xref: /openbmc/linux/drivers/media/i2c/aptina-pll.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aptina Sensor PLL Configuration
4  *
5  * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6  */
7 
8 #include <linux/device.h>
9 #include <linux/gcd.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 
13 #include "aptina-pll.h"
14 
15 int aptina_pll_calculate(struct device *dev,
16 			 const struct aptina_pll_limits *limits,
17 			 struct aptina_pll *pll)
18 {
19 	unsigned int mf_min;
20 	unsigned int mf_max;
21 	unsigned int p1_min;
22 	unsigned int p1_max;
23 	unsigned int p1;
24 	unsigned int div;
25 
26 	dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
27 		pll->ext_clock, pll->pix_clock);
28 
29 	if (pll->ext_clock < limits->ext_clock_min ||
30 	    pll->ext_clock > limits->ext_clock_max) {
31 		dev_err(dev, "pll: invalid external clock frequency.\n");
32 		return -EINVAL;
33 	}
34 
35 	if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
36 		dev_err(dev, "pll: invalid pixel clock frequency.\n");
37 		return -EINVAL;
38 	}
39 
40 	/* Compute the multiplier M and combined N*P1 divisor. */
41 	div = gcd(pll->pix_clock, pll->ext_clock);
42 	pll->m = pll->pix_clock / div;
43 	div = pll->ext_clock / div;
44 
45 	/* We now have the smallest M and N*P1 values that will result in the
46 	 * desired pixel clock frequency, but they might be out of the valid
47 	 * range. Compute the factor by which we should multiply them given the
48 	 * following constraints:
49 	 *
50 	 * - minimum/maximum multiplier
51 	 * - minimum/maximum multiplier output clock frequency assuming the
52 	 *   minimum/maximum N value
53 	 * - minimum/maximum combined N*P1 divisor
54 	 */
55 	mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
56 	mf_min = max(mf_min, limits->out_clock_min /
57 		     (pll->ext_clock / limits->n_min * pll->m));
58 	mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
59 	mf_max = limits->m_max / pll->m;
60 	mf_max = min(mf_max, limits->out_clock_max /
61 		    (pll->ext_clock / limits->n_max * pll->m));
62 	mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
63 
64 	dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
65 	if (mf_min > mf_max) {
66 		dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
67 		return -EINVAL;
68 	}
69 
70 	/*
71 	 * We're looking for the highest acceptable P1 value for which a
72 	 * multiplier factor MF exists that fulfills the following conditions:
73 	 *
74 	 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
75 	 *    even
76 	 * 2. mf is in the [mf_min, mf_max] range computed above
77 	 * 3. div * mf is a multiple of p1, in order to compute
78 	 *	n = div * mf / p1
79 	 *	m = pll->m * mf
80 	 * 4. the internal clock frequency, given by ext_clock / n, is in the
81 	 *    [int_clock_min, int_clock_max] range given by the limits
82 	 * 5. the output clock frequency, given by ext_clock / n * m, is in the
83 	 *    [out_clock_min, out_clock_max] range given by the limits
84 	 *
85 	 * The first naive approach is to iterate over all p1 values acceptable
86 	 * according to (1) and all mf values acceptable according to (2), and
87 	 * stop at the first combination that fulfills (3), (4) and (5). This
88 	 * has a O(n^2) complexity.
89 	 *
90 	 * Instead of iterating over all mf values in the [mf_min, mf_max] range
91 	 * we can compute the mf increment between two acceptable values
92 	 * according to (3) with
93 	 *
94 	 *	mf_inc = p1 / gcd(div, p1)			(6)
95 	 *
96 	 * and round the minimum up to the nearest multiple of mf_inc. This will
97 	 * restrict the number of mf values to be checked.
98 	 *
99 	 * Furthermore, conditions (4) and (5) only restrict the range of
100 	 * acceptable p1 and mf values by modifying the minimum and maximum
101 	 * limits. (5) can be expressed as
102 	 *
103 	 *	ext_clock / (div * mf / p1) * m * mf >= out_clock_min
104 	 *	ext_clock / (div * mf / p1) * m * mf <= out_clock_max
105 	 *
106 	 * or
107 	 *
108 	 *	p1 >= out_clock_min * div / (ext_clock * m)	(7)
109 	 *	p1 <= out_clock_max * div / (ext_clock * m)
110 	 *
111 	 * Similarly, (4) can be expressed as
112 	 *
113 	 *	mf >= ext_clock * p1 / (int_clock_max * div)	(8)
114 	 *	mf <= ext_clock * p1 / (int_clock_min * div)
115 	 *
116 	 * We can thus iterate over the restricted p1 range defined by the
117 	 * combination of (1) and (7), and then compute the restricted mf range
118 	 * defined by the combination of (2), (6) and (8). If the resulting mf
119 	 * range is not empty, any value in the mf range is acceptable. We thus
120 	 * select the mf lwoer bound and the corresponding p1 value.
121 	 */
122 	if (limits->p1_min == 0) {
123 		dev_err(dev, "pll: P1 minimum value must be >0.\n");
124 		return -EINVAL;
125 	}
126 
127 	p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
128 		     pll->ext_clock * pll->m));
129 	p1_max = min(limits->p1_max, limits->out_clock_max * div /
130 		     (pll->ext_clock * pll->m));
131 
132 	for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
133 		unsigned int mf_inc = p1 / gcd(div, p1);
134 		unsigned int mf_high;
135 		unsigned int mf_low;
136 
137 		mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
138 					limits->int_clock_max * div)), mf_inc);
139 		mf_high = min(mf_max, pll->ext_clock * p1 /
140 			      (limits->int_clock_min * div));
141 
142 		if (mf_low > mf_high)
143 			continue;
144 
145 		pll->n = div * mf_low / p1;
146 		pll->m *= mf_low;
147 		pll->p1 = p1;
148 		dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
149 		return 0;
150 	}
151 
152 	dev_err(dev, "pll: no valid N and P1 divisors found.\n");
153 	return -EINVAL;
154 }
155 EXPORT_SYMBOL_GPL(aptina_pll_calculate);
156 
157 MODULE_DESCRIPTION("Aptina PLL Helpers");
158 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
159 MODULE_LICENSE("GPL v2");
160