDR_END, 1763 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left 1764 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1); 1765 if (rval < 0) 1766 goto out; 1767 1768 rval = ccs_write( 1769 sensor, Y_ADDR_END, 1770 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top 1771 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1); 1772 if (rval < 0) 1773 goto out; 1774 1775 /* 1776 * Output from pixel array, including blanking, is set using 1777 * controls below. No need to set here. 1778 */ 1779 1780 /* Digital crop */ 1781 if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) 1782 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { 1783 rval = ccs_write( 1784 sensor, DIGITAL_CROP_X_OFFSET, 1785 sensor->scaler->crop[CCS_PAD_SINK].left); 1786 if (rval < 0) 1787 goto out; 1788 1789 rval = ccs_write( 1790 sensor, DIGITAL_CROP_Y_OFFSET, 1791 sensor->scaler->crop[CCS_PAD_SINK].top); 1792 if (rval < 0) 1793 goto out; 1794 1795 rval = ccs_write( 1796 sensor, DIGITAL_CROP_IMAGE_WIDTH, 1797 sensor->scaler->crop[CCS_PAD_SINK].width); 1798 if (rval < 0) 1799 goto out; 1800 1801 rval = ccs_write( 1802 sensor, DIGITAL_CROP_IMAGE_HEIGHT, 1803 sensor->scaler->crop[CCS_PAD_SINK].height); 1804 if (rval < 0) 1805 goto out; 1806 } 1807 1808 /* Scaling */ 1809 if (CCS_LIM(sensor, SCALING_CAPABILITY) 1810 != CCS_SCALING_CAPABILITY_NONE) { 1811 rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode); 1812 if (rval < 0) 1813 goto out; 1814 1815 rval = ccs_write(sensor, SCALE_M, sensor->scale_m); 1816 if (rval < 0) 1817 goto out; 1818 } 1819 1820 /* Output size from sensor */ 1821 rval = ccs_write(sensor, X_OUTPUT_SIZE, 1822 sensor->src->crop[CCS_PAD_SRC].width); 1823 if (rval < 0) 1824 goto out; 1825 rval = ccs_write(sensor, Y_OUTPUT_SIZE, 1826 sensor->src->crop[CCS_PAD_SRC].height); 1827 if (rval < 0) 1828 goto out; 1829 1830 if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) & 1831 (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE | 1832 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) && 1833 sensor->hwcfg.strobe_setup != NULL && 1834 sensor->hwcfg.strobe_setup->trigger != 0) { 1835 rval = ccs_setup_flash_strobe(sensor); 1836 if (rval) 1837 goto out; 1838 } 1839 1840 rval = ccs_call_quirk(sensor, pre_streamon); 1841 if (rval) { 1842 dev_err(&client->dev, "pre_streamon quirks failed\n"); 1843 goto out; 1844 } 1845 1846 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING); 1847 1848 out: 1849 mutex_unlock(&sensor->mutex); 1850 1851 return rval; 1852 } 1853 1854 static int ccs_stop_streaming(struct ccs_sensor *sensor) 1855 { 1856 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1857 int rval; 1858 1859 mutex_lock(&sensor->mutex); 1860 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY); 1861 if (rval) 1862 goto out; 1863 1864 rval = ccs_call_quirk(sensor, post_streamoff); 1865 if (rval) 1866 dev_err(&client->dev, "post_streamoff quirks failed\n"); 1867 1868 out: 1869 mutex_unlock(&sensor->mutex); 1870 return rval; 1871 } 1872 1873 /* ----------------------------------------------------------------------------- 1874 * V4L2 subdev video operations 1875 */ 1876 1877 static int ccs_pm_get_init(struct ccs_sensor *sensor) 1878 { 1879 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1880 int rval; 1881 1882 /* 1883 * It can't use pm_runtime_resume_and_get() here, as the driver 1884 * relies at the returned value to detect if the device was already 1885 * active or not. 1886 */ 1887 rval = pm_runtime_get_sync(&client->dev); 1888 if (rval < 0) 1889 goto error; 1890 1891 /* Device was already active, so don't set controls */ 1892 if (rval == 1) 1893 return 0; 1894 1895 /* Restore V4L2 controls to the previously suspended device */ 1896 rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler); 1897 if (rval) 1898 goto error; 1899 1900 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); 1901 if (rval) 1902 goto error; 1903 1904 /* Keep PM runtime usage_count incremented on success */ 1905 return 0; 1906 error: 1907 pm_runtime_put(&client->dev); 1908 return rval; 1909 } 1910 1911 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable) 1912 { 1913 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 1914 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1915 int rval; 1916 1917 if (sensor->streaming == enable) 1918 return 0; 1919 1920 if (!enable) { 1921 ccs_stop_streaming(sensor); 1922 sensor->streaming = false; 1923 pm_runtime_mark_last_busy(&client->dev); 1924 pm_runtime_put_autosuspend(&client->dev); 1925 1926 return 0; 1927 } 1928 1929 rval = ccs_pm_get_init(sensor); 1930 if (rval) 1931 return rval; 1932 1933 sensor->streaming = true; 1934 1935 rval = ccs_start_streaming(sensor); 1936 if (rval < 0) { 1937 sensor->streaming = false; 1938 pm_runtime_mark_last_busy(&client->dev); 1939 pm_runtime_put_autosuspend(&client->dev); 1940 } 1941 1942 return rval; 1943 } 1944 1945 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags) 1946 { 1947 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 1948 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1949 int rval; 1950 1951 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { 1952 switch (sensor->hwcfg.csi_signalling_mode) { 1953 case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY: 1954 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & 1955 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY)) 1956 return -EACCES; 1957 break; 1958 case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY: 1959 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & 1960 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY)) 1961 return -EACCES; 1962 break; 1963 default: 1964 return -EACCES; 1965 } 1966 } 1967 1968 rval = ccs_pm_get_init(sensor); 1969 if (rval) 1970 return rval; 1971 1972 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { 1973 rval = ccs_write(sensor, MANUAL_LP_CTRL, 1974 CCS_MANUAL_LP_CTRL_ENABLE); 1975 if (rval) 1976 pm_runtime_put(&client->dev); 1977 } 1978 1979 return rval; 1980 } 1981 1982 static int ccs_post_streamoff(struct v4l2_subdev *subdev) 1983 { 1984 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 1985 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 1986 1987 return pm_runtime_put(&client->dev); 1988 } 1989 1990 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev, 1991 struct v4l2_subdev_state *sd_state, 1992 struct v4l2_subdev_mbus_code_enum *code) 1993 { 1994 struct i2c_client *client = v4l2_get_subdevdata(subdev); 1995 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 1996 unsigned int i; 1997 int idx = -1; 1998 int rval = -EINVAL; 1999 2000 mutex_lock(&sensor->mutex); 2001 2002 dev_err(&client->dev, "subdev %s, pad %d, index %d\n", 2003 subdev->name, code->pad, code->index); 2004 2005 if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) { 2006 if (code->index) 2007 goto out; 2008 2009 code->code = sensor->internal_csi_format->code; 2010 rval = 0; 2011 goto out; 2012 } 2013 2014 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { 2015 if (sensor->mbus_frame_fmts & (1 << i)) 2016 idx++; 2017 2018 if (idx == code->index) { 2019 code->code = ccs_csi_data_formats[i].code; 2020 dev_err(&client->dev, "found index %d, i %d, code %x\n", 2021 code->index, i, code->code); 2022 rval = 0; 2023 break; 2024 } 2025 } 2026 2027 out: 2028 mutex_unlock(&sensor->mutex); 2029 2030 return rval; 2031 } 2032 2033 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad) 2034 { 2035 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2036 