xref: /openbmc/linux/drivers/media/i2c/aptina-pll.c (revision d7a3d85e)
1 /*
2  * Aptina Sensor PLL Configuration
3  *
4  * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
18  * 02110-1301 USA
19  */
20 
21 #include <linux/device.h>
22 #include <linux/gcd.h>
23 #include <linux/kernel.h>
24 #include <linux/lcm.h>
25 #include <linux/module.h>
26 
27 #include "aptina-pll.h"
28 
29 int aptina_pll_calculate(struct device *dev,
30 			 const struct aptina_pll_limits *limits,
31 			 struct aptina_pll *pll)
32 {
33 	unsigned int mf_min;
34 	unsigned int mf_max;
35 	unsigned int p1_min;
36 	unsigned int p1_max;
37 	unsigned int p1;
38 	unsigned int div;
39 
40 	dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
41 		pll->ext_clock, pll->pix_clock);
42 
43 	if (pll->ext_clock < limits->ext_clock_min ||
44 	    pll->ext_clock > limits->ext_clock_max) {
45 		dev_err(dev, "pll: invalid external clock frequency.\n");
46 		return -EINVAL;
47 	}
48 
49 	if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
50 		dev_err(dev, "pll: invalid pixel clock frequency.\n");
51 		return -EINVAL;
52 	}
53 
54 	/* Compute the multiplier M and combined N*P1 divisor. */
55 	div = gcd(pll->pix_clock, pll->ext_clock);
56 	pll->m = pll->pix_clock / div;
57 	div = pll->ext_clock / div;
58 
59 	/* We now have the smallest M and N*P1 values that will result in the
60 	 * desired pixel clock frequency, but they might be out of the valid
61 	 * range. Compute the factor by which we should multiply them given the
62 	 * following constraints:
63 	 *
64 	 * - minimum/maximum multiplier
65 	 * - minimum/maximum multiplier output clock frequency assuming the
66 	 *   minimum/maximum N value
67 	 * - minimum/maximum combined N*P1 divisor
68 	 */
69 	mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
70 	mf_min = max(mf_min, limits->out_clock_min /
71 		     (pll->ext_clock / limits->n_min * pll->m));
72 	mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
73 	mf_max = limits->m_max / pll->m;
74 	mf_max = min(mf_max, limits->out_clock_max /
75 		    (pll->ext_clock / limits->n_max * pll->m));
76 	mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
77 
78 	dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
79 	if (mf_min > mf_max) {
80 		dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
81 		return -EINVAL;
82 	}
83 
84 	/*
85 	 * We're looking for the highest acceptable P1 value for which a
86 	 * multiplier factor MF exists that fulfills the following conditions:
87 	 *
88 	 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
89 	 *    even
90 	 * 2. mf is in the [mf_min, mf_max] range computed above
91 	 * 3. div * mf is a multiple of p1, in order to compute
92 	 *	n = div * mf / p1
93 	 *	m = pll->m * mf
94 	 * 4. the internal clock frequency, given by ext_clock / n, is in the
95 	 *    [int_clock_min, int_clock_max] range given by the limits
96 	 * 5. the output clock frequency, given by ext_clock / n * m, is in the
97 	 *    [out_clock_min, out_clock_max] range given by the limits
98 	 *
99 	 * The first naive approach is to iterate over all p1 values acceptable
100 	 * according to (1) and all mf values acceptable according to (2), and
101 	 * stop at the first combination that fulfills (3), (4) and (5). This
102 	 * has a O(n^2) complexity.
103 	 *
104 	 * Instead of iterating over all mf values in the [mf_min, mf_max] range
105 	 * we can compute the mf increment between two acceptable values
106 	 * according to (3) with
107 	 *
108 	 *	mf_inc = p1 / gcd(div, p1)			(6)
109 	 *
110 	 * and round the minimum up to the nearest multiple of mf_inc. This will
111 	 * restrict the number of mf values to be checked.
112 	 *
113 	 * Furthermore, conditions (4) and (5) only restrict the range of
114 	 * acceptable p1 and mf values by modifying the minimum and maximum
115 	 * limits. (5) can be expressed as
116 	 *
117 	 *	ext_clock / (div * mf / p1) * m * mf >= out_clock_min
118 	 *	ext_clock / (div * mf / p1) * m * mf <= out_clock_max
119 	 *
120 	 * or
121 	 *
122 	 *	p1 >= out_clock_min * div / (ext_clock * m)	(7)
123 	 *	p1 <= out_clock_max * div / (ext_clock * m)
124 	 *
125 	 * Similarly, (4) can be expressed as
126 	 *
127 	 *	mf >= ext_clock * p1 / (int_clock_max * div)	(8)
128 	 *	mf <= ext_clock * p1 / (int_clock_min * div)
129 	 *
130 	 * We can thus iterate over the restricted p1 range defined by the
131 	 * combination of (1) and (7), and then compute the restricted mf range
132 	 * defined by the combination of (2), (6) and (8). If the resulting mf
133 	 * range is not empty, any value in the mf range is acceptable. We thus
134 	 * select the mf lwoer bound and the corresponding p1 value.
135 	 */
136 	if (limits->p1_min == 0) {
137 		dev_err(dev, "pll: P1 minimum value must be >0.\n");
138 		return -EINVAL;
139 	}
140 
141 	p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
142 		     pll->ext_clock * pll->m));
143 	p1_max = min(limits->p1_max, limits->out_clock_max * div /
144 		     (pll->ext_clock * pll->m));
145 
146 	for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
147 		unsigned int mf_inc = p1 / gcd(div, p1);
148 		unsigned int mf_high;
149 		unsigned int mf_low;
150 
151 		mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
152 					limits->int_clock_max * div)), mf_inc);
153 		mf_high = min(mf_max, pll->ext_clock * p1 /
154 			      (limits->int_clock_min * div));
155 
156 		if (mf_low > mf_high)
157 			continue;
158 
159 		pll->n = div * mf_low / p1;
160 		pll->m *= mf_low;
161 		pll->p1 = p1;
162 		dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
163 		return 0;
164 	}
165 
166 	dev_err(dev, "pll: no valid N and P1 divisors found.\n");
167 	return -EINVAL;
168 }
169 EXPORT_SYMBOL_GPL(aptina_pll_calculate);
170 
171 MODULE_DESCRIPTION("Aptina PLL Helpers");
172 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
173 MODULE_LICENSE("GPL v2");
174