2037 if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC) 2038 return sensor->csi_format->code; 2039 else 2040 return sensor->internal_csi_format->code; 2041 } 2042 2043 static int __ccs_get_format(struct v4l2_subdev *subdev, 2044 struct v4l2_subdev_state *sd_state, 2045 struct v4l2_subdev_format *fmt) 2046 { 2047 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2048 2049 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { 2050 fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state, 2051 fmt->pad); 2052 } else { 2053 struct v4l2_rect *r; 2054 2055 if (fmt->pad == ssd->source_pad) 2056 r = &ssd->crop[ssd->source_pad]; 2057 else 2058 r = &ssd->sink_fmt; 2059 2060 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); 2061 fmt->format.width = r->width; 2062 fmt->format.height = r->height; 2063 fmt->format.field = V4L2_FIELD_NONE; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static int ccs_get_format(struct v4l2_subdev *subdev, 2070 struct v4l2_subdev_state *sd_state, 2071 struct v4l2_subdev_format *fmt) 2072 { 2073 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2074 int rval; 2075 2076 mutex_lock(&sensor->mutex); 2077 rval = __ccs_get_format(subdev, sd_state, fmt); 2078 mutex_unlock(&sensor->mutex); 2079 2080 return rval; 2081 } 2082 2083 static void ccs_get_crop_compose(struct v4l2_subdev *subdev, 2084 struct v4l2_subdev_state *sd_state, 2085 struct v4l2_rect **crops, 2086 struct v4l2_rect **comps, int which) 2087 { 2088 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2089 unsigned int i; 2090 2091 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { 2092 if (crops) 2093 for (i = 0; i < subdev->entity.num_pads; i++) 2094 crops[i] = &ssd->crop[i]; 2095 if (comps) 2096 *comps = &ssd->compose; 2097 } else { 2098 if (crops) { 2099 for (i = 0; i < subdev->entity.num_pads; i++) 2100 crops[i] = v4l2_subdev_get_try_crop(subdev, 2101 sd_state, 2102 i); 2103 } 2104 if (comps) 2105 *comps = v4l2_subdev_get_try_compose(subdev, sd_state, 2106 CCS_PAD_SINK); 2107 } 2108 } 2109 2110 /* Changes require propagation only on sink pad. */ 2111 static void ccs_propagate(struct v4l2_subdev *subdev, 2112 struct v4l2_subdev_state *sd_state, int which, 2113 int target) 2114 { 2115 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2116 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2117 struct v4l2_rect *comp, *crops[CCS_PADS]; 2118 2119 ccs_get_crop_compose(subdev, sd_state, crops, &comp, which); 2120 2121 switch (target) { 2122 case V4L2_SEL_TGT_CROP: 2123 comp->width = crops[CCS_PAD_SINK]->width; 2124 comp->height = crops[CCS_PAD_SINK]->height; 2125 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { 2126 if (ssd == sensor->scaler) { 2127 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); 2128 sensor->scaling_mode = 2129 CCS_SCALING_MODE_NO_SCALING; 2130 } else if (ssd == sensor->binner) { 2131 sensor->binning_horizontal = 1; 2132 sensor->binning_vertical = 1; 2133 } 2134 } 2135 fallthrough; 2136 case V4L2_SEL_TGT_COMPOSE: 2137 *crops[CCS_PAD_SRC] = *comp; 2138 break; 2139 default: 2140 WARN_ON_ONCE(1); 2141 } 2142 } 2143 2144 static const struct ccs_csi_data_format 2145 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code) 2146 { 2147 unsigned int i; 2148 2149 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { 2150 if (sensor->mbus_frame_fmts & (1 << i) && 2151 ccs_csi_data_formats[i].code == code) 2152 return &ccs_csi_data_formats[i]; 2153 } 2154 2155 return sensor->csi_format; 2156 } 2157 2158 static int ccs_set_format_source(struct v4l2_subdev *subdev, 2159 struct v4l2_subdev_state *sd_state, 2160 struct v4l2_subdev_format *fmt) 2161 { 2162 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2163 const struct ccs_csi_data_format *csi_format, 2164 *old_csi_format = sensor->csi_format; 2165 unsigned long *valid_link_freqs; 2166 u32 code = fmt->format.code; 2167 unsigned int i; 2168 int rval; 2169 2170 rval = __ccs_get_format(subdev, sd_state, fmt); 2171 if (rval) 2172 return rval; 2173 2174 /* 2175 * Media bus code is changeable on src subdev's source pad. On 2176 * other source pads we just get format here. 2177 */ 2178 if (subdev != &sensor->src->sd) 2179 return 0; 2180 2181 csi_format = ccs_validate_csi_data_format(sensor, code); 2182 2183 fmt->format.code = csi_format->code; 2184 2185 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE) 2186 return 0; 2187 2188 sensor->csi_format = csi_format; 2189 2190 if (csi_format->width != old_csi_format->width) 2191 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) 2192 __v4l2_ctrl_modify_range( 2193 sensor->test_data[i], 0, 2194 (1 << csi_format->width) - 1, 1, 0); 2195 2196 if (csi_format->compressed == old_csi_format->compressed) 2197 return 0; 2198 2199 valid_link_freqs = 2200 &sensor->valid_link_freqs[sensor->csi_format->compressed 2201 - sensor->compressed_min_bpp]; 2202 2203 __v4l2_ctrl_modify_range( 2204 sensor->link_freq, 0, 2205 __fls(*valid_link_freqs), ~*valid_link_freqs, 2206 __ffs(*valid_link_freqs)); 2207 2208 return ccs_pll_update(sensor); 2209 } 2210 2211 static int ccs_set_format(struct v4l2_subdev *subdev, 2212 struct v4l2_subdev_state *sd_state, 2213 struct v4l2_subdev_format *fmt) 2214 { 2215 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2216 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2217 struct v4l2_rect *crops[CCS_PADS]; 2218 2219 mutex_lock(&sensor->mutex); 2220 2221 if (fmt->pad == ssd->source_pad) { 2222 int rval; 2223 2224 rval = ccs_set_format_source(subdev, sd_state, fmt); 2225 2226 mutex_unlock(&sensor->mutex); 2227 2228 return rval; 2229 } 2230 2231 /* Sink pad. Width and height are changeable here. */ 2232 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); 2233 fmt->format.width &= ~1; 2234 fmt->format.height &= ~1; 2235 fmt->format.field = V4L2_FIELD_NONE; 2236 2237 fmt->format.width = 2238 clamp(fmt->format.width, 2239 CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), 2240 CCS_LIM(sensor, MAX_X_OUTPUT_SIZE)); 2241 fmt->format.height = 2242 clamp(fmt->format.height, 2243 CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), 2244 CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE)); 2245 2246 ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which); 2247 2248 crops[ssd->sink_pad]->left = 0; 2249 crops[ssd->sink_pad]->top = 0; 2250 crops[ssd->sink_pad]->width = fmt->format.width; 2251 crops[ssd->sink_pad]->height = fmt->format.height; 2252 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) 2253 ssd->sink_fmt = *crops[ssd->sink_pad]; 2254 ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP); 2255 2256 mutex_unlock(&sensor->mutex); 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * Calculate goodness of scaled image size compared to expected image 2263 * size and flags provided. 2264 */ 2265 #define SCALING_GOODNESS 100000 2266 #define SCALING_GOODNESS_EXTREME 100000000 2267 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, 2268 int h, int ask_h, u32 flags) 2269 { 2270 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2271 struct i2c_client *client = v4l2_get_subdevdata(subdev); 2272 int val = 0; 2273 2274 w &= ~1; 2275 ask_w &= ~1; 2276 h &= ~1; 2277 ask_h &= ~1; 2278 2279 if (flags & V4L2_SEL_FLAG_GE) { 2280 if (w < ask_w) 2281 val -= SCALING_GOODNESS; 2282 if (h < ask_h) 2283 val -= SCALING_GOODNESS; 2284 } 2285 2286 if (flags & V4L2_SEL_FLAG_LE) { 2287 if (w > ask_w) 2288 val -= SCALING_GOODNESS; 2289 if (h > ask_h) 2290 val -= SCALING_GOODNESS; 2291 } 2292 2293 val -= abs(w - ask_w); 2294 val -= abs(h - ask_h); 2295 2296 if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE)) 2297 val -= SCALING_GOODNESS_EXTREME; 2298 2299 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", 2300 w, ask_w, h, ask_h, val); 2301 2302 return val; 2303 } 2304 2305 static void ccs_set_compose_binner(struct v4l2_subdev *subdev, 2306 struct v4l2_subdev_state *sd_state, 2307 struct v4l2_subdev_selection *sel, 2308 struct v4l2_rect **crops, 2309 struct v4l2_rect *comp) 2310 { 2311 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2312 unsigned int i; 2313 unsigned int binh = 1, binv = 1; 2314 int best = scaling_goodness( 2315 subdev, 2316 crops[CCS_PAD_SINK]->width, sel->r.width, 2317 crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags); 2318 2319 for (i = 0; i < sensor->nbinning_subtypes; i++) { 2320 int this = scaling_goodness( 2321 subdev, 2322 crops[CCS_PAD_SINK]->width 2323 / sensor->binning_subtypes[i].horizontal, 2324 sel->r.width, 2325 crops[CCS_PAD_SINK]->height 2326 / sensor->binning_subtypes[i].vertical, 2327 sel->r.height, sel->flags); 2328 2329 if (this > best) { 2330 binh = sensor->binning_subtypes[i].horizontal; 2331 binv = sensor->binning_subtypes[i].vertical; 2332 best = this; 2333 } 2334 } 2335 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { 2336 sensor->binning_vertical = binv; 2337 sensor->binning_horizontal = binh; 2338 } 2339 2340 sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1; 2341 sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1; 2342 } 2343 2344 /* 2345 * Calculate best scaling ratio and mode for given output resolution. 2346 * 2347 * Try all of these: horizontal ratio, vertical ratio and smallest 2348 * size possible (horizontally). 2349 * 2350 * Also try whether horizontal scaler or full scaler gives a better 2351 * result. 2352 */ 2353 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev, 2354 struct v4l2_subdev_state *sd_state, 2355 struct v4l2_subdev_selection *sel, 2356 struct v4l2_rect **crops, 2357 struct v4l2_rect *comp) 2358 { 2359 struct i2c_client *client = v4l2_get_subdevdata(subdev); 2360 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2361 u32 min, max, a, b, max_m; 2362 u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN); 2363 int mode = CCS_SCALING_MODE_HORIZONTAL; 2364 u32 try[4]; 2365 u32 ntry = 0; 2366 unsigned int i; 2367 int best = INT_MIN; 2368 2369 sel->r.width = min_t(unsigned int, sel->r.width, 2370 crops[CCS_PAD_SINK]->width); 2371 sel->r.height = min_t(unsigned int, sel->r.height, 2372 crops[CCS_PAD_SINK]->height); 2373 2374 a = crops[CCS_PAD_SINK]->width 2375 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width; 2376 b = crops[CCS_PAD_SINK]->height 2377 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height; 2378 max_m = crops[CCS_PAD_SINK]->width 2379 * CCS_LIM(sensor, SCALER_N_MIN) 2380 / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE); 2381 2382 a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN), 2383 CCS_LIM(sensor, SCALER_M_MAX)); 2384 b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN), 2385 CCS_LIM(sensor, SCALER_M_MAX)); 2386 max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN), 2387 CCS_LIM(sensor, SCALER_M_MAX)); 2388 2389 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); 2390 2391 min = min(max_m, min(a, b)); 2392 max = min(max_m, max(a, b)); 2393 2394 try[ntry] = min; 2395 ntry++; 2396 if (min != max) { 2397 try[ntry] = max; 2398 ntry++; 2399 } 2400 if (max != max_m) { 2401 try[ntry] = min + 1; 2402 ntry++; 2403 if (min != max) { 2404 try[ntry] = max + 1; 2405 ntry++; 2406 } 2407 } 2408 2409 for (i = 0; i < ntry; i++) { 2410 int this = scaling_goodness( 2411 subdev, 2412 crops[CCS_PAD_SINK]->width 2413 / try[i] * CCS_LIM(sensor, SCALER_N_MIN), 2414 sel->r.width, 2415 crops[CCS_PAD_SINK]->height, 2416 sel->r.height, 2417 sel->flags); 2418 2419 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); 2420 2421 if (this > best) { 2422 scale_m = try[i]; 2423 mode = CCS_SCALING_MODE_HORIZONTAL; 2424 best = this; 2425 } 2426 2427 if (CCS_LIM(sensor, SCALING_CAPABILITY) 2428 == CCS_SCALING_CAPABILITY_HORIZONTAL) 2429 continue; 2430 2431 this = scaling_goodness( 2432 subdev, crops[CCS_PAD_SINK]->width 2433 / try[i] 2434 * CCS_LIM(sensor, SCALER_N_MIN), 2435 sel->r.width, 2436 crops[CCS_PAD_SINK]->height 2437 / try[i] 2438 * CCS_LIM(sensor, SCALER_N_MIN), 2439 sel->r.height, 2440 sel->flags); 2441 2442 if (this > best) { 2443 scale_m = try[i]; 2444 mode = SMIAPP_SCALING_MODE_BOTH; 2445 best = this; 2446 } 2447 } 2448 2449 sel->r.width = 2450 (crops[CCS_PAD_SINK]->width 2451 / scale_m 2452 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1; 2453 if (mode == SMIAPP_SCALING_MODE_BOTH) 2454 sel->r.height = 2455 (crops[CCS_PAD_SINK]->height 2456 / scale_m 2457 * CCS_LIM(sensor, SCALER_N_MIN)) 2458 & ~1; 2459 else 2460 sel->r.height = crops[CCS_PAD_SINK]->height; 2461 2462 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { 2463 sensor->scale_m = scale_m; 2464 sensor->scaling_mode = mode; 2465 } 2466 } 2467 /* We're only called on source pads. This function sets scaling. */ 2468 static int ccs_set_compose(struct v4l2_subdev *subdev, 2469 struct v4l2_subdev_state *sd_state, 2470 struct v4l2_subdev_selection *sel) 2471 { 2472 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2473 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2474 struct v4l2_rect *comp, *crops[CCS_PADS]; 2475 2476 ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); 2477 2478 sel->r.top = 0; 2479 sel->r.left = 0; 2480 2481 if (ssd == sensor->binner) 2482 ccs_set_compose_binner(subdev, sd_state, sel, crops, comp); 2483 else 2484 ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp); 2485 2486 *comp = sel->r; 2487 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE); 2488 2489 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) 2490 return ccs_pll_blanking_update(sensor); 2491 2492 return 0; 2493 } 2494 2495 static int __ccs_sel_supported(struct v4l2_subdev *subdev, 2496 struct v4l2_subdev_selection *sel) 2497 { 2498 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2499 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2500 2501 /* We only implement crop in three places. */ 2502 switch (sel->target) { 2503 case V4L2_SEL_TGT_CROP: 2504 case V4L2_SEL_TGT_CROP_BOUNDS: 2505 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) 2506 return 0; 2507 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) 2508 return 0; 2509 if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK && 2510 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) 2511 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) 2512 return 0; 2513 return -EINVAL; 2514 case V4L2_SEL_TGT_NATIVE_SIZE: 2515 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) 2516 return 0; 2517 return -EINVAL; 2518 case V4L2_SEL_TGT_COMPOSE: 2519 case V4L2_SEL_TGT_COMPOSE_BOUNDS: 2520 if (sel->pad == ssd->source_pad) 2521 return -EINVAL; 2522 if (ssd == sensor->binner) 2523 return 0; 2524 if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY) 2525 != CCS_SCALING_CAPABILITY_NONE) 2526 return 0; 2527 fallthrough; 2528 default: 2529 return -EINVAL; 2530 } 2531 } 2532 2533 static int ccs_set_crop(struct v4l2_subdev *subdev, 2534 struct v4l2_subdev_state *sd_state, 2535 struct v4l2_subdev_selection *sel) 2536 { 2537 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2538 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2539 struct v4l2_rect *src_size, *crops[CCS_PADS]; 2540 struct v4l2_rect _r; 2541 2542 ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which); 2543 2544 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { 2545 if (sel->pad == ssd->sink_pad) 2546 src_size = &ssd->sink_fmt; 2547 else 2548 src_size = &ssd->compose; 2549 } else { 2550 if (sel->pad == ssd->sink_pad) { 2551 _r.left = 0; 2552 _r.top = 0; 2553 _r.width = v4l2_subdev_get_try_format(subdev, 2554 sd_state, 2555 sel->pad) 2556 ->width; 2557 _r.height = v4l2_subdev_get_try_format(subdev, 2558 sd_state, 2559 sel->pad) 2560 ->height; 2561 src_size = &_r; 2562 } else { 2563 src_size = v4l2_subdev_get_try_compose( 2564 subdev, sd_state, ssd->sink_pad); 2565 } 2566 } 2567 2568 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) { 2569 sel->r.left = 0; 2570 sel->r.top = 0; 2571 } 2572 2573 sel->r.width = min(sel->r.width, src_size->width); 2574 sel->r.height = min(sel->r.height, src_size->height); 2575 2576 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width); 2577 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height); 2578 2579 *crops[sel->pad] = sel->r; 2580 2581 if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK) 2582 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP); 2583 2584 return 0; 2585 } 2586 2587 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r) 2588 { 2589 r->top = 0; 2590 r->left = 0; 2591 r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1; 2592 r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1; 2593 } 2594 2595 static int __ccs_get_selection(struct v4l2_subdev *subdev, 2596 struct v4l2_subdev_state *sd_state, 2597 struct v4l2_subdev_selection *sel) 2598 { 2599 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2600 struct ccs_subdev *ssd = to_ccs_subdev(subdev); 2601 struct v4l2_rect *comp, *crops[CCS_PADS]; 2602 struct v4l2_rect sink_fmt; 2603 int ret; 2604 2605 ret = __ccs_sel_supported(subdev, sel); 2606 if (ret) 2607 return ret; 2608 2609 ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); 2610 2611 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { 2612 sink_fmt = ssd->sink_fmt; 2613 } else { 2614 struct v4l2_mbus_framefmt *fmt = 2615 v4l2_subdev_get_try_format(subdev, sd_state, 2616 ssd->sink_pad); 2617 2618 sink_fmt.left = 0; 2619 sink_fmt.top = 0; 2620 sink_fmt.width = fmt->width; 2621 sink_fmt.height = fmt->height; 2622 } 2623 2624 switch (sel->target) { 2625 case V4L2_SEL_TGT_CROP_BOUNDS: 2626 case V4L2_SEL_TGT_NATIVE_SIZE: 2627 if (ssd == sensor->pixel_array) 2628 ccs_get_native_size(ssd, &sel->r); 2629 else if (sel->pad == ssd->sink_pad) 2630 sel->r = sink_fmt; 2631 else 2632 sel->r = *comp; 2633 break; 2634 case V4L2_SEL_TGT_CROP: 2635 case V4L2_SEL_TGT_COMPOSE_BOUNDS: 2636 sel->r = *crops[sel->pad]; 2637 break; 2638 case V4L2_SEL_TGT_COMPOSE: 2639 sel->r = *comp; 2640 break; 2641 } 2642 2643 return 0; 2644 } 2645 2646 static int ccs_get_selection(struct v4l2_subdev *subdev, 2647 struct v4l2_subdev_state *sd_state, 2648 struct v4l2_subdev_selection *sel) 2649 { 2650 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2651 int rval; 2652 2653 mutex_lock(&sensor->mutex); 2654 rval = __ccs_get_selection(subdev, sd_state, sel); 2655 mutex_unlock(&sensor->mutex); 2656 2657 return rval; 2658 } 2659 2660 static int ccs_set_selection(struct v4l2_subdev *subdev, 2661 struct v4l2_subdev_state *sd_state, 2662 struct v4l2_subdev_selection *sel) 2663 { 2664 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2665 int ret; 2666 2667 ret = __ccs_sel_supported(subdev, sel); 2668 if (ret) 2669 return ret; 2670 2671 mutex_lock(&sensor->mutex); 2672 2673 sel->r.left = max(0, sel->r.left & ~1); 2674 sel->r.top = max(0, sel->r.top & ~1); 2675 sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags); 2676 sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags); 2677 2678 sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), 2679 sel->r.width); 2680 sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), 2681 sel->r.height); 2682 2683 switch (sel->target) { 2684 case V4L2_SEL_TGT_CROP: 2685 ret = ccs_set_crop(subdev, sd_state, sel); 2686 break; 2687 case V4L2_SEL_TGT_COMPOSE: 2688 ret = ccs_set_compose(subdev, sd_state, sel); 2689 break; 2690 default: 2691 ret = -EINVAL; 2692 } 2693 2694 mutex_unlock(&sensor->mutex); 2695 return ret; 2696 } 2697 2698 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) 2699 { 2700 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2701 2702 *frames = sensor->frame_skip; 2703 return 0; 2704 } 2705 2706 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines) 2707 { 2708 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2709 2710 *lines = sensor->image_start; 2711 2712 return 0; 2713 } 2714 2715 /* ----------------------------------------------------------------------------- 2716 * sysfs attributes 2717 */ 2718 2719 static ssize_t 2720 nvm_show(struct device *dev, struct device_attribute *attr, char *buf) 2721 { 2722 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); 2723 struct i2c_client *client = v4l2_get_subdevdata(subdev); 2724 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2725 int rval; 2726 2727 if (!sensor->dev_init_done) 2728 return -EBUSY; 2729 2730 rval = ccs_pm_get_init(sensor); 2731 if (rval < 0) 2732 return -ENODEV; 2733 2734 rval = ccs_read_nvm(sensor, buf, PAGE_SIZE); 2735 if (rval < 0) { 2736 pm_runtime_put(&client->dev); 2737 dev_err(&client->dev, "nvm read failed\n"); 2738 return -ENODEV; 2739 } 2740 2741 pm_runtime_mark_last_busy(&client->dev); 2742 pm_runtime_put_autosuspend(&client->dev); 2743 2744 /* 2745 * NVM is still way below a PAGE_SIZE, so we can safely 2746 * assume this for now. 2747 */ 2748 return rval; 2749 } 2750 static DEVICE_ATTR_RO(nvm); 2751 2752 static ssize_t 2753 ident_show(struct device *dev, struct device_attribute *attr, char *buf) 2754 { 2755 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); 2756 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2757 struct ccs_module_info *minfo = &sensor->minfo; 2758 2759 if (minfo->mipi_manufacturer_id) 2760 return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n", 2761 minfo->mipi_manufacturer_id, minfo->model_id, 2762 minfo->revision_number) + 1; 2763 else 2764 return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n", 2765 minfo->smia_manufacturer_id, minfo->model_id, 2766 minfo->revision_number) + 1; 2767 } 2768 static DEVICE_ATTR_RO(ident); 2769 2770 /* ----------------------------------------------------------------------------- 2771 * V4L2 subdev core operations 2772 */ 2773 2774 static int ccs_identify_module(struct ccs_sensor *sensor) 2775 { 2776 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 2777 struct ccs_module_info *minfo = &sensor->minfo; 2778 unsigned int i; 2779 u32 rev; 2780 int rval = 0; 2781 2782 /* Module info */ 2783 rval = ccs_read(sensor, MODULE_MANUFACTURER_ID, 2784 &minfo->mipi_manufacturer_id); 2785 if (!rval && !minfo->mipi_manufacturer_id) 2786 rval = ccs_read_addr_8only(sensor, 2787 SMIAPP_REG_U8_MANUFACTURER_ID, 2788 &minfo->smia_manufacturer_id); 2789 if (!rval) 2790 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID, 2791 &minfo->model_id); 2792 if (!rval) 2793 rval = ccs_read_addr_8only(sensor, 2794 CCS_R_MODULE_REVISION_NUMBER_MAJOR, 2795 &rev); 2796 if (!rval) { 2797 rval = ccs_read_addr_8only(sensor, 2798 CCS_R_MODULE_REVISION_NUMBER_MINOR, 2799 &minfo->revision_number); 2800 minfo->revision_number |= rev << 8; 2801 } 2802 if (!rval) 2803 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR, 2804 &minfo->module_year); 2805 if (!rval) 2806 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH, 2807 &minfo->module_month); 2808 if (!rval) 2809 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY, 2810 &minfo->module_day); 2811 2812 /* Sensor info */ 2813 if (!rval) 2814 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID, 2815 &minfo->sensor_mipi_manufacturer_id); 2816 if (!rval && !minfo->sensor_mipi_manufacturer_id) 2817 rval = ccs_read_addr_8only(sensor, 2818 CCS_R_SENSOR_MANUFACTURER_ID, 2819 &minfo->sensor_smia_manufacturer_id); 2820 if (!rval) 2821 rval = ccs_read_addr_8only(sensor, 2822 CCS_R_SENSOR_MODEL_ID, 2823 &minfo->sensor_model_id); 2824 if (!rval) 2825 rval = ccs_read_addr_8only(sensor, 2826 CCS_R_SENSOR_REVISION_NUMBER, 2827 &minfo->sensor_revision_number); 2828 if (!rval) 2829 rval = ccs_read_addr_8only(sensor, 2830 CCS_R_SENSOR_FIRMWARE_VERSION, 2831 &minfo->sensor_firmware_version); 2832 2833 /* SMIA */ 2834 if (!rval) 2835 rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version); 2836 if (!rval && !minfo->ccs_version) 2837 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, 2838 &minfo->smia_version); 2839 if (!rval && !minfo->ccs_version) 2840 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, 2841 &minfo->smiapp_version); 2842 2843 if (rval) { 2844 dev_err(&client->dev, "sensor detection failed\n"); 2845 return -ENODEV; 2846 } 2847 2848 if (minfo->mipi_manufacturer_id) 2849 dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n", 2850 minfo->mipi_manufacturer_id, minfo->model_id); 2851 else 2852 dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n", 2853 minfo->smia_manufacturer_id, minfo->model_id); 2854 2855 dev_dbg(&client->dev, 2856 "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n", 2857 minfo->revision_number, minfo->module_year, minfo->module_month, 2858 minfo->module_day); 2859 2860 if (minfo->sensor_mipi_manufacturer_id) 2861 dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n", 2862 minfo->sensor_mipi_manufacturer_id, 2863 minfo->sensor_model_id); 2864 else 2865 dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n", 2866 minfo->sensor_smia_manufacturer_id, 2867 minfo->sensor_model_id); 2868 2869 dev_dbg(&client->dev, 2870 "sensor revision 0x%2.2x firmware version 0x%2.2x\n", 2871 minfo->sensor_revision_number, minfo->sensor_firmware_version); 2872 2873 if (minfo->ccs_version) { 2874 dev_dbg(&client->dev, "MIPI CCS version %u.%u", 2875 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK) 2876 >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT, 2877 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK)); 2878 minfo->name = CCS_NAME; 2879 } else { 2880 dev_dbg(&client->dev, 2881 "smia version %2.2d smiapp version %2.2d\n", 2882 minfo->smia_version, minfo->smiapp_version); 2883 minfo->name = SMIAPP_NAME; 2884 } 2885 2886 /* 2887 * Some modules have bad data in the lvalues below. Hope the 2888 * rvalues have better stuff. The lvalues are module 2889 * parameters whereas the rvalues are sensor parameters. 2890 */ 2891 if (minfo->sensor_smia_manufacturer_id && 2892 !minfo->smia_manufacturer_id && !minfo->model_id) { 2893 minfo->smia_manufacturer_id = 2894 minfo->sensor_smia_manufacturer_id; 2895 minfo->model_id = minfo->sensor_model_id; 2896 minfo->revision_number = minfo->sensor_revision_number; 2897 } 2898 2899 for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) { 2900 if (ccs_module_idents[i].mipi_manufacturer_id && 2901 ccs_module_idents[i].mipi_manufacturer_id 2902 != minfo->mipi_manufacturer_id) 2903 continue; 2904 if (ccs_module_idents[i].smia_manufacturer_id && 2905 ccs_module_idents[i].smia_manufacturer_id 2906 != minfo->smia_manufacturer_id) 2907 continue; 2908 if (ccs_module_idents[i].model_id != minfo->model_id) 2909 continue; 2910 if (ccs_module_idents[i].flags 2911 & CCS_MODULE_IDENT_FLAG_REV_LE) { 2912 if (ccs_module_idents[i].revision_number_major 2913 < (minfo->revision_number >> 8)) 2914 continue; 2915 } else { 2916 if (ccs_module_idents[i].revision_number_major 2917 != (minfo->revision_number >> 8)) 2918 continue; 2919 } 2920 2921 minfo->name = ccs_module_idents[i].name; 2922 minfo->quirk = ccs_module_idents[i].quirk; 2923 break; 2924 } 2925 2926 if (i >= ARRAY_SIZE(ccs_module_idents)) 2927 dev_warn(&client->dev, 2928 "no quirks for this module; let's hope it's fully compliant\n"); 2929 2930 dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name); 2931 2932 return 0; 2933 } 2934 2935 static const struct v4l2_subdev_ops ccs_ops; 2936 static const struct v4l2_subdev_internal_ops ccs_internal_ops; 2937 static const struct media_entity_operations ccs_entity_ops; 2938 2939 static int ccs_register_subdev(struct ccs_sensor *sensor, 2940 struct ccs_subdev *ssd, 2941 struct ccs_subdev *sink_ssd, 2942 u16 source_pad, u16 sink_pad, u32 link_flags) 2943 { 2944 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 2945 int rval; 2946 2947 if (!sink_ssd) 2948 return 0; 2949 2950 rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads); 2951 if (rval) { 2952 dev_err(&client->dev, "media_entity_pads_init failed\n"); 2953 return rval; 2954 } 2955 2956 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd); 2957 if (rval) { 2958 dev_err(&client->dev, "v4l2_device_register_subdev failed\n"); 2959 return rval; 2960 } 2961 2962 rval = media_create_pad_link(&ssd->sd.entity, source_pad, 2963 &sink_ssd->sd.entity, sink_pad, 2964 link_flags); 2965 if (rval) { 2966 dev_err(&client->dev, "media_create_pad_link failed\n"); 2967 v4l2_device_unregister_subdev(&ssd->sd); 2968 return rval; 2969 } 2970 2971 return 0; 2972 } 2973 2974 static void ccs_unregistered(struct v4l2_subdev *subdev) 2975 { 2976 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2977 unsigned int i; 2978 2979 for (i = 1; i < sensor->ssds_used; i++) 2980 v4l2_device_unregister_subdev(&sensor->ssds[i].sd); 2981 } 2982 2983 static int ccs_registered(struct v4l2_subdev *subdev) 2984 { 2985 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 2986 int rval; 2987 2988 if (sensor->scaler) { 2989 rval = ccs_register_subdev(sensor, sensor->binner, 2990 sensor->scaler, 2991 CCS_PAD_SRC, CCS_PAD_SINK, 2992 MEDIA_LNK_FL_ENABLED | 2993 MEDIA_LNK_FL_IMMUTABLE); 2994 if (rval < 0) 2995 return rval; 2996 } 2997 2998 rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner, 2999 CCS_PA_PAD_SRC, CCS_PAD_SINK, 3000 MEDIA_LNK_FL_ENABLED | 3001 MEDIA_LNK_FL_IMMUTABLE); 3002 if (rval) 3003 goto out_err; 3004 3005 return 0; 3006 3007 out_err: 3008 ccs_unregistered(subdev); 3009 3010 return rval; 3011 } 3012 3013 static void ccs_cleanup(struct ccs_sensor *sensor) 3014 { 3015 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 3016 3017 device_remove_file(&client->dev, &dev_attr_nvm); 3018 device_remove_file(&client->dev, &dev_attr_ident); 3019 3020 ccs_free_controls(sensor); 3021 } 3022 3023 static void ccs_create_subdev(struct ccs_sensor *sensor, 3024 struct ccs_subdev *ssd, const char *name, 3025 unsigned short num_pads, u32 function) 3026 { 3027 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); 3028 3029 if (!ssd) 3030 return; 3031 3032 if (ssd != sensor->src) 3033 v4l2_subdev_init(&ssd->sd, &ccs_ops); 3034 3035 ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; 3036 ssd->sd.entity.function = function; 3037 ssd->sensor = sensor; 3038 3039 ssd->npads = num_pads; 3040 ssd->source_pad = num_pads - 1; 3041 3042 v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name); 3043 3044 ccs_get_native_size(ssd, &ssd->sink_fmt); 3045 3046 ssd->compose.width = ssd->sink_fmt.width; 3047 ssd->compose.height = ssd->sink_fmt.height; 3048 ssd->crop[ssd->source_pad] = ssd->compose; 3049 ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3050 if (ssd != sensor->pixel_array) { 3051 ssd->crop[ssd->sink_pad] = ssd->compose; 3052 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK; 3053 } 3054 3055 ssd->sd.entity.ops = &ccs_entity_ops; 3056 3057 if (ssd == sensor->src) 3058 return; 3059 3060 ssd->sd.internal_ops = &ccs_internal_ops; 3061 ssd->sd.owner = THIS_MODULE; 3062 ssd->sd.dev = &client->dev; 3063 v4l2_set_subdevdata(&ssd->sd, client); 3064 } 3065 3066 static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) 3067 { 3068 struct ccs_subdev *ssd = to_ccs_subdev(sd); 3069 struct ccs_sensor *sensor = ssd->sensor; 3070 unsigned int i; 3071 3072 mutex_lock(&sensor->mutex); 3073 3074 for (i = 0; i < ssd->npads; i++) { 3075 struct v4l2_mbus_framefmt *try_fmt = 3076 v4l2_subdev_get_try_format(sd, fh->state, i); 3077 struct v4l2_rect *try_crop = 3078 v4l2_subdev_get_try_crop(sd, fh->state, i); 3079 struct v4l2_rect *try_comp; 3080 3081 ccs_get_native_size(ssd, try_crop); 3082 3083 try_fmt->width = try_crop->width; 3084 try_fmt->height = try_crop->height; 3085 try_fmt->code = sensor->internal_csi_format->code; 3086 try_fmt->field = V4L2_FIELD_NONE; 3087 3088 if (ssd != sensor->pixel_array) 3089 continue; 3090 3091 try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i); 3092 *try_comp = *try_crop; 3093 } 3094 3095 mutex_unlock(&sensor->mutex); 3096 3097 return 0; 3098 } 3099 3100 static const struct v4l2_subdev_video_ops ccs_video_ops = { 3101 .s_stream = ccs_set_stream, 3102 .pre_streamon = ccs_pre_streamon, 3103 .post_streamoff = ccs_post_streamoff, 3104 }; 3105 3106 static const struct v4l2_subdev_pad_ops ccs_pad_ops = { 3107 .enum_mbus_code = ccs_enum_mbus_code, 3108 .get_fmt = ccs_get_format, 3109 .set_fmt = ccs_set_format, 3110 .get_selection = ccs_get_selection, 3111 .set_selection = ccs_set_selection, 3112 }; 3113 3114 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = { 3115 .g_skip_frames = ccs_get_skip_frames, 3116 .g_skip_top_lines = ccs_get_skip_top_lines, 3117 }; 3118 3119 static const struct v4l2_subdev_ops ccs_ops = { 3120 .video = &ccs_video_ops, 3121 .pad = &ccs_pad_ops, 3122 .sensor = &ccs_sensor_ops, 3123 }; 3124 3125 static const struct media_entity_operations ccs_entity_ops = { 3126 .link_validate = v4l2_subdev_link_validate, 3127 }; 3128 3129 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = { 3130 .registered = ccs_registered, 3131 .unregistered = ccs_unregistered, 3132 .open = ccs_open, 3133 }; 3134 3135 static const struct v4l2_subdev_internal_ops ccs_internal_ops = { 3136 .open = ccs_open, 3137 }; 3138 3139 /* ----------------------------------------------------------------------------- 3140 * I2C Driver 3141 */ 3142 3143 static int __maybe_unused ccs_suspend(struct device *dev) 3144 { 3145 struct i2c_client *client = to_i2c_client(dev); 3146 struct v4l2_subdev *subdev = i2c_get_clientdata(client); 3147 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 3148 bool streaming = sensor->streaming; 3149 int rval; 3150 3151 rval = pm_runtime_resume_and_get(dev); 3152 if (rval < 0) 3153 return rval; 3154 3155 if (sensor->streaming) 3156 ccs_stop_streaming(sensor); 3157 3158 /* save state for resume */ 3159 sensor->streaming = streaming; 3160 3161 return 0; 3162 } 3163 3164 static int __maybe_unused ccs_resume(struct device *dev) 3165 { 3166 struct i2c_client *client = to_i2c_client(dev); 3167 struct v4l2_subdev *subdev = i2c_get_clientdata(client); 3168 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 3169 int rval = 0; 3170 3171 pm_runtime_put(dev); 3172 3173 if (sensor->streaming) 3174 rval = ccs_start_streaming(sensor); 3175 3176 return rval; 3177 } 3178 3179 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev) 3180 { 3181 struct ccs_hwconfig *hwcfg = &sensor->hwcfg; 3182 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN }; 3183 struct fwnode_handle *ep; 3184 struct fwnode_handle *fwnode = dev_fwnode(dev); 3185 u32 rotation; 3186 int i; 3187 int rval; 3188 3189 ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, 3190 FWNODE_GRAPH_ENDPOINT_NEXT); 3191 if (!ep) 3192 return -ENODEV; 3193 3194 /* 3195 * Note that we do need to rely on detecting the bus type between CSI-2 3196 * D-PHY and CCP2 as the old bindings did not require it. 3197 */ 3198 rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); 3199 if (rval) 3200 goto out_err; 3201 3202 switch (bus_cfg.bus_type) { 3203 case V4L2_MBUS_CSI2_DPHY: 3204 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY; 3205 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; 3206 break; 3207 case V4L2_MBUS_CSI2_CPHY: 3208 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY; 3209 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; 3210 break; 3211 case V4L2_MBUS_CSI1: 3212 case V4L2_MBUS_CCP2: 3213 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ? 3214 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE : 3215 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK; 3216 hwcfg->lanes = 1; 3217 break; 3218 default: 3219 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type); 3220 rval = -EINVAL; 3221 goto out_err; 3222 } 3223 3224 dev_dbg(dev, "lanes %u\n", hwcfg->lanes); 3225 3226 rval = fwnode_property_read_u32(fwnode, "rotation", &rotation); 3227 if (!rval) { 3228 switch (rotation) { 3229 case 180: 3230 hwcfg->module_board_orient = 3231 CCS_MODULE_BOARD_ORIENT_180; 3232 fallthrough; 3233 case 0: 3234 break; 3235 default: 3236 dev_err(dev, "invalid rotation %u\n", rotation); 3237 rval = -EINVAL; 3238 goto out_err; 3239 } 3240 } 3241 3242 rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency", 3243 &hwcfg->ext_clk); 3244 if (rval) 3245 dev_info(dev, "can't get clock-frequency\n"); 3246 3247 dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk, 3248 hwcfg->csi_signalling_mode); 3249 3250 if (!bus_cfg.nr_of_link_frequencies) { 3251 dev_warn(dev, "no link frequencies defined\n"); 3252 rval = -EINVAL; 3253 goto out_err; 3254 } 3255 3256 hwcfg->op_sys_clock = devm_kcalloc( 3257 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */, 3258 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL); 3259 if (!hwcfg->op_sys_clock) { 3260 rval = -ENOMEM; 3261 goto out_err; 3262 } 3263 3264 for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) { 3265 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i]; 3266 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]); 3267 } 3268 3269 v4l2_fwnode_endpoint_free(&bus_cfg); 3270 fwnode_handle_put(ep); 3271 3272 return 0; 3273 3274 out_err: 3275 v4l2_fwnode_endpoint_free(&bus_cfg); 3276 fwnode_handle_put(ep); 3277 3278 return rval; 3279 } 3280 3281 static int ccs_probe(struct i2c_client *client) 3282 { 3283 struct ccs_sensor *sensor; 3284 const struct firmware *fw; 3285 char filename[40]; 3286 unsigned int i; 3287 int rval; 3288 3289 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); 3290 if (sensor == NULL) 3291 return -ENOMEM; 3292 3293 rval = ccs_get_hwconfig(sensor, &client->dev); 3294 if (rval) 3295 return rval; 3296 3297 sensor->src = &sensor->ssds[sensor->ssds_used]; 3298 3299 v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops); 3300 sensor->src->sd.internal_ops = &ccs_internal_src_ops; 3301 3302 sensor->regulators = devm_kcalloc(&client->dev, 3303 ARRAY_SIZE(ccs_regulators), 3304 sizeof(*sensor->regulators), 3305 GFP_KERNEL); 3306 if (!sensor->regulators) 3307 return -ENOMEM; 3308 3309 for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++) 3310 sensor->regulators[i].supply = ccs_regulators[i]; 3311 3312 rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators), 3313 sensor->regulators); 3314 if (rval) { 3315 dev_err(&client->dev, "could not get regulators\n"); 3316 return rval; 3317 } 3318 3319 sensor->ext_clk = devm_clk_get(&client->dev, NULL); 3320 if (PTR_ERR(sensor->ext_clk) == -ENOENT) { 3321 dev_info(&client->dev, "no clock defined, continuing...\n"); 3322 sensor->ext_clk = NULL; 3323 } else if (IS_ERR(sensor->ext_clk)) { 3324 dev_err(&client->dev, "could not get clock (%ld)\n", 3325 PTR_ERR(sensor->ext_clk)); 3326 return -EPROBE_DEFER; 3327 } 3328 3329 if (sensor->ext_clk) { 3330 if (sensor->hwcfg.ext_clk) { 3331 unsigned long rate; 3332 3333 rval = clk_set_rate(sensor->ext_clk, 3334 sensor->hwcfg.ext_clk); 3335 if (rval < 0) { 3336 dev_err(&client->dev, 3337 "unable to set clock freq to %u\n", 3338 sensor->hwcfg.ext_clk); 3339 return rval; 3340 } 3341 3342 rate = clk_get_rate(sensor->ext_clk); 3343 if (rate != sensor->hwcfg.ext_clk) { 3344 dev_err(&client->dev, 3345 "can't set clock freq, asked for %u but got %lu\n", 3346 sensor->hwcfg.ext_clk, rate); 3347 return -EINVAL; 3348 } 3349 } else { 3350 sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk); 3351 dev_dbg(&client->dev, "obtained clock freq %u\n", 3352 sensor->hwcfg.ext_clk); 3353 } 3354 } else if (sensor->hwcfg.ext_clk) { 3355 dev_dbg(&client->dev, "assuming clock freq %u\n", 3356 sensor->hwcfg.ext_clk); 3357 } else { 3358 dev_err(&client->dev, "unable to obtain clock freq\n"); 3359 return -EINVAL; 3360 } 3361 3362 if (!sensor->hwcfg.ext_clk) { 3363 dev_err(&client->dev, "cannot work with xclk frequency 0\n"); 3364 return -EINVAL; 3365 } 3366 3367 sensor->reset = devm_gpiod_get_optional(&client->dev, "reset", 3368 GPIOD_OUT_HIGH); 3369 if (IS_ERR(sensor->reset)) 3370 return PTR_ERR(sensor->reset); 3371 /* Support old users that may have used "xshutdown" property. */ 3372 if (!sensor->reset) 3373 sensor->xshutdown = devm_gpiod_get_optional(&client->dev, 3374 "xshutdown", 3375 GPIOD_OUT_LOW); 3376 if (IS_ERR(sensor->xshutdown)) 3377 return PTR_ERR(sensor->xshutdown); 3378 3379 rval = ccs_power_on(&client->dev); 3380 if (rval < 0) 3381 return rval; 3382 3383 mutex_init(&sensor->mutex); 3384 3385 rval = ccs_identify_module(sensor); 3386 if (rval) { 3387 rval = -ENODEV; 3388 goto out_power_off; 3389 } 3390 3391 rval = snprintf(filename, sizeof(filename), 3392 "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw", 3393 sensor->minfo.sensor_mipi_manufacturer_id, 3394 sensor->minfo.sensor_model_id, 3395 sensor->minfo.sensor_revision_number); 3396 if (rval >= sizeof(filename)) { 3397 rval = -ENOMEM; 3398 goto out_power_off; 3399 } 3400 3401 rval = request_firmware(&fw, filename, &client->dev); 3402 if (!rval) { 3403 ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev, 3404 true); 3405 release_firmware(fw); 3406 } 3407 3408 rval = snprintf(filename, sizeof(filename), 3409 "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw", 3410 sensor->minfo.mipi_manufacturer_id, 3411 sensor->minfo.model_id, 3412 sensor->minfo.revision_number); 3413 if (rval >= sizeof(filename)) { 3414 rval = -ENOMEM; 3415 goto out_release_sdata; 3416 } 3417 3418 rval = request_firmware(&fw, filename, &client->dev); 3419 if (!rval) { 3420 ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev, 3421 true); 3422 release_firmware(fw); 3423 } 3424 3425 rval = ccs_read_all_limits(sensor); 3426 if (rval) 3427 goto out_release_mdata; 3428 3429 rval = ccs_read_frame_fmt(sensor); 3430 if (rval) { 3431 rval = -ENODEV; 3432 goto out_free_ccs_limits; 3433 } 3434 3435 rval = ccs_update_phy_ctrl(sensor); 3436 if (rval < 0) 3437 goto out_free_ccs_limits; 3438 3439 /* 3440 * Handle Sensor Module orientation on the board. 3441 * 3442 * The application of H-FLIP and V-FLIP on the sensor is modified by 3443 * the sensor orientation on the board. 3444 * 3445 * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set 3446 * both H-FLIP and V-FLIP for normal operation which also implies 3447 * that a set/unset operation for user space HFLIP and VFLIP v4l2 3448 * controls will need to be internally inverted. 3449 * 3450 * Rotation also changes the bayer pattern. 3451 */ 3452 if (sensor->hwcfg.module_board_orient == 3453 CCS_MODULE_BOARD_ORIENT_180) 3454 sensor->hvflip_inv_mask = 3455 CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR | 3456 CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; 3457 3458 rval = ccs_call_quirk(sensor, limits); 3459 if (rval) { 3460 dev_err(&client->dev, "limits quirks failed\n"); 3461 goto out_free_ccs_limits; 3462 } 3463 3464 if (CCS_LIM(sensor, BINNING_CAPABILITY)) { 3465 sensor->nbinning_subtypes = 3466 min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES), 3467 CCS_LIM_BINNING_SUB_TYPE_MAX_N); 3468 3469 for (i = 0; i < sensor->nbinning_subtypes; i++) { 3470 sensor->binning_subtypes[i].horizontal = 3471 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >> 3472 CCS_BINNING_SUB_TYPE_COLUMN_SHIFT; 3473 sensor->binning_subtypes[i].vertical = 3474 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) & 3475 CCS_BINNING_SUB_TYPE_ROW_MASK; 3476 3477 dev_dbg(&client->dev, "binning %xx%x\n", 3478 sensor->binning_subtypes[i].horizontal, 3479 sensor->binning_subtypes[i].vertical); 3480 } 3481 } 3482 sensor->binning_horizontal = 1; 3483 sensor->binning_vertical = 1; 3484 3485 if (device_create_file(&client->dev, &dev_attr_ident) != 0) { 3486 dev_err(&client->dev, "sysfs ident entry creation failed\n"); 3487 rval = -ENOENT; 3488 goto out_free_ccs_limits; 3489 } 3490 3491 if (sensor->minfo.smiapp_version && 3492 CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & 3493 CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) { 3494 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { 3495 dev_err(&client->dev, "sysfs nvm entry failed\n"); 3496 rval = -EBUSY; 3497 goto out_cleanup; 3498 } 3499 } 3500 3501 if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) || 3502 !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) || 3503 !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) || 3504 !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) { 3505 /* No OP clock branch */ 3506 sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS; 3507 } else if (CCS_LIM(sensor, SCALING_CAPABILITY) 3508 != CCS_SCALING_CAPABILITY_NONE || 3509 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) 3510 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { 3511 /* We have a scaler or digital crop. */ 3512 sensor->scaler = &sensor->ssds[sensor->ssds_used]; 3513 sensor->ssds_used++; 3514 } 3515 sensor->binner = &sensor->ssds[sensor->ssds_used]; 3516 sensor->ssds_used++; 3517 sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; 3518 sensor->ssds_used++; 3519 3520 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); 3521 3522 /* prepare PLL configuration input values */ 3523 sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY; 3524 sensor->pll.csi2.lanes = sensor->hwcfg.lanes; 3525 if (CCS_LIM(sensor, CLOCK_CALCULATION) & 3526 CCS_CLOCK_CALCULATION_LANE_SPEED) { 3527 sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL; 3528 if (CCS_LIM(sensor, CLOCK_CALCULATION) & 3529 CCS_CLOCK_CALCULATION_LINK_DECOUPLED) { 3530 sensor->pll.vt_lanes = 3531 CCS_LIM(sensor, NUM_OF_VT_LANES) + 1; 3532 sensor->pll.op_lanes = 3533 CCS_LIM(sensor, NUM_OF_OP_LANES) + 1; 3534 sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED; 3535 } else { 3536 sensor->pll.vt_lanes = sensor->pll.csi2.lanes; 3537 sensor->pll.op_lanes = sensor->pll.csi2.lanes; 3538 } 3539 } 3540 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & 3541 CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER) 3542 sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER; 3543 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & 3544 CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV) 3545 sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV; 3546 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & 3547 CCS_FIFO_SUPPORT_CAPABILITY_DERATING) 3548 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING; 3549 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & 3550 CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING) 3551 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING | 3552 CCS_PLL_FLAG_FIFO_OVERRATING; 3553 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & 3554 CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) { 3555 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & 3556 CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) { 3557 u32 v; 3558 3559 /* Use sensor default in PLL mode selection */ 3560 rval = ccs_read(sensor, PLL_MODE, &v); 3561 if (rval) 3562 goto out_cleanup; 3563 3564 if (v == CCS_PLL_MODE_DUAL) 3565 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; 3566 } else { 3567 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; 3568 } 3569 if (CCS_LIM(sensor, CLOCK_CALCULATION) & 3570 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR) 3571 sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR; 3572 if (CCS_LIM(sensor, CLOCK_CALCULATION) & 3573 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR) 3574 sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR; 3575 } 3576 sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE); 3577 sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk; 3578 sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN); 3579 3580 ccs_create_subdev(sensor, sensor->scaler, " scaler", 2, 3581 MEDIA_ENT_F_PROC_VIDEO_SCALER); 3582 ccs_create_subdev(sensor, sensor->binner, " binner", 2, 3583 MEDIA_ENT_F_PROC_VIDEO_SCALER); 3584 ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1, 3585 MEDIA_ENT_F_CAM_SENSOR); 3586 3587 rval = ccs_init_controls(sensor); 3588 if (rval < 0) 3589 goto out_cleanup; 3590 3591 rval = ccs_call_quirk(sensor, init); 3592 if (rval) 3593 goto out_cleanup; 3594 3595 rval = ccs_get_mbus_formats(sensor); 3596 if (rval) { 3597 rval = -ENODEV; 3598 goto out_cleanup; 3599 } 3600 3601 rval = ccs_init_late_controls(sensor); 3602 if (rval) { 3603 rval = -ENODEV; 3604 goto out_cleanup; 3605 } 3606 3607 mutex_lock(&sensor->mutex); 3608 rval = ccs_pll_blanking_update(sensor); 3609 mutex_unlock(&sensor->mutex); 3610 if (rval) { 3611 dev_err(&client->dev, "update mode failed\n"); 3612 goto out_cleanup; 3613 } 3614 3615 sensor->streaming = false; 3616 sensor->dev_init_done = true; 3617 3618 rval = media_entity_pads_init(&sensor->src->sd.entity, 2, 3619 sensor->src->pads); 3620 if (rval < 0) 3621 goto out_media_entity_cleanup; 3622 3623 rval = ccs_write_msr_regs(sensor); 3624 if (rval) 3625 goto out_media_entity_cleanup; 3626 3627 pm_runtime_set_active(&client->dev); 3628 pm_runtime_get_noresume(&client->dev); 3629 pm_runtime_enable(&client->dev); 3630 3631 rval = v4l2_async_register_subdev_sensor(&sensor->src->sd); 3632 if (rval < 0) 3633 goto out_disable_runtime_pm; 3634 3635 pm_runtime_set_autosuspend_delay(&client->dev, 1000); 3636 pm_runtime_use_autosuspend(&client->dev); 3637 pm_runtime_put_autosuspend(&client->dev); 3638 3639 return 0; 3640 3641 out_disable_runtime_pm: 3642 pm_runtime_put_noidle(&client->dev); 3643 pm_runtime_disable(&client->dev); 3644 3645 out_media_entity_cleanup: 3646 media_entity_cleanup(&sensor->src->sd.entity); 3647 3648 out_cleanup: 3649 ccs_cleanup(sensor); 3650 3651 out_release_mdata: 3652 kvfree(sensor->mdata.backing); 3653 3654 out_release_sdata: 3655 kvfree(sensor->sdata.backing); 3656 3657 out_free_ccs_limits: 3658 kfree(sensor->ccs_limits); 3659 3660 out_power_off: 3661 ccs_power_off(&client->dev); 3662 mutex_destroy(&sensor->mutex); 3663 3664 return rval; 3665 } 3666 3667 static int ccs_remove(struct i2c_client *client) 3668 { 3669 struct v4l2_subdev *subdev = i2c_get_clientdata(client); 3670 struct ccs_sensor *sensor = to_ccs_sensor(subdev); 3671 unsigned int i; 3672 3673 v4l2_async_unregister_subdev(subdev); 3674 3675 pm_runtime_disable(&client->dev); 3676 if (!pm_runtime_status_suspended(&client->dev)) 3677 ccs_power_off(&client->dev); 3678 pm_runtime_set_suspended(&client->dev); 3679 3680 for (i = 0; i < sensor->ssds_used; i++) { 3681 v4l2_device_unregister_subdev(&sensor->ssds[i].sd); 3682 media_entity_cleanup(&sensor->ssds[i].sd.entity); 3683 } 3684 ccs_cleanup(sensor); 3685 mutex_destroy(&sensor->mutex); 3686 kfree(sensor->ccs_limits); 3687 kvfree(sensor->sdata.backing); 3688 kvfree(sensor->mdata.backing); 3689 3690 return 0; 3691 } 3692 3693 static const struct ccs_device smia_device = { 3694 .flags = CCS_DEVICE_FLAG_IS_SMIA, 3695 }; 3696 3697 static const struct ccs_device ccs_device = {}; 3698 3699 static const struct acpi_device_id ccs_acpi_table[] = { 3700 { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device }, 3701 { }, 3702 }; 3703 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table); 3704 3705 static const struct of_device_id ccs_of_table[] = { 3706 { .compatible = "mipi-ccs-1.1", .data = &ccs_device }, 3707 { .compatible = "mipi-ccs-1.0", .data = &ccs_device }, 3708 { .compatible = "mipi-ccs", .data = &ccs_device }, 3709 { .compatible = "nokia,smia", .data = &smia_device }, 3710 { }, 3711 }; 3712 MODULE_DEVICE_TABLE(of, ccs_of_table); 3713 3714 static const struct dev_pm_ops ccs_pm_ops = { 3715 SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume) 3716 SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL) 3717 }; 3718 3719 static struct i2c_driver ccs_i2c_driver = { 3720 .driver = { 3721 .acpi_match_table = ccs_acpi_table, 3722 .of_match_table = ccs_of_table, 3723 .name = CCS_NAME, 3724 .pm = &ccs_pm_ops, 3725 }, 3726 .probe_new = ccs_probe, 3727 .remove = ccs_remove, 3728 }; 3729 3730 static int ccs_module_init(void) 3731 { 3732 unsigned int i, l; 3733 3734 for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) { 3735 if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) { 3736 ccs_limit_offsets[l + 1].lim = 3737 ALIGN(ccs_limit_offsets[l].lim + 3738 ccs_limits[i].size, 3739 ccs_reg_width(ccs_limits[i + 1].reg)); 3740 ccs_limit_offsets[l].info = i; 3741 l++; 3742 } else { 3743 ccs_limit_offsets[l].lim += ccs_limits[i].size; 3744 } 3745 } 3746 3747 if (WARN_ON(ccs_limits[i].size)) 3748 return -EINVAL; 3749 3750 if (WARN_ON(l != CCS_L_LAST)) 3751 return -EINVAL; 3752 3753 return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver); 3754 } 3755 3756 static void ccs_module_cleanup(void) 3757 { 3758 i2c_del_driver(&ccs_i2c_driver); 3759 } 3760 3761 module_init(ccs_module_init); 3762 module_exit(ccs_module_cleanup); 3763 3764 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); 3765 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver"); 3766 MODULE_LICENSE("GPL v2"); 3767 MODULE_ALIAS("smiapp"); 3768